JP2023090367A - 成膜方法 - Google Patents

成膜方法 Download PDF

Info

Publication number
JP2023090367A
JP2023090367A JP2021205298A JP2021205298A JP2023090367A JP 2023090367 A JP2023090367 A JP 2023090367A JP 2021205298 A JP2021205298 A JP 2021205298A JP 2021205298 A JP2021205298 A JP 2021205298A JP 2023090367 A JP2023090367 A JP 2023090367A
Authority
JP
Japan
Prior art keywords
gas
processing container
supply
raw material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021205298A
Other languages
English (en)
Inventor
文男 川崎
Fumio Kawasaki
敬輔 永田
Keisuke Nagata
保則 大塚
Yasunori Otsuka
公彦 中谷
Kimihiko Nakatani
良知 橋本
Yoshitomo Hashimoto
義朗 ▲ひろせ▼
Yoshiro Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Kokusai Electric Corp
Original Assignee
Air Water Inc
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc, Kokusai Electric Corp filed Critical Air Water Inc
Priority to JP2021205298A priority Critical patent/JP2023090367A/ja
Priority to PCT/JP2022/046105 priority patent/WO2023112970A1/ja
Priority to TW111148424A priority patent/TW202336268A/zh
Publication of JP2023090367A publication Critical patent/JP2023090367A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】低温下に於いて良好な成膜速度で、高密度の膜を被処理対象物上に形成することができ、工業生産にも適用可能な成膜方法を提供する。【解決手段】本発明は被処理対象物上に膜を形成する成膜方法であって、被処理対象物が設けられた処理容器内に原料ガスを供給して被処理対象物上に原料ガスを吸着させた後、処理容器内を第1パージガスによりパージする原料ガス供給工程と、原料ガス供給工程後の処理容器内に反応ガスを供給して、被処理対象物上に吸着した原料ガスを酸化した後、処理容器内を第2パージガスによりパージする反応ガス供給工程とを含み、例えば、原料ガス供給工程で原料ガスと第1触媒ガスを処理容器に供給し、反応ガス供給工程で反応ガスと第2触媒ガスを処理容器に供給し、第1触媒ガス及び第2触媒ガスとして同種又は異種の非芳香族性アミンガスを用いることを特徴とする。【選択図】 図2

Description

本発明は成膜方法に関し、より詳細には、被処理対象物上に、例えば、SiO膜等の膜を形成することが可能な成膜方法に関する。
近年、半導体・液晶分野を筆頭とするエレクトロニクス分野、医薬品・食料品の有機化学品をはじめとした分野等において、耐熱温度が低い材料からなる基板等への成膜方法や、熱影響を低減し材料特性の保持が可能な成膜方法など、成膜温度の低温化ニーズが高まっている。ここで、低温での成膜を可能にする方法としては、例えば、プラズマCVD(Chemical Vapor Deposition:化学気相成膜法)、プラズマALD(Atomic Layer Deposition:原子層堆積法)、真空蒸着、スパッタリング、メッキ、サーマルCVD及びサーマルALD等が挙げられる。
これらの成膜方法のうち、プラズマを用いた成膜方法ではプラズマエネルギーを利用することにより高温領域と同等の反応を実現することができる。しかし、この成膜方法ではプラズマ活性種が薄膜にダメージを与えるという問題がある。また成膜装置に対しても想定外の影響を与えることがあるため、プラズマを用いた成膜方法を採用する場合、事前にどの様な影響が生じるか確認を要する。
また、真空蒸着及びスパッタリングの場合、基板上の微細なパターン形成面への成膜が困難である。そのため、これらの成膜方法を、高集積化した半導体デバイス等の製造に採用することはできない。
そのため、ダメージを抑制して良好な膜質の薄膜を形成することができ、かつ、成膜制御性が高いサーマルALDを採用することが考えられる。しかし、この成膜方法の場合、低温領域では目的とする化合物を得るための化学種の反応に必要な活性化エネルギーを超えられないことが多いという問題がある。従って、熱エネルギー以外のエネルギー(例えば、プラズマ及びUV(Ultraviolet)等のエネルギー)を加えて化学反応を促進させ、成膜を進行させることが必要となるが、前述した通り、プラズマは薄膜にダメージを与える。また、UVも同様にダメージを与えるため、サーマルALDは低温領域での成膜に不向きという問題がある。
この様な問題に対し、例えば、特許文献1にはサーマルALDを用いて低温で成膜する技術が開示されている。より具体的には、大気圧下、触媒としてのNHと、原料ガスとしてのTMOS(テトラメトキシシラン)又はTEOS(トリエトキシシラン)等のアルコキシシランとを用いることにより、有機基板上に低温でSiO膜を形成できることが記載されている。しかし、特許文献1に開示の成膜方法であると、原料ガスであるアルコキシシランの供給時間が1サイクル当たり3分~4分間と長時間を必要とする。そのため、特許文献1の成膜方法では生産性が低いという問題がある。
また特許文献2には、触媒としてのピリジンと、原料ガスとしての反応活性の高いHCDS(ヘキサクロロジシラン)とを用いることにより、基板上に低温でSiO膜を形成できることが記載されている。しかし、特許文献2に開示の成膜方法であると、成膜温度が67℃以下の場合、HCDS中に含まれる塩素原子に起因して、リアクター内に塩が生成するという問題がある。また、周辺の金属膜が形成されている場合には、当該金属膜を腐食させダメージを与えるという問題もある。
特許文献3には、触媒配位子としてのピリミジンと、ケイ素及び酸素を含む前駆体とを用いることにより、基板上に低温でSiO膜の成膜が可能なことが記載されている。しかし特許文献3には、SiO膜が1サイクルあたり膜厚で1Å~6Åの膜成長をすると記載されている。これは、1サイクルあたりのSiO膜の成膜が膜厚1Å~6Åの範囲でばらつきが生じることを意味している。従って、特許文献3に開示の成膜方法は、SiO膜の膜厚制御性に劣るという問題がある。
非特許文献1には、シリコン前駆体としてのTEOS(テトラキスエトキシシラン)と、酸化剤としてのHOと、触媒としてのアンモニアとを用いて、ZrO及びBaTiOパーティクル上に、室温下でSiO膜を形成できることが記載されている。しかし、非特許文献1にはシリコン基板上にSiO膜を形成することについて記載がなく、非特許文献1に記載の成膜方法を半導体デバイスに適用することは困難である。また、アンモニアの供給時間が1サイクルあたり9,400秒であり、非特許文献1の成膜方法では生産性が低く、工業的には成立しないという問題がある。
国際公開第2011/156,484号公報 米国特許第6,992,019号 米国特許第8,580,699号
JOURNAL OF ELCTROCHEMICAL SOCIETY, 151(8)G528-G535, 2004
本発明は前記問題点に鑑みなされたものであり、その目的は、低温下に於いて良好な成膜速度で、高密度の膜を被処理対象物上に形成することができ、工業生産にも適用可能な成膜方法を提供することにある。
前記従来の課題は、以下に述べる発明により解決される。
即ち、本発明に係る成膜方法は、前記の課題を解決するために、
被処理対象物上に膜を形成する成膜方法であって、
前記被処理対象物を処理容器内に設ける工程(A)と、
前記処理容器内に原料ガスを供給して、前記被処理対象物上に原料ガスを吸着させた後、処理容器内を第1パージガスによりパージする原料ガス供給工程(B)と、
前記原料ガス供給工程(B)後の前記処理容器内に反応ガスを供給して、前記被処理対象物上に吸着した原料ガスを酸化した後、処理容器内を第2パージガスによりパージする反応ガス供給工程(C)とを含み、
前記原料ガス供給工程(B)に於ける前記原料ガスの供給は、
前記原料ガスと共に第1触媒ガスを前記処理容器内に供給する工程(b1);
前記処理容器内に第1触媒ガスを供給した後、第3パージガスによりパージし、その後に前記原料ガスを供給する工程(b2);又は、
前記原料ガスのみを前記処理容器内に供給する工程(b3)の何れかであり、
前記反応ガス供給工程(C)に於ける前記反応ガスの供給は、
前記反応ガスと共に第2触媒ガスを前記処理容器内に供給する工程(c1);
前記反応ガスの供給前に、前記処理容器内に第2触媒ガスを供給した後、第4パージガスによりパージする工程(c2);又は、
前記反応ガスのみを前記処理容器内に供給する工程(c3)の何れかであり、
前記原料ガス供給工程(B)が前記工程(b3)である場合に、前記反応ガス供給工程(C)が前記工程(c3)であることを含まず、
前記第1触媒ガス及び前記第2触媒ガスが、同種又は異種の非芳香族性アミンガスであることを特徴とする。
前記の構成に於いては、前記非芳香族性アミンガスの25℃に於ける酸解離定数pKaが9.5以上、14以下の範囲内であることが好ましい。
前記の構成に於いては、前記非芳香族性アミンガスが、ピロリジンガス、ピペリジンガス、テトラメチルグアニジンガス、1-メチルピペリジンガス及びそれらの誘導体のガスからなる群より選ばれる少なくとも1種であってもよい。
前記の構成に於いては、前記原料ガスが、ハロゲン配位子を有しない周期表第4族元素ガス及び/又はハロゲン配位子を有しないシリコンガスであることが好ましい。
前記の構成に於いては、前記原料ガスが、一般式Am-M-B(4-m)(但し、A及びBはそれぞれ独立して、RO基、RN基、CpR基、C2qN基(q=4又は5)及び水素原子からなる群より選ばれる何れか1種である。また、R、R、R及びRはそれぞれ独立して、C2r+1基(r≧0)である。MはTi、Zr、Hf又はSiである。Cpはシクロペンタジエニル配位子である。0≦m≦4。)で表されることが好ましい。
前記の構成に於いては、前記原料ガスが、Si(OMe)、Si(NMe)(OMe)、Si(NMe(OMe)、Si(NMe(OMe)、Si(NMe)(OEt)、Si(NMe(OEt)、Si(NMe(OEt)、Si(NEt)(OMe)、Si(NEt)(OEt)、SiH(NMe、SiH(NEt、SiH(NHt-Bu)、Si(pyrrolidine)(OMe)、Si(pyrrolidine)(OMe)、及びSi(pyrrolidine)(OMe)からなる群より選ばれる少なくとも1種の気体であることが好ましい。
前記の構成に於いては、前記反応ガスが、酸素原子を有する酸化剤ガスであることが好ましい。
前記の構成に於いては、前記酸化剤ガスが、水、過酸化水素水、ギ酸及びアルデヒドからなる群より選ばれる少なくとも1種の気体であることが好ましい。
前記の構成に於いて、前記原料ガス供給工程に於ける前記原料ガス及び/又は第1触媒ガスの供給は、前記処理容器内の圧力が13Pa以上、4万Pa以下の範囲内となる様に行われ、前記反応ガス供給工程に於ける前記反応ガス及び/又は第2触媒ガスの供給は、前記処理容器内の圧力が13Pa以上、4万Pa以下の範囲内となる様に行われることが好ましい。
前記の構成に於いては、前記原料ガス供給工程及び/又は前記反応ガス供給工程に於ける前記処理容器内の温度が、200℃以下であることが好ましい。
本発明は、被処理対象物上に、良好な膜質の膜を低温で形成することができ、工業生産にも適用可能な成膜方法を提供することができる。
本発明の実施形態に係る成膜装置を表す概略系統図である。 本実施形態に係る成膜方法を説明するためのフロー図である。 本実施形態に於いて、原料ガスと第1触媒ガスを同時に供給した場合の、原料ガスが基板上に吸着する様子を表す模式図である。 本実施形態に於いて、原料ガスのみを供給した場合の、原料ガスが基板上に吸着する様子を表す模式図である。 本実施形態に於いて、反応ガスと第2触媒ガスが同時に供給された場合の、基板表面に吸着した吸着分子にOH基が導入される様子を表す模式図である。 本実施形態に於いて、反応ガスのみを供給した場合の、基板表面に吸着した吸着分子にOH基が導入される様子を表す模式図である。 本実施例1に於けるSiO膜の成膜シーケンスを表す図である。 本実施例2に於けるSiO膜の成膜シーケンスを表す図である。 本実施例3に於けるSiO膜の成膜シーケンスを表す図である。 本実施例4に於けるSiO膜の成膜シーケンスを表す図である。 原料ガスとしてTMOSガスを用いた場合のサイクル数とSiO膜の膜厚との相関を表すグラフである。 各種の成膜方法に於ける処理容器内の温度とSiO膜の成膜速度との関係を表すグラフである。 原料ガスとして3DMASガスを用いた場合のサイクル数とSiO膜の膜厚との相関を表すグラフである。 各種の成膜方法に於ける処理容器内の温度とSiO膜の成膜速度との関係を表すグラフである。 各種の成膜方法に於ける処理容器内の圧力とSiO膜の成膜速度との関係を表すグラフである。 各種の成膜方法に於ける処理容器内の圧力とSiO膜の成膜速度との関係を表すグラフである。 本実施例18に於けるSiO膜の成膜シーケンスを表す図である。 反応ガスの供給時間(パルス時間)とSiO膜の成膜速度との関係を表すグラフである。 比較例に係る成膜装置を表す概略系統図である。
(成膜装置)
本発明の実施の一形態に係る成膜装置について、以下に説明する。本実施形態に係る成膜装置は、例えば、半導体製造装置の製造工程の一工程である基板の処理工程等に於いて使用することができる。
先ず、本実施形態に係る成膜装置の構成について、図1に基づき説明する。図1は、本実施形態に係る成膜装置を表す概略系統図である。
図1に示す様に、成膜装置1は、被処理対象物としての基板Wを収容する処理容器11と、原料ガスを供給する原料ガス供給部12と、第1触媒ガスを供給する第1触媒ガス供給部13と、第2触媒ガスを供給する第2触媒ガス供給部14と、反応ガスを供給する反応ガス供給部15と、パージガスが供給するためのパージガス供給路25と、処理容器11内の雰囲気を排出するための排出路26とを少なくとも備える。
処理容器11は、その内部が外気との遮断を可能にする密閉構造を有している。また、処理容器11は、基板Wをボート等によって水平姿勢の状態で収容可能な様に構成されている。処理容器11は内部に収容する基板Wを所定温度に加熱することが可能な加熱機構を備えてもよい。加熱機構としては特に限定されず、ヒーター等の公知のものを採用することができる。
原料ガス供給部12は、原料ガスを処理容器11に供給する機能を有する。原料ガス供給部12には、液体状の原料が貯蔵されている。また、原料ガス供給部12にはキャリアガスを導入するためのキャリアガス供給路17Aが設けられている。キャリアガス供給路17Aから供給されるキャリアガスは、MFC(Mass Flow Controller)による流量制御が可能となっている。尚、原料ガス及びキャリアガスの詳細については後述する。
原料ガス供給部12と処理容器11との間には、原料ガス供給路21が設けられている。これにより、原料ガス供給部12内に貯蔵されている液体状の原料が気化した原料ガスを、処理容器11に供給することが可能となっている。また、原料ガス供給路21には、上流側からニードル弁21a及び開閉弁21bが順次設けられている。
第1触媒ガス供給部13は、第1触媒ガスを処理容器11に供給する機能を有する。第1触媒ガス供給部13には、例えば、液体状の第1触媒が貯蔵されている。また、第1触媒ガス供給部13にはキャリアガスを導入するためのキャリアガス供給路17Bが設けられている。キャリアガス供給路17Bから供給されるキャリアガスは、MFCによる流量制御が可能となっている。尚、第1触媒ガス及びキャリアガスの詳細については後述する。
第1触媒ガス供給部13と処理容器11との間には、第1触媒ガス供給路22が設けられている。これにより、第1触媒ガス供給部13内に貯蔵されている液体状の第1触媒が気化した第1触媒ガスを、処理容器11に供給することが可能となっている。また、第1触媒ガス供給路22には、上流側からニードル弁22a及び開閉弁22bが順次設けられている。
第2触媒ガス供給部14は、第2触媒ガスを処理容器11に供給する機能を有する。第2触媒ガス供給部14には、例えば、液体状の第2触媒が貯蔵されている。また、第2触媒ガス供給部14にはキャリアガスを導入するためのキャリアガス供給路17Cが設けられている。キャリアガス供給路17Cから供給されるキャリアガスは、MFCによる流量制御が可能となっている。尚、第2触媒ガス及びキャリアガスの詳細については後述する。
第2触媒ガス供給部14と処理容器11との間には、第2触媒ガス供給路23が設けられている。これにより、第2触媒ガス供給部14内に貯蔵されている液体状の第2触媒が気化した第2触媒ガスを、処理容器11に供給することが可能となっている。また、第2触媒ガス供給路23には、上流側からニードル弁23a及び開閉弁23bが順次設けられている。
反応ガス供給部15は、反応ガスを処理容器11に供給する機能を有する。反応ガス供給部15には、液体状の酸化剤が貯蔵されている。また、反応ガス供給部15にはキャリアガスを導入するためのキャリアガス供給路17Dが設けられている。キャリアガス供給路17Dから供給されるキャリアガスは、MFCによる流量制御が可能となっている。尚、反応ガス及びキャリアガスの詳細については後述する。
反応ガス供給部15と処理容器11との間には、反応ガス供給路24が設けられている。これにより、反応ガス供給部15内に貯蔵されている液体状の酸化剤が気化した反応ガスを、処理容器11に供給することが可能となっている。また、反応ガス供給路24には、上流側からニードル弁24a及び開閉弁24bが順次設けられている。
ニードル弁21a、22a、23a、24aは、それぞれの供給路を流れるガスの流量を調節する。また、開閉弁21b、22b、23b、24bはそれぞれ、これらの開閉制御を行うことにより、各供給路を流れるガスの供給又はその停止を制御する。
パージガス供給路25はパージガスを処理容器11内に供給する機能を有する。パージガス供給路25は処理容器11に接続されており、かつ開閉弁25aが設けられている。開閉弁25aは、これを開閉制御することにより、パージガス供給路25を流れるパージガスの供給又はその停止を制御する。尚、パージガスの詳細については後述する。
排出路26は処理容器11に接続されており、処理容器11内の雰囲気を排気する機能を有する。排出路26には、上流側から順に、処理容器11内の圧力を検出する圧力検出部としての圧力センサー(図示しない。)、処理容器11内の圧力を制御する圧力制御部としてのAPC(Automatic Pressure Control:自動圧力制御)バルブ27、及び真空排気装置としての真空ポンプ(図示しない。)が接続されている。APCバルブ27の開閉制御は、真空ポンプを作動させた状態で圧力センサーの計測に基づいてPID制御により行われる。これにより、処理容器11内の圧力を任意に調整可能としている。
尚、排出路26から排出される排出ガスには、有毒ガス及び可燃性ガス等が含まれる可能性がある。そのため、排出路26に水洗スクラバー、硫酸スクラバー、苛性スクラバー、又は乾式除害装置等を設け(いずれも図示しない。)、排出ガスを無害化して大気放出が可能な様にしてもよい。
(成膜方法)
次に、成膜装置1を用いた本実施の一形態に係る成膜方法について説明する。
本実施形態に係る成膜方法は、被処理対象物上への膜の形成を可能にするものである。より具体的には、本実施形態の成膜方法は、図2に示す様に、被処理対象物である基板Wを処理容器11内に設ける工程(A)(S1)と、処理容器11内に原料ガスを供給して基板W上に原料ガスを吸着させた後、処理容器11内を第1パージガスによりパージする原料ガス供給工程(B)(S2)と、原料ガス供給工程(B)後の処理容器11内に反応ガスを供給して、基板W上に吸着した原料ガスを酸化した後、処理容器11内を第2パージガスによりパージする反応ガス供給工程(C)(S3)とを少なくとも含む。以下に、各工程について詳述する。尚、図2は、本実施形態の成膜方法を説明するためのフロー図である。
[被処理対象物を処理容器内に設ける工程(A)]
先ず、被処理対象物である基板Wを、当該基板Wの処理面(表面)が上方となる様に、水平姿勢の状態で処理容器11内に載置する。ここで、本明細書において、上、下、水平等の方向を表す文言は基板Wの処理面(表面)を基準とする方向を意味する。
本工程(A)は、基板Wが収容される処理容器11内の圧力及び温度を調整する工程を含むことができる。処理容器11内の圧力は、所望の圧力(真空度)となる様に、真空ポンプによって真空排気(減圧排気)して調整することができる。この際、処理容器11内の圧力は圧力センサーで測定され、圧力センサーの計測値に基づきAPCバルブ27がPID制御される。真空ポンプ等による処理容器11内の圧力調整は、膜の形成が終了するまでの間、継続して行うことができる。また、処理容器11内の温度は、所望の成膜温度となる様に、前述の加熱機構により加熱して調整することができる。加熱機構による処理容器11内の温度調整は、成膜処理が終了するまでの間継続して行うことができる。
[原料ガス供給工程(B)]
本実施形態の原料ガス供給工程(B)は、処理容器11内に原料ガスを供給して基板W上に原料ガスを(化学)吸着させた後、処理容器11内を第1パージガスによりパージする工程である(S2)。
原料ガス供給工程(B)に於いて、原料ガスの基板Wへの吸着は、図2に示す様に、原料ガスと共に第1触媒ガスを処理容器11内に供給する工程(b1)である場合(S2-1)、原料ガスの供給前に、処理容器11内に第1触媒ガスを供給した後、第3パージガスによりパージする工程(b2)である場合(S2-2)、又は、原料ガスのみを処理容器11内に供給する工程(b3)である場合(S2-3)の何れかである。以下、これらの工程(b1)、工程(b2)及び工程(b3)と、第1パージガスによるパージ工程とについて順次説明する。
(1)原料ガスと共に第1触媒ガスを供給する工程(b1)
本工程(b1)に於いては、原料ガスと第1触媒ガスを処理容器11に同時に供給する(S2-1)。
原料ガスの処理容器11への供給に際しては、キャリアガスがキャリアガス供給路17Aから原料ガス供給部12に供給される。キャリアガスとしては特に限定されず、例えば、窒素ガス、アルゴンガス及びヘリウムガス等の不活性ガスが挙げられる。これらの不活性ガスは単独で、又は混合して用いることができる。また、キャリアガスの供給はMFCにより流量制御されて行われる。さらに、キャリアガスとしては極力水分を含有しないものが好ましい。
キャリアガスが原料ガス供給部12に供給されると、当該キャリアガスは、原料ガス供給部12内に液体状態で貯蔵されている原料が気化した原料ガスを同伴して、原料ガス供給路21から排出される。原料ガス供給路21では、開閉弁21bが開閉制御により開状態となっており、ニードル弁21aによりキャリアガス及び原料ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
原料ガスとしては、ハロゲン配位子を有しない周期表第4族元素ガス及び/又はハロゲン配位子を有しないシリコンガスが好ましい。
また、原料ガスは一般式A-M-B(4-m)(但し、A及びBはそれぞれ独立して、RO基、RN基、CpR基、C2qN基(q=4又は5)及び水素原子からなる群より選ばれる何れか1種である(尚、Cpはシクロペンタジエニル配位子を意味する。)。また、R、R、R及びRはそれぞれ独立して、C2r+1基(r≧0)である。MはTi、Zr、Hf又はSiである。0≦m≦4。)で表すことができる。
さらに原料ガスとしては、前記一般式で表されるもののうち、Si(OMe)、Si(NMe)(OMe)、Si(NMe(OMe)、Si(NMe(OMe)、Si(NMe)(OEt)、Si(NMe(OEt)、Si(NMe(OEt)、Si(NEt)(OMe)、Si(NEt)(OE、SiH(NMe、SiH(NEt、SiH(NHt-Bu)、Si(pyrrolidine)(OMe)、Si(pyrrolidine)(OMe)、及びSi(pyrrolidine)(OMe)からなる群より選ばれる少なくとも1種の気体であることが好ましい(尚、Meはメチル基を意味し、Etはエチル基を意味し、t-Buはターシャリーブチル基を意味する。)。尚、原料ガスとしては、極力水分を含有しないものが好ましい。また、例示した原料ガスは、前述の例示したキャリアガスのいずれとも任意に組み合わせて用いることができる。
原料ガス及びキャリアガスからなる混合ガスの供給流量(原料ガスのみからなる場合は、原料ガスの供給流量)は、1sccm以上、5000sccm以下の範囲内が好ましく、100sccm以上、3000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は原料ガス)の供給流量を1sccm以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は原料ガス)の供給流量を5000sccm以下にすることにより、ガス消費量を削減することができる。混合ガス(又は原料ガス)の供給流量は、原料ガスの温度、キャリアガスの流量及び原料ガス供給部12内の圧力を調節することで適宜制御することができる。尚、原料ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
また、第1触媒ガスの処理容器11への供給に際しては、キャリアガスがキャリアガス供給路17Bから第1触媒ガス供給部13に供給される。キャリアガスの詳細については前述の通りである。また、キャリアガスの供給はMFCにより流量制御される。尚、キャリアガスとしては極力水分を含有しないものが好ましい。
キャリアガスが第1触媒ガス供給部13に供給されると、当該キャリアガスは、第1触媒ガス供給部13内に貯蔵されている第1触媒が気化した第1触媒ガスを同伴して、第1触媒ガス供給路22から排出される。第1触媒ガス供給路22では、開閉弁22bが開閉制御により開状態となっており、ニードル弁22aによりキャリアガス及び第1触媒ガスの混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
第1触媒ガスとしては非芳香族性アミンガスが好ましい。非芳香族性アミンガスであると、200℃以下での低温下に於いて成膜速度の向上が可能になる。また、第1触媒ガスとしては極力水分を含有しないものが好ましい。尚、第1触媒ガスとして芳香族性のピリジン等のガスを用いた場合、成膜速度を著しく低下させる場合がある。また、第1触媒ガスとして、NHガスを用いた場合には、膜の形成が困難になる場合がある。
非芳香族性アミンガスとしては、25℃に於ける酸解離定数pKaが9.5以上、14以下の範囲内が好ましく、10以上、14以下の範囲内がより好ましく、11以上、14以下の範囲内が特に好ましい。非芳香族性アミンガスのpKaが9.5以上であると、成膜速度の増大が可能になり、成膜効率の向上が図れる。その一方、非芳香族性アミンガスのpKaが14以下であると、成膜装置のダメージを防ぎ、触媒自体の加水分解を防ぐことができる。pKaは、例えば、pHメーターを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。
さらに非芳香族性アミンガスの具体例としては、ピロリジン(25℃での酸解離定数pKa:11.3)ガス、ピペリジン(25℃での酸解離定数pKa:11.1)ガス、1,1,3,3-テトラメチルグアニジン(25℃での酸解離定数pKa:13.6)ガス、1-メチルピペリジン(25℃での酸解離定数pKa:10.1)ガス及びそれらの誘導体のガス等が挙げられる。これらの非芳香族性アミンガスは単独で、又は2種以上を混合して用いることができる。また、例示した非芳香族性アミンガスは、前述の例示した原料ガスやキャリアガスのいずれとも任意に組み合わせて用いることができる。
第1触媒ガス及びキャリアガスからなる混合ガスの供給流量(第1触媒ガスのみからなる場合は、第1触媒ガスの供給流量)は1sccm以上、10000sccm以下の範囲内が好ましく、100sccm以上、5000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は第1触媒ガス)の供給流量を1sccm以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は第1触媒ガス)の供給流量を10000sccm以下にすることにより、消費量を削減することができる。混合ガス(又は第1触媒ガス)の供給流量は、第1触媒ガスの温度、キャリアガスの流量及び第1触媒ガス供給部13内の圧力を調節することで適宜制御することができる。尚、第1触媒ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
原料ガス及びキャリアガスからなる混合ガスと、第1触媒ガス及びキャリアガスからなる混合ガスとが処理容器11に供給されると、原料ガスが基板W表面に化学吸着する。本実施形態では、第1触媒ガスを原料ガスと同時に処理容器11内に供給することで、原料ガスの基板W表面への吸着性能を向上させることができる。例えば、原料ガスがSi(OMe)ガスであり、第1触媒ガスがピロリジンガスである場合(図3参照)、ピロリジンガスが基板Wの表面に接触すると、ピロリジン中のN原子の孤立電子対が、基板Wを構成するSiOの表面に存在するOH基からH原子を引き抜く。これにより、OH基に於いて電荷分布が負電荷に偏り、原料ガスのSi(OMe)に於いて、電荷分布が正電荷に偏りをもつSi原子との結合を促進させ、Si(OMe)の基板W表面への化学吸着を促進させる。また、このときSi(OMe)から配位子MeOが脱離する。さらに配位子MeOは、ピロリジンにより引き抜かれたH原子と結合し、これによりMeOHが副生する。尚、図3は、本実施形態に於いて、原料ガスと第1触媒ガスが同時に供給された場合の、原料ガスが基板上に吸着する様子を表す模式図である。
原料ガス(又はキャリアガスとの混合ガス)及び第1触媒ガス(又はキャリアガスとの混合ガス)(以下、「原料ガス等」という。)を供給する際の処理容器11内の温度は200℃以下の範囲内が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
原料ガス等を供給する際の処理容器11内の圧力は、1Pa以上、40000Pa以下の範囲内が好ましく、13Pa以上、13300Pa以下の範囲内がより好ましく、133Pa以上、6700Pa以下の範囲内が特に好ましい。処理容器11内の圧力を1Pa以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を40000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上昇させることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節され得る。
原料ガス等の処理容器11への供給時間(パルス時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。原料ガス等の供給時間を0.1秒以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、原料ガス等の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。原料ガス等の供給時間は、原料ガス等の温度、キャリアガスの流量、原料ガス供給部12内の圧力並びに第1触媒ガス供給部13内の圧力を調節することで適宜制御することができる。尚、原料ガス等の供給時間とは、開閉弁21b及び開閉弁22bが同時に開弁されている時間を意味する。
本工程(b1)に於いて原料ガス等の供給の間、第2触媒ガス供給路23の開閉弁23b、反応ガス供給路24の開閉弁24b、及びパージガス供給路25の開閉弁25aはいずれも閉状態になっている。また、本工程(b1)の終了は、開閉弁21b及び開閉弁22bを開閉制御により閉状態にし、原料ガスとキャリアガスとの混合ガス、及び第1触媒ガスとキャリアガスとの混合ガスの処理容器11への供給を停止することにより行われる。
(2)第1触媒ガスを供給した後にパージし、その後に原料ガスを供給する工程(b2)
本工程(b2)に於いては、先ず第1触媒ガスを処理容器11内に供給した後、パージガスにより処理容器11内をパージし、その後に原料ガスを処理容器11内に供給する(S2-2)。
第1触媒ガスの処理容器11への供給に際しては、先ず、キャリアガスがキャリアガス供給路17Bから第1触媒ガス供給部13に供給される。キャリアガスの詳細については前述の通りである。また、キャリアガスの供給はMFCにより流量制御されて行われる。
キャリアガスが第1触媒ガス供給部13に供給されると、当該キャリアガスは、第1触媒ガス供給部13内に液体状態で貯蔵されている第1触媒が気化した第1触媒ガスを同伴して、第1触媒ガス供給路22から排出される。第1触媒ガス供給路22では、開閉弁22bが開閉制御により開状態となっており、ニードル弁22aによりキャリアガス及び第1触媒ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
第1触媒ガス及びキャリアガスからなる混合ガスが処理容器11に供給されると、第1触媒ガスは基板W表面に吸着する。
第1触媒ガス及びキャリアガスからなる混合ガスの供給流量(第1触媒ガスのみからなる場合は、第1触媒ガスの供給流量)は1sccm以上、10000sccm以下の範囲内が好ましく、100sccm以上、5000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は第1触媒ガス)の供給流量を1sccm以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は第1触媒ガス)の供給流量を10000sccm以下にすることにより、消費量を削減することができる。混合ガス(又は第1触媒ガス)の供給流量は、第1触媒ガスの温度、キャリアガスの流量及び第1触媒ガス供給部13内の圧力を調節することで適宜制御することができる。尚、第1触媒ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
第1触媒ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。第1触媒ガスのみからなる場合は、第1触媒ガスの供給時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。混合ガス(又は第1触媒ガス)の供給時間を0.1秒以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は第1触媒ガス)の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は第1触媒ガス)の供給時間は、第1触媒ガスの温度、キャリアガスの流量及び第1触媒ガス供給部13内の圧力を調節することで適宜制御することができる。尚、第1触媒ガスの供給時間とは、開閉弁22bが開弁されている時間を意味する。
第1触媒ガス及びキャリアガスからなる混合ガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第2触媒ガス供給路23の開閉弁23b、反応ガス供給路24の開閉弁24b、及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
続いて、処理容器11内から第1触媒ガスを除去するために、処理容器11内をパージする。具体的には、パージガス供給路25の開閉弁25aを開閉制御により開状態にし、第3パージガスをパージガス供給路25から処理容器11に供給する。また、APCバルブ27を開状態にし,真空ポンプ等(図示しない)により処理容器11内を真空排気する。これにより、第1触媒ガスやキャリアガス等の雰囲気が処理容器11内から除去される。第3パージガスとしては特に限定されず、例えば、窒素ガス、ヘリウムガス及びアルゴンガス等の不活性ガスが挙げられる。また、第3パージガスとしては極力水分を含有しないものが好ましい。
第3パージガスの供給流量及び供給時間は、処理容器11内から基板W表面に未吸着の第1触媒ガスや第1触媒ガス中に含まれる水分等の不純物等が十分に除去される程度であれば特に限定されない。
尚、第3パージガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b、及び反応ガス供給路24の開閉弁24bはいずれも開閉制御により閉状態となっている。
第3パージガスによるパージが終了すると、開閉弁25aは開閉制御により閉状態とし、これにより第3パージガスの処理容器11への供給を停止する。
次に、第1触媒ガスが除去された処理容器11内に原料ガスを供給する。すなわち、MFCにより流量制御されたキャリアガスをキャリアガス供給路17Aから原料ガス供給部12に供給する。キャリアガスが原料ガス供給部12に供給されると、当該キャリアガスは、原料ガス供給部12内に液体状態で貯蔵されている原料が気化した原料ガスを同伴して、原料ガス供給路21から排出される。原料ガス供給路21では、開閉弁21bが開閉制御により開状態となっており、ニードル弁21aによりキャリアガス及び原料ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。尚、原料ガス及びキャリアガスの詳細については、工程(b1)で前述した通りである。従って、その詳細については省略する。
原料ガス及びキャリアガスからなる混合ガスの供給流量(原料ガスのみからなる場合は、原料ガスの供給流量)は、1sccm以上、5000sccm以下の範囲内が好ましく、100sccm以上、3000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は原料ガス)の供給流量を1sccm以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は原料ガス)の供給流量を5000sccm以下にすることにより、ガス消費量を削減することができる。混合ガス(又は原料ガス)の供給流量は、原料ガスの温度、キャリアガスの流量及び原料ガス供給部12内の圧力を調節することで適宜制御することができる。尚、原料ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
原料ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。原料ガスのみからなる場合は、原料ガスの供給時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。混合ガス(又は原料ガス)の供給時間を0.1秒以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は原料ガス)の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は原料ガス)の供給時間は、原料ガスの温度、キャリアガスの流量及び原料ガス供給部12内の圧力を調節することで適宜制御することができる。尚、原料ガスの供給時間とは、開閉弁21bが開弁されている時間を意味する。
処理容器11内に原料ガスが供給されると、原料ガスは基板W表面にOH基と反応し、吸着する。このとき、OH基は第1触媒ガスの作用により負電荷に偏った電荷分布になっているため、当該基板W表面に容易に原料ガスを吸着させることができる。
本工程(b2)は、第1触媒ガスとして安価な市販品を用いる場合にも、膜均一性が高く高精度の膜を形成することができる。すなわち、市販の触媒は一般品で純度98質量%程度、高純度品で純度99.5質量%程度であり、高純度品であっても触媒中には水分等の不純物が含まれている。従って、例えば、前述の工程(b1)の様に、原料ガスと第1触媒ガスとを同時に処理容器11に供給した場合には、第1触媒ガス中に含まれる水分が原料ガスと反応してしまい、CVD(Chemical Vapor Deposition)法により成膜された様な薄膜が形成され、膜均一性が低下することがある。しかし、本工程(b2)の様に、予め第1触媒ガスを単独で基板W表面に供給して原子層レベルで吸着させ、その後に処理容器11内をパージすることで、第1触媒ガス中に含まれる水分を除去した後に原料ガスを供給して、基板W表面に吸着させることができる。その結果、膜均一性に優れた膜の形成が可能になる。
第1触媒ガス(又はキャリアガスとの混合ガス)及び原料ガス(又はキャリアガスとの混合ガス)(以下、「第1触媒ガス等」という場合がある。)を供給する際の処理容器11内の温度はいずれも、200℃以下の範囲内が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
第1触媒ガス等を供給する際の処理容器11内の圧力はいずれも、1Pa以上、40000Pa以下の範囲内が好ましく、13Pa以上、13300Pa以下の範囲内がより好ましく、133Pa以上、6700Pa以下の範囲内が特に好ましい。処理容器11内の圧力を1Pa以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を40000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上げることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節される。
尚、原料ガスが処理容器11内に供給される間、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b、反応ガス供給路24の開閉弁24b及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
原料ガスの供給が終了すると、開閉弁21bを開閉制御により閉状態にし、原料ガスとキャリアガスとの混合ガスの供給を停止する。
(3)原料ガスのみを供給する工程(b3)
本工程(b3)に於いては、原料ガスのみを処理容器11内に供給する(S2-3)。
原料ガスとしてアミノ基を有する原料ガスを用いた場合、触媒を介在しなくても当該原料を基板W表面に(化学)吸着させることが可能なことを見出した。これにより、第1触媒ガスの処理容器11への供給を省略することができ、生産性(スループット)の大幅な向上が図れる。
例えば、原料ガスがSi(NMe)(OMe)ガスである場合(図4参照)、Si(NMe)(OMe)が基板Wの表面に接触すると、Si(NMe)(OMe)中のN原子が、基板Wを構成するSiOの表面に存在するOH基中のH原子と反応すると同時に、原料ガスのSi(NMe)(OMe)はSi原子上に正電荷の偏りをもっているので反応が起こり(CHNHを副生する。尚、図4は、本実施形態に於いて、原料ガスのみを処理容器11内に供給した場合の、原料ガスが基板上に吸着する様子を表す模式図である。
原料ガスの処理容器11への供給に際しては、MFCにより流量制御されたキャリアガスをキャリアガス供給路17Aから原料ガス供給部12に供給する。キャリアガスが原料ガス供給部12に供給されると、当該キャリアガスは、原料ガス供給部12内に液体状態で貯蔵されている原料が気化した原料ガスを同伴して、原料ガス供給路21から排出される。原料ガス供給路21では、開閉弁21bが開閉制御により開状態となっており、ニードル弁21aによりキャリアガス及び原料ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。尚、原料ガス及びキャリアガスの詳細については、工程(b1)の説明で述べた通りである。従って、その詳細については省略する。
原料ガス及びキャリアガスからなる混合ガスの供給流量(原料ガスのみからなる場合は、原料ガスの供給流量)は、1sccm以上、5000sccm以下の範囲内が好ましく、100sccm以上、3000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は原料ガス)の供給流量を1sccm以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は原料ガス)の供給流量を5000sccm以下にすることにより、ガス消費量を削減することができる。混合ガス(又は原料ガス)の供給流量は、原料ガスの温度、キャリアガスの流量及び原料ガス供給部12内の圧力を調節することで適宜制御することができる。尚、原料ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
原料ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。原料ガスのみからなる場合は、原料ガスの供給時間)は、0.1秒以上、300秒以下の範囲内が好ましく、1秒以上、120秒以下の範囲内がより好ましく、10秒以上、60秒以下の範囲内が特に好ましい。混合ガス(又は原料ガス)の供給時間を0.1秒以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持し、基板W上への原料ガスの吸着が不十分となるのを防止することができる。その一方、混合ガス(又は原料ガス)の供給時間を300秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は原料ガス)の供給時間は、原料ガスの温度、キャリアガスの流量及び原料ガス供給部12内の圧力を調節することで適宜制御することができる。
さらに、原料ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の温度は200℃以下の範囲内が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
また、原料ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の圧力は、1Pa以上、13300Pa以下の範囲内が好ましく、7Pa以上、2660Pa以下の範囲内がより好ましく、67Pa以上、1330Pa以下の範囲内が特に好ましい。処理容器11内の圧力を1Pa以上にすることにより、原料ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を13000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上昇させることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節される。
尚、原料ガスが処理容器11内に供給される間、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b、反応ガス供給路24の開閉弁24b及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
原料ガスの供給が終了すると、開閉弁21bを開閉制御により閉状態にし、原料ガスとキャリアガスとの混合ガスの供給を停止する。
(4)パージ工程
パージ工程(S2-4)は、原料ガス供給工程(B)に於ける処理容器11内の雰囲気を除去することを目的とする。具体的には、原料ガス供給工程(B)が原料ガスと共に第1触媒ガスを供給する工程(b1)である場合は、処理容器11内から未反応の原料ガス、副生ガス、及び第1触媒ガス等を除去することを目的とする。また、原料ガス供給工程(B)が第1触媒ガスを供給した後にパージし、さらに原料ガスを供給する工程(b2)である場合、及び原料ガスのみを供給する工程(b3)である場合は、未反応の原料ガス及び副生ガス等を除去することを目的とする。
パージ工程は具体的には、開閉弁25aを開閉制御により開状態にし、第1パージガスをパージガス供給路25から処理容器11に供給する。また、APCバルブ27を開状態にし、真空ポンプ等(図示しない)により処理容器11内を真空排気する。これにより、未反応の原料ガス等が処理容器11内から除去される。第1パージガスとしては特に限定されず、例えば、窒素ガス、ヘリウムガス及びアルゴンガス等の不活性ガスが挙げられる。また、第1パージガスとしては極力水分を含有しないものが好ましい。
第1パージガスの供給流量及び供給時間は、処理容器11内から未反応の原料ガス、副生ガス及び第1触媒ガス等を十分に除去することができる程度であれば特に限定されない。尚、第1パージガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b及び反応ガス供給路24の開閉弁24bは、それぞれ開閉制御により閉状態となっている。
第1パージガスによるパージが終了すると、開閉弁25aは開閉制御により閉状態とし、これにより第1パージガスの処理容器11への供給が停止される。
[反応ガス供給工程(C)]
本実施形態の反応ガス供給工程(C)は、原料ガス供給工程(B)後の処理容器11内に反応ガスを供給して、基板W上に吸着した原料ガスを酸化した後、処理容器11内を第2パージガスによりパージする工程である(S3)。
反応ガス供給工程(C)に於いて、原料ガスの基板Wへの(化学)吸着は、図2に示す様に、反応ガスと共に第2触媒ガスを処理容器11内に供給する工程(c1)である場合(S3-1)、反応ガスの供給前に、処理容器11内に第2触媒ガスを供給した後、第2パージガスによりパージする工程(c2)である場合(S3-2)、又は、反応ガスのみを処理容器11内に供給する工程(c3)である場合(S3-3)の何れかである。以下、これらの工程(c1)、工程(c2)及び工程(c3)と、第2パージガスによるパージ工程とについて順次説明する。
(1)反応ガスと共に第2触媒ガスを供給する工程(c1)
工程(c1)に於いては、反応ガスと第2触媒ガスを処理容器11に同時に供給する(S3-1)。
反応ガスの処理容器11への供給に際しては、キャリアガスがキャリアガス供給路17Dから反応ガス供給部15に供給される。キャリアガスとしては特に限定されず、例えば、窒素ガス、アルゴンガス及びヘリウムガス等の不活性ガスが挙げられる。これらの不活性ガスは単独で、又は混合して用いることができる。また、キャリアガスの供給はMFCにより流量制御されて行われる。
キャリアガスが反応ガス供給部15に供給されると、当該キャリアガスは、反応ガス供給部15内に液体状態で貯蔵されている酸化剤が気化した反応ガスを同伴して、反応ガス供給路24から排出される。反応ガス供給路24では、開閉弁24bが開閉制御により開状態となっており、ニードル弁24aによりキャリアガス及び反応ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
反応ガスとしては、酸素原子を有する酸化剤ガスが好ましい。酸化剤ガスとしては、例えば、水、過酸化水素水、ギ酸及びアルデヒドからなる群より選ばれる少なくとも1種の気体が好ましい。
反応ガス及びキャリアガスからなる混合ガスの供給流量(反応ガスのみからなる場合は、反応ガスの供給流量)は、1sccm以上、20000sccm以下の範囲内が好ましく、100sccm以上、10000sccm以下の範囲内がより好ましく、200sccm以上、5000sccm以下の範囲内が特に好ましい。混合ガス(又は反応ガス)の供給流量を1sccm以上にすることにより、基板W表面に吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、混合ガス(又は反応ガス)の供給流量を20000sccm以下にすることにより、消費原料の削減とパージ効率を上昇させることができる。混合ガス(又は反応ガス)の供給流量は、反応ガスの温度、キャリアガスの流量及び反応ガス供給部15内の圧力を調節することで適宜制御することができる。尚、反応ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
また、第2触媒ガスの処理容器11への供給に際しては、キャリアガスがキャリアガス供給路17Cから第2触媒ガス供給部14に供給される。キャリアガスの詳細については前述の通りである。また、キャリアガスの供給はMFCにより流量制御される。さらに、キャリアガスとしては極力水分を含有しないものが好ましい。
キャリアガスが第2触媒ガス供給部14に供給されると、当該キャリアガスは、第2触媒ガス供給部14内に貯蔵されている第2触媒が気化した第2触媒ガスを同伴して、第2触媒ガス供給路23から排出される。第2触媒ガス供給路23では、開閉弁23bが開閉制御により開状態となっており、ニードル弁23aによりキャリアガス及び第2触媒ガスの混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
第2触媒ガスとしては、例えば、前述の第1触媒ガスに於いて例示したものが挙げられる。第2触媒ガスは、第1触媒ガスに於いて例示したものの中から、当該第1触媒ガスと同種又は異種のものを用いることができる。第2触媒ガスは、前述の例示した原料ガス及び第1触媒ガスのいずれとも任意に組み合わせて用いることができる。また、第2触媒ガスとしては極力水分を含有しないものが好ましい。
第2触媒ガス及びキャリアガスからなる混合ガスの供給流量(第2触媒ガスのみからなる場合は、第2触媒ガスの供給流量)は1sccm以上、10000sccm以下の範囲内が好ましく、100sccm以上、5000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は第2触媒ガス)の供給流量を1sccm以上にすることにより、基板W表面に吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、混合ガス(又は第2触媒ガス)の供給流量を10000sccm以下にすることにより、消費量を削減することができる。混合ガス(又は第2触媒ガス)の供給流量は、第2触媒ガスの温度、キャリアガスの流量及び第2触媒ガス供給部14内の圧力を調節することで適宜制御することができる。尚、第2触媒ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
反応ガス及びキャリアガスからなる混合ガスと、第2触媒ガス及びキャリアガスからなる混合ガスとが処理容器11に供給されると、反応ガスが基板W表面に吸着している原料ガスの吸着分子に対し、OH基を導入する。本実施形態では、第2触媒ガスを反応ガスと同時に処理容器11内に供給することで、吸着分子へのOH基の導入を向上させる。例えば、基板W表面にシロキサン結合により-Si(OMe)基が結合しており、反応ガスがHOであり、第2触媒ガスがピロリジンガスである場合(図5参照)、ピロリジンガスがHOに接触すると、ピロリジン中のN原子の孤立電子対が、HOからH原子を引き抜く。これにより、OH基のO原子に於いて電荷分布が負電荷に偏り、OH基は、基板W表面に結合している-Si(OMe)基に於ける配位子(-OMe基)と入れ替わるべく、電荷分布が正電荷に偏りをもつSi原子と酸化反応により結合する。また、このとき-Si(OMe)基から脱離した配位子MeOは、ピロリジンにより引き抜かれたH原子と結合し、これによりMeOHが副生する。尚、図5は、本実施形態に於いて、反応ガスと第2触媒ガスが同時に供給された場合の、基板W表面に吸着した吸着分子にOH基が導入される様子を表す模式図である。
反応ガス(又はキャリアガスとの混合ガス)及び第2触媒ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の温度は200℃以下の範囲内が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
反応ガス(又はキャリアガスとの混合ガス)及び第2触媒ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の圧力は、1Pa以上、40000Pa以下の範囲内が好ましく、13Pa以上、13300Pa以下の範囲内がより好ましく、133Pa以上、6700Pa以下の範囲内が特に好ましい。処理容器11内の圧力を1Pa以上にすることにより、反応ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を40000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上昇させることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節される。
反応ガス(又はキャリアガスとの混合ガス)及び第2触媒ガス(又はキャリアガスとの混合ガス)の処理容器11への供給時間(パルス時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。反応ガス等の供給時間を0.1秒以上にすることにより、基板W表面吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、反応ガス等の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。反応ガス等の供給時間は、反応ガス及び第2触媒ガスの温度、キャリアガスの流量、反応ガス供給部15内の圧力並びに第2触媒ガス供給部14の圧力を調節することで適宜制御することができる。また、反応ガス及び第2触媒ガスの供給時間とは、開閉弁24b及び開閉弁23bが同時に開弁されている時間を意味する。
本工程(c1)に於いて反応ガス(又はキャリアガスとの混合ガス)及び第2触媒ガス(又はキャリアガスとの混合ガス)の供給の間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、及びパージガス供給路25の開閉弁25aはいずれも閉状態になっている。また、本工程(c1)の終了は、開閉弁23b及び開閉弁24bを開閉制御により閉状態にし、反応ガスとキャリアガスとの混合ガス、及び第2触媒ガスとキャリアガスとの混合ガスの処理容器11への供給を停止することにより行われる。
(2)第2触媒ガスを供給した後にパージし、その後に反応ガスを供給する工程(c2)
工程(c2)に於いては、先ず第2触媒ガスを処理容器11内に供給した後、パージガスにより処理容器11内をパージし、その後に原料ガスを処理容器11内に供給する(S3-2)。
ここで、第2触媒ガスの処理容器11への供給に際しては、先ず、キャリアガスがキャリアガス供給路17Cから第2触媒ガス供給部14に供給される。キャリアガスの詳細については前述の通りである。また、キャリアガスの供給はMFCにより流量制御されて行われる。
キャリアガスが第2触媒ガス供給部14に供給されると、当該キャリアガスは、第2触媒ガス供給部14内に液体状態で貯蔵されている第2触媒が気化した第2触媒ガスを同伴して第2触媒ガス供給路23から排出される。第2触媒ガス供給路23では、開閉弁23bが開閉制御により開状態となっており、ニードル弁23aによりキャリアガス及び第2触媒ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。
第2触媒ガス及びキャリアガスからなる混合ガスの供給流量(第2触媒ガスのみからなる場合は、第2触媒ガスの供給流量)は1sccm以上、10000sccm以下の範囲内が好ましく、100sccm以上、5000sccm以下の範囲内がより好ましく、200sccm以上、2000sccm以下の範囲内が特に好ましい。混合ガス(又は第2触媒ガス)の供給流量を1sccm以上にすることにより、基板W表面に吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、混合ガス(又は第2触媒ガス)の供給流量を10000sccm以下にすることにより、消費量を削減することができる。混合ガス(又は第2触媒ガス)の供給流量は、第2触媒ガスの温度、キャリアガスの流量及び第2触媒ガス供給部14内の圧力を調節することで適宜制御することができる。尚、第2触媒ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
第2触媒ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。第2触媒ガスのみからなる場合は、第2触媒ガスの供給時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。混合ガス(又は第2触媒ガス)の供給時間を0.1秒以上にすることにより、第2触媒ガスと基板W表面に吸着した原料ガスの吸着分子との反応を良好に維持することができる。その一方、混合ガス(又は第2触媒ガス)の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は第2触媒ガス)の供給時間は、第2触媒ガスの温度、キャリアガスの流量及び第2触媒ガス供給部14内の圧力を調節することで適宜制御することができる。尚、第2触媒ガスの供給時間とは、開閉弁23bが開弁されている時間を意味する。
第2触媒ガス及びキャリアガスからなる混合ガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、反応ガス供給路24の開閉弁24b、及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
続いて、処理容器11内から第2触媒ガスを除去するために、処理容器11内をパージする。具体的には、パージガス供給路25の開閉弁25aを開閉制御により開状態にし、第4パージガスをパージガス供給路25から処理容器11に供給する。また、APCバルブ27を開状態にし、真空ポンプ等(図示しない)により処理容器11内を真空排気する。これにより、第2触媒ガスが処理容器11内から除去される。第4パージガスとしては特に限定されず、例えば、窒素ガス、ヘリウムガス及びアルゴンガス等の不活性ガスが挙げられる。また、第4パージガスとしては極力水分を含有しないものが好ましい。
第4パージガスの供給流量及び供給時間は、処理容器11内から第2触媒ガスを十分に除去することができる程度であれば特に限定されない。
尚、第3パージガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b、及び反応ガス供給路24の開閉弁24bはいずれも開閉制御により閉状態となっている。
第4パージガスによるパージが終了すると、開閉弁25aは開閉制御により閉状態とし、これにより第4パージガスの処理容器11への供給を停止する。
次に、第2触媒ガスが除去された処理容器11内に反応ガスを供給する。すなわち、MFCにより流量制御されたキャリアガスをキャリアガス供給路17Dから反応ガス供給部15に供給する。キャリアガスが反応ガス供給部15に供給されると、当該キャリアガスは、反応ガス供給部15内に液体状態で貯蔵されている酸化剤が気化した反応ガスを同伴して、反応ガス供給路24から排出される。反応ガス供給路24では、開閉弁24bが開閉制御により開状態となっており、ニードル弁24aによりキャリアガス及び反応ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。尚、反応ガス及びキャリアガスの詳細については、工程(c1)で前述した通りである。従って、その詳細については省略する。
反応ガス及びキャリアガスからなる混合ガスの供給流量(反応ガスのみからなる場合は、反応ガスの供給流量)は、1sccm以上、20000sccm以下の範囲内が好ましく、100sccm以上、10000sccm以下の範囲内がより好ましく、200sccm以上、5000sccm以下の範囲内が特に好ましい。混合ガス(又は反応ガス)の供給流量を1sccm以上にすることにより、基板W表面に吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、混合ガス(又は反応ガス)の供給流量を20000sccm以下にすることにより、消費原料の削減とパージ効率を上昇させることができる。混合ガス(又は反応ガス)の供給流量は、反応ガスの温度、キャリアガスの流量及び反応ガス供給部15内の圧力を調節することで適宜制御することができる。尚、反応ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
反応ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。反応ガスのみからなる場合は、反応ガスの供給時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。混合ガス(又は反応ガス)の供給時間を0.1秒以上にすることにより、反応ガスによる基板W表面に吸着した原料ガスの吸着分子に対するOH基の導入を良好に維持することができる。その一方、混合ガス(又は反応ガス)の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は反応ガス)の供給時間は、反応ガスの温度、キャリアガスの流量及び反応ガス供給部15内の圧力を調節することで適宜制御することができる。尚、反応ガスの供給時間とは、開閉弁24bが開弁されている時間を意味する。
処理容器11内に反応ガスが供給されると、反応ガスが基板W表面に吸着している原料ガスの吸着分子に対し、OH基を導入する。そして、予め供給されている第2触媒ガスが基板W表面に吸着している原料ガスの吸着分子に対し反応ガスとの酸化反応が促進される様に作用する(図5参照)。
第2触媒ガス(又はキャリアガスとの混合ガス)及び反応ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の温度は200℃以下の範囲内が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
第2触媒ガス(又はキャリアガスとの混合ガス)及び反応ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の圧力は、1Pa以上、40000Pa以下の範囲内が好ましく、13Pa以上、13300Pa以下の範囲内がより好ましく、133Pa以上、6700Pa以下の範囲内が特に好ましい。処理容器11内の圧力を13Pa以上にすることにより、反応ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を40000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上昇させることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節される。
尚、反応ガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
反応ガスの供給が終了すると、開閉弁24bを開閉制御により閉状態にし、反応ガスとキャリアガスとの混合ガスの供給を停止する。
(3)反応ガスのみを供給する工程(c3)
本工程(c3)に於いては、反応ガスのみを処理容器11内に供給する(S3-3)。
本工程(c3)では第2触媒ガスを処理容器11に供給することなく、基板W表面に吸着している原料ガスの吸着分子に対しOH基を導入する。そのため、生産性(スループット)の大幅な向上が図れる。尚、本工程(c3)は、原料ガス供給工程(B)が原料ガスのみを処理容器11に供給する前記工程(b3)の場合には実施しない。
例えば、基板W表面にシロキサン結合により-Si(OMe)基が結合しており、反応ガスがHOである場合、HOが-Si(OMe)基に接触すると、OH基は基板W表面に結合している-Si(OMe)基に於ける配位子(-OMe基)と入れ替わるべく、電荷分布が正電荷に偏りをもつSi原子と酸化反応により結合する(図6(a))。また、このとき-Si(OMe)基から脱離した配位子MeOは、HOのHと結合し、これによりMeOHが副生する(図6(b))。尚、図6は、本実施形態に於いて、反応ガスのみが供給された場合の、基板W表面に吸着した吸着分子にOH基が導入される様子を表す模式図である。
反応ガスの処理容器11への供給に際しては、MFCにより流量制御されたキャリアガスをキャリアガス供給路17Dから反応ガス供給部15に供給する。キャリアガスが反応ガス供給部15に供給されると、当該キャリアガスは、反応ガス供給部15内に液体状態で貯蔵されている酸化剤が気化した反応ガスを同伴して、反応ガス供給路24から排出される。反応ガス供給路24では、開閉弁24bが開閉制御により開状態となっており、ニードル弁24aによりキャリアガス及び反応ガスからなる混合ガスの流量調節が行われながら、当該混合ガスが処理容器11内に供給される。尚、反応ガス及びキャリアガスの詳細については、工程(c1)で前述した通りである。従って、その詳細については省略する。
反応ガス及びキャリアガスからなる混合ガスの供給流量(反応ガスのみからなる場合は、反応ガスの供給流量)は、1sccm以上、20000sccm以下の範囲内が好ましく、100sccm以上、10000sccm以下の範囲内がより好ましく、200sccm以上、5000sccm以下の範囲内が特に好ましい。混合ガス(又は反応ガス)の供給流量を1sccm以上にすることにより、基板W表面に吸着した原料ガスの吸着分子に対し、OH基の導入が不十分となるのを防止することができる。その一方、混合ガス(又は反応ガス)の供給流量を20000sccm以下にすることにより、消費原料の削減とパージ効率を上昇させることができる。混合ガス(又は反応ガス)の供給流量は、反応ガスの温度、キャリアガスの流量及び反応ガス供給部15内の圧力を調節することで適宜制御することができる。尚、反応ガスと混合させるキャリアガスの供給流量は特に限定されず、前述の混合ガスの供給流量に応じて適宜設定することができる。
反応ガス及びキャリアガスからなる混合ガスの処理容器11への供給時間(パルス時間。反応ガスのみからなる場合は、反応ガスの供給時間)は、0.1秒以上、600秒以下の範囲内が好ましく、1秒以上、300秒以下の範囲内がより好ましく、10秒以上、180秒以下の範囲内が特に好ましい。混合ガス(又は反応ガス)の供給時間を0.1秒以上にすることにより、反応ガスによる基板W表面に吸着した原料ガスの吸着分子に対するOH基の導入を良好に維持することができる。その一方、混合ガス(又は反応ガス)の供給時間を600秒以下にすることにより、消費量を削減でき、プロセス時間の短縮を行うことができる。混合ガス(又は反応ガス)の供給時間は、反応ガスの温度、キャリアガスの流量及び反応ガス供給部15内の圧力を調節することで適宜制御することができる。また、混合ガス(又は反応ガス)の供給時間とは、開閉弁24bが開弁されている時間を意味する。
さらに、反応ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の温度は200℃以下が好ましく、50℃以上、150℃以下の範囲内がより好ましく、80℃以上、125℃以下の範囲内が特に好ましい。処理容器11内の温度を200℃以下にすることにより、例えば、基板Wが耐熱温度の低い材料からなる場合でも、熱影響が及ぶのを極力回避し基板Wが有する材料特性を維持しながら膜を形成することが可能になる。
また、反応ガス(又はキャリアガスとの混合ガス)を供給する際の処理容器11内の圧力は、13Pa以上、40000Pa以下の範囲内が好ましく、133Pa以上、13300Pa以下の範囲内がより好ましく、1330Pa以上、6700Pa以下の範囲内が特に好ましい。処理容器11内の圧力を13Pa以上にすることにより、反応ガスの反応速度(成膜速度)を良好に維持することができる。その一方、処理容器11内の圧力を40000Pa以下にすることにより、処理時間の短縮に加え、パージ効率を上昇させることができる。尚、処理容器11内の圧力は、PID制御によりAPCバルブ27の開閉を制御することで調節される。
尚、反応ガスが処理容器11内に供給される間、原料ガス供給21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b及びパージガス供給路25の開閉弁25aはいずれも開閉制御により閉状態となっている。
反応ガスの供給が終了すると、開閉弁24bを開閉制御により閉状態にし、反応ガスとキャリアガスとの混合ガスの供給を停止する。
(4)パージ工程
パージ工程(S3-4)は、反応ガス供給工程(C)に於ける処理容器11内の雰囲気を除去することを目的とする。具体的には、反応ガス供給工程(C)が反応ガスと共に第2触媒ガスを供給する工程(c1)である場合は、処理容器11内から未反応の反応ガス、副生ガス、及び第2触媒ガス等を除去することを目的とする。また、反応ガス供給工程(C)が、第2触媒ガスを供給した後にパージし、さらに反応ガスを供給する工程(c2)である場合、及び反応ガスのみを供給する工程(c3)である場合は、未反応の反応ガス及び副生ガス等を除去することを目的とする。
パージ工程は具体的には、開閉弁25aを開閉制御により開状態にし、第2パージガスをパージガス供給路25から処理容器11に供給する。また、APCバルブ27を開状態にし、真空ポンプ等(図示しない)により処理容器11内を真空排気する。これにより、未反応の反応ガス等が処理容器11内から除去される。第2パージガスとしては特に限定されず、例えば、窒素ガス、ヘリウムガス及びアルゴンガス等の不活性ガスが挙げられる。また、第2パージガスとしては極力水分を含有しないものが好ましい。
第2パージガスの供給流量及び供給時間は、処理容器11内から未反応の反応ガス、副生ガス及び第2触媒ガス等を十分に除去することができる程度であれば特に限定されない。尚、第2パージガスが処理容器11内に供給される間、原料ガス供給路21の開閉弁21b、第1触媒ガス供給路22の開閉弁22b、第2触媒ガス供給路23の開閉弁23b及び反応ガス供給路24の開閉弁24bは、それぞれ開閉制御により閉状態となっている。
第2パージガスによるパージが終了すると、開閉弁25aは開閉制御により閉状態とし、これにより第2パージガスの処理容器11への供給が停止される。
[その他の事項]
本実施形態の成膜方法に於いては、例えば、原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとすることができる。原料ガス供給工程(B)及び反応ガス供給工程(C)のサイクルを複数回繰り返すことで、基板W表面に、所望の膜厚の膜を形成することができる(S4)。また、形成される膜の膜厚の制御は原子層レベルで行うことができる。原料ガス供給工程(B)及び反応ガス供給工程(C)のサイクルを複数回繰り返す場合、原料ガス供給工程(B)に於ける工程(b1)、工程(b2)及び工程(b3)と、反応ガス供給工程(C)に於ける工程(c1)、工程(c2)及び工程(c3)とは任意に組み合わせて実施することができる。但し、本発明では、原料ガス供給工程(B)が工程(b3)である場合に、反応ガス供給工程(C)が工程(c3)である場合の組み合わせを除く。
(実施例1)
本実施例では、図1に示す成膜装置1を用いて、図7に示すSiO膜の成膜シーケンスに基づき、基板表面にSiO膜を成膜した。但し、成膜装置1に於いて、原料ガス供給部12としては内容積が200mlの原料ガス供給用容器を用い、第1触媒ガス供給部13及び第2触媒ガス供給部としては内容積が200mlの触媒ガス供給用容器を用い、反応ガス供給部15としては内容積が200mlの反応ガス供給用容器を用いた。また、成膜装置1には、処理容器11内の圧力を調整するための真空排気装置として、到達真空度が0.1torrのドライ型真空ポンプを設けた。さらに排出路26には、排出ガスに含まれる有害物質を除去するため硫酸スクラバー及び苛性スクラバーを設けた。尚、図7は、本実施例1に於けるSiO膜の成膜シーケンスを表す図である。本実施例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程(B)
原料ガスとしてTMOS(テトラキスメトキシシラン)ガス(信越化学工業(株)製、純度99.9%)を用い、原料ガス供給用容器にキャリアガスとしてのNガス(純度99.999%)を供給することで、NガスにTMOSガスを同伴させた混合ガスを処理容器11に供給した。TMOSガスを供給する際の原料ガス供給用容器内の温度は30℃、圧力は300torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、TMOSガス及びNガスからなる混合ガスの処理容器11への供給流量は110sccmとした。
また、TMOSガスの処理容器11への供給と共に、第1触媒ガスも処理容器11に供給した。第1触媒ガスとしてはピロリジンガス(シグマアルドリッチ製、純度99.5%)を用い、触媒ガス供給用容器にキャリアガスとしてのNガスを供給することで、Nガスにピロリジンガスを同伴させて、Nガスとピロリジンガスからなる混合ガスを処理容器11に供給した。ピロリジンガスを供給する際の触媒ガス供給用容器内の温度は30℃、圧力は250torrとした。Nガスの触媒ガス供給用容器への供給流量は50sccmとした。また、ピロリジンガス及びNガスからなる混合ガスの処理容器11への供給流量は80sccmとした。
TMOSガス及びNガスからなる混合ガスと、ピロリジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は23.3torr(3.1kPa)とした。また、これらの混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガスとしては純水(電気抵抗率17.5MΩ・cm)を気化したHOガスを用い、反応ガス供給用容器にキャリアガスとしてのNガスを供給することで、NガスにHOガスを同伴させた混合ガスを処理容器11に供給した。HOガスを供給する際の反応ガス供給用容器内の温度は75℃、圧力は460torrとした。また、Nガスの反応ガス供給用容器への供給流量は200sccmとした。さらに、HOガス及びNガスからなる混合ガスの処理容器11への供給流量は460sccmとした。
また、HOガスの処理容器11への供給と共に、第2触媒ガスも処理容器11に供給した。第2触媒ガスとしてはピロリジンガスを用い、原料ガス供給工程(B)に於ける第1触媒ガスの供給の場合と同様、触媒ガス供給用容器にNガスを供給することで、Nガスにピロリジンガスを同伴させて、Nガスとピロリジンガスからなる混合ガスを処理容器11に供給した。ピロリジンガスを供給する際の触媒ガス供給用容器内の温度は30℃、圧力は250torrとした。Nガスの第1触媒ガス供給用容器への供給流量は50sccmとした。また、ピロリジンガス及びNガスからなる混合ガスの処理容器11への供給流量は80sccmとした。
Oガス及びNガスからなる混合ガスと、ピロリジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は43.5torr(5.8kPa)とした。また、これらの混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第2パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は90秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計400サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の膜密度は2.1g/cm、膜厚は52.9nm、表面ラフネスは0.2nmであった。また、SiO膜の成膜速度は0.13nm/サイクルであった。
(実施例2)
本実施例では、実施例1で使用した成膜装置1を用いて、図8に示すSiO膜の成膜シーケンスに基づき、基板表面にSiO膜を成膜した。図8は、本実施例2に於けるSiO膜の成膜シーケンスを表す図である。本実施例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程(B)
先ず、処理容器11に第1触媒ガスとしてのピロリジンガスの供給を行った。ピロリジンガスを供給する際の第1触媒ガス供給用容器内の温度は30℃、圧力は250torrとした。Nガスの第1触媒ガス供給用容器への供給流量は50sccmとした。また、ピロリジンガス及びNガスからなる混合ガスの処理容器11への供給流量は80sccmとした。
また、ピロリジンガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は26.3torr(3.5kPa)とした。また、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第3パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は90秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
次に、処理容器11に原料ガスとしてのTMOSガスの供給を行った。TMOSガスを供給する際の原料ガス供給用容器内の温度は30℃、圧力は300torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、TMOSガス及びNガスからなる混合ガスの処理容器11への供給流量は110sccmとした。
また、TMOSガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は30torr(4.00kPa)とした。さらに、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)については、処理容器内の圧力を43.5torr(5.8kPa)から83.3torr(11.1kPa)に変更した。それ以外は実施例1と同様にして反応ガス供給工程(C)を行った。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計400サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の膜密度は2.2g/cm、膜厚は32.6nm、表面ラフネスは0.2nmであった。また、SiO膜の成膜速度は0.08nm/サイクルであった。
(実施例3)
本実施例では、実施例1で使用した成膜装置1を用いて、図9に示すSiO膜の成膜シーケンスに基づき、基板表面にSiO膜を成膜した。図9は、本実施例3に於けるSiO膜の成膜シーケンスを表す図である。本実施例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程(B)
原料ガスとしては3DMAS(トリス(ジメチルアミノ)シラン)ガス((株)トリケミカル研究所製、純度99.9%)を用いた。原料ガス供給用容器にキャリアガスとしてのNガスを供給し、Nガスに3DMASガスを同伴させた混合ガスを処理容器11に供給した。3DMASガスを供給する際の原料ガス供給用容器内の温度は27℃、圧力は680torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、3DMASガス及びNガスからなる混合ガスの処理容器11への供給流量は101sccmとした。
また、3DMASガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は14.3torr(1.9kPa)とした。また、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は1torrの範囲内とし、供給時間は12秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)については、処理容器内の圧力を43.5torr(5.8kPa)から42.0torr(5.6kPa)に変更した。それ以外は実施例1と同様にした。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計400サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の膜密度は2.2g/cm、膜厚は35.2nm、表面ラフネスは0.2nmであった。また、SiO膜の成膜速度は0.088nm/サイクルであった。
(実施例4)
本実施例では、実施例1で使用した成膜装置1を用いて、図10に示すSiO膜の成膜シーケンスに基づき、基板表面にSiO膜を成膜した。図10は、本実施例4に於けるSiO膜の成膜シーケンスを表す図である。本実施例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程(B)
原料ガスとしてはジメチルアミノトリメトキシシランを用いた。原料ガス供給用容器にキャリアガスとしてのNガスを供給し、Nガスにジメチルアミノトリメトキシシランを同伴させた混合ガスを処理容器11に供給した。ジメチルアミノトリメトキシシランを供給する際の原料ガス供給用容器内の温度は27℃、圧力は385torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、ジメチルアミノトリメトキシシランガス及びNガスからなる混合ガスの処理容器11への供給流量は102sccmとした。
また、ジメチルアミノトリメトキシシランを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は1torr(0.17kPa)とした。さらに、これらの混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は2~3torrの範囲内とし、供給時間は20秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)については、HOガス及びNガスからなる混合ガスと、ピロリジンガス及びNガスからなる混合ガスとの供給時間を30秒間に変更し、処理容器内の圧力を43.5torr(5.8kPa)から48.8torr(6.5kPa)に変更した。それ以外は実施例1と同様にして反応ガス供給工程(C)を行った。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計400サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の膜密度は2.2g/cm、膜厚は46.6nm、表面ラフネスは0.2nmであった。また、SiO膜の成膜速度は0.12nm/サイクルであった。
(実施例5~8)
実施例5~8に於いては、それぞれ原料ガス供給工程(B)及び反応ガス供給工程(C)のサイクル数を40サイクル、80サイクル、160サイクル、220サイクルに変更した。それ以外は実施例2と同様にして基板上にSiO膜を成膜した。各実施例で得られたSiO膜の各物性値を表1に示す。
(結果1)
実施例1~4から分かる通り、原料ガス供給工程(B)及び反応ガス供給工程(C)を80℃の低温で行っても、膜密度が高く良好な膜質のSiO膜を基板上に成膜することができた。
また、実施例1及び5~8に於いて、サイクル数と膜厚との関係を調べた結果、図11に示す様に、サイクル数とSIO膜の膜厚とは比例関係にあり、理想的な膜が形成できていることが確認できた。尚、図11は、原料ガスとしてTMOSガスを用いた場合のサイクル数とSiO膜の膜厚との相関を表すグラフである。
Figure 2023090367000002
(実施例9)
本実施例では、実施例1で使用した成膜装置1を用いて基板表面にSiO膜を成膜した。より具体的には以下の様に行った。
(1)原料ガス供給工程(B)
先ず、処理容器11に第1触媒ガスとしてのピロリジンガスの供給を行った。ピロリジンガスを供給する際の第1触媒ガス供給用容器内の温度は30℃、圧力は250torrとした。Nガスの第1触媒ガス供給用容器への供給流量は50sccmとした。また、ピロリジンガス及びNガスからなる混合ガスの処理容器11への供給流量は80sccmとした。
また、ピロリジンガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は50℃に保持し、処理容器11内の圧力は26.3torr(3.5kPa)とした。また、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第3パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は90秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
次に、処理容器11に原料ガスとしてのTMOSガスの供給を行った。TMOSガスを供給する際の原料ガス供給用容器内の温度は30℃、圧力は272torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、TMOSガス及びNガスからなる混合ガスの処理容器11への供給流量は110sccmとした。
また、TMOSガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は50℃に保持し、処理容器11内の圧力は30.0torr(4.0kPa)とした。さらに、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)については、処理容器11内の温度(成膜温度)を80℃から50℃に変更し、処理容器11内の圧力を43.5torr(5.8kPa)から82.5torr(11.0kPa)に変更した。それら以外は実施例1と同様にして反応ガス供給工程(C)を行った。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表2に示す。
(実施例10及び11)
実施例10に於いては反応ガス供給工程(C)に於ける処理容器11内の圧力を83.3torr(11.1kPa)から82.5torr(11.0kPa)に変更し、実施例11に於いては、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の温度(成膜温度)を50℃から175℃に変更した。それら以外は実施例9と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表2に示す。
(比較例1)
本比較例では、図20に示す成膜装置100を用いて基板表面にSiO膜を成膜した。図20に示す成膜装置100は、原料ガスを処理容器101に供給するための原料ガス供給用容器102(内容積200ml)と、触媒ガスを処理容器101に供給するための触媒ガス供給用容器103(内容積200ml)と、パージガスを処理容器101に供給するためのパージガス供給路104と、処理容器101内の雰囲気を排出するための排出路105とを備える。また、成膜装置100には、処理容器101内の圧力を調整するための真空排気装置として、到達真空度が0.1torrのドライ型真空ポンプを設けた。さらに排出路105には、排出ガスに含まれる有害物質を除去するため硫酸スクラバー及び苛性スクラバーを設けた。本比較例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程
処理容器101に原料ガスとしてのTMOSガスの供給を行った。TMOSガスを供給する際の原料ガス供給用容器102内の温度は30℃、圧力は272torrとした。また、Nガスの原料ガス供給用容器102への供給流量は100sccmとした。さらに、TMOSガス及びNガスからなる混合ガスの処理容器101への供給流量は110sccmとした。
また、TMOSガス及びNガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は50℃に保持し、処理容器101内の圧力は1torr(1.3kPa)とした。さらに、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器101内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(2)反応ガス供給工程
反応ガスとしてはオゾンガスを用いた。反応ガス供給用容器103にOガスを供給し、当該反応ガス供給用容器103内で一部をオゾンガスに変化させ、これにより処理容器101にオゾンガス及びOガスからなる混合ガスを供給した。この混合ガスを供給する際の反応ガス供給用容器103内の温度は27℃、圧力は0.4torrとした。さらに、オゾンガス及びOガスからなる混合ガスの処理容器101への供給流量は200sccmとした。
また、オゾンガス及びOガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は50℃に保持し、処理容器101内の圧力は1.3kPaとした。さらに、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は20秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量200sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は0.5torrとした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表2に示す。
(比較例2及び3)
比較例2及び3に於いては、原料ガス供給工程及び反応ガス供給工程に於ける処理容器101内の温度(成膜温度)をそれぞれ50℃から100℃と200℃に変更した。それ以外は比較例1と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表2に示す。
(比較例4)
本比較例では、比較例1で使用した成膜装置100を用いて、基板表面にSiO膜を成膜した。より具体的には以下の様に行った。
(1)原料ガス供給工程
原料ガス供給工程については、処理容器101内の温度(成膜温度)を50℃から80℃に変更し、処理容器101内の圧力を43.5torr(1.3kPa)から56.3torr(7.5kPa)にした。それら以外は、比較例1と同様にして、TMOSガス及びNガスからなる混合ガスを処理容器101に供給した。
(2)反応ガス供給工程
反応ガスとしてはHOガスを用いた。反応ガス供給用容器103にキャリアガスとしてのNガスを供給し、NガスにHOガスを同伴させた混合ガスを処理容器101に供給した。HOガスを供給する際の反応ガス供給用容器103内の温度は30℃、圧力は460torrとした。また、Nガスの反応ガス供給用容器103への供給流量は200sccmとした。さらに、HOガス及びNガスからなる混合ガスの処理容器101への供給流量は236sccmとした。
また、HOガス及びNガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は80℃に保持し、処理容器101内の圧力は4kPa)とした。さらに、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器101内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表2に示す。
(比較例5)
比較例5に於いては、原料ガス供給工程及び反応ガス供給工程に於ける処理容器101内の温度(成膜温度)を80℃から300℃に変更した。それ以外は比較例4と同様にして基板上にSiO膜を成膜した。成膜したSiO膜の各物性値を表2に示す。
(比較例6)
本比較例では、比較例1で使用した成膜装置100を用いて、基板表面にSiO膜を成膜した。より具体的には以下の様に行った。
(1)原料ガス供給工程
原料ガスとしてはTMOSガスを用いた。原料ガス供給用容器102にキャリアガスとしてのNガスを供給し、NガスにTMOSガスを同伴させた混合ガスを処理容器101に供給した。TMOSガスを供給する際の原料ガス供給用容器102内の温度は30 ℃、圧力は272torrとした。また、Nガスの原料ガス供給用容器102への供給流量は100sccmとした。さらに、TMOSガス及びNガスからなる混合ガスの処理容器101への供給流量は 110sccmとした。
また、TMOSガスの処理容器101への供給と共に、触媒ガスも処理容器101に供給した。触媒ガスとしてはNH(アンモニア)ガスを用いた。NHガスの温度は23℃とし、NHガスの処理容器101への供給流量は400sccmとした。
また、TMOSガス及びNガスからなる混合ガスと、NHガスとを同時に処理容器101に供給する際の処理容器101内の温度は25℃に保持し、処理容器101内の圧力は42torr(5.6kPa)とした。さらに、これらの混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は42秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量200sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(2)反応ガス供給工程
反応ガスとしてはHOガスを用いた。反応ガス供給用容器103にキャリアガスとしてのNガスを供給し、NガスにHOガスを同伴させた混合ガスを処理容器101に供給した。HOガスを供給する際の反応ガス供給用容器103内の温度は30℃、圧力は42torrとした。また、Nガスの反応ガス供給用容器103への供給流量は100sccmとした。さらに、HOガス及びNガスからなる混合ガスの処理容器101への供給流量は114sccmとした。
また、HOガスの処理容器101への供給と共に、触媒ガスも処理容器101に供給した。触媒ガスとしてはNH(アンモニア)ガスを用いた。NHガスの温度は27℃とし、NHガスの処理容器101への供給流量は400sccmとした。
また、HOガス及びNガスからなる混合ガスと、NHガスとを同時に処理容器101に供給する際の処理容器101内の温度は30℃に保持し、処理容器101内の圧力は42torr(5.6kPa)とした。さらに、これらの混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は42秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量200sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表2に示す。
(結果2)
図12に示す様に、実施例9~11の成膜方法では、原料ガス供給工程(B)及び反応ガス供給工程(C)を175℃以下の低温で行っても、膜密度が高く良好な膜質のSiO膜を基板上に成膜することができた。特に100℃以下である実施例9及び10では、0.08nm/サイクル以上の高い成膜速度が得られた。その一方、比較例1~6の成膜方法では、何れの温度でも成膜速度が0.01nm/サイクル以下であった。尚、図12は、各種の成膜方法に於ける処理容器内の温度とSiO膜の成膜速度との関係を表すグラフである。
Figure 2023090367000003
(実施例12~14)
実施例12~14に於いてはそれぞれ、原料ガス供給工程(B)に於ける処理容器11内の圧力を14.3torr(1.9kPa)から15.0torr(2.0kPa)に変更した。また、サイクル数をそれぞれ80サイクル、160サイクル、220サイクルに変更した。それら以外は実施例3と同様にして基板上にSiO膜を成膜した。各実施例で得られたSiO膜の各物性値を表3に示す。
(結果3)
実施例12~14に於いて、サイクル数と膜厚との関係を調べた結果、原料ガスとして3DMASガスを用いた場合にも、図13に示す様に、サイクル数とSIO膜の膜厚とが比例関係にあり、理想的な膜を形成できることが確認された。尚、図13は、原料ガスとして3DMASガスを用いた場合のサイクル数とSiO膜の膜厚との相関を表すグラフである。
Figure 2023090367000004
(実施例15)
本実施例では、図1に示す成膜装置1を用いて基板表面にSiO膜を成膜した。より具体的には、以下の通り行った。
(1)原料ガス供給工程(B)
処理容器11に原料ガスとしての3DMASガスの供給を行った。3DMASガスを供給する際の原料ガス供給用容器内の温度は27℃、圧力は685torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、3DMASガス及びNガスからなる混合ガスの処理容器11への供給流量は101sccmとした。
また、3DMASガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は1torr(0.17kPa)とした。また、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は10~90torrの範囲内とし、供給時間は12秒間とした。
さらに、処理容器11内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)については実施例1と同様にした。従って、その詳細な説明については省略する。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計160サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(実施例16及び17)
実施例16及び17に於いては、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の温度(成膜温度)をそれぞれ80℃から125℃及び175℃に変更した。それ以外は実施例15と同様にして基板上にSiO膜をそれぞれ成膜した。各実施例で得られたSiO膜の各物性値を表4に示す。
(比較例7)
本比較例では、比較例1で使用した成膜装置100を用いて、基板表面にSiO膜を成膜した。より具体的には、以下の通り行った。
(1)原料ガス供給工程
処理容器101に原料ガスとしての3DMASガスの供給を行った。3DMASガスを供給する際の原料ガス供給用容器102内の温度は27℃、圧力は760torrとした。また、Nガスの原料ガス供給用容器102への供給流量は100sccmとした。さらに、3DMASガス及びNガスからなる混合ガスの処理容器101への供給流量は500sccmとした。
また、3DMASガス及びNガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は50℃に保持し、処理容器101内の圧力は3.8torr(0.5kPa)とした。また、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は12秒間とした。
さらに、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は3.4torrとした。
(2)反応ガス供給工程
反応ガスとしてはオゾンガスを用い、処理容器101に供給した。オゾンガスを供給する際の反応ガス供給用容器103内の温度は27℃とした。また、Oガスの反応ガス供給用容器103への供給流量は200sccmとした。さらに、オゾンガス及びNガスからなる混合ガスの処理容器101への供給流量は200sccmとした。
また、オゾンガス及びOガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は50℃に保持し、処理容器101内の圧力は3.8torr(0.5kPa)とした。さらに、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は12秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計160サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(比較例8~14)
比較例8~14に於いては、原料ガス供給工程及び反応ガス供給工程に於ける処理容器101内の温度(成膜温度)及び圧力をそれぞれ表4に示す値に変更した。また、サイクル数も表4に示す値に変更した。それら以外は比較例7と同様にして基板上にSiO膜を成膜した。各比較例で得られたSiO膜の各物性値を表4に示す。
(比較例15)
本比較例では、比較例1で使用した成膜装置100を用いて、基板表面にSiO膜を成膜した。より具体的には、以下の通り行った。
(1)原料ガス供給工程
処理容器101内の温度(成膜温度)を50℃から80℃に変更し、圧力を3.8torr(0.5kPa)から15torr(2.0kPa)に変更した。それ以外は、比較例7と同様にして、3DMASガス及びNガスからなる混合ガスを処理容器101に供給した。
(2)反応ガス供給工程
反応ガスとしてはHOガスを用いた。反応ガス供給用容器103にキャリアガスとしてのNガスを供給し、NガスにHOガスを同伴させた混合ガスを処理容器101に供給した。HOガスを供給する際の反応ガス供給用容器103内の温度は75℃、圧力は460torrとした。また、Nガスの反応ガス供給用容器への供給流量は200sccmとした。さらに、HOガス及びNガスからなる混合ガスの処理容器101への供給流量は460sccmとした。
また、HOガス及びNガスからなる混合ガスを処理容器101に供給する際の処理容器101内の温度は80℃に保持し、処理容器101内の圧力は36torr(4.8kPa)とした。さらに、混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は12秒間とした。
続いて、処理容器101内のパージを行った。パージガスとしてNガスを用い、供給流量500sccmで処理容器101内に供給した。また、Nガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は2~3torrとした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計160サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(比較例16)
比較例16に於いては、原料ガス供給工程及び反応ガス供給工程に於ける処理容器101内の温度(成膜温度)を80℃から300℃に変更した。それ以外は比較例15と同様にして基板上にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(比較例17)
本比較例では、比較例1で使用した成膜装置100を用いて、基板表面にSiO膜を成膜した。より具体的には、以下の通り行った。
(1)原料ガス供給工程
処理容器101内の温度(成膜温度)を50℃から30℃に変更し、圧力を3.8torr(0.5kPa)から40.5torr(5.4kPa)に変更した。それ以外は、比較例7と同様にして、3DMASガス及びNガスからなる混合ガスを処理容器101に供給した。
(2)反応ガス供給工程
反応ガスとしてはHOガスを用いた。HOガスを供給するための反応ガス供給部としては内容積が200mlの反応ガス供給用容器を用い、反応ガス供給用容器にキャリアガスとしてのNガスを供給することで、NガスにHOガスを同伴させた混合ガスを処理容器101に供給した。HOガスを供給する際の反応ガス供給用容器内の温度は27℃、圧力は760torrとした。また、Nガスの反応ガス供給用容器への供給流量は100sccmとした。さらに、HOガス及びNガスからなる混合ガスの処理容器101への供給流量は500sccmとした。
また、HOガスの処理容器101への供給と共に、触媒ガスも処理容器101に供給した。触媒ガスとしてはNH(アンモニア)ガスを用いた。NHガスの温度は27℃とし、NHガスの処理容器101への供給流量は400sccmとした。
Oガス及びNガスからなる混合ガスと、NHガス及びNガスからなる混合ガスとを同時に処理容器101に供給する際の処理容器101内の温度は30℃に保持し、処理容器101内の圧力は40.5torr(5.4kPa)とした。また、これらの混合ガスを処理容器101に供給する際の供給圧力(成膜圧力)は25~90torrの範囲内とし、供給時間は42秒間とした。
さらに、処理容器101内のパージを行った。パージガスとしてNHガスを用い、供給流量400sccmで処理容器101内に供給した。また、NHガスの供給時間は12秒間とした。さらに、処理容器101内の圧力は30.5torr(4.1kPa)とした。
(3)結果
原料ガス供給及び反応ガス供給工程の2工程を1サイクルとし、合計200サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(比較例18)
比較例18に於いては、原料ガス供給工程及び反応ガス供給工程に於ける処理容器101内の圧力を15torr(2.0kPa)から40.5torr(5.4kPa)に変更した。また、サイクル数を160から40に変更した。それら以外は比較例15と同様にして基板上にSiO膜を成膜した。成膜したSiO膜の各物性値を表4に示す。
(結果4)
図14に示す様に、実施例15~17の成膜方法では、原料ガス供給工程(B)及び反応ガス供給工程(C)を175℃以下の低温で行っても、良好な膜質のSiO膜を基板上に成膜できることが確認された。特に100℃以下である実施例15では、0.10nm/サイクル以上の高い成膜速度が得られた。その一方、比較例7~18の成膜方法では、200℃以下の低温での成膜速度は0.03nm/サイクル以下であり、低温領域での成膜に不向きであることが確認された。尚、図14は、各種の成膜方法に於ける処理容器内の温度とSiO膜の成膜速度との関係を表すグラフである。
Figure 2023090367000005
(実施例18)
本実施例では、実施例1で使用した成膜装置1を用いて基板表面にSiO膜を成膜した。より具体的には以下の様に行った。
(1)原料ガス供給工程(B)
原料ガス供給工程(B)に於いては、第1触媒ガスとしてピロリジンガスに代えて1,1,3,3-テトラメチルグアニジン(TMG)ガスを用いた。また、TMOSガス及びNガスからなる混合ガスと、TMGガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の処理容器11内の温度は60℃、処理容器11内の圧力を90torr(12kPa)、供給時間を30分間に変更した。それら以外は実施例1と同様にして原料ガス供給工程(B)を行った。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)に於いては、第2触媒ガスとしてピロリジンガスに代えてTMGガスを用いた。また、HOガス及びNガスからなる混合ガスと、TMGガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の処理容器11内の温度は60℃、処理容器11内の圧力を90torr(12kPa)、供給時間を30分間に変更した。それら以外は実施例1と同様にして反応ガス供給工程(C)を行った。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)を行って、基板表面にSiO膜を成膜した。成膜したSiO膜の膜密度は1.7g/cm、膜厚は6.9nm、表面ラフネスは0.8nmであった。また、SiO膜の成膜速度は0.23nm/サイクルであった。
(実施例19~22)
実施例19~22に於いては、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の温度を、それぞれ実施例19では80℃、実施例20では100℃、実施例21では140℃、実施例22では175℃に変更した。それ以外は実施例18と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表5に示す。
(実施例23~28)
実施例23~28に於いては、第1触媒ガス及び第2触媒ガスとしてTMGガスに代えて、ピロリジンガスを用いた。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の圧力を60torr(8kPa)に変更した。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の温度を、それぞれ実施例24では80℃、実施例25では100℃、実施例26では120℃、実施例27では200℃、実施例28では250℃に変更した。それら以外は実施例18と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表5に示す。
(比較例19~22)
比較例19~22に於いては、第1触媒ガス及び第2触媒ガスとしてTMGガスに代えてピリジンガスを用いた。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器101内の温度を、それぞれ比較例19では80℃、比較例20では100℃、比較例21では120℃、比較例22では150℃に変更した。それら以外は実施例18と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表5に示す。
(結果5)
図15に示す様に、第1触媒ガス及び第2触媒ガスとして、芳香族性を有しないTMGガスやピロリジンガスを用いた実施例18~21、23~26では、約140℃以下の低温領域でもSiO膜の成膜速度を大きくすることができ、十分に成膜できることが確認された。また、実施例22、27及び28では、良好な膜質のSiO膜を得ることができた。その一方、芳香族性を有するピリジンガスを用いた場合では、低温領域に於いてもSiO膜の成膜速度が著しく小さく、成膜効率が良好でないことが確認された。尚、図15は、各種の成膜方法に於ける処理容器内の温度とSiO膜の成膜速度との関係を表すグラフである。
Figure 2023090367000006
(実施例29~32)
実施例29~32に於いては、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の圧力を、それぞれ実施例29及び30では30torr(4kPa)、実施例32では202.5torr(27kPa)に変更した。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の温度をそれぞれ80℃に変更した。さらに、TMOSガス及びNガスからなる混合ガスと、反応ガスHOとNガスからなる混合ガスと、TMGガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の供給時間を、実施例29と31では30分間、実施例30では60分間、実施例32では15分間に変更した。それら以外は実施例18と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表6に示す。
(実施例33~36)
実施例33~36に於いては、第1触媒ガス及び第2触媒ガスとしてTMGガスに代えて、ピロリジンガスを用いた。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器11内の圧力を、それぞれ実施例33では0.1kPa、実施例35では8kPa、実施例36では16kPaに変更した。それら以外は実施例29と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表6に示す。
(比較例23~27)
第1触媒ガス及び第2触媒ガスとして、比較例23~27に於いてはTMGガスに代えてピリジンガスを用いた。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器101内の圧力を、それぞれ比較例23では1.3kPa、比較例24では4.0kPa、比較例25では8.0kPa、比較例26では12.0kPa、比較例27では26.7kPaに変更した。それら以外は実施例29と同様にして基板上にSiO膜をそれぞれ成膜した。成膜したSiO膜の各物性値を表6に示す。
(比較例28)
比較例28に於いては、第1触媒ガス及び第2触媒ガスとしてTMGガスに代えてNHガスを用いた。また、原料ガス供給工程(B)及び反応ガス供給工程(C)に於ける処理容器101内の圧力を4.0kPaに変更した。それら以外は実施例29と同様にして基板上にSiO膜を成膜した。成膜したSiO膜の各物性値を表6に示す。
(結果6)
図16に示す様に、第1触媒ガス及び第2触媒ガスとして、芳香族性を有しないTMGガス(25℃での酸解離定数pKa:13.6)やピロリジンガス(25℃での酸解離定数pKa:11.3)を用いた実施例29~32、34~36では、圧力が4.0kPa以上で良好なSiO膜の成膜速度を示した。特に、pKaの値が大きいTMGガスの方がピロリジンガスよりも成膜速度が大きく、非芳香族性アミンガスとしてpKaの値が大きい触媒ガスを用いることにより成膜効率の向上が図れることが確認された。その一方、芳香族性を有するピリジンガス(25℃での酸解離定数pKa:5.25)では成膜速度が著しく小さく、またNHガスではSiO膜を成膜することができなかった。尚、図16は、各種の成膜方法に於ける処理容器内の圧力とSiO膜の成膜速度との関係を表すグラフである。
Figure 2023090367000007
(実施例37)
本実施例では、図1に示す成膜装置1を用いて、図17に示すSiO膜の成膜シーケンスに基づき、基板表面にSiO膜を成膜した。図17は、本実施例18に於けるSiO膜の成膜シーケンスを表す図である。本実施例に於ける各工程について、以下に詳述する。
(1)原料ガス供給工程(B)
原料ガスとしてはSi(NMe)(OMe)ガスを用いた。原料ガス供給用容器にキャリアガスとしてのNガスを供給し、NガスにSi(NMe)(OMe)ガスを同伴させた混合ガスを処理容器11に供給した。Si(NMe)(OMe)ガスを供給する際の原料ガス供給用容器内の温度は27℃、圧力は385torrとした。また、Nガスの原料ガス供給用容器への供給流量は100sccmとした。さらに、Si(NMe)(OMe)ガス及びNガスからなる混合ガスの処理容器11への供給流量は102sccmとした。
また、Si(NMe)(OMe)ガス及びNガスからなる混合ガスを処理容器11に供給する際の処理容器11内の温度は80℃に保持し、処理容器11内の圧力は1~2torr(0.13kPa~0.27kPa)とした。さらに、混合ガスを処理容器11に供給する際の供給圧力(成膜圧力)は45~50torrの範囲内とし、供給時間は60秒間とした。
続いて、処理容器11内のパージを行った。第1パージガスとしてNガスを用い、供給流量500sccmで処理容器11内に供給した。また、Nガスの供給時間は60秒間とした。さらに、処理容器11内の圧力は2~3torrとした。
(2)反応ガス供給工程(C)
反応ガス供給工程(C)に於いては、処理容器11内の圧力を40~50torr(5.33kPa~6.67kPa)とし、HOガス及びNガスからなる混合ガスと、ピロリジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の供給圧力(成膜圧力)を45~50torrの範囲内とし、供給時間(パルス時間)を12秒間とした。さらに、第2パージガスであるNガスを用いて処理容器11内のパージを行う際のNガスの供給流量を500sccmとした。それら以外は実施例1の反応ガス供給工程(C)と同様にして基板上にSiO膜を成膜した。
(3)結果
原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜を成膜した。成膜したSiO膜の各物性値を表7に示す。
(実施例38及び39)
実施例38及び39に於いては、反応ガス供給工程(C)に於いて、HOガス及びNガスからなる混合ガスと、ピロリジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の供給時間(パルス時間)を、それぞれ30秒間と60秒間にした。それ以外は実施例37と同様にして基板上にSiO膜を成膜した。
さらに、原料ガス供給工程(B)及び反応ガス供給工程(C)の2工程を1サイクルとし、合計80サイクルを行って、基板表面にSiO膜をそれぞれ成膜した。各実施例で得られたSiO膜の各物性値を表7に示す。
(実施例40~42)
実施例40~42に於いては、反応ガス供給工程(C)に於ける第2触媒ガスとして1-メチルピペリジンガス(シグマアルドリッチ製、純度99%)を用いた。また、HOガス及びNガスからなる混合ガスと、1-メチルピペリジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の供給時間(パルス時間)を、それぞれ30秒間、60秒間、及び90秒間にした。それら以外は実施例37と同様にして基板上にSiO膜を成膜した。各実施例で得られたSiO膜の各物性値を表7に示す。
(実施例43~45)
実施例43~45に於いては、反応ガス供給工程(C)に於ける第2触媒ガスとしてテトラメチルグアニジンガス(シグマアルドリッチ製、純度99%)を用いた。また、HOガス及びNガスからなる混合ガスと、テトラメチルグアニジンガス及びNガスからなる混合ガスとを同時に処理容器11に供給する際の供給時間(パルス時間)を、それぞれ6秒間、12秒間及び30秒間にした。それら以外は実施例37と同様にして基板上にSiO膜を成膜した。各実施例で得られたSiO膜の各物性値を表7に示す。
(結果7)
図18に示す様に、反応ガスと共に供給する第2触媒ガスとしてpKaの値が11.3のピロリジンガスを用いた実施例37~39の場合、SiO膜の成膜速度は0.13nm/サイクルまで上昇した。また、第2触媒ガスとしてpKaの値が13.7の1,1,3,3-テトラメチルグアニジンガスを用いた実施例43~45の場合にも、SiO膜の成膜速度は0.13~0.14nm/サイクルであった。その一方、第2触媒ガスとしてpKaの値が10.1の1-メチルピペリジンガスを用いた実施例40~42の場合では、SiO膜の成膜速度は0.04~0.08nm/サイクルであった。これらの結果から、第2触媒ガスとしてpKaの値が大きい触媒を用いることにより成膜速度を大きくすることが可能になり、成膜効率の向上が図れることが確認された。尚、図18は、反応ガスの供給時間(パルス時間)とSiO膜の成膜速度との関係を表すグラフである。
Figure 2023090367000008
1…成膜装置、11…処理容器、12…原料ガス供給部、13…第1触媒ガス供給部、14…第2触媒ガス供給部、15…反応ガス供給部、17A~17D…キャリアガス供給路、21…原料ガス供給路、22…第1触媒ガス供給路、23…第2触媒ガス供給路、24…反応ガス供給路、25…パージガス供給路、26…排出路、27…APCバルブ

Claims (10)

  1. 被処理対象物上に膜を形成する成膜方法であって、
    前記被処理対象物を処理容器内に設ける工程(A)と、
    前記処理容器内に原料ガスを供給して、前記被処理対象物上に原料ガスを吸着させた後、処理容器内を第1パージガスによりパージする原料ガス供給工程(B)と、
    前記原料ガス供給工程(B)後の前記処理容器内に反応ガスを供給して、前記被処理対象物上に吸着した原料ガスを酸化した後、処理容器内を第2パージガスによりパージする反応ガス供給工程(C)とを含み、
    前記原料ガス供給工程(B)に於ける前記原料ガスの供給は、
    前記原料ガスと共に第1触媒ガスを前記処理容器内に供給する工程(b1);
    前記処理容器内に第1触媒ガスを供給した後、第3パージガスによりパージし、その後に前記原料ガスを供給する工程(b2);又は、
    前記原料ガスのみを前記処理容器内に供給する工程(b3)の何れかであり、
    前記反応ガス供給工程(C)に於ける前記反応ガスの供給は、
    前記反応ガスと共に第2触媒ガスを前記処理容器内に供給する工程(c1);
    前記反応ガスの供給前に、前記処理容器内に第2触媒ガスを供給した後、第4パージガスによりパージする工程(c2);又は、
    前記反応ガスのみを前記処理容器内に供給する工程(c3)の何れかであり、
    前記原料ガス供給工程(B)が前記工程(b3)である場合に、前記反応ガス供給工程(C)が前記工程(c3)であることを含まず、
    前記第1触媒ガス及び前記第2触媒ガスが、同種又は異種の非芳香族性アミンガスである成膜方法。
  2. 前記非芳香族性アミンガスの25℃に於ける酸解離定数pKaが9.5以上、14以下の範囲内である請求項1に記載の成膜方法。
  3. 前記非芳香族性アミンガスが、ピロリジンガス、ピペリジンガス、1,1,3,3-テトラメチルグアニジンガス、1-メチルピペリジンガス及びそれらの誘導体のガスからなる群より選ばれる少なくとも1種である請求項1又は2に記載の成膜方法。
  4. 前記原料ガスが、ハロゲン配位子を有しない周期表第4族元素ガス及び/又はハロゲン配位子を有しないシリコンガスである請求項1~3の何れか1項に記載の成膜方法。
  5. 前記原料ガスが、一般式A-M-B(4-m)(但し、A及びBはそれぞれ独立して、RO基、RN基、CpR基、C2qN基(q=4又は5)及び水素原子からなる群より選ばれる何れか1種である。また、R、R、R及びRはそれぞれ独立して、C2r+1基(r≧0)である。MはTi、Zr、Hf又はSiである。Cpはシクロペンタジエニル配位子である。0≦m≦4。)で表される請求項4に記載の成膜方法。
  6. 前記原料ガスが、Si(OMe)、Si(NMe)(OMe)、Si(NMe(OMe)、Si(NMe(OMe)、Si(NMe)(OEt)、Si(NMe(OEt)、Si(NMe(OEt)、Si(NEt)(OMe)、Si(NEt)(OE、SiH(NMe、SiH(NEt、SiH(NHt-Bu)、Si(pyrrolidine)(OMe)、Si(pyrrolidine)(OMe)、及びSi(pyrrolidine)(OMe)からなる群より選ばれる少なくとも1種の気体である請求項5に記載の成膜方法。
  7. 前記反応ガスが、酸素原子を有する酸化剤ガスである請求項1~6の何れか1項に記載の成膜方法。
  8. 前記酸化剤ガスが、水、過酸化水素水、ギ酸及びアルデヒドからなる群より選ばれる少なくとも1種の気体である請求項7に記載の成膜方法。
  9. 前記原料ガス供給工程に於ける前記原料ガス及び/又は第1触媒ガスの供給は、前記処理容器内の圧力が13Pa以上、4万Pa以下の範囲内となる様に行われ、
    前記反応ガス供給工程に於ける前記反応ガス及び/又は第2触媒ガスの供給は、前記処理容器内の圧力が13Pa以上、4万Pa以下の範囲内となる様に行われる請求項1~8の何れか1項に記載の成膜方法。
  10. 前記原料ガス供給工程及び/又は前記反応ガス供給工程に於ける前記処理容器内の温度が、200℃以下である請求項1~9の何れか1項に記載の成膜方法。
JP2021205298A 2021-12-17 2021-12-17 成膜方法 Pending JP2023090367A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021205298A JP2023090367A (ja) 2021-12-17 2021-12-17 成膜方法
PCT/JP2022/046105 WO2023112970A1 (ja) 2021-12-17 2022-12-14 成膜方法
TW111148424A TW202336268A (zh) 2021-12-17 2022-12-16 成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021205298A JP2023090367A (ja) 2021-12-17 2021-12-17 成膜方法

Publications (1)

Publication Number Publication Date
JP2023090367A true JP2023090367A (ja) 2023-06-29

Family

ID=86774333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021205298A Pending JP2023090367A (ja) 2021-12-17 2021-12-17 成膜方法

Country Status (3)

Country Link
JP (1) JP2023090367A (ja)
TW (1) TW202336268A (ja)
WO (1) WO2023112970A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112928B2 (ja) * 2013-03-19 2017-04-12 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム

Also Published As

Publication number Publication date
TW202336268A (zh) 2023-09-16
WO2023112970A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP5514129B2 (ja) 成膜方法、成膜装置、および成膜装置の使用方法
JP5219466B2 (ja) 高−k材料の触媒補助ケイ酸塩の堆積方法
US8673790B2 (en) Method of manufacturing a semiconductor device, method of cleaning a process vessel, and substrate processing apparatus
TWI458017B (zh) 半導體裝置之製造方法、基板處理方法及基板處理裝置
KR101063854B1 (ko) 반도체 디바이스의 제조 방법 및 기판 처리 장치
JP5449439B2 (ja) 低温ALDSiO2
JP5346904B2 (ja) 縦型成膜装置およびその使用方法
US8357619B2 (en) Film formation method for forming silicon-containing insulating film
JP4506677B2 (ja) 成膜方法、成膜装置及び記憶媒体
US7825039B2 (en) Vertical plasma processing method for forming silicon containing film
KR101688820B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR101503725B1 (ko) 성막 방법 및 성막 장치
JP5250600B2 (ja) 成膜方法および成膜装置
US20110130011A1 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
JP5651451B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
US20080014758A1 (en) Film formation apparatus for semiconductor process and method for using the same
WO2011152352A1 (ja) 半導体装置の製造方法及び基板処理装置
JP2011029284A (ja) 成膜方法及び成膜装置
JP2006013490A (ja) 縦型cvd装置及び同装置を使用するcvd方法
KR101737215B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US20170287696A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP5839514B2 (ja) 成膜方法、成膜装置、および成膜装置の使用方法
JP2013179321A (ja) 成膜方法および成膜装置
JP6604801B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR100980126B1 (ko) 성막 방법, 성막 장치 및 기억매체