WO2021035395A1 - 速度确定方法、设备和存储介质 - Google Patents

速度确定方法、设备和存储介质 Download PDF

Info

Publication number
WO2021035395A1
WO2021035395A1 PCT/CN2019/102263 CN2019102263W WO2021035395A1 WO 2021035395 A1 WO2021035395 A1 WO 2021035395A1 CN 2019102263 W CN2019102263 W CN 2019102263W WO 2021035395 A1 WO2021035395 A1 WO 2021035395A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
speed
radar
vehicle
received signals
Prior art date
Application number
PCT/CN2019/102263
Other languages
English (en)
French (fr)
Inventor
陆新飞
李怡强
陈雷
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/102263 priority Critical patent/WO2021035395A1/zh
Priority to CN201980034310.6A priority patent/CN112166341B/zh
Publication of WO2021035395A1 publication Critical patent/WO2021035395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track

Definitions

  • the embodiments of the present disclosure relate to the field of intelligent transportation technology, and in particular, to a speed determination method, device, and storage medium.
  • Millimeter wave radar As an important sensor in the field of autonomous driving, vehicle-mounted millimeter-wave radar is extremely important for the rapid development of autonomous driving technology. Millimeter wave radar has natural advantages for the measurement of moving targets, and has the advantage of high speed measurement accuracy.
  • the vehicle-mounted millimeter wave radar generally adopts the fast-scanning frequency-modulated continuous wave scheme, which can realize the measurement of the target distance, speed and angle.
  • PRT Pulse Recurrent Time
  • the speed measurement range is limited. Therefore, a dual PRT fast-sweep FM continuous wave scheme has emerged, which can expand the speed measurement range.
  • the idea is to traverse all possible speeds based on the target speed difference in the received signals of the front and rear radar frames to achieve the expansion of the speed measurement range.
  • it requires finding the corresponding target in the previous frame, otherwise the speed measurement range cannot be expanded.
  • the present disclosure provides a speed determination method, device and storage medium, which improve the accuracy of static target speed estimation.
  • the present disclosure provides a speed determination method, including:
  • the at least one first target includes a static target
  • a third target is selected from the at least one second target;
  • the at least one The second target is a target from which the at least one first target is excluded from the targets detected according to the received signal of the radar;
  • the actual speed of the third target relative to the vehicle is determined; the measured speed of the third target is the third target relative to the vehicle measured by the radar speed.
  • the present disclosure provides a millimeter wave radar, including: a processor and a radar receiving antenna; the radar receiving antenna is used to receive signals;
  • the processor is electrically connected to the radar receiving antenna, and the processor is configured to:
  • the at least one first target includes a static target
  • a third target is selected from the at least one second target;
  • the at least one The second target is a target from which the at least one first target is excluded from the targets detected according to the received signal of the radar;
  • the actual speed of the third target relative to the vehicle is determined; the measured speed of the third target is the third target relative to the vehicle measured by the radar speed.
  • the present disclosure provides a vehicle, including:
  • the millimeter wave radar is installed on the vehicle body.
  • the present disclosure provides a storage medium, including: a readable storage medium and a computer program, the computer program is used to implement the speed determination method provided by any one of the embodiments of the first aspect.
  • the present disclosure provides a speed determination method, device, and storage medium, which determine at least one first target that matches each other according to the received signals of two adjacent frames of the radar; the at least one first target includes a static target; A Doppler frequency corresponding to a second target, and a Doppler frequency corresponding to a static target in the at least one first target, a third target is selected from the at least one second target; the at least one second target The target is the target from which the at least one first target is excluded from the targets detected according to the received signal of the radar; determining the actual speed of the third target relative to the vehicle according to the measured speed of the third target; The measured speed of the third target is the speed of the third target relative to the vehicle measured by the radar, and the actual speed of a large number of static targets with unexpanded speed relative to the vehicle can be obtained more accurately, which ensures the static The accuracy of the target velocity estimation, thereby avoiding the misjudgment caused by the error of the static object velocity estimation.
  • FIG. 1 is a schematic flowchart of an embodiment of a speed determination method provided by the present disclosure
  • Fig. 2 is a target distance-speed diagram of an embodiment of the present disclosure
  • Fig. 3 is a target distance-speed diagram of another embodiment of the present disclosure.
  • Fig. 4 is a target distance-speed diagram of another embodiment of the present disclosure.
  • FIG. 5 is a functional block diagram of an embodiment of the method provided by the present disclosure.
  • FIG. 6 is a schematic structural diagram of a millimeter wave radar provided by an embodiment of the disclosure.
  • the speed determination method provided by the embodiments of the present disclosure is applied to radar to improve the accuracy of static object speed measurement.
  • the radar is a millimeter wave radar.
  • the radar includes at least an antenna, and the antenna is used for receiving signals.
  • the method may be executed by a millimeter-wave radar, which may be installed on a vehicle; or may be executed by an on-board control device including the millimeter-wave radar.
  • the above-mentioned vehicles may be self-driving vehicles or ordinary vehicles.
  • the millimeter-wave radar can be a rear-mounted millimeter-wave radar or a front-mounted millimeter-wave radar, or the millimeter-wave radar can also be integrated in the vehicle.
  • the method provided by the embodiments of the present disclosure can be implemented by a millimeter-wave radar such as the processor of the millimeter-wave radar executing corresponding software code, or the millimeter-wave radar can perform data interaction with a control device or server while executing the corresponding software code.
  • the control device performs part of the operation to control the millimeter wave radar to perform the speed determination method.
  • the single PRT fast sweep frequency modulation continuous wave speed measurement range is difficult to meet the actual needs.
  • the speed measurement is likely to be fuzzy and turned over. . Therefore, the dual PRT fast sweep frequency modulation continuous wave scheme is generally used to expand the speed measurement range.
  • the dual PRT fast sweep FM continuous wave scheme if the corresponding target is not found in the previous frame, the speed measurement range cannot be expanded. Since there are many static scattering points and the scattering is more complicated, it is often impossible to find the corresponding static target point in the previous frame, which may easily cause errors in the estimation of the speed of the static target. Once the speed estimation deviation is large, it will misjudge the target position and state, which will seriously affect the driving judgment.
  • the speed determination method of the embodiment of the present disclosure is improved in response to the above-mentioned problems, and can improve the accuracy of static target speed estimation.
  • FIG. 1 is a schematic flowchart of an embodiment of a speed determination method provided by the present disclosure. As shown in Figure 1, the method provided in this embodiment includes:
  • Step 101 Determine at least one first target that matches with each other according to the received signals of two adjacent frames of the radar; the at least one first target includes a static target.
  • the at least one first target may include a dynamic target and a part of a static target.
  • a static target is a target that is stationary relative to the vehicle
  • a dynamic target is a target that is moving relative to the vehicle.
  • At least one first target is removed from all targets detected according to the received signal of the radar to obtain at least one remaining second target.
  • These second targets cannot search for matching targets in the previous frame, resulting in the inability to expand the speed ,
  • the speed estimation is not accurate. Therefore, the following steps in the embodiment of the present disclosure estimate the speed of the second targets.
  • Figure 2 is a distance-speed graph that has not been processed by the embodiments of the present disclosure. Since the speed expansion is not performed, the speed estimation of the static target in the dashed line box is incorrect.
  • Figure 3 shows that the speed estimation of some static targets is accurate after the processing of step 101, such as In the static target in the dashed frame on the left in Figure 3, there are still some static targets (ie, the second target) velocity estimation error.
  • Step 102 Select a third target from at least one second target according to the Doppler frequency corresponding to the at least one second target and the Doppler frequency corresponding to the static target in the at least one first target; at least one second target It is a target that removes at least one first target from targets detected based on the received signal of the radar.
  • the third target that satisfies a certain preset condition can be selected.
  • the preset condition is, for example,
  • Step 103 Determine the actual speed of the third target relative to the vehicle according to the measured speed of the third target; the measured speed of the third target is the speed of the third target relative to the vehicle measured by radar.
  • the actual speed of the third targets relative to the vehicle is determined according to the measured speed of the selected third targets relative to the vehicle.
  • the actual speed relative to the vehicle can be obtained based on the measured speed, the number of speed folding times, and the fuzzy period.
  • the ambiguity period V T ⁇ /(2 ⁇ PRT)
  • is the wavelength of the detection signal of the radar
  • PRT is the period of the frequency change of the detection signal of the radar.
  • the range of unambiguous speed measurement of radar is - ⁇ /(4 ⁇ PRT) to ⁇ /(4 ⁇ PRT).
  • Fig. 4 is a schematic diagram obtained after processing steps 102 and 103, and the static target velocity estimation is accurate in the dashed frame on the left.
  • At least one first target that matches with each other is determined according to the received signals of two adjacent frames of the radar; the at least one first target includes a static target; according to the Doppler corresponding to the at least one second target Frequency, and the Doppler frequency corresponding to the static target in the at least one first target, and the third target is selected from the at least one second target; the at least one second target is based on the radar receiving The target that removes the at least one first target from the targets detected by the signal; the actual speed of the third target relative to the vehicle is determined according to the measured speed of the third target; the measured speed of the third target In order to use the radar to measure the speed of the third target relative to the vehicle, the actual speed of a large number of static targets with unexpanded speed relative to the vehicle can be obtained relatively accurately, which ensures the accuracy of static target speed estimation, thereby Avoid misjudgment caused by incorrect speed estimation of static objects.
  • this embodiment can give priority to ensuring the accuracy of the dynamic target speed estimation. Therefore, firstly, at least one first target that matches with each other is acquired through step 101, and the first targets include a dynamic target and a part of a static target.
  • the actual speed of each first target relative to the vehicle is determined according to the measured speed of each first target corresponding to the received signals of two adjacent frames.
  • the measured speed of the first target is the speed of the first target relative to the vehicle measured by radar.
  • determining the actual speed of the first target relative to the vehicle can be achieved in the following manner:
  • the ambiguity period corresponding to the received signals of the two adjacent frames is determined; the pulse repetition period is that of the radar The period of the frequency change of the detection signal;
  • the relative speed of each of the first targets relative to the vehicle is determined. Actual speed.
  • the fuzzy period V T1 corresponding to the previous frame in the received signal of two adjacent frames ⁇ /(2 ⁇ PRT1)
  • PRT1 is the pulse repetition period corresponding to the previous frame, that is, the previous frame
  • the fuzzy period V T2 ⁇ /(2 ⁇ PRT2) corresponding to the current frame
  • PRT2 is the pulse repetition period corresponding to the current frame, that is, the period of the frequency change of the detection signal corresponding to the current frame.
  • the fuzzy periods corresponding to the received signals of the two adjacent frames and the first preset threshold. , Determine the first parameter value and the second parameter value;
  • n an integer value, due to the limited demand for speed measurement range, m and n are traversed only a limited number of values), so as to satisfy
  • m is the first parameter value and n is the second parameter value; among them, v pre is the measurement speed of the first target in the previous frame, and v cur is the measurement speed of the first target in the current frame.
  • the actual speed of the first target relative to the vehicle may also be determined based on the blur period, measured speed, and speed folding times corresponding to the current frame, or may also be determined based on the blur period, measured speed, and speed corresponding to the previous frame.
  • the number of times of folding may be determined based on the blur period, measured speed, and the number of times of speed folding corresponding to two adjacent frames, or may also be determined based on other methods, which are not limited in the embodiment of the present disclosure.
  • step 103 may be implemented in the following optional implementation manners:
  • the ambiguity period of the radar is based on the pulse repetition of the radar The period and the wavelength of the detection signal of the radar are determined.
  • the actual speed of the third target relative to the vehicle may be determined based on, for example, the fuzzy period, the measured speed, and the number of times of speed folding corresponding to two adjacent frames, or it may also be determined based on other methods.
  • the embodiment is not limited to this.
  • the actual speed of the static object relative to the vehicle can be estimated more accurately, thereby accurately distinguishing the static object from the dynamic object.
  • step 103 the following operations can also be performed before step 103:
  • the relative speed of the static target relative to the vehicle is -v car .
  • the number of speed folding ⁇ round(round(v car /v step )/N a ).
  • step 102 the following operations may be performed before step 102:
  • the Doppler frequency corresponding to each of the second targets is determined respectively; the measured speed of the second target is relative to the vehicle measured by the radar. speed.
  • the Doppler frequency corresponding to each second target may be determined according to the measured speed of each second target, the interval of speed units, and the number of speed units; the speed unit is The speed unit is divided according to the ambiguity period of the radar; the ambiguity period of the radar is determined according to the pulse repetition period of the radar and the wavelength of the detection signal of the radar.
  • the Doppler frequency corresponding to the second target can be determined with reference to the Doppler frequency determination method of the static target, which will not be repeated here.
  • the speed of the vehicle can be obtained from the CAN bus of the vehicle.
  • the speed information can be transmitted to the millimeter wave radar through the CAN message through the CAN bus of the vehicle body.
  • the speed of the vehicle can also be obtained through a vehicle speed estimation algorithm. For example, it is possible to use the characteristics of more static objects, different distances, and smaller Doppler differences.
  • the speed of the vehicle is determined according to the speed of the static target, the motion speed of the static target relative to the vehicle can be regarded as the speed of the vehicle, and the opposite direction of the motion speed of the static target relative to the vehicle can be regarded as the vehicle The speed direction.
  • the static target is, for example, the static target determined in step 101.
  • the actual speed of a large number of static targets with unexpanded speed relative to the actual speed of the vehicle can be obtained relatively accurately, which ensures the accuracy of the static target speed estimation, thereby avoiding The misjudgment caused by the wrong estimation of the static object velocity
  • the velocity estimation of the dynamic target is first performed, and based on the target information of the previous frame and the target information (distance-speed) of the current frame, the matching targets in the two frames are searched for ( That is, step 101) is performed.
  • step 101 the target information of the previous frame and the target information (distance-speed) of the current frame.
  • step 101 the matching targets in the two frames are searched for.
  • the speed of the dynamic object and some static objects relative to the vehicle is obtained.
  • the result is shown in Figure 3.
  • the static target is further filtered based on the Doppler frequency, that is, the step is performed 102.
  • the speed of the vehicle can be obtained based on the body CAN bus or the speed of the vehicle can be obtained based on a vehicle speed estimation algorithm, where the vehicle speed estimation algorithm can also estimate the speed of the vehicle based on the distance-Doppler result of the previous frame and the current frame,
  • the number of speed folding is further determined based on the speed of the vehicle and the information of the speed unit, and the actual speed of the static object relative to the vehicle is determined based on the measured speed of the static object and the number of speed folding.
  • the result is shown in Fig. 4.
  • Figures 2 to 4 show two-dimensional data composed of a distance dimension and a speed dimension.
  • the distance dimension includes a plurality of distance units
  • the speed dimension includes a plurality of speed units.
  • the distance-Doppler result can be represented by an example-Doppler frequency map, which is composed of a distance dimension and a Doppler frequency dimension, and includes multiple distance units and Doppler frequency units.
  • each Doppler unit on the distance-Doppler map can be traversed, and each distance unit on the corresponding Doppler unit can be traversed to determine whether its energy exceeds a set threshold. Count the number of distance units that exceed the set threshold on each Doppler unit, and the Doppler unit corresponding to the largest number is the Doppler frequency unit corresponding to the static target, so as to determine the speed of the vehicle according to the static target.
  • FIG. 6 is a schematic structural diagram of a millimeter wave radar provided by an embodiment of the disclosure.
  • the millimeter wave radar provided in this embodiment is used to implement the speed determination method provided in any of the foregoing illustrated embodiments.
  • the millimeter wave radar provided in this embodiment may include a processor 61 and a radar receiving antenna 62.
  • the radar receiving antenna 62 is used to receive signals.
  • the processor 61 is electrically connected to the radar receiving antenna 62, and the processor 61 is configured to:
  • the at least one first target includes a static target
  • a third target is selected from the at least one second target;
  • the at least one The second target is a target from which the at least one first target is excluded from the targets detected according to the received signal of the radar;
  • the actual speed of the third target relative to the vehicle is determined; the measured speed of the third target is the third target relative to the vehicle measured by the radar speed.
  • the processor 61 is configured to:
  • the processor 61 is configured to:
  • the ambiguity period corresponding to the received signals of the two adjacent frames is determined; the pulse repetition period is that of the radar The period of the frequency change of the detection signal;
  • the relative speed of each of the first targets relative to the vehicle is determined. Actual speed.
  • the processor 61 is configured to:
  • the first parameter value and the second parameter value are determined according to the measurement speed of each of the first targets corresponding to the received signals of the two adjacent frames, the fuzzy period corresponding to the received signals of the two adjacent frames, and the first preset threshold.
  • the processor 61 is configured to:
  • the ambiguity period of the radar is based on the pulse repetition of the radar The period and the wavelength of the detection signal of the radar are determined.
  • the processor 61 is configured to:
  • the processor 61 is configured to:
  • the Doppler frequency corresponding to each of the second targets is determined respectively; the measured speed of the second target is relative to the vehicle measured by the radar. speed.
  • the processor 61 is configured to:
  • the speed unit is the speed divided according to the ambiguity period of the radar Unit; the ambiguity period of the radar is determined according to the pulse repetition period of the radar and the wavelength of the detection signal of the radar.
  • the difference between the Doppler frequency corresponding to the third target and the Doppler frequency corresponding to the static target is smaller than a second preset threshold.
  • the processor 61 is configured to:
  • the millimeter wave radar provided in this embodiment is used to implement the speed determination method provided in any of the foregoing embodiments.
  • the technical principles and technical effects are similar, and details are not repeated here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the corresponding method in the foregoing method embodiment is implemented.
  • the specific implementation process please refer to the foregoing method implementation.
  • the implementation principles and technical effects are similar, so I won’t repeat them here.
  • the embodiments of the present disclosure also provide a program product.
  • the program product includes a computer program (that is, an execution instruction), and the computer program is stored in a readable storage medium.
  • the processor may read the computer program from a readable storage medium, and the processor executes the computer program to execute the speed determination method provided by any one of the foregoing method embodiments.
  • An embodiment of the present disclosure also provides a vehicle, including:
  • the millimeter wave radar is installed on the vehicle body. Its implementation principle and technical effect are similar to those of millimeter wave radar, and will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

提供一种速度确定方法、设备和存储介质,该方法包括:根据雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;至少一个第一目标中包括静态目标(101);根据至少一个第二目标对应的多普勒频率,以及,至少一个第一目标中静态目标对应的多普勒频率,在至少一个第二目标中选择第三目标;至少一个第二目标为根据雷达的接收信号检测到的目标中除去至少一个第一目标的目标(102);根据目标的测量速度,确定第三目标相对于车辆的实际速度(103)。该方法能够较为准确的获得大量速度未拓展的静态目标相对于车辆的实际速度,保证了静态目标速度估计的准确性。

Description

速度确定方法、设备和存储介质 技术领域
本公开实施例涉及智能交通技术领域,尤其涉及一种速度确定方法、设备和存储介质。
背景技术
车载毫米波雷达作为自动驾驶领域一种重要的传感器,对于自动驾驶技术的快速发展极为重要。毫米波雷达对于运动目标的测量具有天然的优势,具有测速精度高的优点。
目前车载毫米波雷达一般采用快扫调频连续波方案,可实现对目标距离、速度及角度的测量。由于脉冲重复周期(Pulse Recurrent Time,简称PRT)限制,导致其测速范围有限。因而出现了双PRT快扫调频连续波方案,采用该方案可以拓展速度测量范围。其思路是根据前后两帧雷达接收信号中目标速度差异,遍历所有可能速度,实现速度测量范围的拓展。但是其要求在前帧中找到对应目标,否则无法进行速度测量范围的拓展。
上述方案中,由于静态散射点较多且散射较为复杂,因此经常在前一帧无法找到与之对应的静态目标点,从而容易造成静态目标的速度估计错误。
发明内容
本公开提供一种速度确定方法、设备和存储介质,提升了静态目标速度估计的准确性。
第一方面,本公开提供一种速度确定方法,包括:
根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;
根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;
根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度。
第二方面,本公开提供一种毫米波雷达,包括:处理器和雷达接收天线;所述雷达接收天线用于接收信号;
所述处理器与所述雷达接收天线电连接,所述处理器被配置为:
根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;
根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;
根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度。
第三方面,本公开提供一种车辆,包括:
车体;以及
如第二方面中任一项所述的毫米波雷达,所述毫米波雷达安装在所述车体上。
第四方面,本公开提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现上述第一方面任一实施方式提供的速度确定方法。
本公开提供一种速度确定方法、设备和存储介质,根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度,能够较为准确的 获得大量速度未拓展的静态目标相对于车辆的实际速度,保证了静态目标速度估计的准确性,从而避免了静态物体速度估计有误造成的误判。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开提供的速度确定方法一实施例的流程示意图;
图2是本公开一实施例的目标距离-速度图;
图3是本公开另一实施例的目标距离-速度图;
图4是本公开又一实施例的目标距离-速度图;
图5是本公开提供的方法一实施例的原理框图;
图6为本公开一实施例提供的毫米波雷达的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
首先对本公开所涉及的应用场景进行介绍:
本公开实施例提供的速度确定方法,应用于雷达,以提高静态物体速度测量的准确性。
可选的,所述雷达为毫米波雷达。所述雷达至少包括天线,所述天线用于接收信号。
其中,该方法可以由毫米波雷达执行,该毫米波雷达可以设置在车辆上;或者可以由包括该毫米波雷达的车载控制设备执行。上述车辆可以是自动驾驶车辆或普通车辆。该毫米波雷达可以是后装的毫米波雷达,也可以是前装的毫米波雷达,或者,该毫米波雷达还可以集成在整车中。
本公开实施例提供的方法可由毫米波雷达如该毫米波雷达的处理器执行相应的软件代码实现,也可由该毫米波雷达在执行相应的软件代码的同时,通过和控制设备或服务器进行数据交互来实现,如控制设备执行部分操作,来控制毫米波雷达执行该速度确定方法。
由于设备硬件条件限制,PRT参数设置受限,导致单PRT快扫调频连续波测速范围难以满足实际需求,在自车速速度较大或目标车速较大的情况下,容易出现测速模糊翻折的现象。所以一般多采用双PRT快扫调频连续波方案拓展测速范围。针对双PRT快扫调频连续波方案,若在前帧中找不到对应目标,则无法进行速度测量范围的拓展。由于静态散射点较多且散射较为复杂,因此经常在前一帧无法找到与之对应的静态目标点,从而容易造成静态目标的速度估计错误。一旦速度估计偏差较大,会对目标位置及状态形成误判,严重影响驾驶判断。
本公开实施例的速度确定方法,针对上述问题进行改进,能够给提高静态目标速度估计的准确性。
下面以具体的实施例对本公开的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本公开提供的速度确定方法一实施例的流程示意图。如图1所示,本实施例提供的方法,包括:
步骤101、根据雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;至少一个第一目标中包括静态目标。
具体的,对于雷达的相邻两帧接收信号,在前一帧的所有目标中遍历,搜寻当前帧中的目标在前一帧中匹配的目标,最终确定相互匹配的至少一个第一目标。其中,至少一个第一目标中可以包括动态目标和部分静态目标。其中,静态目标为相对于车辆处于静止状态的目标,动态目标为相对于车辆处于运动状态的目标。
进一步,将根据雷达的接收信号检测到的所有目标中除去至少一个第一目标得到剩余的至少一个第二目标,该些第二目标在前一帧中搜寻不到匹配的目标,导致速度无法拓展,速度估计不准确,因此,本公开实施例中以下步骤对该些第二目标的速度进行估计。
图2为未经本公开实施例处理的距离-速度图,由于未进行速度拓展,虚线框中静态目标的速度估计有误,图3为经过步骤101处理之后有部分静态目标速度估计准确,如图3中左边虚线框中的静态目标,仍然有部分静态目标(即第二目标)速度估计错误。
步骤102、根据至少一个第二目标对应的多普勒频率,以及,至少一个第一目标中静态目标对应的多普勒频率,在至少一个第二目标中选择第三目标;至少一个第二目标为根据雷达的接收信号检测到的目标中除去至少一个第一目标的目标。
具体的,可以根据第二目标对应的多普勒频率,以及第一目标中静态目标对应的多普勒频率,筛选满足一定预设条件的第三目标。
在一个可选的实施例中,预设条件例如为|dop-dop s|<dop ε,其中,dop为第三目标的多普勒频率,dop s为静态目标对应的多普勒频率,dop ε为第二预设阈值。
步骤103、根据第三目标的测量速度,确定第三目标相对于车辆的实际速度;第三目标的测量速度为通过雷达测量的第三目标相对于车辆的速度。
具体的,根据筛选出的第三目标相对于车辆的测量速度,确定该些第三目标相对于车辆的实际速度。
在一个可选的实施例中,可以根据测量速度、速度折叠次数,以及模糊周期,得到相对于车辆的实际速度。
其中,模糊周期V T=λ/(2×PRT),λ为雷达的探测信号的波长,PRT为所述雷达的探测信号的频率变化的周期。雷达的不模糊测速范围为-λ/(4×PRT)到λ/(4×PRT)。
图4为经过步骤102、步骤103处理之后得到的示意图,左边虚线框中静态目标速度估计准确。
本实施例的方法,根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;根据所述第三目标的测量速度,确定所述第三目标相对于所述车 辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度,能够较为准确的获得大量速度未拓展的静态目标相对于车辆的实际速度,保证了静态目标速度估计的准确性,从而避免了静态物体速度估计有误造成的误判。
在上述实施例的基础上,进一步的,为了避免动态目标速度模糊后与静态目标速度一致,导致其被当做静态物体,本实施例中可以优先保证动态目标速度估计准确。因此,首先通过步骤101获取到相互匹配的至少一个第一目标,该些第一目标中包括动态目标和部分静态目标。
进一步,根据相邻两帧接收信号分别对应的各个第一目标的测量速度,确定各个第一目标相对于车辆的实际速度。
其中,第一目标的测量速度为通过雷达测量的第一目标相对于车辆的速度。
在一个可选的实施例中,确定第一目标相对于车辆的实际速度可以通过如下方式实现:
根据所述相邻两帧接收信号分别对应的脉冲重复周期以及所述雷达的探测信号的波长,确定所述相邻两帧接收信号分别对应的模糊周期;所述脉冲重复周期为所述雷达的探测信号的频率变化的周期;
根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,以及所述相邻两帧接收信号分别对应的模糊周期,确定各个所述第一目标相对于所述车辆的实际速度。
在一个可选的实施例中,假设相邻两帧接收信号中前一帧对应的模糊周期V T1=λ/(2×PRT1),PRT1为前一帧对应的脉冲重复周期,即前一帧对应的探测信号的频率变化的周期;当前帧对应的模糊周期V T2=λ/(2×PRT2),PRT2为当前帧对应的脉冲重复周期,即当前帧对应的探测信号的频率变化的周期。
在一个可选的实施例中,根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及第一预设阈值,确定第一参数值和第二参数值;
根据根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速 度、所述相邻两帧接收信号分别对应的模糊周期以及所述第一参数值和第二参数值,确定各个所述第一目标相对于所述车辆的实际速度。
在一个可选的实施例中,遍历所有可能的m,n(取值为整数,由于需求速度测量范围有限,因此m和n只需遍历有限的几个值),使得满足|(mV T1+v pre)-(nV T2+v cur)|<ε,ε为第一预设阈值。其中,m为第一参数值,n为第二参数值;其中,v pre为前一帧中第一目标的测量速度,v cur为当前帧中第一目标的测量速度。
第一目标相对于车辆的实际速度v real=((mV T1+v pre)+(nV T2+v cur))/2。
在其他实施例中,第一目标相对于车辆的实际速度例如还可以依据当前帧对应的模糊周期、测量速度和速度折叠次数确定,或者还可以基于前一帧对应的模糊周期、测量速度和速度折叠次数确定,或者基于相邻两帧各自对应的模糊周期、测量速度和速度折叠次数确定,或者还可以是基于其他方式,本公开实施例对此并不限定。
在上述实施例的基础上,进一步,步骤103可以通过如下可选的实施方式实现:
根据所述第三目标的测量速度、所述雷达的模糊周期以及速度折叠次数,确定所述第三目标相对于所述车辆的实际速度;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
具体的,第三目标相对于车辆的实际速度v′ sr=αV T+v′ s,其中α为速度折叠次数,v′ s为第三目标相对于车辆的测量速度(可以是当前帧或前一帧的测量速度),V T为模糊周期,若采用前一帧脉冲重复周期,则V T=V T1,否则V T=V T2
在一个可选的实施例中,第三目标相对于车辆的实际速度例如还可以基于相邻两帧各自对应的模糊周期、测量速度和速度折叠次数确定,或者还可以是基于其他方式,本公开实施例对此并不限定。
经过上述速度确定过程,可较为准确估计出静态物体相对于车辆的实际速度,从而准确区分静态物体与动态物体。
进一步的,步骤103之前还可以进行如下操作:
根据所述车辆的速度、速度单元的间隔以及速度单元的数目,确定所述静态目标对应的多普勒频率以及所述雷达的速度折叠次数;所述速度单元为根据所述雷达的模糊周期划分的速度单元。
在一个可选的实施例中,假设车辆速度为v car,则静态目标相对于车辆的相对速度为-v car。静态目标对应的多普勒
频率dop s=round(-v car/v step)%N a+N a,其中,round为四舍五入取整操作,v step为速度单元的间隔,%为取余操作,N a为速度单元的数目,满足v step=λ/(2×PRT×N a),λ为雷达探测信号的波长。速度折叠次数α=round(round(v car/v step)/N a)。
在上述实施例的基础上,进一步的,步骤102之前还可以进行如下操作:
根据至少一个第二目标的测量速度,分别确定各个所述第二目标对应的多普勒频率;所述第二目标的测量速度为通过所述雷达测量的所述第二目标相对于所述车辆的速度。
在一个可选的实施例中,可以根据各个所述第二目标的测量速度、速度单元的间隔以及速度单元的数目,确定各个所述第二目标对应的多普勒频率;所述速度单元为根据所述雷达的模糊周期划分的速度单元;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
第二目标对应的多普勒频率可以参照静态目标的多普勒频率确定方式确定,此处不再赘述。
在一个可选的实施例中,车辆的速度可以从车辆的CAN总线获取。
具体的,可以通过车辆的车身CAN总线,将速度信息通过CAN报文传递给毫米波雷达。
在一个可选的实施例中,车辆的速度还可以通过车速估计算法得到。例如,可以利用静态物体较多且具有距离不同、多普勒差异较小的特点。根据静态目标的速度确定车辆的速度,可将该静态目标相对于所述车辆的运动速度的大小作为该车辆的速度大小,将该静态目标相对于所述车辆的运动速度的反方向作为该车辆的速度方向。其中,静态目标例如为步骤101中确定的静态目标。
本公开实施例的方法,在优先保证动态目标速度准确测量的前提下,可以较为准确的获得大量速度未拓展的静态目标相对于车辆的实际速度,保证了静态目标速度估计的准确性,从而避免了静态物体速度估计有误造成的误判。
在一个可选的实施例中,如图5所示,首先进行动态目标的速度估计,基于前一帧的目标信息以及当前帧的目标信息(距离-速度)查找两帧中相互匹配的目标(即执行步骤101),处理之前如图2所示,经过该步骤得到动态物体以及部分静态物体相对于车辆的速度,结果参见图3,进一步基于多普勒频率对静态目标进行筛选,即执行步骤102,其中,还可以基于车身CAN总线获取车辆的速度或基于车速估计算法获取车辆的速度,其中,车速估计算法还可以基于前一帧和当前帧的距离-多普勒结果估计车辆的速度,进一步基于车辆的速度、速度单元的信息确定速度折叠次数,从而基于静态物体的测量速度、速度折叠次数确定静态物体相对于车辆的实际速度,结果如图4所示。
其中,图2-图4表示的是由距离维度和速度维度构成的二维数据,所述距离维度包括多个距离单元,所述速度维度包括多个速度单元。
其中,距离-多普勒结果可以通过举例-多普勒频率图谱表示,由距离维度和多普勒频率维度构成,包括多个距离单元和多普勒频率单元。
在一个可选的实施例中,可以遍历距离-多普勒图谱上的每个多普勒单元,在相应多普勒单元上遍历每个距离单元,判断其能量是否超过设定门限。统计每个多普勒单元上超过设定门限的距离单元的数目,数目最大对应的多普勒单元为静态目标对应的多普勒频率单元,从而根据静态目标确定车辆的速度。
图6为本公开一实施例提供的毫米波雷达的结构示意图。本实施例提供的毫米波雷达,用于执行前述任一所示实施例提供的速度确定方法。如图6所示,本实施例提供的毫米波雷达,可以包括:处理器61和雷达接收天线62。雷达接收天线62用于接收信号。
所述处理器61与所述雷达接收天线62电连接,所述处理器61被配置为:
根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标; 所述至少一个第一目标中包括静态目标;
根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;
根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度。
在一种可能的实现方式中,所述处理器61被配置为:
根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,确定各个所述第一目标相对于所述车辆的实际速度。
在一种可能的实现方式中,所述处理器61被配置为:
根据所述相邻两帧接收信号分别对应的脉冲重复周期以及所述雷达的探测信号的波长,确定所述相邻两帧接收信号分别对应的模糊周期;所述脉冲重复周期为所述雷达的探测信号的频率变化的周期;
根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,以及所述相邻两帧接收信号分别对应的模糊周期,确定各个所述第一目标相对于所述车辆的实际速度。
在一种可能的实现方式中,所述处理器61被配置为:
根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及第一预设阈值,确定第一参数值和第二参数值;
根据根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及所述第一参数值和第二参数值,确定各个所述第一目标相对于所述车辆的实际速度。
在一种可能的实现方式中,所述处理器61被配置为:
根据所述第三目标的测量速度、所述雷达的模糊周期以及速度折叠次数,确定所述第三目标相对于所述车辆的实际速度;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
在一种可能的实现方式中,所述处理器61被配置为:
根据所述车辆的速度、速度单元的间隔以及速度单元的数目,确定所述静态目标对应的多普勒频率以及所述雷达的速度折叠次数;所述速度单元为根据所述雷达的模糊周期划分的速度单元。
在一种可能的实现方式中,所述处理器61被配置为:
根据至少一个第二目标的测量速度,分别确定各个所述第二目标对应的多普勒频率;所述第二目标的测量速度为通过所述雷达测量的所述第二目标相对于所述车辆的速度。
在一种可能的实现方式中,所述处理器61被配置为:
根据各个所述第二目标的测量速度、速度单元的间隔以及速度单元的数目,确定各个所述第二目标对应的多普勒频率;所述速度单元为根据所述雷达的模糊周期划分的速度单元;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
在一种可能的实现方式中,所述第三目标对应的多普勒频率与所述静态目标对应的多普勒频率的差值小于第二预设阈值。
在一种可能的实现方式中,所述处理器61被配置为:
从所述车辆的CAN总线获取所述车辆的速度。
本实施例提供的毫米波雷达,用于执行前述任一实施例提供的速度确定方法,技术原理和技术效果相似,此处不再赘述。
本公开实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现前述方法实施例中对应的方法,其具体实施过程可以参见前述方法实施例,其实现原理和技术效果类似,此处不再赘述。
本公开实施例中还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。处理器可以从可读存储介质读取该计算机程序,处理器执行该计算机程序用于执行前述方法实施例中任一实施方式提供的速度确定方法。
本公开实施例中还提供一种车辆,包括:
车体;以及
前述任一实施例所述的毫米波雷达,所述毫米波雷达安装在所述车体上。其实现原理和技术效果与毫米波雷达类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本公开实施例的技术方案,而非对其限制;尽管参照前述各实施例对本公开实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的范围。

Claims (23)

  1. 一种速度确定方法,其特征在于,应用于车辆,所述车辆设置有雷达,所述方法包括:
    根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;
    根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;
    根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标之后,还包括:
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,确定各个所述第一目标相对于所述车辆的实际速度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,确定各个所述第一目标相对于所述车辆的实际速度,包括:
    根据所述相邻两帧接收信号分别对应的脉冲重复周期以及所述雷达的探测信号的波长,确定所述相邻两帧接收信号分别对应的模糊周期;所述脉冲重复周期为所述雷达的探测信号的频率变化的周期;
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,以及所述相邻两帧接收信号分别对应的模糊周期,确定各个所述第一目标相对于所述车辆的实际速度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,以及所述相邻两帧接收信号分别对应的模糊周期,确定各个所述第一目标相对于所述车辆的实际速度,包括:
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、 所述相邻两帧接收信号分别对应的模糊周期以及第一预设阈值,确定第一参数值和第二参数值;
    根据根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及所述第一参数值和第二参数值,确定各个所述第一目标相对于所述车辆的实际速度。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述第三目标的测量速度,确定所述第三目标相对于所述车辆的实际速度,包括:
    根据所述第三目标的测量速度、所述雷达的模糊周期以及速度折叠次数,确定所述第三目标相对于所述车辆的实际速度;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第三目标的测量速度、所述雷达的模糊周期以及速度折叠次数,确定所述第三目标相对于所述车辆的实际速度之前,还包括:
    根据所述车辆的速度、速度单元的间隔以及速度单元的数目,确定所述静态目标对应的多普勒频率以及所述雷达的速度折叠次数;所述速度单元为根据所述雷达的模糊周期划分的速度单元。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标之前,还包括:
    根据至少一个第二目标的测量速度,分别确定各个所述第二目标对应的多普勒频率;所述第二目标的测量速度为通过所述雷达测量的所述第二目标相对于所述车辆的速度。
  8. 根据权利要求7所述的方法,其特征在于,所述根据至少一个第二目标的测量速度,分别确定各个所述第二目标对应的多普勒频率,包括:
    根据各个所述第二目标的测量速度、速度单元的间隔以及速度单元的数目,确定各个所述第二目标对应的多普勒频率;所述速度单元为根据所述雷达的模糊周期划分的速度单元;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
  9. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述第三目标对应的多普勒频率与所述静态目标对应的多普勒频率的差 值小于第二预设阈值。
  10. 根据权利要求6所述的方法,其特征在于,确定所述静态目标对应的多普勒频率之前,还包括:
    从所述车辆的CAN总线获取所述车辆的速度。
  11. 根据权利要求1-4任一项所述的方法,其特征在于,所述雷达为毫米波雷达。
  12. 一种毫米波雷达,其特征在于,包括:处理器和雷达接收天线;所述雷达接收天线用于接收信号;
    所述处理器与所述雷达接收天线电连接,所述处理器被配置为:
    根据所述雷达的相邻两帧接收信号,确定相互匹配的至少一个第一目标;所述至少一个第一目标中包括静态目标;
    根据至少一个第二目标对应的多普勒频率,以及,所述至少一个第一目标中静态目标对应的多普勒频率,在所述至少一个第二目标中选择第三目标;所述至少一个第二目标为根据所述雷达的接收信号检测到的目标中除去所述至少一个第一目标的目标;
    根据所述第三目标的测量速度,确定所述第三目标相对于车辆的实际速度;所述第三目标的测量速度为通过所述雷达测量的所述第三目标相对于所述车辆的速度。
  13. 根据权利要求12所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,确定各个所述第一目标相对于所述车辆的实际速度。
  14. 根据权利要求13所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据所述相邻两帧接收信号分别对应的脉冲重复周期以及所述雷达的探测信号的波长,确定所述相邻两帧接收信号分别对应的模糊周期;所述脉冲重复周期为所述雷达的探测信号的频率变化的周期;
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度,以及所述相邻两帧接收信号分别对应的模糊周期,确定各个所述第一目标相 对于所述车辆的实际速度。
  15. 根据权利要求14所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及第一预设阈值,确定第一参数值和第二参数值;
    根据根据所述相邻两帧接收信号分别对应的各个所述第一目标的测量速度、所述相邻两帧接收信号分别对应的模糊周期以及所述第一参数值和第二参数值,确定各个所述第一目标相对于所述车辆的实际速度。
  16. 根据权利要求12-15任一项所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据所述第三目标的测量速度、所述雷达的模糊周期以及速度折叠次数,确定所述第三目标相对于所述车辆的实际速度;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
  17. 根据权利要求16所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据所述车辆的速度、速度单元的间隔以及速度单元的数目,确定所述静态目标对应的多普勒频率以及所述雷达的速度折叠次数;所述速度单元为根据所述雷达的模糊周期划分的速度单元。
  18. 根据权利要求12-15任一项所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据至少一个第二目标的测量速度,分别确定各个所述第二目标对应的多普勒频率;所述第二目标的测量速度为通过所述雷达测量的所述第二目标相对于所述车辆的速度。
  19. 根据权利要求18所述的毫米波雷达,其特征在于,所述处理器被配置为:
    根据各个所述第二目标的测量速度、速度单元的间隔以及速度单元的数目,确定各个所述第二目标对应的多普勒频率;所述速度单元为根据所述雷达的模糊周期划分的速度单元;所述雷达的模糊周期为根据所述雷达的脉冲重复周期以及所述雷达的探测信号的波长确定的。
  20. 根据权利要求12-15任一项所述的毫米波雷达,其特征在于,
    所述第三目标对应的多普勒频率与所述静态目标对应的多普勒频率的差值小于第二预设阈值。
  21. 根据权利要求12-15任一项所述的毫米波雷达,其特征在于,所述处理器被配置为:
    从所述车辆的CAN总线获取所述车辆的速度。
  22. 一种车辆,其特征在于,包括:
    车体;以及
    权利要求12~21任一项所述的毫米波雷达,所述毫米波雷达安装在所述车体上。
  23. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现如权利要求1-11中任一项所述的速度确定方法。
PCT/CN2019/102263 2019-08-23 2019-08-23 速度确定方法、设备和存储介质 WO2021035395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/102263 WO2021035395A1 (zh) 2019-08-23 2019-08-23 速度确定方法、设备和存储介质
CN201980034310.6A CN112166341B (zh) 2019-08-23 2019-08-23 速度确定方法、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102263 WO2021035395A1 (zh) 2019-08-23 2019-08-23 速度确定方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021035395A1 true WO2021035395A1 (zh) 2021-03-04

Family

ID=73859406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102263 WO2021035395A1 (zh) 2019-08-23 2019-08-23 速度确定方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN112166341B (zh)
WO (1) WO2021035395A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137682A1 (zh) * 2022-01-21 2023-07-27 华为技术有限公司 一种数据处理的方法、装置和交通工具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385054A (zh) * 2010-09-02 2012-03-21 何平 多普勒天气雷达退速度模糊的tprf方法
CN102384755A (zh) * 2010-09-02 2012-03-21 何平 机载相控阵天气雷达高精度测量瞬时航速方法
EP2884299A1 (en) * 2013-12-16 2015-06-17 Autoliv Development AB Speed determination of a target
CN106443662A (zh) * 2016-10-28 2017-02-22 上海无线电设备研究所 一种低重频体制下速度模糊时的目标稳健关联方法
CN106842166A (zh) * 2017-03-31 2017-06-13 东南大学 一种适用于线性调频连续波雷达系统的解速度模糊方法
US20180128916A1 (en) * 2016-11-04 2018-05-10 GM Global Technology Operations LLC Object detection in multiple radars
CN108303692A (zh) * 2018-01-30 2018-07-20 哈尔滨工业大学 一种解多普勒模糊的多目标跟踪方法
CN109932700A (zh) * 2019-03-28 2019-06-25 北京润科通用技术有限公司 一种多普勒速度的解模糊方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247068B2 (ja) * 2007-06-05 2013-07-24 三菱電機株式会社 レーダ装置
KR101348512B1 (ko) * 2012-11-08 2014-01-10 재단법인대구경북과학기술원 레이더를 이용한 이동 타겟 판단 장치 및 그 방법
CN103344949B (zh) * 2013-06-18 2015-03-18 中国人民解放军海军航空工程学院 基于Radon-线性正则模糊函数的雷达微弱动目标检测方法
KR20160066413A (ko) * 2014-12-02 2016-06-10 현대모비스 주식회사 Fmcw 레이더의 동작방법
CN106940442B (zh) * 2017-03-15 2019-09-10 西北大学 一种高速弹载雷达波形设计方法
CN108535730B (zh) * 2018-04-16 2020-09-29 青海大学 一种多普勒气象雷达解速度模糊方法和系统
CN109814073B (zh) * 2019-01-21 2022-11-11 西安电子科技大学 一种mtd雷达解模糊测速方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385054A (zh) * 2010-09-02 2012-03-21 何平 多普勒天气雷达退速度模糊的tprf方法
CN102384755A (zh) * 2010-09-02 2012-03-21 何平 机载相控阵天气雷达高精度测量瞬时航速方法
EP2884299A1 (en) * 2013-12-16 2015-06-17 Autoliv Development AB Speed determination of a target
CN106443662A (zh) * 2016-10-28 2017-02-22 上海无线电设备研究所 一种低重频体制下速度模糊时的目标稳健关联方法
US20180128916A1 (en) * 2016-11-04 2018-05-10 GM Global Technology Operations LLC Object detection in multiple radars
CN106842166A (zh) * 2017-03-31 2017-06-13 东南大学 一种适用于线性调频连续波雷达系统的解速度模糊方法
CN108303692A (zh) * 2018-01-30 2018-07-20 哈尔滨工业大学 一种解多普勒模糊的多目标跟踪方法
CN109932700A (zh) * 2019-03-28 2019-06-25 北京润科通用技术有限公司 一种多普勒速度的解模糊方法及装置

Also Published As

Publication number Publication date
CN112166341B (zh) 2024-04-05
CN112166341A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
US10605896B2 (en) Radar-installation-angle calculating device, radar apparatus, and radar-installation-angle calculating method
EP3151034A1 (en) Automated vehicle radar system to determine yaw-rate of a target vehicle
CN112098990B (zh) 车载高分辨毫米波雷达对于中高速车辆的检测与跟踪方法
US11360207B2 (en) Apparatus and method for tracking object based on radar image reconstruction
US9244159B1 (en) Distinguishing between maritime targets and clutter in range-doppler maps
JP6350329B2 (ja) 目標類識別装置
CN111386476B (zh) 确定车辆雷达系统中的对象运动和加速度矢量
EP3819663A1 (en) Method for determining a position of a vehicle
JP2020507767A (ja) 車両レーダシステム用の逆合成開口レーダ
WO2021035395A1 (zh) 速度确定方法、设备和存储介质
US20230139751A1 (en) Clustering in automotive imaging
CN114296095A (zh) 自动驾驶车辆的有效目标提取方法、装置、车辆及介质
US11841419B2 (en) Stationary and moving object recognition apparatus
US20220236398A1 (en) Object tracking apparatus
Stellet et al. Post processing of laser scanner measurements for testing advanced driver assistance systems
JP3750860B2 (ja) 画像レーダ装置
US11119187B2 (en) Resolution of doppler ambiguity in a radar system through tracking
CN112689773B (zh) 雷达信号处理方法和雷达信号处理装置
WO2009136621A1 (ja) 物体検知装置
CN110691985B (zh) 用于增强的对象追踪的系统
WO2020013057A1 (ja) 交差道路推定装置
WO2019182043A1 (ja) レーダ装置
Stolz et al. Direction of movement estimation of cyclists with a high-resolution automotive radar
US11782126B2 (en) System and method for automotive radar sensor orientation estimation using radar detection information of arbitrary detections
US20240159870A1 (en) Interface for Detection Representation of Hidden Activations in Neural Networks for Automotive Radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943080

Country of ref document: EP

Kind code of ref document: A1