JP2023106282A - Pharmaceutical composition for preventing Vibrio sepsis - Google Patents

Pharmaceutical composition for preventing Vibrio sepsis Download PDF

Info

Publication number
JP2023106282A
JP2023106282A JP2022115652A JP2022115652A JP2023106282A JP 2023106282 A JP2023106282 A JP 2023106282A JP 2022115652 A JP2022115652 A JP 2022115652A JP 2022115652 A JP2022115652 A JP 2022115652A JP 2023106282 A JP2023106282 A JP 2023106282A
Authority
JP
Japan
Prior art keywords
vibrio
strain
mice
pharmaceutical composition
infection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022115652A
Other languages
Japanese (ja)
Other versions
JP7549899B2 (en
Inventor
イ,ギュホ
Kyu Ho Lee
チャン,ボラム
Bo Ram Jang
チョン,ユチョル
You Chul Jung
キム,ユラ
Yu Ra Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogang Univ Research & Business Development Foundation
Sogang University Research Foundation
Original Assignee
Sogang Univ Research & Business Development Foundation
Sogang University Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogang Univ Research & Business Development Foundation, Sogang University Research Foundation filed Critical Sogang Univ Research & Business Development Foundation
Publication of JP2023106282A publication Critical patent/JP2023106282A/en
Application granted granted Critical
Publication of JP7549899B2 publication Critical patent/JP7549899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

To provide a pharmaceutical composition for preventing vibrio sepsis.SOLUTION: A pharmaceutical composition contains Bacteroides vulgatus strain, a crushed product of the strain, or a culture supernatant of the strain as an active ingredient.SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り 1.https://doi.org/10.1186/s40168-021-01095-w 2021年7月20日掲載There is an application for the application of Article 30, Paragraph 2 of the Patent Act. https://doi. org/10.1186/s40168-021-01095-w Posted on July 20, 2021

本発明は、敗血症予防用薬学的組成物に係り、さらに詳細には、ビブリオ敗血症予防用薬学的組成物に関する。 TECHNICAL FIELD The present invention relates to a pharmaceutical composition for preventing sepsis, and more particularly to a pharmaceutical composition for preventing Vibrio sepsis.

食品媒介病原体(foodborne pathogen)は、感染過程で宿主の胃腸管(GI)を通じて多くのストレスを受ける。pH、酸素、浸透圧濃度及び栄養素の変動する条件で生き残ると共に、宿主の免疫体系によって生成される抗菌剤と宿主上皮構造の障壁も克服しなければならない(Takiishi T,et al.,Tissue Barriers.5:e1373208.2017)。したがって、成功的な感染のために、病原体は、走化性を基盤とした運動性、腸粘液層の浸透、上皮表面に対する付着、群集化過程及び感染部位で毒性因子の生産及び/または分泌の過程が必要である。
病原体であるビブリオ・バルニフィカス(Vibrio vulnificus)の場合、多様な毒性因子に対する多くの報告があった。よく知られたリポ多糖(lipopolysaccharide)及び莢膜多糖(capsular polysaccharide)以外にも、免疫原性lipoprotein A(IlpA)、hemolysin/cytolysin(VvhA)、metalloprotease M(VvpM)、phospholipase A2(PlpA)、multifunctional、autoprocessing repeats-in-toxin(MARTX)は、壊死または細胞死を通じて免疫原性、細胞毒性及び細胞死を起こす多様な活性を示す(Jones MK,et al.,Disease and pathogenesis.Infect Immun.77:1723-33.2009)。このような毒性因子の生産は、宿主やバクテリアに由来した細胞外信号を感知して適切な条件で発現するように厳格に調節される。鉄イオン(Iron ions)、自己誘導剤(AI-2)及び環状ジペプチド(cyclo-Phe-Pro[cFP])は、V.vulnificusでこのような規定と関連した主要信号因子として報告された。現在までV.vulnificus病原性についてのほとんどの研究は、細胞、組織または器官レベルでモデル動物に対するバクテリア効果に焦点を合わせた。
Foodborne pathogens undergo many stresses through the host's gastrointestinal tract (GI) during the course of infection. They must survive in varying conditions of pH, oxygen, osmolarity and nutrients while also overcoming the barriers between antimicrobial agents and host epithelial structures generated by the host's immune system (Takiishi T, et al., Tissue Barriers. 5: e1373208.2017). Therefore, for a successful infection, pathogens must perform chemotaxis-based motility, penetration of the intestinal mucus layer, attachment to epithelial surfaces, colonization processes and the production and/or secretion of virulence factors at the site of infection. A process is required.
In the case of the pathogen Vibrio vulnificus, there have been many reports on various virulence factors. In addition to the well-known lipopolysaccharides and capsular polysaccharides, immunogenic lipoprotein A (IlpA), hemolysin/cytolysin (VvhA), metalloprotease M (VvpM), phosphoripa se A2 (PlpA), multifunctional , autoprocessing repeats-in-toxins (MARTX) exhibit diverse activities that cause immunogenicity, cytotoxicity and cell death through necrosis or cell death (Jones MK, et al., Disease and pathogenesis. Infect Immun. 77: 1723-33.2009). The production of such virulence factors is tightly regulated by sensing extracellular signals derived from the host or bacteria and expressing them under appropriate conditions. Iron ions, an autoinducer (AI-2) and a cyclic dipeptide (cyclo-Phe-Pro [cFP]) were obtained from V.I. vulnificus as the major signal factor associated with such a definition. Until now, V.I. Most studies on vulnificus virulence have focused on bacterial effects on model animals at the cellular, tissue or organ level.

しかし、前記V.vulnificusの感染過程で腸内共生菌(gut commensals)との相互作用についての研究は、まだ未開拓分野であると言える。
本発明は、前記問題点を含んで多様な問題点を解決するためのものであって、敗血症ビブリオ菌の病原性を効果的に減少させるバクテロイデス・ブルガタス(Bacteroides vulgatus)を用いてビブリオ敗血症予防用薬学的組成物を提供することを目的とする。しかし、このような課題は、例示的なものであって、これにより、本発明の範囲が限定されるものではない。
However, the V.I. It can be said that research on interactions with gut commensals during the infection process of vulnificus is still an unexplored field.
Disclosure of the Invention The present invention is intended to solve various problems including the above-mentioned problems, and is a method for preventing Vibrio sepsis using Bacteroides vulgatus, which effectively reduces the pathogenicity of Vibrio septicemia. The object is to provide a pharmaceutical composition. However, such issues are exemplary and are not intended to limit the scope of the invention.

本発明の一観点によれば、バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含むビブリオ敗血症感染予防用薬学的組成物が提供される。
本発明の他の一観点によれば、前記ビブリオ敗血症感染予防用薬学的組成物を個体に投与する段階を含むビブリオ敗血症感染予防方法が提供される。
本発明の他の一観点によれば、バクテロイデス・ブルガタス菌株を有効成分として含むビブリオ敗血症感染予防用飼料添加剤が提供される。
本発明の他の一観点によれば、バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含むビブリオ敗血症感染予防用健康機能食品が提供される。
According to one aspect of the present invention, there is provided a pharmaceutical composition for preventing Vibrio sepsis infection, which contains as an active ingredient a Bacteroides vulgarus strain, a homogenate of the strain, or a culture supernatant of the strain.
According to another aspect of the present invention, there is provided a method for preventing Vibrio septicemia infection, which comprises administering the pharmaceutical composition for preventing Vibrio septicemia infection to an individual.
According to another aspect of the present invention, there is provided a feed additive for preventing Vibrio sepsis infection containing a Bacteroides vulgaratus strain as an active ingredient.
According to another aspect of the present invention, there is provided a health functional food for preventing Vibrio septicemia infection, which contains, as active ingredients, a Bacteroides vulgarus strain, a crushed product of the strain, or a culture supernatant of the strain.

前記のようになされた本発明のビブリオ敗血症予防用薬学的組成物は、敗血症ビブリオ菌の病原性を効果的に減少させるので、ビブリオ敗血症治療剤の開発に活用可能である。また、抗生剤の誤濫用による抗生剤耐性菌の問題点、食品内の抗生剤残留問題、幅広い宿主範囲の問題点を解決することができる。もちろん、このような効果によって、本発明の範囲が限定されるものではない。 The pharmaceutical composition for preventing Vibrio sepsis of the present invention, which is prepared as described above, effectively reduces the pathogenicity of Vibrio septicemia, and thus can be utilized in the development of therapeutic agents for Vibrio septicemia. In addition, the problem of antibiotic-resistant bacteria due to misuse of antibiotics, the problem of residual antibiotics in food, and the problems of a wide host range can be resolved. Of course, such effects do not limit the scope of the present invention.

マウス生体内のB.vulgatusの量を変化させたマウスモデルの確立を確認した結果を示すグラフである。B. in vivo in mice. Fig. 10 is a graph showing the results of confirming the establishment of a mouse model with varying amounts of vulgatus. B.vulgatusが減少したマウスに対する敗血症ビブリオ菌の致死率の変化を分析した結果を示すグラフである。B. Fig. 10 is a graph showing the results of analysis of changes in lethality of Vibrio septicemia in vulgatus-depleted mice. 本発明のB.vulgatusの追加投与時に、V.vulnificusによるマウス致死率に対する変化を分析した結果を示すグラフである。B. of the present invention. At the time of boosting administration of V. vulgatus, V. vulgatus Fig. 10 is a graph showing the results of analysis of changes in mouse lethality due to vulnificus.

用語の定義:
本明細書で使われる用語「ビブリオ(Vibrio)」は、今まで34種が知られているが、グラム陰性菌であり、細胞状が棒状(rod-shape)であり、曲がっており、単立するか、数個が連結されて螺旋状になる特徴がある。身体の一側端部には、1個または複数個の鞭毛が出ており、これで活発に遊泳して動く。ビブリオは、野生種は海に広く分布し、淡水と土壌でも多く発見される。ビブリオ中には、ヒトや魚介類で病原性を示す種が多いが、病原性がある代表種としては、ビブリオ・コレレ(Vibrio cholerae)、ビブリオ・パラヘモリティカス(Vibrio parahaemolyticus)、ビブリオ・バルニフィカス(V.vulnificus)、ビブリオ・アルギノリチカス(Vibrio alginolyticus)がある。
本明細書で使われる用語「ビブリオ敗血症(Vibrio vulnificus sepsis)」は、ビブリオ菌に汚染された魚介類を生食するか、皮膚の傷を通じて感染された時に表われる急性疾患であって、海に生息する細菌であるビブリオ・バルニフィカスに感染されて発生する敗血症を意味する。
本明細書で使われる用語「バクテロイデス・ブルガタス」は、共生微生物で感染治療に抵抗性を示す菌叢を意味する。本発明において、ビブリオ敗血症菌の感染に対してバクテロイデス・ブルガタスを投与した実験マウスが対照群マウスよりもさらに高い感染抵抗性を示した。
Definition of terms:
The term "Vibrio" as used herein, of which 34 species are known so far, is a Gram-negative bacterium, whose cell shape is rod-shaped, curved, and single-stranded. Or, there is a feature that several pieces are connected to form a spiral. At one end of the body, one or more flagella protrude, which are used to actively swim and move. Vibrio is widely distributed in the wild in the sea, and is often found in freshwater and soil. Among Vibrio, there are many species that show pathogenicity in humans and fish and shellfish, and typical pathogenic species include Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. (V. vulnificus), Vibrio alginolyticus.
As used herein, the term "Vibrio vulnificus sepsis" is an acute disease that appears when Vibrio-contaminated seafood is eaten raw or infected through skin wounds, and is a marine-dwelling disease. It means sepsis caused by infection with Vibrio vulnificus, a bacterium that causes pneumonia.
As used herein, the term "Bacteroides vulgatus" means a flora of commensal microorganisms that are resistant to infection treatment. In the present invention, experimental mice to which Bacteroides vulgarus was administered against Vibrio sepsis infection showed higher infection resistance than control group mice.

本発明の一観点によれば、バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含むビブリオ敗血症感染予防用薬学的組成物が提供される。
本発明の他の一観点によれば、前記ビブリオ敗血症感染予防用薬学的組成物を個体に投与する段階を含むビブリオ敗血症感染予防方法が提供される。
前記予防方法において、前記個体は、哺乳動物であり、前記哺乳動物は、霊長目、食肉目、長鼻目、偶蹄目、奇蹄目またはげっ歯目であり、ヒトを含んだ霊長目、犬、ライオン、虎、及び猫を含む食肉目、家ネズミ、ハムスター、マウス、及びギニーピッグを含むげっ歯目、ウサギ及びナキウサギを含むウサギ目、馬、ロバ、サイ、及びバクを含む奇蹄目、牛、鹿、ヤギ、羊、及び羚羊を含む偶蹄目、ゾウを含む長鼻目などの哺乳動物である。
本発明の他の一観点によれば、バクテロイデス・ブルガタス菌株を有効成分として含むビブリオ敗血症感染予防用飼料添加剤が提供される。
According to one aspect of the present invention, there is provided a pharmaceutical composition for preventing Vibrio sepsis infection, which contains as an active ingredient a Bacteroides vulgarus strain, a homogenate of the strain, or a culture supernatant of the strain.
According to another aspect of the present invention, there is provided a method for preventing Vibrio septicemia infection, which comprises administering the pharmaceutical composition for preventing Vibrio septicemia infection to an individual.
In the preventive method, the individual is a mammal, the mammal is of the order Primate, Carnivora, Proboscis, Artiodactyla, Perissodactyla or Rodenta, including humans, dogs Carnivora, including lions, tigers, and cats; Rodents, including house mice, hamsters, mice, and guinea pigs; Lagomorphs, including rabbits and pikas; Perissodactyla, including horses, donkeys, rhinos, and tapirs; , Artiodactyla, which includes deer, goats, sheep, and antelope, and Proboscis, which includes elephants.
According to another aspect of the present invention, there is provided a feed additive for preventing Vibrio sepsis infection containing a Bacteroides vulgaratus strain as an active ingredient.

本発明の他の一観点によれば、バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含むビブリオ敗血症感染予防用健康機能食品が提供される。
前記健康機能食品は、食品類、飲料、ガム、お茶及びビタミン複合剤からなる群から選択され、カプセル、錠剤、粉末、顆粒、液相、丸、片状、ペースト状、シロップ、ゲル、ゼリーまたはバー(bar)状の製剤であることを特徴とし、健康機能食品に適した多様な剤型、例えば、湯剤、ドリンク剤、散剤、丸剤、カプセル、錠剤(コーティング錠、糖衣錠、舌下錠など)、ゼリーなどの剤型が使われる。
本発明のビブリオ菌による感染性疾病の予防方法は、本発明の薬学的組成物を個体に直接投与するか、個体の飼料または飲用水に混合して、それを摂食させる方法を通じて行われる。本発明のビブリオ菌による感染性疾病の予防方法において、投与経路は、目的組織に到達することができる限り、経口または非経口の多様な経路を通じて投与され、具体的に、口腔、直腸、局所、静脈内、腹腔内、筋肉内、動脈内、経皮、鼻側内、吸入などを通じて通常の方式で投与される。
According to another aspect of the present invention, there is provided a health functional food for preventing Vibrio septicemia infection, which contains, as active ingredients, a Bacteroides vulgarus strain, a crushed product of the strain, or a culture supernatant of the strain.
The health functional food is selected from the group consisting of foods, beverages, gums, teas and vitamin complexes, capsules, tablets, powders, granules, liquid phases, rounds, flakes, pastes, syrups, gels, jelly or It is characterized by being a bar-shaped preparation, and various dosage forms suitable for health functional foods, such as hot water, drink, powder, pill, capsule, tablet (coated tablet, sugar-coated tablet, sublingual tablet) etc.), and a dosage form such as jelly is used.
The method for preventing infectious diseases caused by Vibrio bacteria of the present invention is carried out by directly administering the pharmaceutical composition of the present invention to an individual, or by mixing it with an individual's feed or drinking water and feeding it. In the method for preventing infectious diseases caused by Vibrio bacteria of the present invention, the administration route is administered through various oral or parenteral routes as long as the target tissue can be reached. It is administered in the usual manner, such as intravenously, intraperitoneally, intramuscularly, intraarterially, transdermally, intranasally, by inhalation, and the like.

本発明の方法で投与される薬学的組成物の適した総1日使用量は、正しい医学的判断範囲内で決定されうるということは当業者に自明である。特定の個体に対する具体的な治療的有効量は、達成しようとする反応の種類と程度、患者の年齢、体重、一般健康状態、性別及び食餌、投与時間、投与経路及び組成物の分泌率、治療期間、具体的組成物と共に使われるか、同時使われる薬物を含めた多様な因子と医薬分野によく知られた類似因子とによって異なって適用することが望ましい。
本発明の一実施例において、ビブリオ菌による疾病は、ビブリオ敗血症及び魚類ビブリオ感染症であり、望ましくは、ビブリオ敗血症である。
本発明の薬学的組成物は、製薬上、許容可能な担体、賦形剤、添加剤などと混合して経口投与用または非経口投与用として製剤化する。製薬上、許容される担体または賦形剤の例は、ラクトース、ステアリン酸マグネシウム、澱粉、タルク、ゼラチン、寒天、ペクチン、アラビアゴム、オリーブ油、ゴマ油、カカオバター、エチレングリコール、その他の常用されるものを含む。経口投与用固体組成物の例は、錠剤、丸剤、カプセル剤、粉末剤、顆粒剤などを含む。このような固体組成物では、有効成分である植物抽出物が少なくとも1つの不活性希釈剤、例えば、ラクトース、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶性セルロース、澱粉、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムなどと混合される。固体組成物は、通常の方法によって不活性希釈剤以外の添加物、例えば、ステアリン酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、グルタミン酸またはアスパラギン酸のような溶解補助剤を含有することができる。錠剤または丸剤は、必要に応じてスクロース、ゼラチン、ヒドロキシプロピルメチルセルロースフタレートなどの物質からなるフィルムで被覆され、場合によっては、2個以上の層で被覆される。経口投与用液体組成物は、薬剤学的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリクサー剤などを含み、一般的に使われる不活性希釈剤、例えば、精製水、エタノールなどを含みうる。この組成物は、不活性希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤などを含みうる。
It will be apparent to those skilled in the art that suitable total daily usage of the pharmaceutical compositions administered in the methods of the present invention can be determined within the scope of sound medical judgment. A specific therapeutically effective amount for a particular individual depends on the type and degree of response to be achieved, patient's age, weight, general health condition, sex and diet, administration time, administration route and secretion rate of the composition, treatment. It may be desirable to apply them differently over time, depending on a variety of factors, including drugs used with or concurrently with the specific composition, and analogous factors well known in the pharmaceutical arts.
In one embodiment of the present invention, the Vibrio disease is Vibrio sepsis and Vibrio fish infection, preferably Vibrio sepsis.
The pharmaceutical composition of the present invention is formulated for oral or parenteral administration by mixing with pharmaceutically acceptable carriers, excipients, additives and the like. Examples of pharmaceutically acceptable carriers or excipients are lactose, magnesium stearate, starch, talc, gelatin, agar, pectin, gum arabic, olive oil, sesame oil, cocoa butter, ethylene glycol, and others commonly used. including. Examples of solid compositions for oral administration include tablets, pills, capsules, powders, granules and the like. In such solid compositions, the active ingredient, the plant extract, is combined with at least one inert diluent such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, aluminometasilicate. mixed with magnesium. Solid compositions may be prepared by conventional methods with additives other than inert diluents, e.g. lubricants such as magnesium stearate, disintegrants such as calcium cellulose glycolate, solubilizers such as glutamic acid or aspartic acid. can contain Tablets or pills are optionally coated with a film of substances such as sucrose, gelatin, hydroxypropylmethylcellulose phthalate, and optionally two or more layers. Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs and the like, and commonly used inert diluents such as purified water, May include ethanol and the like. In addition to inert diluents, the compositions may contain adjuvants such as wetting agents, suspending agents, sweetening agents, flavoring agents, fragrances, preservatives and the like.

非経口投与用注射剤としては、無菌の水性または非水性の溶液剤、懸濁剤、エマルジョン化剤が含まれる。水性の溶液剤、懸濁剤としては、例えば、注射用水及び注射用生理食塩水が含まれる。非水性の溶液剤、懸濁剤としては、例えば、プロピレングリコール、ポリエチレングリコール、オリーブ油のような植物性油、エタノールのようなアルコール類、ポリソルベート80などが含まれる。このような組成物は、また防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、乳糖)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含みうる。これらは、例えば、精密濾過膜による濾過滅菌、高圧蒸気滅菌のような加熱滅菌、または殺菌剤配合などの通常の滅菌方法で無菌化される。注射剤は、溶液製剤、または使用時に溶解させて使える凍結乾燥製剤である。凍結乾燥のための賦形剤としては、例えば、マンニトール、グルコースなどの糖アルコールや糖類を使用することができる。 Injections for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions and emulsions. Aqueous solutions and suspensions include, for example, water for injection and physiological saline for injection. Non-aqueous solutions and suspensions include, for example, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, polysorbate 80, and the like. Such compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents, dispersing agents, stabilizing agents (eg lactose), solubilizing agents (eg glutamic acid, aspartic acid). These are sterilized by conventional sterilization methods such as, for example, filter sterilization using microfiltration membranes, heat sterilization such as autoclave sterilization, or compounding with sterilizing agents. Injections are either liquid preparations or freeze-dried preparations that can be dissolved before use. As excipients for freeze-drying, for example, sugar alcohols and sugars such as mannitol and glucose can be used.

本発明の薬学的組成物は、経口投与方法または非経口投与方法で投与される。望ましくは、非経口投与方法、例えば、注射による投与(皮下注射、静脈注射、筋肉注射、腹腔内注射などで投与)、経皮投与、経粘膜投与(経直腸投与など)、経肺投与などである。もちろん、経口投与方法も使われる。
本発明の薬学的組成物の有効成分の投与量は、疾患の重症度、患者の年齢などによって決定することができるが、一般的には、0.005μg/kg~l00mg/kgの範囲であり、望ましくは、0.02μg/kg~5mg/kgの範囲である。しかし、本発明の薬学的組成物の投与量は、投与経路、患者の年齢、性別、体重、患者の重症度などの多様な関連因子に照らして決定されるものなので、前記投与量は、如何なる側面でも本発明の範囲を制限するものと理解されてはならない。
本発明の薬学組成物は、薬学的に有効な量で投与する。本発明において、「薬学的に有効な量」は、医学的治療に適用可能な合理的な恵み/危険の比率で疾患の治療に十分な量を意味し、有効容量レベルは、環軸疾患の種類、重症度、薬物の活性、薬物に対する敏感度、投与時間、投与経路及び排出比率、治療期間、同時使われる薬物を含んだ要素及びその他の医学分野によく知られた要素によって決定されうる。本発明による薬学的組成物は、個別治療剤として投与するか、他の治療剤と併用して投与され、従来の治療剤とは順次または同時に投与され、単一または多重投与される。前記要素をいずれも考慮して副作用なしに最小限の量で最大効果が得られる量を投与することが重要であり、これは、当業者によって容易に決定されうる。具体的に、本発明の薬学的組成物の有効量は、環軸の年齢、性別、状態、体重、体内に活性成分の吸収度、不活性率及び排泄速度、疾病の種類、併用される薬物によって変わり、一般的には、体重1kg当たり1~500mgを毎日または隔日投与するか、1日1~3回に分けて投与することができる。しかし、投与経路、性別、体重、年齢などによって増減されうるので、前記投与量が如何なる方法でも本発明の範囲を限定するものではない。
The pharmaceutical compositions of the present invention are administered by oral or parenteral methods. Preferred parenteral administration methods include administration by injection (administration by subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal administration, transmucosal administration (transrectal administration, etc.), transpulmonary administration, and the like. be. Of course, oral administration methods are also used.
The dosage of the active ingredient of the pharmaceutical composition of the present invention can be determined according to the severity of the disease, age of the patient, etc., but is generally in the range of 0.005 μg/kg to 100 mg/kg. , desirably in the range of 0.02 μg/kg to 5 mg/kg. However, the dosage of the pharmaceutical composition of the present invention is determined in light of various related factors such as the route of administration, age, sex, weight of the patient, and severity of the patient. No aspect should be understood to limit the scope of the invention.
The pharmaceutical compositions of this invention are administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat disease at a reasonable benefit/risk ratio applicable to medical treatment, and effective dosage levels are those of atlantoaxial disease. It can be determined by factors including type, severity, drug activity, drug sensitivity, administration time, administration route and excretion rate, treatment duration, concurrent drugs, and other factors well known in the medical field. Pharmaceutical compositions according to the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, either sequentially or concurrently with conventional therapeutic agents, in single or multiple doses. It is important to administer the amount that achieves the maximum effect in the least amount without side effects considering all of the above factors, which can be readily determined by one of ordinary skill in the art. Specifically, the effective amount of the pharmaceutical composition of the present invention includes age, sex, condition, body weight, absorption rate, inactivity rate and excretion rate of the active ingredient in the body, type of disease, and concomitant drugs. Generally, 1-500 mg/kg body weight can be administered daily or every other day, or in 1-3 divided doses per day, depending on the patient. However, since the dosage may be increased or decreased depending on administration route, sex, body weight, age, etc., the above dosage does not limit the scope of the present invention in any way.

哺乳類の腸管(intestinal tract)は、主にBacteroidetes、Firmicutes、Actinobacteria及びProteobacteria門に属す数百から数千種のバクテリアで構成された莫大な量の正常な微生物が生息する。モデルシステムの多様な病原体で病原体と腸内共生菌との相互作用が報告された。病原体進入に対する腸内共生菌の拮抗効果は、病原体に利用可能な資源の制限、粘膜集落で病原体の競争的排除、共生体の抗微生物化合物または付属物の抑制効果及び宿主防御システムの刺激を通じて達成される(Martens,E.C.et al.,Nat.Rev. Microbiol.16:457-70.2018)。したがって、腸内微生物群集の構成や豊かさの変化を経験した宿主動物は、植物媒介病原体に対する感受性が変更されたと表われた。宿主動物で増加した病原性は、Salmonella enterica Typhimurium、Listeria monocytogenes、V.cholerae及び病原性Escherichia coliによる感染で実験的に立証された(Ferreira,R.B.et al.,PLoS One.6:e20338.2011)。また、一部の病原体は、VI型分泌システムまたはバクテリオシンで直接死滅することにより、腸内微生物に影響を及ぼす能力を示した。したがって、前記病原体は、適時に生成された毒性因子を通じて宿主と相互作用しながら、腸内微生物群で直接・間接的に派生された潜在的防御メカニズムを克服する。 The intestinal tract of mammals is home to vast amounts of normal microorganisms, consisting of hundreds to thousands of species of bacteria, mainly belonging to the phylum Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. Interactions between pathogens and intestinal commensals have been reported in diverse pathogens in model systems. Antagonistic effects of intestinal commensals on pathogen entry are achieved through limiting resources available to pathogens, competitive elimination of pathogens in mucosal colonies, inhibitory effects of commensal antimicrobial compounds or appendages, and stimulation of host defense systems. (Martens, E.C. et al., Nat. Rev. Microbiol. 16:457-70.2018). Thus, host animals that experienced changes in gut microbial community composition and abundance appeared to have altered susceptibility to plant-borne pathogens. Increased virulence in host animals has been reported in Salmonella enterica Typhimurium, Listeria monocytogenes, V. cholerae and pathogenic Escherichia coli infections (Ferreira, RB et al., PLoS One. 6:e20338.2011). Also, some pathogens have demonstrated the ability to affect gut microbes by direct killing with the type VI secretion system or bacteriocins. Thus, the pathogens interact with the host through timely generated virulence factors, overcoming potential defense mechanisms derived directly or indirectly from the intestinal microbiota.

現在、ビブリオ菌(Vibrio sp.)による疾病を治療するために、一部の抗生剤が使われているが、効果が高くなく、最近問題になっている抗生剤耐性問題などによって、適切であり、新たな抗生剤の開発が要求されている。一方、病原性微生物は、宿主(host)に毒性を示す多様な毒性因子(virulence factor)の生成を通じて宿主内で生存または増殖し、発病過程の間に多様な毒性因子が総体的に発現され、作用可能にする調節機転を発達させてきた。このような毒性因子の調節機転は、非常に精巧であり、調節機転を阻害することにより、毒性因子の生成を抑制することができる。これを通じて病原性微生物の毒性を弱化させ、宿主の免疫反応によって微生物の毒性を容易に阻害させうる。毒性因子の生成機転の阻害は、微生物の生長を人為的に阻害しないために、抗生剤耐性を誘発する可能性が非常に低くて、新たな病原性微生物治療戦略の1つであって、最近、専門家の間で注目されている。このような観点から腸内に存在する有用な共生微生物を用いて外部から侵入したビブリオ菌の活性を阻害する研究が関心を集めている。これにより、本発明者らは、腸内共生細菌であるバクテロイデス・ブルガタスによる食中毒細菌ビブリオ・バルニフィカスの病原性阻害効果を観察した。従来、ビブリオ・コレレのような腸内病原性細菌に対する抗菌活性を有するバクテロイデス・ブルガタスを用いて細菌感染性疾患を治療する組成物についての研究はあったが、感染過程で腸内共生菌との相互作用についての研究はほとんどなされていない。 Currently, some antibiotics are used to treat diseases caused by Vibrio sp., but they are not very effective and are not suitable due to the recent problem of antibiotic resistance. , the development of new antibiotics is required. On the other hand, pathogenic microorganisms survive or proliferate in the host through the production of various virulence factors that are toxic to the host, and the various virulence factors are collectively expressed during the pathogenic process, We have developed the regulatory mechanisms that enable us to act. The regulatory mechanisms of such virulence factors are very sophisticated, and the production of virulence factors can be suppressed by inhibiting the regulatory mechanisms. Through this, the virulence of pathogenic microorganisms is weakened, and the virulence of microorganisms can be easily inhibited by the host's immune response. Inhibition of virulence factor generation mechanism does not artificially inhibit the growth of microorganisms, so the possibility of inducing antibiotic resistance is very low. , has attracted attention among experts. From this point of view, research into inhibiting the activity of Vibrio bacteria that have invaded from the outside using useful commensal microorganisms existing in the intestine is attracting interest. Thus, the present inventors observed the effect of the intestinal symbiotic bacteria Bacteroides vulgatas on the pathogenicity-inhibiting effect of the food poisoning bacterium Vibrio vulnificus. Conventionally, there have been studies on compositions for treating bacterial infectious diseases using Bacteroides vulgateus, which has an antibacterial activity against enteropathogenic bacteria such as Vibrio cholerae, but during the infection process, there is Little research has been done on interactions.

食品媒介病原菌であるビブリオ・バルニフィカスは、致命的な敗血症や胃腸炎を起こす前に腸環境に生息する正常な微生物叢と合い、感染のためには、腸内共生菌から派生された障壁を克服しなければならない。本発明では、ビブリオ・バルニフィカスがマウスの腸内微生物群集(gut microbiota)構造に及ぼす影響を調査した。V.vulnificus感染で死んだマウスの糞便サンプルで微生物群を分析した結果、擬間菌類(Bacteroidetes)、特に、代表的な腸内共生菌の1つであるバクテロイデス・ブルガタス種に属すバクテリアの量が減少したと表われた。擬間菌類は、腸内に重要な門(phylum)として知られており、そのうち、ほとんどの比率を占めているバクテロイデス・ブルガタスは、腸内共生細菌のLPS発現を減少させるか、病原性細菌による炎症反応を緩和させるなど、宿主の免疫力の保持に重要な役割を果たすと知られている(Yoshida et al.,Circulation.138:2486-2498.2018)。
結論的に、本発明者らは、敗血症ビブリオ菌が実験動物マウスに感染された時、前記マウスの腸内にバクテロイデス・ブルガタスが減少することを見つけ、これは、敗血症ビブリオ菌が細胞外に排出したcFP(cyclo-Phe-Pro)がバクテロイデス・ブルガタスのタンパク質であるObgEとの相互作用を通じて当該細菌の細胞死を誘導するものであることを証明した(Kim et al.,Microbiome.9(1):161.2021)。また、バクテロイデス・ブルガタスをマウスに追加的に投与した結果、敗血症ビブリオ菌に感染されたマウスの致死率が効果的に減少するということを確認して、本発明を完成した。したがって、本発明の薬学的組成物は、既存の抗生剤の耐性問題を解決し、ビブリオ敗血症を予防及び治療するための治療剤の開発に活用可能である。
以下、実施例を通じて本発明をさらに詳しく説明する。しかし、本発明は、以下で開示される実施例に限定されるものではなく、互いに異なる多様な形態として具現可能なものであって、以下の実施例は、本発明の開示を完全にし、当業者に発明の範疇を完全に知らせるために提供されるものである。
Vibrio vulnificus, a food-borne pathogen, meets the normal flora of the intestinal environment before causing fatal sepsis and gastroenteritis, overcoming the barrier derived from intestinal commensals for infection. Must. In the present invention, the effect of Vibrio vulnificus on gut microbial community structure in mice was investigated. V. Analysis of the microbial community in faecal samples from mice killed by vulnificus infection showed a decrease in the abundance of Bacteroidetes, in particular bacteria belonging to the species Bacteroides vulgatas, one of the leading intestinal commensals. was expressed. Pseudohypophytes are known to be an important phylum in the gut, of which Bacteroides vulgatus, which accounts for the majority, reduces LPS expression in intestinal commensal bacteria or by pathogenic bacteria. It is known to play an important role in maintaining host immunity, such as alleviating inflammatory reactions (Yoshida et al., Circulation. 138:2486-2498.2018).
In conclusion, the present inventors found that when laboratory mice were infected with Vibrio septicemia, Bacteroides vulgatus decreased in the intestine of said mice, which was due to the excretion of Vibrio septicemia out of the cells. cFP (cyclo-Phe-Pro) induces cell death in Bacteroides vulgarus through interaction with ObgE, a protein of Bacteroides vulgarus (Kim et al., Microbiome. 9 (1) : 161.2021). In addition, the present invention was completed by confirming that the mortality rate of mice infected with Vibrio septicemia was effectively reduced as a result of additionally administering Bacteroides vulgarus to mice. Therefore, the pharmaceutical composition of the present invention can be used to solve the resistance problem of existing antibiotics and to develop therapeutic agents for preventing and treating vibriosepticemia.
Hereinafter, the present invention will be described in more detail through examples. The present invention, however, should not be construed as limited to the embodiments disclosed below, but rather may be embodied in many different forms, and the following embodiments will provide a complete disclosure of the invention and the It is provided to fully inform the trader of the scope of the invention.

実験方法
菌株培養
本実験に使われたバクテリア種及び菌株は、V.vulnificus MO6-24/O、B.vulgatus JK001を使用した。まず、前記V.vulnificusは、2.5%塩化ナトリウム(sodium chloride)のLuria-Bertani(LB)培地で30℃に培養し、B.vulgatusは、Reinforced Clostridial medium(RCM)培地で37℃に嫌気環境で培養した。本発明に使われたバクテリア菌株に関する情報は、下記表1に要約した。
experimental method
Strain Culture The bacterial species and strains used in this experiment were V. vulnificus MO6-24/O, B. vulgatus JK001 was used. First, the V.I. B. vulnificus was cultured in Luria-Bertani (LB) medium with 2.5% sodium chloride at 30°C. vulgatus was cultured in a reinforced clostridial medium (RCM) medium at 37° C. in an anaerobic environment. Information regarding the bacterial strains used in the present invention is summarized in Table 1 below.

実験動物
動物実験は、4週齢雌ICRマウス(CrljOri:CD1[ICR]、OrientBio、Korea)を使用して行った。マウスは、12/12時間の明暗周期の条件で23℃及び50%の湿度を保持し、水と食べ物とに自在に給餌した(LabDiet 5L79、OrientBio、大韓民国)。2日間前記実験室の条件に順応した後、マウスに各実験に対する特定の条件を処理した。全体実験過程において、マウスは、大韓民国の西江大学校の機関指針及び法的要求事項(許可番号、IACUCSGU2015_03及びIACUCSGU2019_01)によって行った。
Experimental Animals Animal experiments were performed using 4-week-old female ICR mice (CrljOri: CD1 [ICR], OrientBio, Korea). Mice were maintained at 23° C. and 50% humidity under a 12/12 hour light-dark cycle condition and fed water and food ad libitum (LabDiet 5L79, OrientBio, Republic of Korea). After acclimating to the laboratory conditions for 2 days, mice were treated to the specific conditions for each experiment. During the entire experimental process, mice were carried out according to the institutional guidelines and legal requirements of Sogang University, Republic of Korea (Permit No. IACUCSGU2015_03 and IACUCSGU2019_01).

Quantitative(定量)RT-PCR
PBSとcFPとをラットに注入した後、6時間から24時間ラットの大便サンプルを採取し、該採取した大便サンプルからバクテリアの総DNAを収得した。各サンプルから抽出したDNA 2.5ngでB.vulgatusの16s rDNAに特異的なプライマー(Wang et al.,Appl Environ Microbiol.62(4):1242-1247.1996)及びバクテリア汎用16s rDNA primer(Ziesemer et al.,Sci Rep.5:16498.2015)を使用してqRT-PCRを行った。前記qRT-PCRから収得したそれぞれのCT値を2-ΔΔCT方法を用いて正規化(normalization)した。本発明で使われたプライマーの核酸配列情報を下記表2に要約した。
Quantitative RT-PCR
After injecting PBS and cFP into rats, rat fecal samples were collected from 6 hours to 24 hours, and total bacterial DNA was obtained from the collected fecal samples. 2.5 ng of DNA extracted from each sample was added to B. vulgatus 16s rDNA-specific primer (Wang et al., Appl Environ Microbiol. 62(4):1242-1247.1996) and a bacterial universal 16s rDNA primer (Ziesemer et al., Sci Rep. 5:16498.2015). ) was used to perform qRT-PCR. Each CT value obtained from the qRT-PCR was normalized using the 2 -ΔΔCT method. Nucleic acid sequence information of the primers used in the present invention is summarized in Table 2 below.

マウス内臓微生物の分離
マウス内臓でバクテリアの純粋な培養物を得るために、7週齢の雌ICRマウスから収集した糞便サンプルをPBSに再懸濁した。その後、簡単に遠心分離して糞便破片を除去し、上澄み液を回収し、希釈された懸濁液をGAM(Gifu Anaerobic medium;BD Difco)、RCMまたはMRS寒天プレートに塗布し、37℃、嫌気性条件で24~48時間培養した。バクテリアコロニーは、27F(配列番号5)及び1492R(配列番号6)プライマーを使用して16S rDNA断片を増幅するように処理し、精製されたPCR産物は、785F(配列番号3)及び907R(配列番号4)プライマー(マクロゼン、大韓民国)を使用してDNAシーケンシング分析を行った。菌株は、B.vulgatusの16S rDNAの当該領域と97%以上の同一性を示し、MGM001と名付けられた(表1参照)。前記16S rRNAのDNA配列は、MT764994の受託番号でGenBankに寄託された。
マウス致死率のテスト
本発明者らは、cFP投与による敗血症ビブリオ菌に対する実験マウスの致死率を分析するために、12時間餓えた4週齢雌ICRマウスにcFPを投与した(マウス重量1g当たり110μg)。投与12時間後、各マウスに鉄デキストラン(iron dextran)(マウス重量1g当たり30μg)を腹腔に注射し、8.5%[w/vol.]の重炭酸ナトリウム(50μl)を胃内に注入した。その後、多様な菌数(10~10)の敗血症ビブリオ菌を胃内に注入して感染させ、24時間生存率を調査した。また、B.vulgatus投与時に、敗血症ビブリオ菌に対するマウスの致死率を調査するために、24時間餓えた4週齢雌ICRマウスに鉄デキストランを腹腔に注射し(ラット重量1g当たり30μg)、8.5%[w/vol.]の重炭酸ナトリウム(50μl)を胃内に注入した。その後、V.vulnificus及び/またはB.vulgatusを胃内に注入して感染させた。この際、注入したV.vulnificusは、LBSでB.vulgatusはRCMでOD595=1まで成長させて収得し、PBSで再懸濁し、24時間マウスの生存を分析した。
Isolation of mouse visceral microbes To obtain pure cultures of bacteria in mouse viscera, fecal samples collected from 7-week-old female ICR mice were resuspended in PBS. After that, it was briefly centrifuged to remove fecal debris, the supernatant was collected, and the diluted suspension was plated on GAM (Gifu Anaerobic medium; BD Difco), RCM or MRS agar plates and plated anaerobic at 37°C. The cells were cultured for 24-48 hours under sexual conditions. Bacterial colonies were treated to amplify the 16S rDNA fragment using 27F (SEQ ID NO:5) and 1492R (SEQ ID NO:6) primers and the purified PCR products were 785F (SEQ ID NO:3) and 907R (SEQ ID NO:3). No. 4) DNA sequencing analysis was performed using primers (Macrozen, Korea). The strain is B. It showed more than 97% identity with the relevant region of vulgatus 16S rDNA and was named MGM001 (see Table 1). The DNA sequence of the 16S rRNA has been deposited in GenBank under the accession number MT764994.
Mouse lethality test
To analyze the lethality of experimental mice to Vibrio septicemia by cFP administration, we administered cFP (110 μg/g mouse weight) to 4-week-old female ICR mice that were starved for 12 hours. Twelve hours after dosing, each mouse was injected intraperitoneally with iron dextran (30 μg/g mouse weight) at 8.5% [w/vol. ] of sodium bicarbonate (50 μl) was injected intragastrically. Then, various numbers of bacteria (10 4 to 10 8 ) of Vibrio septicemia were injected into the stomach to infect the mice, and the 24-hour survival rate was investigated. Also, B. To investigate mouse lethality to Vibrio septicemia upon administration of vulgatus, 4-week-old female ICR mice starved for 24 h were injected intraperitoneally with iron dextran (30 μg/g rat weight), resulting in 8.5% [w / vol. ] of sodium bicarbonate (50 μl) was injected intragastrically. After that, V.I. vulnificus and/or B. vulgatus was injected intragastrically for infection. At this time, the injected V.I. vulnificus is LBS and B. vulnificus. vulgatus were harvested by growing in RCM to OD 595 =1, resuspended in PBS and assayed for 24 hour mouse survival.

実施例1:B.vulgatus豊富度の変化を通じたV.vulnificusによるマウス致死率
本発明のV.vulnificusの導入は、糞便サンプルでB.vulgatusレベルの減少をもたらし、前記減少した組成は、V.vulnificus感染によって分泌されるcFPによって媒介されると仮定された。したがって、マウス糞便サンプルでB.vulgatusの豊かさに対するcFPの外因性添加効果を調査した。糞便サンプルは、マウスグラム当たり110μg cFPの濃度でcFPを経口投与した4週齢雌マウスから収集された。各糞便サンプルから抽出した総DNAは、B.vulgatusの16S rDNAに特異的なプライマーセット(Bv-F及びBv-R)またはeubacterial 16S rDNAに対する汎用プライマーセットを使用してq-PCRを行った(785F及び907R)。B.vulgatus 16S rDNAの相対的豊富度は、汎用プライマーセットを使用したPCRから派生された総16S rDNAの豊富度によって正規化された。その結果、2-[CT(B.vulgatus)-CT(総バクテリア)]推定値の中央値は、PBS処理対照群(n=20マウス)及びcFP処理マウス(n=20マウス)でそれぞれ0.1369(±0.0748)及び0.0619(±0.0766)に表われた(図1)。したがって、B.vulgatusのレベルは、cFPを注入したマウスで約2.2倍減少したと表われた(P=0.006、two-sided Student’s t-test)。
Example 1: B.I. V. vulgatus through changes in abundance. Mouse mortality due to V. vulnificus of the present invention. Introduction of B. vulnificus in fecal samples. Vulgatus levels are reduced, said reduced composition being associated with V. vulgatus levels. It was postulated to be mediated by cFP secreted by vulnificus infection. Therefore, in mouse fecal samples B. The effect of exogenous addition of cFP on C. vulgatus abundance was investigated. Fecal samples were collected from 4-week-old female mice orally administered cFP at a concentration of 110 μg cFP per gram of mouse. Total DNA extracted from each stool sample was isolated from B. q-PCR was performed using a primer set specific to the 16S rDNA of vulgatus (Bv-F and Bv-R) or a universal primer set to the eubacterial 16S rDNA (785F and 907R). B. Relative abundance of vulgatus 16S rDNA was normalized by the abundance of total 16S rDNA derived from PCR using universal primer sets. As a result, the median 2-[CT (B. vulgatus)-CT (total bacteria)] estimate was 0.00 in the PBS-treated control group (n=20 mice) and cFP-treated mice (n=20 mice), respectively. 1369 (±0.0748) and 0.0619 (±0.0766) (Fig. 1). Therefore, B. Levels of vulgatus appeared to be reduced approximately 2.2-fold in cFP-injected mice (P=0.006, two-sided Student's t-test).

実施例2:B.vulgatus豊富度の変化を通じたV.vulnificusによるマウス致死率
本発明者らは、減少したレベルのB.vulgatusを含むマウスがV.vulnificusによる感染に対して他の感受性を示すか否かを調査した。マウスにcFPを経口投与し、cFP投与後、12時間10~10細胞(n=各処理当たりマウス7匹)(開かれた記号)の多様な容量で感染された。cFPがないDMSO細胞を注入した対照群マウス(各処理当たりマウス7匹)(閉まった記号)を使用して同じ実験を行った。その結果、V.vulnificusの最高容量(すなわち、10個細胞)に感染されれば、2つの条件いずれもでマウスが24時間以内に同等であり、早く死んだ(図2)。同様に、最も低い容量のV.vulnificus(すなわち、10個細胞)で感染されたマウスは、cFPの外因性追加と関係なく類似した生存パターンを示した。しかし、死んだマウスの数は、cFPを事前投与した後、V.vulnificusの10-10細胞で感染させたcFP処理されたマウスセットでさらに多かった。V.vulnificusの10個細胞感染の場合、生存の差が0.001(ログ-順位検定)のP値で有意した。前記結果は、cFP投与によってバクテロイデス・ブルガタス菌が減少したマウスが敗血症ビブリオ菌の感染によって致死率も増加したことを示唆するものである。
Example 2: B.I. V. vulgatus through changes in abundance. Mouse lethality by B. vulnificus We found that reduced levels of B. vulnificus Mice containing V. vulgatus It was investigated whether other susceptibility to infection by S. vulnificus was exhibited. Mice were orally administered cFP and infected with various doses of 10 4 to 10 8 cells (n=7 mice per treatment) (open symbols) 12 h after cFP administration. The same experiment was performed using control group mice (7 mice per treatment) injected with DMSO cells without cFP (closed symbols). As a result, V.I. When infected with the highest dose of C. vulnificus (ie, 10 8 cells), mice died prematurely within 24 hours in both conditions equally well (FIG. 2). Similarly, the lowest capacity V.V. Mice infected with C. vulnificus (ie, 10 4 cells) showed a similar survival pattern regardless of exogenous supplementation of cFP. However, the number of mice that died was higher than that of V.C. after pre-administration of cFP. It was more abundant in the cFP-treated mouse set infected with 10 5 -10 7 cells of C. vulnificus. V. In the case of 10 6 cell infection with C. vulnificus, the difference in survival was significant with a P-value of 0.001 (log-rank test). The above results suggest that mice in which Bacteroides vulgataus was reduced by cFP administration also had an increased mortality rate due to infection with Vibrio septicemia.

実施例3:バクテロイデス・ブルガタスの添加による敗血症ビブリオ菌のマウス致死率の調査
本発明者らは、前記観察した敗血症ビブリオ菌のマウス致死率の増加がバクテロイデス・ブルガタスの減少のためであるかを証明するために、実験動物マウスにバクテロイデス・ブルガタスの摂取量を増加させて敗血症ビブリオ菌によるマウス致死率を調査した。したがって、前記と同じ条件で敗血症ビブリオ菌を感染させたマウスにバクテロイデス・ブルガタスを、比率(1:20、1:50)を異ならせて投与した。その結果、添加したバクテロイデス・ブルガタスの数が増加するほどラットに対する敗血症ビブリオ菌の致死率が減少することを観察した(図3)。前記結果は、敗血症ビブリオ菌が成功的にマウスに対する致死率を示すためには、ビブリオ菌が排出したcFPを通じて腸内共生細菌であるバクテロイデス・ブルガタスを減少させることが必要であり、この際、バクテロイデス・ブルガタスをさらに投与した場合、敗血症ビブリオ菌のマウスに対する致死率を減少させるということを実験的に立証したものである。
結論的に、前記結果は、敗血症ビブリオ菌が分泌したcFPによって腸内共生細菌であるバクテロイデス・ブルガタスが減少するにつれて、実験マウスの致死率が増加したが、前記バクテロイデス・ブルガタスをさらにマウスに投与する場合、敗血症ビブリオ菌による致死率が減少したので、前記バクテロイデス・ブルガタスは、敗血症ビブリオ菌の感染予防のための組成物として活用することができるということを示唆するものである。
本発明は、前述した実施例を参考にして説明されたが、これは例示的なものに過ぎず、当業者ならば、これより多様な変形及び均等な他実施例が可能であるという点を理解できるであろう。したがって、本発明の真の技術的保護範囲は、特許請求の範囲の技術的思想によって決定されねばならない。
Example 3: Investigation of Vibrio septicemia mouse mortality by addition of Bacteroides vulgarus The present inventors demonstrate that the observed increase in Vibrio septicemia mouse mortality is due to the reduction of Bacteroides vulgarus. In order to do so, we increased the intake of Bacteroides vulgaratus to laboratory animals and investigated the mortality rate of mice caused by Vibrio septicemia. Therefore, different ratios (1:20, 1:50) of Bacteroides vulgatus were administered to mice infected with Vibrio septicemia under the same conditions as above. As a result, it was observed that the lethality rate of Vibrio septicemia to rats decreased as the number of added Bacteroides vulgarus increased (Fig. 3). The above results show that in order for Vibrio septicemia to successfully show lethality in mice, it is necessary to reduce the intestinal commensal bacterium Bacteroides vulgarus through the cFP excreted by Vibrio. • Experimentally demonstrated that additional doses of vulgatas reduced the lethality of Vibrio septicemia to mice.
In conclusion, the results show that as the intestinal commensal bacterium, Bacteroides vulgatus, is decreased by cFP secreted by Vibrio septicemia, the mortality rate of experimental mice increases, but the Bacteroides vulgatus is further administered to mice. In this case, the fatality rate due to Vibrio septicemia was reduced, suggesting that the Bacteroides vulgarus can be utilized as a composition for preventing Vibrio septicemia infection.
Although the present invention has been described with reference to the foregoing embodiments, it should be understood that these are merely exemplary and that a person skilled in the art will be able to make various modifications and other equivalent embodiments. You can understand. Therefore, the true technical protection scope of the present invention should be determined by the technical ideas of the claims.

Claims (5)

バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含む、ビブリオ敗血症感染予防用薬学的組成物。 A pharmaceutical composition for preventing Vibrio septicemia infection, comprising a Bacteroides vulgarus strain, a homogenate of said strain, or a culture supernatant of said strain as an active ingredient. 前記ビブリオ敗血症は、ビブリオ・バルニフィカスによって誘発される、請求項1に記載の薬学的組成物。 2. The pharmaceutical composition of claim 1, wherein said Vibrio sepsis is induced by Vibrio vulnificus. 請求項1または2に記載の薬学的組成物を個体に投与する段階を含む、ビブリオ敗血症感染予防方法。 A method for preventing Vibrio sepsis infection, comprising administering the pharmaceutical composition of claim 1 or 2 to an individual. バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含む、ビブリオ敗血症感染予防用飼料添加剤。 A feed additive for preventing Vibrio septicemia infection, comprising a Bacteroides vulgarus strain, a crushed product of the strain, or a culture supernatant of the strain as an active ingredient. バクテロイデス・ブルガタス菌株、前記菌株の破砕物、または、前記菌株の培養上澄み液を有効成分として含む、ビブリオ敗血症感染予防用健康機能食品。 A health functional food for preventing Vibrio septicemia infection, comprising a Bacteroides vulgarus strain, a crushed product of the strain, or a culture supernatant of the strain as an active ingredient.
JP2022115652A 2022-01-20 2022-07-20 Pharmaceutical composition for preventing Vibrio septicemia Active JP7549899B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220008547A KR20230112371A (en) 2022-01-20 2022-01-20 Pharmaceutical composition for preventing sepsis of Vibrio
KR10-2022-0008547 2022-01-20

Publications (2)

Publication Number Publication Date
JP2023106282A true JP2023106282A (en) 2023-08-01
JP7549899B2 JP7549899B2 (en) 2024-09-12

Family

ID=87433317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022115652A Active JP7549899B2 (en) 2022-01-20 2022-07-20 Pharmaceutical composition for preventing Vibrio septicemia

Country Status (2)

Country Link
JP (1) JP7549899B2 (en)
KR (1) KR20230112371A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126178A (en) * 1993-10-27 1995-05-16 Natl Fedelation Of Agricult Coop Assoc Preventive and therapeutic agent or feed for sepsis of domestic animal and poultry
JP2013505289A (en) * 2009-09-23 2013-02-14 トーマス・ジュリアス・ボロディ Treatment of intestinal infections
WO2019156251A1 (en) * 2018-02-09 2019-08-15 日東薬品工業株式会社 Lipopolysaccharide-regulated enteric bacteria and use thereof
US20200163341A1 (en) * 2018-11-22 2020-05-28 Sogang University Research & Business Development Foundation Method and composition comprising detoxified lipopolysaccharide and lipoteichoic acid for preventing or inhibiting formation of biofilm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126178A (en) * 1993-10-27 1995-05-16 Natl Fedelation Of Agricult Coop Assoc Preventive and therapeutic agent or feed for sepsis of domestic animal and poultry
JP2013505289A (en) * 2009-09-23 2013-02-14 トーマス・ジュリアス・ボロディ Treatment of intestinal infections
WO2019156251A1 (en) * 2018-02-09 2019-08-15 日東薬品工業株式会社 Lipopolysaccharide-regulated enteric bacteria and use thereof
US20200163341A1 (en) * 2018-11-22 2020-05-28 Sogang University Research & Business Development Foundation Method and composition comprising detoxified lipopolysaccharide and lipoteichoic acid for preventing or inhibiting formation of biofilm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, vol. 11, JPN6023035519, 2021, pages 712028, ISSN: 0005145330 *

Also Published As

Publication number Publication date
JP7549899B2 (en) 2024-09-12
KR20230112371A (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP2019510052A (en) Methods and compositions for preventing infection by Vibrio species
Baños et al. Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo
Gopalakannan et al. Inhibitory activity of probiotic Enterococcus faecium MC13 against Aeromonas hydrophila confers protection against hemorrhagic septicemia in common carp Cyprinus carpio
JP5518702B2 (en) Novel medical uses of α-ketoglutarate
JP5872700B2 (en) Novel bacteriophage and antimicrobial composition containing the same
JP4021951B2 (en) Anti-gastritis, anti-ulcer and fermented food containing lactic acid bacteria as active ingredients
KR101299179B1 (en) Novel bacteriophage and antibacterial composition comprising the same
US10286016B2 (en) Compositions and methods for treating gonorrhea
EP2229432A1 (en) Antimicrobial activity of bacteriocin-producing lactic acid bacteria
van Dijk et al. Campylobacter jejuni is highly susceptible to killing by chicken host defense peptide cathelicidin-2 and suppresses intestinal cathelicidin-2 expression in young broilers
KR20150118837A (en) Novel bacteriophage and composition comprising the same
CN105435213A (en) Method for using lactoferrin for treatment or prevention of helicobacter pylori infection
JP2006169197A (en) Antimicrobial agent for livestock and composition for feed
KR101055392B1 (en) Composition comprising the extract of halocynthia roretzi which contains antimicrobial peptide for preventing and treating gastrointestinal diseases
JP7549899B2 (en) Pharmaceutical composition for preventing Vibrio septicemia
KR100483369B1 (en) Pediococcus pentosaceus CBT-8 which produces antimicrobial materials for restraining Helicobacter pylori and Listeria monocytogenes, and Production method of antimicrobial materials from Pediococcus pentosaceus CBT-8, and Application process for functional foods and/or drugs using the strain and the antimicrobial materials
KR102491640B1 (en) Weissella cibaria strain for suppressing dental caries inducing bacteria and use thereof
KR100646938B1 (en) 3201 Lactobacillus rhamnosus IDCC 3201 having inhibitory activity on adhesion and growth of Helicobacter pylori
KR101837658B1 (en) Novel Aeromonas hydrophila specific bacteriophage and antibacterial composition comprising the same
KR20180073489A (en) Novel Pseudomonas aeruginosa specific bacteriophage PA4 and antibacterial composition comprising the same
JP2004135669A6 (en) A lactic acid bacterial strain named Pediococcus pentosaceus CBT-8, which produces an antibacterial active substance that suppresses the growth of Helicobacter pylori and Listeria monocytogenes, is used as an antibacterial bacterium. Method for producing antibacterial substance having bioactive agent and method for utilizing antibacterial substance for functional foods and pharmaceuticals
KR101971572B1 (en) Novel Salmonella Enteritidis specific bacteriophage and antibacterial composition comprising the same
KR101871338B1 (en) Novel pathogenic Escherichia coli specific bacteriophage EC14 and antibacterial composition comprising the same
KR20210036661A (en) Composition for preventing or treating Mycobacterium tuberculosis, nontuberculous mycobacteria or Gram positive bacteria infection comprising MMAGNU2 compound
KR102208837B1 (en) Composition for inhibiting adhesion, invasion of bacteria or antibacterial resistance comprising methyl gallate and fluoroquinolone antibacterial agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220831

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240826

R150 Certificate of patent or registration of utility model

Ref document number: 7549899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150