JP2023109499A - Method for operating ion exchange system - Google Patents

Method for operating ion exchange system Download PDF

Info

Publication number
JP2023109499A
JP2023109499A JP2022011045A JP2022011045A JP2023109499A JP 2023109499 A JP2023109499 A JP 2023109499A JP 2022011045 A JP2022011045 A JP 2022011045A JP 2022011045 A JP2022011045 A JP 2022011045A JP 2023109499 A JP2023109499 A JP 2023109499A
Authority
JP
Japan
Prior art keywords
ion exchange
regeneration
towers
tower
exchange tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022011045A
Other languages
Japanese (ja)
Inventor
明之 田村
Akiyuki Tamura
皓陽 吉松
Hiroya Yoshimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2022011045A priority Critical patent/JP2023109499A/en
Publication of JP2023109499A publication Critical patent/JP2023109499A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for operating an ion exchange system capable of appropriately regenerating ion exchange towers so that regeneration timings of the respective ion exchange towers do not overlap.SOLUTION: There is provided a method for operating an ion exchange system including regenerating ion exchange towers sequentially so that while some ion exchange towers are being regenerated, other ion exchange towers are producing pure water, by differentiating a starting timing of raw water supply to each ion exchange tower and a stopping timing of pure water sampling. In a state where pure water is being produced in both the ion exchange towers with first and second regeneration orders, when a remaining water sampling time in the ion exchange tower with a second regeneration order reaches a required regeneration time of the ion exchange tower with the first regeneration order, regeneration of the ion exchange tower with the first regeneration order is started even if the ion exchange tower with the first regeneration order has not reached a scheduled water sampling amount.SELECTED DRAWING: Figure 1

Description

本発明は、イオン交換樹脂等のイオン交換体を有したイオン交換塔(軟水器、イオン交換器等と称されることもある。)に原水(被処理水)を通水して純水を得るイオン交換システムの運転方法に係り、特に複数のイオン交換塔が並列設置されている場合の運転方法に関する。 In the present invention, pure water is produced by passing raw water (water to be treated) through an ion exchange tower (also referred to as a water softener, ion exchanger, etc.) having an ion exchanger such as an ion exchange resin. The present invention relates to an operation method of an ion exchange system, and more particularly to an operation method when a plurality of ion exchange towers are installed in parallel.

複数のイオン交換塔を並列に設置し、一部のイオン交換塔に原水を通水して純水を製造しているときに他のイオン交換塔でイオン交換体の再生を行うイオン交換システムの運転方法が広く行われている(特許文献1~3)。 An ion exchange system in which multiple ion exchange towers are installed in parallel, and while raw water is passed through some ion exchange towers to produce pure water, ion exchangers are regenerated in other ion exchange towers. Operating methods are widely used (Patent Documents 1 to 3).

特許文献1~3には、2個のイオン交換塔が並列に設置され、一方のイオン交換塔で純水を製造しているときに他方のイオン交換塔の再生を行うことが記載されている。 Patent Documents 1 to 3 describe that two ion exchange towers are installed in parallel, and that one ion exchange tower is being regenerated while the other ion exchange tower is producing pure water. .

特許文献3の図3には、3個の軟水器を並列した場合も記載されている。この場合、1つの軟水器で純水を製造しているときに、他の1つの軟水器の再生を行い、残りの1つの軟水器を待機状態とするように運転が行われる。 FIG. 3 of Patent Document 3 also describes a case where three water softeners are arranged in parallel. In this case, while one water softener is producing pure water, another water softener is regenerated, and the remaining one water softener is put on standby.

なお、並列設置されたイオン交換塔のうち2個以上のものを同時に再生することは、再生薬液の供給系統の構成が複雑になったり、廃液タンク容量の制約があったりするため、実際には行われない。 Simultaneously regenerating two or more of the ion exchange towers installed in parallel complicates the structure of the regenerated chemical supply system and limits the capacity of the waste liquid tank. Not done.

特開平6-15265号公報JP-A-6-15265 特開平10-272370号公報JP-A-10-272370 特開2003-1249号公報Japanese Unexamined Patent Application Publication No. 2003-1249

複数のイオン交換塔を並列に設置したイオン交換塔システムにおいて、複数のイオン交換塔で純水製造を行い、1個のイオン交換塔の破過が近づいたときには、該1個のイオン交換塔を他のイオン交換塔に先行して再生を行うことがある。 In an ion exchange tower system in which a plurality of ion exchange towers are installed in parallel, pure water is produced by a plurality of ion exchange towers, and when one ion exchange tower is about to break through, the one ion exchange tower is closed. Regeneration may precede other ion exchange towers.

この場合、先行して再生を開始しているイオン交換塔の再生が終了する前に他のイオン交換塔も破過してしまうと、いずれのイオン交換塔でも、純水製造を行うことができなくなってしまう。 In this case, if other ion exchange towers break through before the completion of the regeneration of the ion exchange tower whose regeneration has started earlier, pure water production cannot be carried out in any of the ion exchange towers. It's gone.

イオン交換塔が破過状態となっているにも拘らず採水を継続すると、純水の水質が基準値よりも悪化することになる。 If water sampling is continued while the ion exchange tower is in a breakthrough state, the quality of the pure water will deteriorate below the standard value.

本発明は、複数のイオン交換塔が並列に設置されているイオン交換システムを運転する方法において、複数のイオン交換塔で良好な水質の純水を効率よく製造することができ、しかも各イオン交換塔の再生時期が重なることがないように適切にイオン交換塔の再生を行うことができるイオン交換システムの運転方法を提供することを課題とする。 The present invention is a method for operating an ion exchange system in which a plurality of ion exchange towers are installed in parallel, in which pure water of good quality can be efficiently produced in the plurality of ion exchange towers, and each ion exchange An object of the present invention is to provide an operation method of an ion exchange system that can appropriately regenerate an ion exchange tower so that the regeneration timings of the towers do not overlap.

本発明のイオン交換システムの運転方法は、複数のイオン交換塔が並列設置されたイオン交換システムを運転する方法であって、
各イオン交換塔への原水通水開始時期と純水採水停止時期とを異ならせ、
一部のイオン交換塔で再生を行っているときに他のイオン交換塔で純水製造を行うように順番にイオン交換塔の再生を行うイオン交換システムの運転方法において、
再生順番が1番及び2番となっているイオン交換塔の双方で純水を製造している状態において、再生順番2番のイオン交換塔における採水残余時間(採水予定量に達するまでの時間)が、再生順番が1番のイオン交換塔の再生所要時間(再生に要する時間)に達したときには、再生順番1番のイオン交換塔が採水予定量に達していなくても再生順番1番のイオン交換塔の再生を開始することを特徴とする。
A method for operating an ion exchange system of the present invention is a method for operating an ion exchange system in which a plurality of ion exchange towers are installed in parallel,
Differentiate the starting timing of raw water flow to each ion exchange tower and the stopping timing of pure water sampling,
In a method for operating an ion exchange system in which ion exchange towers are regenerated in order so that pure water production is performed in other ion exchange towers while regeneration is being performed in some ion exchange towers,
In the state where pure water is being produced in both the ion exchange towers whose regeneration order is No. 1 and No. 2, the remaining water sampling time in the ion exchange tower whose regeneration order is No. 2 (until reaching the scheduled water sampling volume) time) reaches the regeneration required time (time required for regeneration) of the ion exchange tower with the regeneration order number 1, even if the ion exchange tower with the regeneration turn number 1 does not reach the planned water sampling amount, the regeneration order 1 It is characterized by starting regeneration of the second ion exchange tower.

本発明の一態様では、3個のイオン交換塔が設置されており、すべてのイオン交換塔で純水を製造する時間帯が存在する。 In one aspect of the present invention, three ion exchange towers are installed, and there is a time slot during which pure water is produced in all the ion exchange towers.

本発明の一態様では、前記イオン交換塔にイオン交換体としてイオン交換樹脂が充填されている。 In one aspect of the present invention, the ion exchange tower is filled with an ion exchange resin as an ion exchanger.

本発明の一態様では、各イオン交換塔の容積が同一であり、同一種類のイオン交換樹脂が同一量充填されている。 In one aspect of the present invention, each ion exchange column has the same volume and is filled with the same amount of the same type of ion exchange resin.

本発明のイオン交換システムの運転方法では、再生順番が1番及び2番となっているイオン交換塔の双方で純水を製造している状態にあるときに、再生順番2番のイオン交換塔の採水残余時間(採水予定量に達するまでの時間)が、再生順番1番のイオン交換塔の再生所要時間に達したときには、1番のイオン交換塔がまだ採水予定量に達していなくても該1番のイオン交換塔の再生を開始する。 In the method of operating the ion exchange system of the present invention, when both the ion exchange towers whose regeneration order is No. 1 and No. 2 are producing pure water, the ion exchange tower whose regeneration order is No. 2 When the remaining water sampling time (the time until reaching the scheduled water sampling volume) reaches the regeneration required time for the ion exchange tower with the regeneration order number 1, the ion exchange tower No. 1 has still reached the scheduled water sampling volume. Even if it is not, start the regeneration of the first ion exchange tower.

このため、1番のイオン交換塔の再生が終了した時点では、2番のイオン交換塔ではまだ採水予定量に到達していない。従って、1番と2番のイオン交換塔の再生時期が重なることがない。 Therefore, when the regeneration of the No. 1 ion exchange tower is completed, the No. 2 ion exchange tower has not yet reached the planned amount of sampled water. Therefore, the regeneration timings of the first and second ion exchange columns do not overlap.

本発明の一態様では、再生終了後のイオン交換塔を長時間にわたって待機状態にしておくことがなく、イオン交換塔の稼動効率がよく、純水製造効率に優れる。 In one aspect of the present invention, the ion exchange tower after regeneration is not kept in a standby state for a long period of time, and the operation efficiency of the ion exchange tower is good, and the pure water production efficiency is excellent.

イオン交換システムの構成図である。1 is a configuration diagram of an ion exchange system; FIG. 各イオン交換塔の採水量を示すグラフである。It is a graph which shows the water intake amount of each ion exchange tower.

以下、図面を参照して実施の形態について説明する。 Embodiments will be described below with reference to the drawings.

[イオン交換システムの構成]
図1は実施の形態に係るイオン交換システムの運転方法が適用されるイオン交換システムの構成図である。この実施の形態では、3個のイオン交換塔が並列設置されているが、2又は4以上のイオン交換塔が並列設置されてもよい。なお、イオン交換塔は、軟水器、イオン交換器等と称されるものを包含する。
[Configuration of ion exchange system]
FIG. 1 is a configuration diagram of an ion exchange system to which an ion exchange system operating method according to an embodiment is applied. In this embodiment, three ion exchange towers are installed in parallel, but two or four or more ion exchange towers may be installed in parallel. The ion exchange tower includes what is called a water softener, an ion exchanger, and the like.

原水(被処理水)は、原水配管10から、各分岐配管11,12,13及びバルブ21,22,23を介してイオン交換塔A,B又はCに導入可能とされている。イオン交換塔A,B,C内には、イオン交換体としてイオン交換樹脂が充填されている。 Raw water (water to be treated) can be introduced from the raw water pipe 10 into the ion exchange towers A, B or C via branch pipes 11, 12, 13 and valves 21, 22, 23. The ion exchange towers A, B, and C are filled with ion exchange resins as ion exchangers.

イオン交換処理により生じた純水は、イオン交換塔A,B,Cからバルブ31,32,33を有した分岐配管41,42,43及び集合配管40を通って取り出される。各分岐配管41,42,43には流量計51,52,53が設けられている。また、図示は省略するが、各分岐配管41,42,43には水質センサが設けられている。水質センサとしては導電率計、比抵抗計などを用いることができるが、これに限定されない。 Pure water produced by ion exchange treatment is taken out from ion exchange towers A, B and C through branch pipes 41, 42 and 43 having valves 31, 32 and 33 and a collecting pipe 40. Flowmeters 51 , 52 , 53 are provided in respective branch pipes 41 , 42 , 43 . Although not shown, each branch pipe 41, 42, 43 is provided with a water quality sensor. A conductivity meter, a resistivity meter, or the like can be used as the water quality sensor, but the water quality sensor is not limited to these.

イオン交換樹脂の再生液が、集合配管60から、バルブ71,72,73を有した分岐配管61,62,63を介してイオン交換塔A,B,Cに導入可能とされている。イオン交換樹脂の再生排水は、バルブ81,82,83を有した分岐配管91,92,93及び集合配管90を介して排出可能とされている。 A regenerated liquid for the ion exchange resin can be introduced into the ion exchange towers A, B, and C from a collection pipe 60 via branch pipes 61, 62, and 63 having valves 71, 72, and 73, respectively. Waste water for regeneration of the ion-exchange resin can be discharged through branch pipes 91, 92, 93 having valves 81, 82, 83 and a collecting pipe 90.

各イオン交換塔A,B,Cの容積、形状、イオン交換樹脂の種類及びイオン交換樹脂充填量は同一である。 The volumes, shapes, types of ion-exchange resins, and ion-exchange resin filling amounts of the ion-exchange towers A, B, and C are the same.

各イオン交換塔A,B,Cの採水可能量、すなわち原水を通水開始してから、純水水質(例えば導電率)が所定水質以上を維持している間に得られる純水量を採水予定量Qとする。 The amount of water that can be collected from each of the ion exchange towers A, B, and C, that is, the amount of pure water that can be obtained while the pure water quality (for example, conductivity) is maintained at a predetermined water quality or higher after the start of raw water flow. Let Q be the expected amount of water.

各流量計51,52,53の検出流量は制御器(図示略)に送信される。制御器は、この検出流出を積算し、積算流量と採水予定量Qとに基づいて各バルブの切り替えを行う。 The detected flow rate of each flow meter 51, 52, 53 is transmitted to a controller (not shown). The controller integrates the detected outflow, and switches each valve based on the integrated flow rate and the scheduled water sampling amount Q.

[イオン交換システムの運転手順]
このイオン交換システムの運転を開始しようとする初期状態にあっては、各イオン交換塔A~Cに同一種類の新品(又は再生済み)のイオン交換樹脂が同一量充填されている。
原水は、まず配管10,11を介してイオン交換塔Aにのみ通水され、製造された純水はイオン交換塔Aから配管41,40を介して取り出される。この場合、バルブ21,31が開とされ、その他のバルブは閉とされている。配管41を流れる純水の流量が流量計51で検出され、この流量データは制御器(図示略)に送信され、積算される。
[Operating procedure of the ion exchange system]
In the initial state when the operation of this ion exchange system is about to start, each of the ion exchange towers A to C is filled with the same amount of new (or regenerated) ion exchange resin of the same type.
Raw water is first passed through pipes 10 and 11 only to the ion exchange tower A, and the produced pure water is taken out from the ion exchange tower A through pipes 41 and 40 . In this case, the valves 21 and 31 are opened and the other valves are closed. The flow rate of pure water flowing through the pipe 41 is detected by a flow meter 51, and this flow rate data is transmitted to a controller (not shown) and integrated.

このイオン交換塔Aの積算流量が規定積算流量Sに到達したならば、イオン交換塔Bにも原水の通水を開始する。この場合、バルブ21,22,31,32が開状態とされ、他のバルブは閉のままとされる。流量計52の積算流量も制御器で積算される。 When the integrated flow rate of the ion exchange tower A reaches the specified integrated flow rate S, the flow of raw water to the ion exchange tower B is also started. In this case, the valves 21, 22, 31, 32 are opened and the other valves remain closed. The integrated flow rate of the flow meter 52 is also integrated by the controller.

本発明の一態様では、上記のイオン交換塔Bにも原水の通水を開始するときのイオン交換塔Aの規定積算流量S(m)は、イオン交換塔Aへの通水流量V(m/h)で、イオン交換塔Aの採水予定量をQ(m)とした場合、(Q―S)/Vがイオン交換塔Aの再生所要時間以上、好ましくは(Q―S)/Vがイオン交換塔Aの再生所要時間の100~50%、特に好ましくは80~60%となるように設定される。イオン交換塔B,Cの規定積算流量Sも同様である。 In one aspect of the present invention, the specified integrated flow rate S (m 3 ) of the ion exchange tower A when starting to pass the raw water to the ion exchange tower B is the water flow rate V ( m 3 /h), and when the scheduled water sampling amount of the ion exchange tower A is Q (m 3 ), (QS)/V is the time required for regeneration of the ion exchange tower A or more, preferably (QS )/V is set to 100 to 50%, particularly preferably 80 to 60%, of the time required for regeneration of the ion exchange column A. The same applies to the specified integrated flow rate S of the ion exchange towers B and C.

イオン交換塔Bからの純水の積算流量が規定積算流量Sに到達したならば、イオン交換塔Cにも原水の通水を開始する。この場合、バルブ21~23、31~33が開状態とされ、他のバルブは閉のままとされる。流量計53の積算流量も制御器で積算される。この時点では、図2(1)のように、すべてのイオン交換塔A,B,Cで純水が製造されている。 When the integrated flow rate of pure water from the ion exchange tower B reaches the specified integrated flow rate S, the flow of raw water to the ion exchange tower C is also started. In this case, the valves 21-23 and 31-33 are opened and the other valves remain closed. The integrated flow rate of the flow meter 53 is also integrated by the controller. At this point, pure water is being produced in all of the ion exchange towers A, B, and C, as shown in FIG. 2(1).

図2(1)の状態では、イオン交換塔Aが再生順番1番、イオン交換塔Bが再生順番2番、イオン交換塔Cが再生順番3番である。この図2(1)の状態において、イオン交換塔Bの採水残余時間(採水予定量Qに達するまでの時間)が、イオン交換塔Aの再生所要時間に達したならば、イオン交換塔Aの採水量がまだ採水予定量Qに達していなくても、イオン交換塔Aの再生を開始する。この再生は、イオン交換塔Aに再生液を通液することにより行われる。 In the state shown in FIG. 2(1), the ion exchange tower A is the first in regeneration order, the ion exchange tower B is the second regeneration turn, and the ion exchange tower C is the third regeneration turn. In the state of FIG. 2 (1), if the remaining water sampling time of the ion exchange tower B (time until reaching the scheduled water sampling amount Q) reaches the regeneration required time of the ion exchange tower A, then the ion exchange tower Even if the amount of sampled water of A has not yet reached the scheduled amount of sampled water Q, regeneration of the ion exchange tower A is started. This regeneration is carried out by passing a regeneration liquid through the ion exchange column A.

このように、イオン交換塔Bの採水残余時間が十分に(イオン交換塔Aの再生所要時間よりも長く)残っているうちにイオン交換塔Aの再生を開始するので、イオン交換塔Aの再生が終了した時点では、イオン交換塔Bはまだ採水予定量Qに達していない。 In this way, the regeneration of the ion exchange tower A is started while the remaining water sampling time of the ion exchange tower B remains sufficiently (longer than the regeneration required time of the ion exchange tower A). At the time when the regeneration is completed, the ion exchange tower B has not yet reached the planned amount Q of water to be sampled.

イオン交換塔Aの再生が終了した後、イオン交換塔Aへの原水供給を再開する。これにより、図2(2)の状態となる。 After regeneration of the ion exchange tower A is completed, supply of raw water to the ion exchange tower A is restarted. As a result, the state shown in FIG. 2(2) is obtained.

この図2(2)の状態では、イオン交換塔Bが再生順番1番、イオン交換塔Cが再生順番2番、イオン交換塔Aが再生順番3番である。この図2(2)の状態において、イオン交換塔Cの採水残余時間がイオン交換塔Bの再生所要時間に達したならば、イオン交換塔Bの採水量がまだ採水予定量Qに達していなくても、イオン交換塔Bの再生を開始する。 In the state shown in FIG. 2(2), the ion exchange tower B is the first in regeneration order, the ion exchange tower C is the second regeneration turn, and the ion exchange tower A is the third regeneration turn. In the state shown in FIG. 2(2), if the remaining water sampling time of the ion exchange tower C reaches the required regeneration time of the ion exchange tower B, the water sampling amount of the ion exchange tower B still reaches the scheduled water sampling amount Q. Regeneration of the ion exchange tower B is started even if it is not installed.

このように、イオン交換塔Cの採水残余時間が十分に(イオン交換塔Bの再生所要時間よりも長く)残っているうちにイオン交換塔Bの再生を開始するので、イオン交換塔Bの再生が終了した時点では、イオン交換塔Cはまだ採水予定量Qに達していない。この再生が終了した後、イオン交換塔Bへの原水供給を再開する。これにより、図2(3)の状態となる。 In this way, the regeneration of ion exchange tower B is started while the remaining water sampling time of ion exchange tower C remains sufficiently (longer than the regeneration required time of ion exchange tower B). When the regeneration is finished, the ion exchange tower C has not yet reached the scheduled water sampling amount Q. After this regeneration is completed, the raw water supply to the ion exchange tower B is restarted. As a result, the state shown in FIG. 2(3) is obtained.

この状態では、イオン交換塔Cが再生順番1番、イオン交換塔Aが再生順番2番、イオン交換塔Bが再生順番3番である。この図2(3)の状態において、イオン交換塔Aの採水残余時間が、イオン交換塔Cの再生所要時間に達したならば、イオン交換塔Cの採水量がまだ採水予定量Qに達していなくても、イオン交換塔Cの再生を開始する。 In this state, the ion exchange tower C is the first in regeneration order, the ion exchange tower A is the second regeneration turn, and the ion exchange tower B is the third regeneration turn. In the state shown in FIG. 2(3), if the remaining water sampling time of the ion exchange tower A reaches the required regeneration time of the ion exchange tower C, the water sampling amount of the ion exchange tower C is still equal to the scheduled water sampling amount Q. Regeneration of the ion exchange tower C is started even if it has not reached.

このように、イオン交換塔Aの採水残余時間が十分に(イオン交換塔Cの再生所要時間よりも長く)残っているうちにイオン交換塔Cの再生を開始するので、イオン交換塔Cの再生が終了した時点では、イオン交換塔Aはまだ採水予定量Qに達していない。 In this way, regeneration of the ion exchange tower C is started while the remaining water sampling time of the ion exchange tower A remains sufficiently (longer than the regeneration required time of the ion exchange tower C). At the point in time when the regeneration is completed, the ion exchange tower A has not yet reached the planned amount of sampled water Q.

イオン交換塔Cの再生が終了した後、イオン交換塔Cへの原水供給を再開する。これにより、図2(1)の状態となる。 After regeneration of the ion exchange tower C is completed, supply of raw water to the ion exchange tower C is resumed. As a result, the state shown in FIG. 2(1) is obtained.

以下、図2(1)→(2)→(3)の工程を繰り返す。。 Thereafter, the steps of (1)→(2)→(3) in FIG. 2 are repeated. .

従って、このシステムでは、イオン交換塔A,B,Cの3個で純水が製造される運転状態と、2個のイオン交換塔で純水が製造され1個で再生が行われる運転状態とが繰り返されることになる。そのため、各イオン交換塔が長時間待機状態におかれることがなく、イオン交換塔の稼動効率が高いので、純水が効率よく製造される。また、イオン交換塔Aの再生中にはイオン交換塔B,Cにイオン交換容量が残存し、イオン交換塔Bの再生中にはイオン交換塔C,Aにイオン交換容量が残存し、イオン交換塔Cの再生中にはイオン交換塔A,Bにイオン交換容量が残存しており、純水を切れ目なく連続して且つ安定して製造することができる。 Therefore, in this system, there are an operating state in which pure water is produced by three ion-exchange towers A, B, and C, and an operating state in which pure water is produced by two ion-exchange towers and regeneration is performed by one. will be repeated. As a result, the ion exchange towers are not left on standby for a long period of time, and the operation efficiency of the ion exchange towers is high, so that pure water can be produced efficiently. Further, ion exchange capacity remains in ion exchange towers B and C during regeneration of ion exchange tower A, ion exchange capacity remains in ion exchange towers C and A during regeneration of ion exchange tower B, and ion exchange During the regeneration of tower C, ion exchange capacity remains in ion exchange towers A and B, and pure water can be produced continuously and stably.

なお、図2では、イオン交換塔Aの再生開始時にはイオン交換塔Cに原水が通水され、イオン交換塔Bの再生開始時にはイオン交換塔Aに原水が通水され、イオン交換塔Cの再生開始時にはイオン交換塔Bに原水が通水されており、すべてイオン交換塔に原水を通水する時間帯が存在する。ただし、本発明はこれに限定されない。例えば、イオン交換塔Aの再生開始とイオン交換塔Cへの原水通水開始とを略同時としてもよく、イオン交換塔Bの再生開始とイオン交換塔Aへの原水通水開始とを略同時としてもよく、イオン交換塔Cの再生開始とイオン交換塔Bへの原水通水開始とを略同時としてもよい。 In FIG. 2, raw water is passed through ion exchange tower C at the start of regeneration of ion exchange tower A, raw water is passed through ion exchange tower A at the start of regeneration of ion exchange tower B, and ion exchange tower C is regenerated. At the start, the raw water is passed through the ion exchange tower B, and there is a time zone during which the raw water is passed through all the ion exchange towers. However, the present invention is not limited to this. For example, regeneration of the ion exchange tower A and raw water supply to the ion exchange tower C may be started substantially simultaneously, and regeneration of the ion exchange tower B and raw water supply to the ion exchange tower A may be started substantially simultaneously. Alternatively, the regeneration of the ion exchange tower C and the raw water supply to the ion exchange tower B may be started substantially at the same time.

本発明の一態様では、イオン交換塔A~Cの採水予定量Qは、予め原水の水質とイオン交換樹脂のイオン交換容量とに基づいて設定しておく。 In one aspect of the present invention, the scheduled water sampling volume Q of the ion exchange towers A to C is set in advance based on the quality of the raw water and the ion exchange capacity of the ion exchange resin.

また、本発明の一態様では、イオン交換塔A~Cの再生所要時間については、予め該イオン交換塔の過去の運転実績値や、設計計算値及び運転実測値に基づいて設定しておく。 In one aspect of the present invention, the time required for regeneration of the ion exchange towers A to C is set in advance based on past operational performance values, design calculation values, and operational measurement values of the ion exchange towers.

上記実施の形態は本発明の一例であり、本発明は上記以外の形態とされてもよい。 The above-described embodiment is an example of the present invention, and the present invention may be in a form other than the above.

11~13,41~43,61~63,91~93 分岐配管
21~23,31~33,71~73,81~83 バルブ
51~53 流量計
11-13, 41-43, 61-63, 91-93 Branch piping 21-23, 31-33, 71-73, 81-83 Valve 51-53 Flow meter

Claims (4)

複数のイオン交換塔が並列設置されたイオン交換システムを運転する方法であって、
各イオン交換塔への原水通水開始時期と純水採水停止時期とを異ならせ、
一部のイオン交換塔で再生を行っているときに他のイオン交換塔で純水製造を行うように順番にイオン交換塔の再生を行うイオン交換システムの運転方法において、
再生順番が1番及び2番となっているイオン交換塔の双方で純水を製造している状態において、再生順番2番のイオン交換塔における採水残余時間が、再生順番が1番のイオン交換塔の再生所要時間に達したときには、再生順番1番のイオン交換塔が採水予定量に達していなくても再生順番1番のイオン交換塔の再生を開始することを特徴とするイオン交換システムの運転方法。
A method for operating an ion exchange system in which a plurality of ion exchange towers are installed in parallel,
Differentiate the starting timing of raw water flow to each ion exchange tower and the stopping timing of pure water sampling,
In a method for operating an ion exchange system in which ion exchange towers are regenerated in order so that pure water production is performed in other ion exchange towers while regeneration is being performed in some ion exchange towers,
In the state where pure water is being produced in both the ion exchange towers whose regeneration order is 1st and 2nd, the remaining water sampling time in the ion exchange tower whose regeneration order is 2nd is the same as that of the ions whose regeneration order is 1st. An ion exchange characterized by starting regeneration of the ion exchange tower No. 1 in regeneration order when the regeneration required time of the exchange tower has reached, even if the ion exchange tower No. 1 in regeneration order has not reached the planned amount of water sampling. How the system operates.
3個のイオン交換塔が設置されており、すべてのイオン交換塔で純水を製造する時間帯が存在する、請求項1のイオン交換システムの運転方法。 2. The method of operating an ion exchange system according to claim 1, wherein three ion exchange towers are installed and there is a time period during which pure water is produced in all of the ion exchange towers. 前記イオン交換塔にイオン交換体としてイオン交換樹脂が充填されている、請求項1又は2のイオン交換システムの運転方法。 3. The method of operating an ion exchange system according to claim 1, wherein said ion exchange tower is filled with an ion exchange resin as an ion exchanger. 各イオン交換塔の容積が同一であり、同一種類のイオン交換樹脂が同一量充填されている、請求項3のイオン交換システムの運転方法。
4. The method of operating an ion exchange system according to claim 3, wherein each ion exchange column has the same volume and is filled with the same amount of the same type of ion exchange resin.
JP2022011045A 2022-01-27 2022-01-27 Method for operating ion exchange system Pending JP2023109499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022011045A JP2023109499A (en) 2022-01-27 2022-01-27 Method for operating ion exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022011045A JP2023109499A (en) 2022-01-27 2022-01-27 Method for operating ion exchange system

Publications (1)

Publication Number Publication Date
JP2023109499A true JP2023109499A (en) 2023-08-08

Family

ID=87522560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022011045A Pending JP2023109499A (en) 2022-01-27 2022-01-27 Method for operating ion exchange system

Country Status (1)

Country Link
JP (1) JP2023109499A (en)

Similar Documents

Publication Publication Date Title
JP2009240891A (en) Method for producing ultrapure water
JP4813106B2 (en) Waste water treatment method and waste water treatment equipment
JP2023109499A (en) Method for operating ion exchange system
CN104591437B (en) The micro-basification system of electric generator inner cooling water nanofiltration and processing method
US2466662A (en) Operation of ion exchange beds
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
US5176885A (en) Isotope separation of weak acid forming elements by utilization of thermal regeneration of ion exchange resin
CN104229941A (en) Device and method for recycling treatment of amino containing waste water
JP6651382B2 (en) Wastewater treatment method and wastewater treatment device
JP2002361247A (en) Method for manufacturing pure water
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPS6265785A (en) Treatment of condensate
JP2023035084A (en) Start-up method of water treatment apparatus
CN204058129U (en) A kind of amine purification treatment system
JPS6153116B2 (en)
CN100494326C (en) Liquid control method and process of gaseous deacidification using said liquid control method
JPS6057399B2 (en) Demineralizer group control device
WO2022118382A1 (en) Drainage treatment system and drainage treatment method
JPS5841913B2 (en) Condensate treatment method
Roopchund et al. A Systematic Review of WAVE Water Treatment Design Software and Related Technologies
JP2009125718A (en) Condensate demineralizer
JPH07155757A (en) Mixed bed desalting device
JPH0422489A (en) Water treatment method of power plant
JP2023066522A (en) Hot ultrapure water production system startup method, startup program, and hot ultrapure water production system