JP2023105832A - 障害物検出装置 - Google Patents
障害物検出装置 Download PDFInfo
- Publication number
- JP2023105832A JP2023105832A JP2022006801A JP2022006801A JP2023105832A JP 2023105832 A JP2023105832 A JP 2023105832A JP 2022006801 A JP2022006801 A JP 2022006801A JP 2022006801 A JP2022006801 A JP 2022006801A JP 2023105832 A JP2023105832 A JP 2023105832A
- Authority
- JP
- Japan
- Prior art keywords
- distance sensor
- obstacle
- reflected wave
- reflected
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 51
- 238000004364 calculation method Methods 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 17
- 230000035945 sensitivity Effects 0.000 claims description 11
- 238000010801 machine learning Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 101100314364 Caenorhabditis elegans tpk-1 gene Proteins 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
【課題】多重反射が発生する状況においても障害物の位置を正確に特定する。【解決手段】障害物検出装置100は、第1距離センサ10Aおよび第2距離センサ10Bを使用して、障害物の位置を検出する。第1距離センサは、第1周波数を有する第1探査波を送信し、第1探査波が障害物で反射した反射波であって、第1周波数を有する第1反射波を受信する。第2距離センサは、第1周波数とは異なる周波数である第2周波数を有する探査波を送信し、第2探査波が障害物で反射した反射波であって、第2周波数を有する第2反射波を受信する。障害物検出装置は、第1反射波から第1距離センサから障害物までの第1距離を測定し、第2反射波から第2距離センサから障害物までの第2距離を測定する測定部110と、測定された第1距離および第2距離と、第1距離センサと第2距離センサとの間隔とから、障害物の位置を示す位置座標を求める位置算出部120と、を備える。【選択図】図1
Description
本開示は、障害物検出装置に関する。
特許文献1には、車両周辺の障害物を検出する障害物検出装置が記載されている。この障害物検出装置においては、複数の距離センサそれぞれが探査波を送信し、障害物で反射した反射波を受信する。反射波には、距離センサ自体が送信した探査波の反射波である直接波と、他方の距離センサが送信した探査波の反射波である間接波とが含まれている。この障害物検出装置は、複数のセンサがそれぞれ受信した直接波からそれぞれ求められた距離情報のペアから2円交点処理により、反射点の位置を示す交点の位置を算出する。また、この障害物検出装置は、ひとつのセンサが受信した直接波と間接波とからそれぞれ求められた距離情報のペアから2円交点処理により交点の位置を算出する。さらに、この障害物検出装置は、求めた複数の交点を、交点間の距離に基づいてグルーピングし、グルーピングの結果から、障害物が同一の物であるか否かを判別する。
特許文献1に記載の技術においては、間接波として、他方の距離センサから送信された探査波が1つの反射点でのみ反射している間接波を想定している。しかし、例えば、探査波を送信された方向の障害物の位置または形状によっては、探査波が同一物体で複数回反射する多重反射が生じる。この場合、距離センサが、他方の距離センサから送信された探査波が2つ以上の反射点で反射した反射波である、多重反射の間接波を受信することが想定される。多重反射が発生する状況においては、間接波から求められる距離情報に誤差が含まれる。このため、例えば、誤差が含まれた距離情報を使用して2円交点処理を行った場合、障害物が存在していない位置において交点が算出されることもある。このように、従来の方法を使用した場合、多重反射が発生する状況においては、障害物の位置を正確に特定できないという問題がある。
本開示は、以下の形態として実現することが可能である。
本開示の一形態によれば、障害物検出装置が提供される。この障害物検出装置(100)は、第1距離センサ(10A)および第2距離センサ(10B)を使用して、障害物の位置を検出する。第1距離センサは、第1周波数を有する第1探査波を送信し、第1探査波が障害物で反射した反射波であって、第1周波数を有する第1反射波を受信する。第2距離センサは、第1周波数とは異なる周波数である第2周波数を有する探査波を送信し、第2探査波が障害物で反射した反射波であって、第2周波数を有する第2反射波を受信する。障害物検出装置は、第1距離センサが受信した第1反射波から第1距離センサから障害物までの第1距離を測定し、第2距離センサが受信した第2反射波から第2距離センサから障害物までの第2距離を測定する測定部(110)と、測定された第1距離および第2距離と、第1距離センサと第2距離センサとの間隔とから、障害物の位置を示す位置座標を求める位置算出部(120)と、を備える。
このような態様によれば、障害物検出装置は、障害物までの距離の測定のために使用する反射波として、第1距離センサが第1周波数において受信した第1反射波と第2距離センサが第2周波数において受信した第2反射波とだけを使用する。即ち、障害物検出装置は、障害物までの距離の測定のために使用する反射波として、直接波のみを使用する。障害物までの距離の測定に間接波が使用されないため、多重反射が発生するような状況においても、測定された距離に誤差が含まれず、障害物の位置を正確に検出することができる。
A1.実施形態1
図1に示すように、実施形態において、車両の周囲に存在する障害物を検出する障害物検出システム1を説明する。障害物検出システム1は、距離センサ10Aおよび10Bと、送受信回路20と、警報部30と、障害物検出装置100とを備える。
図1に示すように、実施形態において、車両の周囲に存在する障害物を検出する障害物検出システム1を説明する。障害物検出システム1は、距離センサ10Aおよび10Bと、送受信回路20と、警報部30と、障害物検出装置100とを備える。
図2に示すように、障害物検出システム1は、車両A1の周囲にある障害物である物体M1の位置を検出するため車両A1に搭載されたシステムである。障害物検出システム1は、車両A1に備えられた距離センサ10Aおよび10Bを使用して、物体M1の位置を検出する。物体M1を対象物ともよぶ。実施形態においては、物体M1は、直方体の形状を有した物体であると仮定する。距離センサ10Aおよび10Bは、車両A1のフロントバンパーに設置されている。距離センサ10Aおとび10Bは、圧電素子が用いられた超音波センサである。距離センサ10Aおよび10Bは、探査波として超音波を送信する。また、距離センサ10Aおよび10Bは、探査波が車両A1の周囲にある物体M1により反射された反射波を受信する。距離センサ10Aを第1距離センサともよぶ。距離センサ10Bを第2距離センサともよぶ。
図2に示すように、実施形態においては、車幅方向がX軸、車高方向がY軸、車両A1の進行方向がZ軸と設定される。距離センサ10Aは、車高方向において、距離センサ10Bより高い位置に配置されている。距離センサ10Aおよび10Bの、X軸上における位置と、Z軸上における位置は同じであることが好ましい。距離センサ10Aおよび10Bの、X軸上における位置とZ軸上における位置とにズレがある場合には、ズレの量があらかじめ設定された範囲内となるよう設定されているものとする。距離センサ10Aは、あらかじめ設定された周波数で探査波を送信し、反射波を受信する。距離センサ10Aが送信する探査波を第1探査波ともよぶ。距離センサ10Aが受信する反射波を第1反射波ともよぶ。距離センサ10Bは、距離センサ10Aが使用する周波数とは異なる周波数で探査波を送信し、反射波を受信する。距離センサ10Bが送信する探査波を第2探査波ともよぶ。距離センサ10Bが受信する反射波を第2反射波ともよぶ。
距離センサ10Aの使用する周波数と距離センサ10Bの使用する周波数とを異なるように設定するとは、距離センサ10が使用する帯域幅と、距離センサ10Bが使用する帯域幅と、が互いに重ならないように設定することをいう。例えば、距離センサ10Aおよび10Bが、圧電素子を使用したセンサである場合、それぞれのセンサで使用する圧電素子の形状を変えることで、2つのセンサの周波数の設定を異ならせることができる。距離センサ10が使用する帯域幅を第1帯域幅ともよぶ。距離センサ10Bが使用する帯域幅を第2帯域幅ともよぶ。
距離センサ10Aが使用する周波数と、距離センサ10Bが使用する周波数とを異なるように設定するのは、距離センサ10Aおよび10Bにそれぞれ間接波を受信させないためである。障害物検出システム1においては、物体M1までの距離の測定のために使用する反射波として直接波だけを使用するからである。直接波は、距離センサ10Aおよび10Bが受信する反射波のうち、自らが送信した探査波が車両A1の周囲にある物体M1により反射された反射波のことである。間接波は、他方の距離センサが送信した探査波が車両A1の周囲にある物体M1により反射された反射波である。周波数の設定の具体的な方法については後述する。距離センサ10Aが探査波を送信する周波数を第1周波数ともよぶ。距離センサ10Bが探査波を送信する周波数を第2周波数ともよぶ。
図1に示すように、送受信回路20は、障害物検出装置100の制御に従って、距離センサ10Aおよび10Bを駆動し、距離センサ10Aおよび10Bに探査波を送信させる。また、送受信回路20は、距離センサ10Aおよび10Bが受信した反射波を示す受信信号を障害物検出装置100に供給する。
警報部30は、障害物検出装置100により、車両A1の周囲に、車両A1に衝突する可能性がある物体M1が存在することが検出された場合に警報を出力する。
障害物検出装置100は、距離センサ10Aおよび10Bを使用して、物体M1の位置を検出する。図2に示す例では、車両A1の周囲に1つの物体M1がある例を示しているが、物体M1の数は2つ以上であってもよい。図1に示すように、障害物検出装置100は、測定部110と、位置算出部120とを有する。測定部110および位置算出部120の機能は、車両A1が備えるECU(Electronic Control Unit)もしくはASIC(Application Specific Integrated Circuit)により実現される。
測定部110は、あらかじめ設定されたタイミングで、送受信回路20を介して距離センサ10Aおよび10Bに探査波をそれぞれ送信させる。このとき、測定部110は、送信時刻を障害物検出装置100が備えるメモリに記憶させておく。また、測定部110は、送受信回路20を介して距離センサ10Aおよび10Bが受信した反射波を示す受信信号をそれぞれ受信すると、それらの受信時刻を障害物検出装置100が備えるメモリに記憶させておく。
図3に示すように、距離センサ10Aと物体M1とを結ぶ直線は、距離センサ10Aから送信された探査波が物体M1で反射してから、反射波として距離センサ10Aに戻ってくるまでの反射波の経路を表す。距離センサ10Bと物体M1とを結ぶ直線は、距離センサ10Bから送信された探査波が物体M1で反射してから、反射波として距離センサ10Bに戻ってくるまでの反射波の経路を表す。測定部110は、距離センサ10Aが受信した反射波を示す受信信号から、距離センサ10Aから物体M1における反射点までの距離L1を測定する。また、測定部110は、距離センサ10Bが受信した反射波を示す受信信号から、距離センサ10Bから物体M1における反射点までの距離L2を算出する。距離センサ10Aから物体M1までの距離を第1距離ともよぶ。距離センサ10Bから物体M1までの距離を第2距離ともよぶ。
具体的には、まず、測定部110は、距離センサ10Aが探査波を送信した時刻から反射波を受信した時刻までの間の時間Tr1を求める。
図4の上段に示すように、測定部110は、距離センサ10Aにおける受信強度V1の時間変化を表した信号波形から、距離センサ10Aが反射波を受信した時刻を求める。測定部110は、距離センサ10Aが探査波を送信した時刻である時刻T0から、距離センサ10Aにおける受信強度V1があらかじめ設定された閾値Vth1を超えた時刻T1までの間の時間を、時間Tr1として求める。ここでは、設定された閾値Vth1を超えた時刻T1が、距離センサ10Aが反射波の受信した時刻とみなされる。
同様に、図4の下段に示すように、測定部110は、距離センサ10Bにおける受信強度V2の時間変化を表した信号波形から、距離センサ10Bが反射波を受信した時刻を求める。測定部110は、距離センサ10Bが探査波を送信した時刻である時刻T0から、距離センサ10Bにおける受信強度V2があらかじめ設定された閾値Vth2を超えた時刻T2までの間の時間を、時間Tr2として求める。設定された閾値Vth2を超えた時刻T2が、距離センサ10Bが反射波の受信した時刻とみなされる。なお、図4に示す例では、距離センサ10Aおよび10Bが同時に探査波を送信したものとする。
測定部110は、距離センサ10Aから物体M1における反射点までの距離L1を下記式(1)により算出する。なお、音速をCと表す。
L1=C・Tr1/2 ・・・(1)
L1=C・Tr1/2 ・・・(1)
同様に、測定部110は、距離センサ10Bから物体M1における反射点までの距離L2を下記式(2)により算出する。
L2=C・Tr2/2 ・・・(2)
L2=C・Tr2/2 ・・・(2)
前述のように、周波数の設定により、距離センサ10Aおよび10Bは、それぞれ他方の距離センサから送信された探査波の反射波を受信しないように制御されている。よって、測定部110は、直接波だけを使用して距離L1およびL2を算出する。直接波だけを使用して距離L1およびL2を算出する利点を以下に記載する。
図5に示すように、探査波を送信された方向にある障害物の位置または形状によっては多重反射が発生することがある。例えば、屋内の駐車スペースの壁の一部が突出していることがある。図示する例では、距離センサ10Aおよび10Bが、車幅方向に沿って配置されている。破線で示す距離センサ10Aから送信された探査波は、2つの地点において反射した後、距離センサ10Bに到達している。破線で示す距離センサ10Bから送信された探査波も、2つの地点において反射した後、距離センサ10Aに到達している。このように、図5においては、探査波が同一物体で複数回反射する多重反射が生じている。なお、実線は、直接波を表す。測定部110は、探査波を送信してから反射波を受信するまでの時間から、障害物までの距離を算出する。しかしながら、多重反射が発生するような状況においては、2つ以上の地点において探査波が反射するため、1つの地点において探査波が反射した場合に比べ、反射波を受信するまでの時間が長くなることが想定される。このため、算出された障害物までの距離に誤差が含まれてしまう。
これに対し、実施形態においては、距離L1およびL2の算出に直接波だけが使用されるので、測定された距離L1およびL2に誤差が含まれない。
図3に示すように、位置算出部120は、測定部110により算出された距離L1およびL2を使用して、物体M1における反射点の位置を示す位置座標を算出する。距離センサ10Aからの鉛直線と路面とが交わる点を原点(0,0,0)とする。位置算出部120は、物体M1における反射点の位置として、XYZ直交座標系における位置座標を求める。
具体的には、まず、位置算出部120は、距離センサ10Aから見た反射点の方向を表す角度θ1と、距離センサ10Bから見た反射点の方向を表す角度θ2とをそれぞれ求める。角度θ1は、距離センサ10Aから見た反射点の方向が、水平方向に対してなす角度をいう。角度θ2は、距離センサ10Bから見た反射点の方向が、水平方向に対してなる角度をいう。なお、理解を容易にするため、図3においては、距離センサ10Aおよび10Bが送信した探査波の図示を省略している。
位置算出部120は、下記式(3)により角度θを算出する。なお、距離センサ10Aと距離センサ10Bとの間の距離を間隔d1とする。間隔d1は、距離センサ10AのY軸方向の位置を表す高さhs1と、距離センサ10BのY軸方向の位置を表す高さhs2と、の差である。
θ1=arcsin{-(L12+d12-L22)/(2・L1・d1)}・・・(3)
θ1=arcsin{-(L12+d12-L22)/(2・L1・d1)}・・・(3)
位置算出部120は、下記式(4)により角度θ2を算出する。なお、図示する例では、距離センサ10Aおよび10Bが受信した反射波がいずれも同じ反射点で反射しているので、位置算出部120は、角度θ1または角度θ2のいずれかを算出すればよい。
θ2=arcsin{-(L22+d12-L12)/(2・L2・d1)}・・・(4)
θ2=arcsin{-(L22+d12-L12)/(2・L2・d1)}・・・(4)
その後、位置算出部120は、距離センサ10Aから送信された探査波が反射した反射点のY軸上の位置y1を下記式(5)により算出する。さらに、位置算出部120は、距離センサ10Bから送信された探査波が反射した反射点のY軸上の位置y2を下記式(6)により算出する。なお、図示する例では、距離センサ10Aおよび10Bが受信した反射波がいずれも同じ反射点で反射している。この場合、y1=y2とみなすことができる。式(5)または式(6)により、位置y1および位置y2を算出することができる。
y1=hs1-L1sinθ1 ・・・(5)
y2=hs2-L2sinθ2 ・・・(6)
y1=hs1-L1sinθ1 ・・・(5)
y2=hs2-L2sinθ2 ・・・(6)
加えて、位置算出部120は、距離センサ10Aから送信された探査波が反射した反射点のZ軸上の位置z1を下記式(7)により算出する。さらに、位置算出部120は、距離センサ10Bから送信された探査波が反射した反射点のZ軸上の位置z2を下記式(8)により算出する。図示する例では、距離センサ10Aおよび10Bが受信した反射波がいずれも同じ反射点で反射している。この場合、z1=z2とみなすことができる。式(7)または式(8)により、位置z1および位置z2を算出することができる。
z1=L1cosθ1 ・・・(7)
z2=L2cosθ2 ・・・(8)
z1=L1cosθ1 ・・・(7)
z2=L2cosθ2 ・・・(8)
位置算出部120は、例えば、算出された物体M1における反射点の位置座標から、物体M1と車両A1との距離があらかじめ設定された距離以下である場合、物体M1が車両A1に衝突する可能性があると判別する。この場合、位置算出部120は、その旨を警報部30に通知する。
以上説明したように、実施形態においては、物体M1までの距離L1およびL2の測定に間接波が使用されないため、多重反射が発生するような状況においても、測定された距離に誤差が含まれず、障害物の位置を正確に検出することができる。また、距離L1およびL2に測定に間接波が使用されないため、直接波および間接波を使用して距離を算出する場合に比べて、演算量を低減することができる。よって、距離の測定に要する時間を短縮することができる。
A2.実施形態2
実施形態2においては、距離センサ10Aおよび距離センサ10Bが使用する周波数の設定についての具体的な方法を説明する。前述したように距離センサ10Aの帯域幅と距離センサ10Bの帯域幅とは重ならないように設定される。帯域幅は、上限周波数と下限周波数の間の範囲のことである。
実施形態2においては、距離センサ10Aおよび距離センサ10Bが使用する周波数の設定についての具体的な方法を説明する。前述したように距離センサ10Aの帯域幅と距離センサ10Bの帯域幅とは重ならないように設定される。帯域幅は、上限周波数と下限周波数の間の範囲のことである。
図6に示す例では、距離センサ10Aの受信感度は、共振周波数f01において最も高くとなる。距離センサ10Bの受信感度は、共振周波数f02において最も高くなる。ここで、距離センサ10Aの受信感度の最大値から3デジベル低下したときの周波数のうち、低い方を下限周波数f11とし、高い方を上限周波数f12とする。また、距離センサ10Bの受信感度の最大値から3デシベル低下したときの周波数のうち、低い方を下限周波数f21とし、高い方を上限周波数f22とする。下限周波数f11から上限周波数f12までを、距離センサ10Aの帯域幅BW1とする。下限周波数f21から上限周波数f22までを、距離センサ10Bの帯域幅BW2とする。このとき、下記式(9)を満たすように、帯域幅BW1およびBW2を設定する。なお、BW1=f12-f11、BW2=f22-f21である。
f01+1/2・BW1≦f02-1/2・BW2 ・・・(9)
f01+1/2・BW1≦f02-1/2・BW2 ・・・(9)
なお、図6では、距離センサ10Aの上限周波数f12と、距離センサ10Bの下限周波数f21と、の間に差がある例を示している。
図7に示すように、図6に比べて帯域幅BW1と帯域幅BW2とが近づくように、帯域幅BW1およびBW2を設定してもよい。図示する例では、距離センサ10Aの上限周波数f12と、距離センサ10Bの下限周波数f21と、が重なっている。この場合も、上記の式(9)を満たすため、図6に示す例と同様の効果が期待できる。
このように、距離センサ10Aにおける帯域幅BW1と、距離センサ10Bにおける帯域幅BW2とは、受信感度が最大値から半減するまでの範囲において互いに重ならないように設定される。よって、距離センサ10Aおよび10Bは、それぞれ他方の距離センサから送信された探査波の反射波については十分な受信感度を得ることができない。例えば、距離センサ10Aに、距離センサ10Bが送信した探査波の反射波が到達したとしても、信号の強度が弱いため、距離センサ10Aは、その信号を検出することができないと考えられる。あるいは、距離センサ10Aおよび10Bが受信した信号が、あらかじめ設定された受信強度以下である場合、測定部110はその信号が間接波であると検出してもよい。このように簡易な方法により、距離センサ10Aおよび10Bが、それぞれ自らが送信した探査波の反射波だけを受信するように制御することができる。
この場合も、実施形態1と同様に、多重反射が発生するような状況においても、測定された距離に誤差が含まれず、障害物の位置を正確に検出することができる。
A3.実施形態3
実施形態3においては、距離センサ10Aと距離センサ10Bとのうち、車高方向において高い位置に配置されている距離センサの使用する周波数を、他方の距離センサより低く設定する。
実施形態3においては、距離センサ10Aと距離センサ10Bとのうち、車高方向において高い位置に配置されている距離センサの使用する周波数を、他方の距離センサより低く設定する。
図8に示すように、距離センサ10Aが、距離センサ10Bより車高方向において高い位置に配置されているとする。この場合、距離センサ10Aが使用する周波数は、距離センサ10Bが使用する周波数より低くなるように設定されることが好ましい。理由を以下に説明する。図8に示すように、距離センサ10Aおよび10Bが送信した探査波は、路面で反射することがある。以下、路面で反射した反射波を路面反射波とよぶ。図示する例では、路面反射波のうち、入射角度θG1の路面反射波が距離センサ10Aにより受信される例を示す。
図9に示すように、距離センサ10Aは、物体M1で反射した反射波W1と路面反射波W2とが合成された合成波W3を受信する。図示する波形においては、一点鎖線で表した波が反射波W1である。破線で表した波が路面反射波W2である。実線で表した波が合成波W3である。距離センサ10Bも同様に、物体M1で反射した反射波W1と路面反射波W2とが合成された合成波W3を受信する。距離センサ10Aおよび10Bが検出するべきものは物体M1であるため、路面反射波W2は、ノイズ成分といえる。
また、距離センサ10Aは、距離センサ10Bより高い位置に配置されているため、距離センサ10Aへの路面反射波の入射角度θG1は、距離センサ10Bへの路面反射波の入射角度より大きくなる。
図10に示すように、路面反射波の受信強度である路面反射強度は、距離センサへの入射角度が大きくなるほど強くなる傾向がある。よって、距離センサ10Aが受信する路面反射波の受信強度は、距離センサ10Bが受信する路面反射波の受信強度より強いといえる。即ち、距離センサ10Aが受信するノイズ成分は、距離センサ10Bが受信するノイズ成分より大きくなる。障害物検出システム1においては、距離センサ10Aおよび10Bを使用して障害物を検出するため、一方の距離センサに入力されるノイズ成分と、他方のセンサに入力されるノイズ成分との差が大きくなることは好ましくない。
また、図10に示すように、高い周波数を有する路面反射波と、低い周波数を有する路面反射波とを比較すると、高い周波数を有する路面反射波の路面反射強度R1が、低い周波数を有する路面反射波の路面反射強度R2より高くなる傾向がある。
よって、車高方向において高い位置に配置されている距離センサの使用する周波数を、他方の距離センサより低く設定する。路面反射波の入射角度が大きくなるために路面反射波の受信強度が強い距離センサ10Aが使用する周波数を、路面反射波の入射強度が低い距離センサ10Bが使用する周波数より、低く設定する。距離センサ10Aにおいて使用する周波数を、距離センサ10Bより低く設定することにより、距離センサ10Aにおいて路面反射波の路面反射強度を低減できる。よって、距離センサ10Aが受信する路面反射波に起因するノイズと、距離センサ10Bが受信する路面反射波に起因するノイズとの、大きさの差を小さくすることができる。
A4.実施形態4
実施形態1においては、測定部110は、受信強度が閾値を超えた時刻を、反射波が受信された時刻として、距離センサと反射点との間の距離を算出した。あるいは、反射波の受信時刻は他の方法で判別されてもよい。例えば、測定部110は、ピークの時刻から算出された反射波の受信強度がゼロとなる時刻を、反射波が受信された時刻と判別してもよい。ピークとは、反射波の受信強度の時間変化を表した波形において、例えば、傾きを示す値が正の値から負の値に変化した点をいうものとする。ピークのことを極大点ともよぶ。
実施形態1においては、測定部110は、受信強度が閾値を超えた時刻を、反射波が受信された時刻として、距離センサと反射点との間の距離を算出した。あるいは、反射波の受信時刻は他の方法で判別されてもよい。例えば、測定部110は、ピークの時刻から算出された反射波の受信強度がゼロとなる時刻を、反射波が受信された時刻と判別してもよい。ピークとは、反射波の受信強度の時間変化を表した波形において、例えば、傾きを示す値が正の値から負の値に変化した点をいうものとする。ピークのことを極大点ともよぶ。
図11に示すように、測定部110は、受信強度V1が閾値Vth1を超えた時点における、受信強度の傾きK1をK1=ΔV1/Δtにより算出する。傾きK1は、受信強度V1が閾値Vth1を超えた時点における、信号波形の接線の傾きである。Δtは、あらかじめ決められた短い期間である。ΔV1は、Δtが表す期間における受信強度V1の変化量である。測定部110は、傾きK1を持つ接線において、受信強度V1が0となる時刻T1を算出する。同様に、測定部110は、受信強度V2が閾値Vth2を超えた時点における、受信強度の傾きK2をK2=ΔV2/Δtにより算出する。傾きK2は、受信強度V2が閾値Vth2を超えた時点における、信号波形の接線の傾きである。測定部110は、傾きK2を持つ接線において、受信強度V2が0となる時刻T2を算出する。測定部110は、このようにして求めた時刻T1、T2を使用することにより、より正確な距離L1、L2を算出することができる。
図12に示すように、別の方法として、測定部110は、障害物検出装置100が備えるメモリにあらかじめ記憶されている距離センサ10Aの受信波形を、閾値を超えた直後に発生したピークの受信強度に応じて拡大または縮小する。測定部110は、拡大または縮小した波形において、ピークが発生する前に受信強度が0となる時刻を時刻t11として、ピークが発生した後に受信強度が0となる時刻を、時刻t12として算出してもよい。測定部110は、同様に、あらかじめ記憶されている距離センサ10Bの受信波形から、時刻t21、t22を算出してもよい。あらかじめ記憶されている受信波形は次のように用意することができる。距離センサ10Aおよび10Bそれぞれが、例えば、正対する壁に向けて探査波を送信し、壁で反射した反射波を受信する。受信された反射波の波形を受信波形としてメモリにあらかじめ記憶しておいてもよい。測定部110は、このようにして求めた時刻t11を時刻T1として、時刻t21をT2として使用することにより、より正確な距離L1、L2を算出することができる。
A5.実施形態5
実施形態においては、図4に示すように、距離センサ10Aおよび10Bがそれぞれ受信した信号を表す信号波形に1つのピークが含まれている例を説明した。しかしながら、距離センサ10Aおよび10Bの受信信号を表す信号波形それぞれに複数のピークが含まれていることがある。
実施形態においては、図4に示すように、距離センサ10Aおよび10Bがそれぞれ受信した信号を表す信号波形に1つのピークが含まれている例を説明した。しかしながら、距離センサ10Aおよび10Bの受信信号を表す信号波形それぞれに複数のピークが含まれていることがある。
図13に示すように、受信信号を表した信号波形において、時刻Tpk1、時刻Tpk2、時刻Tpk3にピークが発生している。各ピークを有する反射波は、異なる物体において反射した反射波である場合もある。あるいは、各ピークを有する反射波は、同一の物体において反射した反射波である場合もある。例えば、同じ物体の上端部と、下端部とにおいてそれぞれ探査波が反射することがある。この場合、上端部で反射した反射波と、下端部で反射した反射波とは、それぞれの経路の長さに差が生じる。このような場合、受信信号を表す信号波形においては、上端部で反射した反射波が有するピークが先に表れ、その後、下端部で反射した反射波が有するピークが表れることがある。
よって、測定部110は、時間軸上において隣り合う2つのピークの時刻差が、あらかじめ設定された時間以下であるときには、各ピークを有する反射波がいずれも、同一の物体において反射したものであると判別する。あらかじめ設定された時間を基準値ともよぶ。また、測定部110は、時間軸上において隣り合う2つのピークの時刻の差が、あらかじめ設定された時間を超えるときには、各ピークを有する反射波が、異なる物体において反射したものであると判別する。測定部110は、時間軸上において隣り合う2つのピークの組み合わせ毎に、2つのピークの時刻の差を算出し、2つのピークそれぞれが表す反射波がいずれも、同一の物体において反射したものであるか否かを判別する。
図13に示す例においては、時刻Tpk1と時刻Tpk2との差T12が、あらかじめ設定された時間内であるとする。この場合、測定部110は、時刻Tpk1におけるピークを有する反射波と時刻Tpk2におけるピークを有する反射波とが、同一の物体において反射したものであると判別する。例えば、測定部110は、破線で囲んだ、時刻Tpk1の前後の設定された期間と時刻Tpk2の前後の設定された期間とを含む期間T4に受信した反射波を、同一の物体において反射した反射波であると判別する。
また、時刻Tpk2と時刻Tpk3との差T23が、あらかじめ設定された時間を超えているとする。この場合、測定部110は、時刻Tpk2におけるピークを有する反射波と時刻Tpk3におけるピークを有する反射波とは異なる物体において反射した反射波をそれぞれ表すと判別する。
また、測定部110は、3つ以上のピークがあらかじめ設定された時間内に発生している場合も、各ピークを有する反射波がいずれも、同一の物体において反射したものであると判別してもよい。上記の構成により、同一の物体からの反射波であるか否かを容易に判別することができる。
受信信号を表した信号波形において、複数のピークが発生している場合、反射点までの距離は以下のように算出することができる。
図14の上段に示すように、距離センサ10Aが受信した信号を表す信号波形にピークp11とピークp12とが含まれているとする。測定部110により、先に発生したピークp11を有する反射波と、次に発生したピークp12を有する反射波とが、同一の物体M1で反射した反射波であると判別されたとする。また、図14の下段に示すように、距離センサ10Bが受信した信号を表す信号波形にピークp21とピークp22とが含まれているとする。測定部110により、先に発生したピークp21を有する反射波と、次に発生したピークp22を有する反射波とが、同一の物体M1で反射した反射波であると判別されたとする。
図15においては、距離センサ10Aが受信した反射波を破線で、距離センサ10Bが受信した反射波を一点鎖線で表す。なお、理解を容易にするため、それぞれの距離センサが送信した探査波の図示は省略している。距離センサ10Aおよび10Bは、正対する面を有する物体で反射した反射波を受信したとする。物体M1の上端部および下端部においては、距離センサ10Aおよび10Bに正対する面が限られている。さらに、物体M1の上端部の方が、路面と接している物体M1の下端部に比べて、距離センサ10Aおよび10Bに正対する面の面積が小さい。このため、物体M1の上端部からの反射波の受信強度は、物体M1の下端部からの反射波の受信強度よりも小さくなる。
よって、図14の上段に示す、後に発生したピークp12は、距離センサ10Aが受信した反射波であって物体M1における路面近傍で反射した反射波が有するピークである。距離センサ10Aが受信するこの反射波を第3反射波ともよぶ。図15に示すように、距離センサ10Aと物体M1における路面近傍の反射点との距離を距離L12とする。また、図14の上段に示す、先に発生したピークp11は、距離センサ10Aが受信した反射波であって物体M1における上端近傍で反射した反射波が有するピークである。距離センサ10Aが受信するこの反射波を第1反射波ともよぶ。図15に示すように、距離センサ10Aと物体M1における上端近傍の反射点との距離を距離L11とする。
図14の下段に示す、後に発生したピークp22は、距離センサ10Bが受信した反射波であって物体M1における路面近傍で反射した反射波が有するピークである。距離センサ10Bが受信するこの反射波を第4反射波ともよぶ。図15に示すように、距離センサ10Bと物体M1における路面近傍の反射点との距離を距離L22とする。また、図14の下段に示す、先に発生したピークp21は、距離センサ10Bが受信した反射波であって物体M1における上端近傍で反射した反射波が有するピークである。距離センサ10Bが受信するこの反射波を第2反射波ともよぶ。図15に示すように、距離センサ10Bと物体M1における上端近傍の反射点との距離を距離L21とする。
測定部110は、距離L11、L12、L21、L22を以下のように算出する。まず、測定部110は、上述の式(1)により距離L11を算出する。具体的には、測定部110は、探査波を送信した時刻から時刻t11までの時間を音速Cに乗じ、得られた値を2で割ることにより、距離L11を算出する。測定部110は、探査波を送信した時刻から時刻t12までの時間を音速Cに乗じ、得られた値を2で割ることにより、距離L12を算出する。同様に、測定部110は、探査波を送信した時刻から時刻t21までの時間を音速Cに乗じ、得られた値を2で割ることにより、距離L21を算出する。測定部110は、探査波を送信した時刻から時刻t22を音速Cに乗じ、得られた値を2で割ることにより、距離L22を算出する。反射波の受信強度がゼロとなる時刻t11、t12、t21、t22は、例えば、図11または図12に示した方法によりそれぞれ算出することができる。
また、距離センサ10Aが受信した信号を表す信号波形に含まれる少なくとも2つのピークと距離センサ10Bが受信した信号を表す信号波形に含まれる少なくとも2つのピークとが、同一の物体で反射した反射波を表すと判別されたとする。この場合、位置算出部120は、距離センサ10Aの受信信号を表す信号波形における少なくとも2つのピークそれぞれの受信強度の大小関係と、距離センサ10Bの受信信号を表す信号波形における少なくとも2つのピークそれぞれの受信強度の大小関係と、に応じて、物体M1が存在する方向を示す角度を算出する方法を異ならせる。以下に、(a)V11≦V12かつV21≦V22である場合、(b)V11<V12かつV21≧V22である場合、(c)V11≧V12かつV21≧V22である場合、それぞれについて、角度θ11、θ12、θ21、θ22の算出方法を説明する。
図15に示すように、角度θ11は、距離センサ10Aから見た物体M1における上端近傍の反射点が存在する方向が、水平方向に対してなす角度をいう。角度θ12は、距離センサ10Aから見た物体M1における路面近傍の反射点が存在する方向が、水平方向に対してなす角度をいう。角度θ21は、距離センサ10Bから見た物体M1における上端近傍の反射点が存在する方向が、水平方向に対してなす角度をいう。角度θ22は、距離センサ10Bから見た物体M1における路面近傍の反射点が存在する方向が、水平方向に対してなす角度をいう。
(a)V11≦V12かつV21≦V22である場合の角度の算出方法
図14に示すように、それぞれのピークの受信強度について、V11≦V12かつV21≦V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、低い方の距離センサ10Bの高さhs2より低い場合に、V11≦V12かつV21≦V22となることが考えられる。距離センサ10Aが受信する反射波のうち、物体M1の下端部で反射した反射波の方が、物体M1の上端部で反射した反射波より受信強度が強くなることが想定されるからである。距離センサ10Bが受信する反射波についても同様である。
図14に示すように、それぞれのピークの受信強度について、V11≦V12かつV21≦V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、低い方の距離センサ10Bの高さhs2より低い場合に、V11≦V12かつV21≦V22となることが考えられる。距離センサ10Aが受信する反射波のうち、物体M1の下端部で反射した反射波の方が、物体M1の上端部で反射した反射波より受信強度が強くなることが想定されるからである。距離センサ10Bが受信する反射波についても同様である。
具体的には、位置算出部120は、算出された距離L11およびL21を用いて、上述した式(3)により角度θ11を算出する。位置算出部120は、距離L11およびL21を用いて、上述した式(4)によりθ21を算出する。また、位置算出部120は、算出された距離L12およびL22を用いて、上述した式(3)により角度θ12を算出する。位置算出部120は、距離L12およびL22を用いて、上述した式(4)によりθ22を算出する。
(b)V11<V12かつV21≧V22である場合の角度の算出方法
図16に示すように、それぞれのピークの受信強度について、V11<V12かつV21≧V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、距離センサ10Aの高さhs1より小さく、距離センサ10Bの高さhs2以上である場合に、V11<V12かつV21≧V22となることが考えられる。距離センサ10Bから送信された探査波は、物体M1において、距離センサ10Bの正面方向と、路面近傍とで、反射すると考えられるからである。
図16に示すように、それぞれのピークの受信強度について、V11<V12かつV21≧V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、距離センサ10Aの高さhs1より小さく、距離センサ10Bの高さhs2以上である場合に、V11<V12かつV21≧V22となることが考えられる。距離センサ10Bから送信された探査波は、物体M1において、距離センサ10Bの正面方向と、路面近傍とで、反射すると考えられるからである。
この場合、距離センサ10Bから送信され、距離センサ10Bの正面方向において物体M1で反射した反射波の受信強度は、距離センサ10Bから送信され、路面付近で反射した反射波の受信強度以上となることが想定される。また、物体M1の高さhtは、距離センサ10Aの高さhs1より低いため、距離センサ10Aから送信され、路面近傍で反射した反射波の受信強度は、距離センサ10Aから送信され、物体M1の他の箇所で反射した反射波の受信強度より強くなると想定される。他の箇所は、例えば、物体M1の上端近傍である。また、距離センサ10Bの正面方向における反射点から距離センサ10Bまでの距離は、路面近傍における反射点から距離センサ10Bまでの距離より短くなる。このため、先に発生したピークを有する反射波が、距離センサ10Bの正面方向において物体M1で反射した反射波であると考えられる。距離センサ10Aが受信する反射波についても同様である。
具体的には、位置算出部120は、算出された距離L12およびL22を用いて、上述した式(3)により角度θ12を算出する。位置算出部120は、距離L12およびL22を用いて、上述した式(4)によりθ22を算出する。位置算出部120は、角度θ21を0度とする。位置算出部120は、角度θ11については算出不可能であると判別する。
(c)V11≧V12かつV21≧V22である場合の角度の算出方法
図17に示すように、それぞれのピークの受信強度について、V11≧V12かつV21≧V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、高い方に配置されている距離センサ10Aの高さhs1と等しい、あるいは、大きい場合に、V11≧V12かつV21≧V22となることが考えられる。距離センサ10Aおよび10Bからそれぞれ送信された探査波は、物体M1において、それぞれの距離センサの正面方向と、路面近傍とで、反射すると考えられるからである。この場合、距離センサ10Aから送信され、距離センサ10Aの正面方向において物体M1で反射した反射波の受信強度は、距離センサ10Aから送信され、路面付近で反射した反射波の受信強度以上となることが想定される。また、距離センサ10Aの正面方向における反射点から距離センサ10Aまでの距離は、路面近傍における反射点から距離センサ10Aまでの距離より短くなる。このため、先に発生したピークを有する反射波が、距離センサ10Aの正面方向において物体M1で反射した反射波であると考えられる。距離センサ10Bについても同様である。
図17に示すように、それぞれのピークの受信強度について、V11≧V12かつV21≧V22である場合の角度θ11、θ12、θ21、θ22の算出方法を説明する。例えば、物体M1の高さhtが、高い方に配置されている距離センサ10Aの高さhs1と等しい、あるいは、大きい場合に、V11≧V12かつV21≧V22となることが考えられる。距離センサ10Aおよび10Bからそれぞれ送信された探査波は、物体M1において、それぞれの距離センサの正面方向と、路面近傍とで、反射すると考えられるからである。この場合、距離センサ10Aから送信され、距離センサ10Aの正面方向において物体M1で反射した反射波の受信強度は、距離センサ10Aから送信され、路面付近で反射した反射波の受信強度以上となることが想定される。また、距離センサ10Aの正面方向における反射点から距離センサ10Aまでの距離は、路面近傍における反射点から距離センサ10Aまでの距離より短くなる。このため、先に発生したピークを有する反射波が、距離センサ10Aの正面方向において物体M1で反射した反射波であると考えられる。距離センサ10Bについても同様である。
具体的には、位置算出部120は、算出された距離L12およびL22を用いて、上述した式(3)により角度θ12を算出する。位置算出部120は、距離L12およびL22を用いて、上述した式(4)によりθ22を算出する。位置算出部120は、角度θ11、角度θ21をそれぞれ0度とする。
上記のように、位置算出部120は、ピークの受信強度の大小関係に応じて、物体M1が存在する方向を示す角度を算出する方法を異ならせる。よって、距離センサ10Aの受信信号の信号波形に含まれる複数の極大点の大小関係と、距離センサ10Bの受信信号の信号波形に含まれる複数の極大点の大小関係と、が異なる場合に、物体M1が存在する方向を誤検出してしまうことを防止することができる。
また、実施形態5のように、1つの距離センサが受信した反射波から2つの角度が算出された場合、位置算出部120は、反射点の座標を式(10)~(17)により算出する。
y11=hs1-L11sinθ11 ・・・(10)
z11=L11cosθ11 ・・・(11)
y12=hs1-L12sinθ12 ・・・(12)
z12=L12cosθ12 ・・・(13)
y21=hs2-L21sinθ21 ・・・(14)
z21=L21cosθ21 ・・・(15)
y22=hs2-L22sinθ22 ・・・(16)
z22=L22cosθ22 ・・・(17)
y11=hs1-L11sinθ11 ・・・(10)
z11=L11cosθ11 ・・・(11)
y12=hs1-L12sinθ12 ・・・(12)
z12=L12cosθ12 ・・・(13)
y21=hs2-L21sinθ21 ・・・(14)
z21=L21cosθ21 ・・・(15)
y22=hs2-L22sinθ22 ・・・(16)
z22=L22cosθ22 ・・・(17)
A6.実施形態6
実施形態5において、位置算出部120は、算出した座標値から物体M1の高さhtを検出する。位置算出部120は、距離センサ10Aが測定した距離L11およびL12からそれぞれ算出された反射点のy座標の値y11およびy12を使用して、式(18)により物体M1の高さhtを検出してもよい。
ht=y11-y12 ・・・(18)
実施形態5において、位置算出部120は、算出した座標値から物体M1の高さhtを検出する。位置算出部120は、距離センサ10Aが測定した距離L11およびL12からそれぞれ算出された反射点のy座標の値y11およびy12を使用して、式(18)により物体M1の高さhtを検出してもよい。
ht=y11-y12 ・・・(18)
あるいは、位置算出部120は、距離センサ10Bが測定した距離L21およびL22からそれぞれ算出された反射点のy座標の値y21およびy22を使用して、式(19)により物体M1の高さhtを検出してもよい。
ht=y21-y22 ・・・(19)
ht=y21-y22 ・・・(19)
なお、上記の式(18)または(19)により求められた物体M1の高さhtは、物体M1が少なくとも有する高さを表している。
ただし、位置算出部120は、図13あるいは図14に示すように、距離センサ10Bの受信信号を表す信号波形において先に発生したピークの受信強度V21が、後に発生したピークの受信強度V22以上である場合には、高さhtの算出に上記の式を使用しない。位置算出部120は、距離センサ10Bの高さ方向の位置hs2以上であると判別する。
図14に示すように、距離センサ10Aの受信信号の信号波形において先に発生したピークの受信強度V11が、後に発生したピークの受信強度V12以上である場合、位置算出部120は、高さhtが距離センサ10Aの高さ方向の位置hs1以上であると判別する。
また、位置算出部120は、算出した反射点の座標値のz軸における値z11、z12、z21、z22にばらつきがある場合、高さhtの判別結果の信頼性が低いと判別する。具体的には、位置算出部120は、値z11、z12、z21、z22のばらつきを示す値があらかじめ設定された閾値を超える場合、値z11、z12、z21、z22にばらつきがあると判別する。このような構成により、物体M1が少なくとも有する高さを検出するとともに、高さについての検出結果の信頼性を判別することができる。
図18に示すような形状を有している物体M2で、探査波が反射した場合には、値z11、z12、z21、z22のばらつきが大きくなることが想定されるからである。一方で、図2に示すように、物体M1が直方体の形状を有している場合には、値z11、z12、z21、z22のばらつきは小さいと考えられる。
B1.他の実施形態1
物体M1の高さは、学習済みの機械学習モデルを用いて推定することもできる。例えば、距離センサ10Aが受信した反射波と、距離センサ10Bが受信した反射波とが同一の物体M1で反射した反射波であると判別されたとする。この場合、距離センサ10Aおよび10Bそれぞれの受信信号を表す波形から、ピークを含む一定の範囲の波形が切り出される。切り出された波形に含まれる、あらかじめ設定された期間毎の受信強度と、それぞれの受信強度に対応する時刻情報と、が学習済みの機械学習モデルに入力される。機械学習モデルは、物体M1の高さを出力する。よって、物体M1の高さを自動的に推定させることができる。
物体M1の高さは、学習済みの機械学習モデルを用いて推定することもできる。例えば、距離センサ10Aが受信した反射波と、距離センサ10Bが受信した反射波とが同一の物体M1で反射した反射波であると判別されたとする。この場合、距離センサ10Aおよび10Bそれぞれの受信信号を表す波形から、ピークを含む一定の範囲の波形が切り出される。切り出された波形に含まれる、あらかじめ設定された期間毎の受信強度と、それぞれの受信強度に対応する時刻情報と、が学習済みの機械学習モデルに入力される。機械学習モデルは、物体M1の高さを出力する。よって、物体M1の高さを自動的に推定させることができる。
教師データとして、距離センサ10Aが受信した、既知の高さを有する物体で反射した反射波の受信強度および時刻情報と、距離センサ10Bが受信した既知の高さを有する物体で反射した反射波の受信強度および時刻情報と、物体の高さと、を含むデータのセットが使用される。学習フェーズにおいては、教師データを使用して機械学習が実施される。
B2.他の実施形態2
実施形態2においては、距離センサ10Aの共振周波数f01とし、距離センサ10Bの共振周波数f02と設定し、いずれの距離センサも一定の周波数の信号を探査波として送信する例を説明した。しかしながら、距離センサ10Aおよび10Bが送信する信号は、周波数が時間経過とともに変化するものであってもよい。具体的には、距離センサ10Aおよび10Bは、三角波で変調した信号を送信信号として送信してもよい。この場合、距離センサ10Aおよび10Bが送信する信号は、時間の経過とともに周波数が増加する上り区間と、時間の経過とともに周波数が減少する下り区間とを含むものとなる。この場合、実施形態2と同様に、帯域幅と距離センサ10Bの帯域幅とは重ならないように設定される必要がある。
実施形態2においては、距離センサ10Aの共振周波数f01とし、距離センサ10Bの共振周波数f02と設定し、いずれの距離センサも一定の周波数の信号を探査波として送信する例を説明した。しかしながら、距離センサ10Aおよび10Bが送信する信号は、周波数が時間経過とともに変化するものであってもよい。具体的には、距離センサ10Aおよび10Bは、三角波で変調した信号を送信信号として送信してもよい。この場合、距離センサ10Aおよび10Bが送信する信号は、時間の経過とともに周波数が増加する上り区間と、時間の経過とともに周波数が減少する下り区間とを含むものとなる。この場合、実施形態2と同様に、帯域幅と距離センサ10Bの帯域幅とは重ならないように設定される必要がある。
図19に示すように、距離センサ10Aおよび10Bの送信信号の周波数は、時間経過とともに変化している。同じ時刻における、距離センサ10Aの送信信号の周波数f1と、距離センサ10Bの送信信号の周波数f2と、は下記式を満たすように設定されているものとする。距離センサ10Aにおける送信信号の中心周波数をf01、距離センサ10Bにおける送信信号の中心周波数をf02とする。距離センサ10Aにおける送信信号の上限の周波数をf12、下限の周波数をf11とする。距離センサ10Bにおける送信信号の上限の周波数をf22、下限の周波数をf21とする。
f2-f1≧((f02-f21)+(f12-f01)) ・・・(20)
f2-f1≧((f02-f21)+(f12-f01)) ・・・(20)
B3.他の実施形態3
実施形態1から実施形態5においては、距離センサ10Aおよび10Bが、探査波として超音波を送信する例を説明したが、距離センサ10Aおよび10Bは、探査波として電波を送信してもよい。この場合も、距離センサ10Aおよび10Bが受信した反射波から、物体までの距離、物体の位置および物体が少なくとも有する高さを検出することができる。
実施形態1から実施形態5においては、距離センサ10Aおよび10Bが、探査波として超音波を送信する例を説明したが、距離センサ10Aおよび10Bは、探査波として電波を送信してもよい。この場合も、距離センサ10Aおよび10Bが受信した反射波から、物体までの距離、物体の位置および物体が少なくとも有する高さを検出することができる。
実施形態1においては、距離センサ10Aおよび10BのY軸上における位置が異なる例を説明した。しかしながら、距離センサ10Aおよび10Bを、X軸上において異なる位置に配置してもよい。この場合、距離センサ10Aおよび10Bの、Y軸上における位置と、Z軸上における位置は同じであることが好ましい。距離センサ10Aおよび10Bの、Y軸上における位置とZ軸上における位置とにズレがある場合には、ズレの量があらかじめ設定された範囲内となるように設定されているものとする。
実施形態1から実施形態5においては、距離センサ10Aおよび10Bが車両A1のフロントバンパーに設けられている例を説明したが、車両A1のリアバンパーにも一対の距離センサが設けられてもよい。
実施形態2においては、式(9)を満たすように、帯域幅BW1およびBW2を設定する例を説明した。これは、距離センサ10Aにおける帯域幅BW1と、距離センサ10Bにおける帯域幅BW2とが、受信感度が最大値から半減するまでの範囲において互いに重ならないようするためである。しかしながら、距離センサ10Aと距離センサ10Bとが互いに干渉しないように、共振周波数f01およびf02が設定されるのであれば、式(9)を満たすように帯域幅BW1およびBW2を設定しなくてもよい。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10A,10B…距離センサ、100…障害物検出装置、110…測定部、120…位置算出部
Claims (8)
- 第1距離センサ(10A)および第2距離センサ(10B)を使用して、障害物(M1)の位置を検出する障害物検出装置(100)であって、
前記第1距離センサは、第1周波数を有する第1探査波を送信し、前記第1探査波が前記障害物で反射した反射波であって、前記第1周波数を有する第1反射波を受信し、
前記第2距離センサは、前記第1周波数とは異なる周波数である第2周波数を有する第2探査波を送信し、前記第2探査波が前記障害物で反射した反射波であって、前記第2周波数を有する第2反射波を受信し、
障害物検出装置は、
前記第1距離センサが受信した前記第1反射波から前記第1距離センサから前記障害物までの第1距離を測定し、前記第2距離センサが受信した前記第2反射波から前記第2距離センサから前記障害物までの第2距離を測定する測定部(110)と、
測定された前記第1距離および前記第2距離と、前記第1距離センサと前記第2距離センサとの間隔とから、前記障害物の位置を示す位置座標を求める位置算出部(120)と、
を備える障害物検出装置。 - 請求項1に記載の障害物検出装置であって、
前記第1距離センサの共振周波数がf01、前記第2距離センサの共振周波数が、前記第1距離センサの共振周波数を下回るf02であり、
前記第1距離センサの共振周波数f01のときの受信感度から3デシベルが低下したときの受信感度における周波数であって、低い方の周波数f11を前記第1距離センサが使用する第1帯域幅における下限周波数とし、高い方の周波数f12を前記第1帯域幅における上限周波数とし、
前記第2距離センサの共振周波数f02のときの受信感度から3デシベルが低下したときの受信感度における周波数であって、低い方の周波数f21を前記第2距離センサが使用する第2帯域幅における下限周波数とし、高い方の周波数f22を前記第2帯域幅における上限周波数としたときに、
{f01+1/2・(f12-f11)}≦{f02-1/2・(f22-f21)}
となるように、前記第1帯域幅および前記第2帯域幅が設定されている、
障害物検出装置。 - 請求項1または2に記載の障害物検出装置であって、
前記第1距離センサおよび前記第2距離センサは車(A1)に搭載されており、
前記第1距離センサは、前記第2距離センサより車高方向において高い位置に配置されており、
前記第1周波数は、前記第2周波数より低く設定されている、
障害物検出装置。 - 請求項1から3のいずれか1項に記載の障害物検出装置であって、
前記測定部は、
反射波を表す信号波形に極大点が複数含まれる場合において、時間軸上において隣り合う少なくとも2つの極大点の組み合わせ毎に、前記組み合わせに含まれる少なくとも2つの極大点の発生した時刻差を算出し、
算出した前記時刻差があらかじめ設定された基準値以下の場合、前記組み合わせに含まれる極大点は、同一の前記障害物からの前記反射波に含まれるものであると判別する、
障害物検出装置。 - 請求項4に記載の障害物検出装置であって、
前記第1距離センサが前記障害物で反射した前記第1反射波を受信し、前記第2距離センサが同一の前記障害物で反射した前記第2反射波を受信し、前記第1反射波を表す信号波形および前記第2反射波を表す信号波形それぞれに極大点が少なくとも2つ含まれる場合に、
前記第1距離センサが受信した前記第1反射波を表す信号波形に含まれる少なくとも2つの極大点それぞれの受信強度の大小関係と、前記第2距離センサが受信した前記第2反射波を表す信号波形に含まれる少なくとも2つの極大点それぞれの受信強度の大小関係と、に応じて、前記障害物が存在する方向を示す角度を算出する方法を異ならせる、
障害物検出装置。 - 請求項5に記載の障害物検出装置であって、
前記第1距離センサが、前記第1反射波と、第3反射波とを受信した場合であって、
前記障害物の高さは、前記第1反射波から算出された前記障害物の前記位置座標における高さ方向に沿った位置を表す値と、前記第3反射波から算出された前記障害物の前記位置座標における前記高さ方向に沿った位置を表す値と、の差以上であると判別する、
障害物検出装置。 - 請求項6に記載の障害物検出装置であって、
前記第2距離センサが、前記第2反射波と、第4反射波とを受信した場合であって、
前記第1反射波から算出された前記障害物の前記位置座標における前記車の進行方向に沿った位置を表す値と、前記第3反射波から算出された前記障害物の前記位置座標における前記車の進行方向に沿った位置を表す値と、前記第2反射波から算出された前記障害物の前記位置座標における前記車の進行方向に沿った位置を表す値と、前記第4反射波から算出された前記障害物の前記位置座標における前記車の進行方向に沿った位置を表す値と、のばらつきを示す値があらかじめ設定された閾値を超える場合、前記障害物の前記高さについての検出結果の信頼性が低いと判別する、
障害物検出装置。 - 請求項1から7のいずれか1項に記載の障害物検出装置であって、
前記第1距離センサが前記障害物で反射した前記第1反射波を受信し、前記第2距離センサが同一の前記障害物で反射した前記第2反射波を受信した場合であって、
前記第1距離センサが受信した前記第1反射波の強度を時刻と対応付けた情報および前記第2距離センサが受信した前記第2反射波の強度を時刻と対応付けた情報を、学習済みの機械学習モデルに入力することにより、前記障害物の高さを推定する、
障害物検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022006801A JP2023105832A (ja) | 2022-01-20 | 2022-01-20 | 障害物検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022006801A JP2023105832A (ja) | 2022-01-20 | 2022-01-20 | 障害物検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023105832A true JP2023105832A (ja) | 2023-08-01 |
Family
ID=87473217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022006801A Pending JP2023105832A (ja) | 2022-01-20 | 2022-01-20 | 障害物検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023105832A (ja) |
-
2022
- 2022-01-20 JP JP2022006801A patent/JP2023105832A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11285940B2 (en) | Diagonal parking space detection method, and automatic parking method and system | |
JP6333412B2 (ja) | 障害物検知装置 | |
JP5483044B2 (ja) | 物体検出装置及び当該物体検出装置を用いた車両の開閉制御システム、並びに包絡線の立ち上がり検出方法 | |
WO2014054239A1 (ja) | 物体検知装置 | |
CN105549020B (zh) | 对象检测装置 | |
CN105474039A (zh) | 用于运行车辆的周围环境检测系统的方法 | |
CN101573596A (zh) | 用于根据渡越时间测量方法确定及监控容器中的介质的料位的方法 | |
KR20000023167A (ko) | 물체와 가변위치의 장치, 특히 자동차 사이의 거리를 결정하는 방법 | |
US20200114910A1 (en) | Apparatus and method for predicting concurrent lane change vehicle and vehicle including the same | |
CN102460207B (zh) | 物体探测方法和运算处理装置 | |
JP2019168449A (ja) | レーダ装置 | |
JP5682711B2 (ja) | 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム | |
WO2019182043A1 (ja) | レーダ装置 | |
JP4046905B2 (ja) | 車間距離計測装置 | |
US10906572B2 (en) | Method for the detection of crosstalk phenomena | |
JP2023105832A (ja) | 障害物検出装置 | |
CN111596286B (zh) | 测距方法和装置 | |
JP6895581B2 (ja) | 物体の位置を認識する装置および方法 | |
WO2021035395A1 (zh) | 速度确定方法、设备和存储介质 | |
JP2007192763A (ja) | 自律走行装置 | |
US20240111021A1 (en) | System and method for radar calibration | |
US12078719B2 (en) | Three-dimensional object detection device | |
JP7463561B2 (ja) | 超音波パルスを用いた対象物の速度を特定するための方法 | |
US20240210561A1 (en) | Object detection system and object detection device | |
JP2018128264A (ja) | 超音波流量計および流量計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240611 |