JP2023084957A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2023084957A
JP2023084957A JP2021199369A JP2021199369A JP2023084957A JP 2023084957 A JP2023084957 A JP 2023084957A JP 2021199369 A JP2021199369 A JP 2021199369A JP 2021199369 A JP2021199369 A JP 2021199369A JP 2023084957 A JP2023084957 A JP 2023084957A
Authority
JP
Japan
Prior art keywords
switching element
flying capacitor
voltage
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021199369A
Other languages
English (en)
Inventor
賢治 花村
Kenji Hanamura
翔吾 廣田
Shogo Hirota
秀行 狩野
Hideyuki Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021199369A priority Critical patent/JP2023084957A/ja
Publication of JP2023084957A publication Critical patent/JP2023084957A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】フライングキャパシタの電圧を高精度に安定させる。【解決手段】インバータ回路(10)は、直流電源(2)から出力される直流電圧をもとに、5レベルの電圧を有する擬似正弦波を生成する。マルチレベル出力部(11-14)は、4つのフライングキャパシタ回路(11-14)を含み、各フライングキャパシタ回路(11-14)は3レベルの電位を出力可能である。極性切替部(15a、15b)は、マルチレベル出力部(11-14)の2点間に流れる電流の向きを制御する。制御回路(30)は、各時点において制御対象となるマルチレベル出力部(11-14)に含まれる8つのスイッチング素子(Q1-Q4、Q13-Q16 or Q5-Q12)を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御する。【選択図】図1

Description

本開示は、直流電力を交流電力に変換する電力変換装置に関する。
太陽電池、定置型蓄電池、車載蓄電池などの電力を制御するパワーコンディショナで使用されるインバータは、高効率(低損失)な電力変換と小型設計が望まれる。それを実現するインバータの一つとして、フライングキャパシタを用いたマルチレベルインバータが提案されている(例えば、特許文献1、2参照)。当該マルチレベルインバータでは、フライングキャパシタに充電する電流量と、フライングキャパシタから放電する電流量を一致させることで、フライングキャパシタの電圧を一定に保っている。
国際公開第19/069654号 特開2014-050135号公報
しかしながら、マルチレベルインバータ(ゲート駆動回路を含む)に使用されるスイッチング素子(パワーデバイス)のスイッチングタイミングのばらつき、プロセスのばらつき、系統電圧の瞬時変動等により、フライングキャパシタの充放電電流が一致しなくなる場合がある。その場合、フライングキャパシタが過充電又は過放電され、マルチレベル動作が停止してしまうことがある。
本開示はこうした状況に鑑みなされたものであり、その目的は、フライングキャパシタの電圧を高精度に安定させることができる電力変換装置を提供することにある。
上記課題を解決するために、本開示のある態様の電力変換装置は、直流電源から出力される直流電圧をもとに、5レベルの電圧を有する擬似正弦波を生成するインバータ回路と、前記インバータ回路に含まれる複数のスイッチング素子を制御する制御回路と、を備える。前記インバータ回路は、2つ又は4つのフライングキャパシタ回路を含み、各フライングキャパシタ回路が3レベルの電位を出力可能なマルチレベル出力部と、前記マルチレベル出力部の2点間に流れる電流の向きを制御する極性切替部と、を含む。前記フライングキャパシタ回路は、直列接続された4つのスイッチング素子と、2番目と3番目の2つのスイッチング素子に並列に接続された一つのフライングキャパシタと、を含む。前記制御回路は、各時点において制御対象となる前記マルチレベル出力部に含まれる8つのスイッチング素子を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御する。
本開示によれば、フライングキャパシタの電圧を高精度に安定させることができる。
実施の形態1に係る電力変換装置の構成を説明するための図である。 実施の形態1に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第24スイッチング素子の第1のスイッチングパターンをまとめた図である。 実施の形態1に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第24スイッチング素子の第2のスイッチングパターンをまとめた図である。 図4(a)-(d)は、第1及び第2のスイッチングパターンの正の半周期のスイッチングパターンを示す回路図である。 図5(a)-(d)は、第1及び第2のスイッチングパターンの負の半周期のスイッチングパターンを示す回路図である。 実施の形態2に係る電力変換装置の構成を説明するための図である。 実施の形態2に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第24スイッチング素子の第1のスイッチングパターンをまとめた図である。 実施の形態2に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第24スイッチング素子の第2のスイッチングパターンをまとめた図である。 実施の形態3に係る電力変換装置の構成を説明するための図である。 実施の形態3に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第12スイッチング素子の第1のスイッチングパターンをまとめた図である。 実施の形態3に係る電力変換装置のマルチレベルインバータに含まれる第1スイッチング素子-第12スイッチング素子の第2のスイッチングパターンをまとめた図である。 図12(a)-(b)は、実施の形態1に係る電力変換装置の制御部の機能ブロックを示す図である。 図13(a)-(c)は、対角同期制御方式におけるフライングキャパシタ電圧制御部の構成例を示す図である。 実施の形態1に係る電力変換装置を対角同期制御方式で制御する場合の一例を示す波形図である。 対角非同期制御方式におけるフライングキャパシタ電圧制御部の構成例を示す図である。 実施の形態1に係る電力変換装置を対角非同期制御方式で制御する場合の一例を示す波形図である。
図1は、実施の形態1に係る電力変換装置1の構成を説明するための図である。電力変換装置1は、直流電源2から供給される直流電力を交流電力に変換し、変換した交流電力を電力系統3に出力する。直流電源2は例えば、分散型電源(太陽電池、蓄電池、燃料電池など)と、当該分散型電源の出力を制御可能なDC/DCコンバータ(不図示)により構成される。当該DC/DCコンバータと電力変換装置1との間は、直流バスで接続される。なお直流電源2は、分散型電源とDC/DCコンバータの組が複数、並列接続されて構成されていてもよい。
電力変換装置1は、マルチレベルインバータ10、出力フィルタ20及び制御部30を含む。マルチレベルインバータ10は、直流電源2から供給される直流電圧Eをもとに、5レベルの電圧を有する疑似正弦波を生成することにより、直流電圧Eを交流電圧に変換する。
マルチレベルインバータ10は、マルチレベル出力部と極性切替部15a、15bを有する。マルチレベル出力部は、4つのフライングキャパシタ回路11-14を含む。各フライングキャパシタ回路は11-14は、3レベルの電位を出力可能である。極性切替部15a、15bは、インバータ出力電圧の符号を制御する。
第1フライングキャパシタ回路11及び第2フライングキャパシタ回路12は直流電源2の両端間に直列に接続される。第3フライングキャパシタ回路13及び第4フライングキャパシタ回路14は直流電源2の両端間に直列に接続される。第1フライングキャパシタ回路11と第2フライングキャパシタ回路12との接続点と、第3フライングキャパシタ回路13と第4フライングキャパシタ回路14との接続点との間が中間配線Lmで接続される。中間配線Lmは、単相3線式の配電線の中性線(O相線)に接続される。なお、単相2線式の配電線が採用される場合は、中性線は設けられない。
第1フライングキャパシタ回路11は、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3、第4スイッチング素子Q4及び第1フライングキャパシタC1を含む。第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3及び第4スイッチング素子Q4は直列に接続され、直流電源2の正側バスと中間配線Lmの間に接続される。第1フライングキャパシタC1は、第2スイッチング素子Q2及び第3スイッチング素子Q3と並列に接続され、第1スイッチング素子Q1-第4スイッチング素子Q4により充放電される。
第2フライングキャパシタ回路12は、第5スイッチング素子Q5、第6スイッチング素子Q6、第7スイッチング素子Q7、第8スイッチング素子Q8及び第2フライングキャパシタC2を含む。第5スイッチング素子Q5、第6スイッチング素子Q6、第7スイッチング素子Q7及び第8スイッチング素子Q8は直列に接続され、中間配線Lmと、直流電源2の負側バスの間に接続される。第2フライングキャパシタC2は、第6スイッチング素子Q6及び第7スイッチング素子Q7と並列に接続され、第5スイッチング素子Q5-第8スイッチング素子Q8により充放電される。
第3フライングキャパシタ回路13は、第9スイッチング素子Q9、第10スイッチング素子Q10、第11スイッチング素子Q11、第12スイッチング素子Q12及び第3フライングキャパシタC3を含む。第9スイッチング素子Q9、第10スイッチング素子Q10、第11スイッチング素子Q11及び第12スイッチング素子Q12は直列に接続され、直流電源2の正側バスと中間配線Lmの間に接続される。第3フライングキャパシタC3は、第10スイッチング素子Q10及び第11スイッチング素子Q11と並列に接続され、第9スイッチング素子Q9-第12スイッチング素子Q12により充放電される。
第4フライングキャパシタ回路14は、第13スイッチング素子Q13、第14スイッチング素子Q14、第15スイッチング素子Q15、第16スイッチング素子Q16及び第4フライングキャパシタC4を含む。第13スイッチング素子Q13、第14スイッチング素子Q14、第15スイッチング素子Q15及び第16スイッチング素子Q16は直列に接続され、中間配線Lmと直流電源2の負側バスの間に接続される。第4フライングキャパシタC4は、第14スイッチング素子Q14及び第15スイッチング素子Q15と並列に接続され、第13スイッチング素子Q13-第16スイッチング素子Q16により充放電される。
第1極性切替部15aは、第1フライングキャパシタ回路11の中点(具体的には、第2スイッチング素子Q2と第3スイッチング素子Q3との接続点)と、第2フライングキャパシタ回路12の中点(具体的には、第6スイッチング素子Q6と第7スイッチング素子Q7との接続点)との間に接続される。第1極性切替部15aは、直列に接続された第17スイッチング素子Q17、第18スイッチング素子Q18、第19スイッチング素子Q19及び第20スイッチング素子Q20を含む。第1極性切替部15aの中点(具体的には、第18スイッチング素子Q18と第19スイッチング素子Q19との接続点)は、単相3線式の配電線の第1電圧線(U相線)に接続される。
第2極性切替部15bは、第3フライングキャパシタ回路13の中点(具体的には、第10スイッチング素子Q10と第11スイッチング素子Q11との接続点)と、第4フライングキャパシタ回路14の中点(具体的には、第14スイッチング素子Q14と第15スイッチング素子Q15との接続点)との間に接続される。第2極性切替部15bは、直列に接続された第21スイッチング素子Q21、第22スイッチング素子Q22、第23スイッチング素子Q23及び第24スイッチング素子Q24を含む。第2極性切替部15bの中点(具体的には、第22スイッチング素子Q22と第23スイッチング素子Q23との接続点)は、単相3線式の配電線の第2電圧線(W相線)に接続される。
直流電源2の正側バスと負側バスの間に、第1分割コンデンサC5及び第2分割コンデンサC6が直列に接続される。具体的には、正側バスと中間配線Lmの間に第1分割コンデンサC5が接続され、中間配線Lmと負側バスの間に第2分割コンデンサC6が接続される。第1分割コンデンサC5及び第2分割コンデンサC6は、直流電圧Eを1/2に分圧する作用、マルチレベルインバータ10内で発生するサージ電圧を抑制するためのスナバコンデンサとしての作用を有する。
第1フライングキャパシタ回路11の中点からは、第1スイッチング素子Q1の上側端子に印加されるE[V]と、第4スイッチング素子Q4の下側端子に印加される1/2E[V]の間の範囲の電位が出力される。第1フライングキャパシタC1は1/4E[V]の電圧になるように初期充電(プリチャージ)され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第1フライングキャパシタ回路11からは、概ね、E[V]、3/4E[V]、1/2E[V]の3レベルの電位が出力される。
第2フライングキャパシタ回路12の中点からは、第5スイッチング素子Q5の上側端子に印加される1/2E[V]と、第8スイッチング素子Q8の下側端子に印加される0[V]の間の範囲の電位が出力される。第2フライングキャパシタC2は1/4E[V]の電圧になるように初期充電され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第2フライングキャパシタ回路12からは、概ね、1/2E[V]、1/4E[V]、0[V]の3レベルの電位が出力される。
第3フライングキャパシタ回路13の中点からは、第9スイッチング素子Q9の上側端子に印加されるE[V]と、第12スイッチング素子Q12の下側端子に印加される1/2E[V]の間の範囲の電位が出力される。第3フライングキャパシタC3は1/4E[V]の電圧になるように初期充電され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第3フライングキャパシタ回路13からは、概ね、E[V]、3/4E[V]、1/2E[V]の3レベルの電位が出力される。
第4フライングキャパシタ回路14の中点からは、第13スイッチング素子Q13の上側端子に印加される1/2E[V]と、第16スイッチング素子Q16の下側端子に印加される0[V]の間の範囲の電位が出力される。第4フライングキャパシタC4は1/4E[V]の電圧になるように初期充電され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第4フライングキャパシタ回路14からは、概ね、1/2E[V]、1/4E[V]、0[V]の3レベルの電位が出力される。
上記の第1スイッチング素子Q1-第24スイッチング素子Q24にはそれぞれ、ダイオードが逆並列に形成又は接続される。以下、本実施の形態では第1スイッチング素子Q1-第24スイッチング素子Q24に、150V耐圧のNチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用する例を想定する。NチャネルMOSFETでは、ソースからドレイン方向に寄生ダイオードが形成される。
なお、第1スイッチング素子Q1-第24スイッチング素子Q24にIGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタを使用してもよい。その場合、第1スイッチング素子Q1-第24スイッチング素子Q24に寄生ダイオードは形成されず、第1スイッチング素子Q1-第24スイッチング素子Q24にそれぞれ外付けダイオードが逆並列に接続される。
なお、第1スイッチング素子Q1-第24スイッチング素子Q24に、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンド(C)などを使用したワイドバンドギャップ半導体で構成されたスイッチング素子を使用してもよい。
第1極性切替部15aの中点(具体的には、第18スイッチング素子Q18と第19スイッチング素子Q19との接続点)と、第2極性切替部15bの中点(具体的には、第22スイッチング素子Q22と第23スイッチング素子Q23との接続点)から、5レベルの電圧が出力フィルタ20に出力される。出力フィルタ20は、第1出力リアクトルL1、第2出力リアクトルL2、第1出力コンデンサC7及び第2出力コンデンサC8を含む。本実施の形態では第1極性切替部15aの中点からU相の電力を出力し、第2極性切替部15bの中点からW相の電力を出力する。
出力フィルタ20は、第1極性切替部15a及び第2極性切替部15bから出力される電圧及び電流の高調波成分を減衰させて、電力系統3の正弦波と同期した正弦波に近づける。第1出力リアクトルL1は、単相3線式の配電線の第1電圧線(U相線)に挿入されるACリアクトルである。第2出力リアクトルL2は、単相3線式の配電線の第2電圧線(W相線)に挿入されるACリアクトルである。第1出力コンデンサC7は、単相3線式の配電線の第1電圧線と中性線との間に接続される。第2出力コンデンサC8は、単相3線式の配電線の第2電圧線と中性線との間に接続される。なお、単相2線式の配電線が採用される場合は、出力コンデンサは一つでよい。
出力フィルタ20と、単相3線式の電力系統3との間の配電線に第1リレーRY1が挿入される。出力フィルタ20と、単相3線式の自立出力端子との間の配電線に第2リレーRY2が挿入される。
単相3線式の第1電圧線と中性線の自立出力端子間に第1負荷R1(U相負荷)が接続される。単相3線式の第2電圧線と中性線の自立出力端子間に第2負荷R2(W相負荷)が接続される。単相3線式の第1電圧線と第2電圧線の自立出力端子間に第3負荷R3(線間負荷)が接続される。第3負荷R3として、200V機器(例えば、IHクッキングヒータ、電気温水器など)が接続可能である。第1負荷R1、第2負荷R2及び第3負荷R3は、系統停電時に優先的に電源供給を受けることができる特定負荷であってもよいし、一般負荷であってもよい。
第1電圧センサ41は、第1フライングキャパシタC1の電圧Vfc1を検出して制御部30に出力する。第2電圧センサ42は、第2フライングキャパシタC2の電圧Vfc2を検出して制御部30に出力する。第3電圧センサ43は、第3フライングキャパシタC3の電圧Vfc3を検出して制御部30に出力する。第4電圧センサ44は、第4フライングキャパシタC4の電圧Vfc4を検出して制御部30に出力する。
第5電圧センサ45は、電力変換装置1のU-O間の出力電圧Vout_uoを検出して制御部30に出力する。第6電圧センサ46は、電力変換装置1のW-O間の出力電圧Vout_woを検出して制御部30に出力する。第7電圧センサ47は、電力変換装置1のU-W間の出力電圧Vout_uwを検出して制御部30に出力する。第5電圧センサ45-第7電圧センサ47は、出力フィルタ20より後段に設置される。なお、単相2線式に接続される場合、第5電圧センサ45及び第6電圧センサ46は不要である。
第1電圧センサ41-第7電圧センサ47のそれぞれは、例えば分圧抵抗と誤差増幅器を含んで構成される。
第1電流センサ51は、第1出力リアクトルL1に流れるリアクトル電流IL_Uを検出して制御部30に出力する。第2電流センサ52は、第2出力リアクトルL2に流れるリアクトル電流IL_Wを検出して制御部30に出力する。第1電流センサ51-第2電流センサ52のそれぞれは、例えば、CTセンサやホールセンサを含んで構成される。なお、単相2線式に接続される場合は、第1電流センサ51または第2電流センサ52のいずれかは不要である。
制御部30は、電力変換装置1を統括的に制御する。制御部30は、ハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコントローラ、DSP、ROM、RAM、FPGA、ASIC、その他のLSIを利用できる。ソフトウェア資源としてファームウェアなどのプログラムを利用できる。
本実施の形態では制御部30は、マルチレベルインバータ10の第1スイッチング素子Q1-第24スイッチング素子Q24、第1リレーRY1、第2リレーRY2のオン/オフを制御する。
図2は、実施の形態1に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第24スイッチング素子Q24の第1のスイッチングパターンをまとめた図である。図3は、実施の形態1に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第24スイッチング素子Q24の第2のスイッチングパターンをまとめた図である。本明細書では、第1のスイッチングパターンに基づくマルチレベルインバータ10の制御方式を対角同期制御方式と呼び、第2のスイッチングパターンに基づくマルチレベルインバータ10の制御方式を対角非同期制御方式と呼ぶ。
図2に示す第1のスイッチングパターンのマルチレベル出力部の動作を説明する。第1スイッチング素子Q1、第5スイッチング素子Q5、第12スイッチング素子Q12、第16スイッチング素子Q16の第1グループと、第4スイッチング素子Q4、第8スイッチング素子Q8、第9スイッチング素子Q9、第13スイッチング素子Q13の第2グループが相補関係となる。第2スイッチング素子Q2、第6スイッチング素子Q6、第11スイッチング素子Q11、第15スイッチング素子Q15の第3グループと、第3スイッチング素子Q3、第7スイッチング素子Q7、第10スイッチング素子Q10、第14スイッチング素子Q14の第4グループが相補関係となる。
制御部30は、第1グループを制御する駆動信号PWM1a、第2グループを制御する駆動信号PWM1b(駆動信号PWM1aの相補信号)、第3グループを制御する駆動信号PWM2a、第4グループを制御する駆動信号PWM2b(駆動信号PWM2aの相補信号)の4つの駆動信号で、各時点において制御対象となるマルチレベル出力部に含まれる8つのスイッチング素子を制御する。制御部30は、駆動信号PWM1と駆動信号PWM2を個別に制御することができる。
次に、極性切替部の動作を説明する。第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23、第24スイッチング素子Q24の正のグループは、基本波の正の半周期の期間に常時オンし、負の半周期の期間に常時オフする。第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21、第22スイッチング素子Q22の負のグループは、基本波の負の半周期の期間に常時オンし、正の半周期の期間に常時オフする。日本では、基本波は50Hz/60Hzの正弦波である。正のグループと負のグループは相補関係となる。
図3に示す第2のスイッチングパターンのマルチレベル出力部の動作を説明する。第1スイッチング素子Q1、第5スイッチング素子Q5の第1グループと、第4スイッチング素子Q4、第8スイッチング素子Q8の第2グループが相補関係となる。第12スイッチング素子Q12、第16スイッチング素子Q16の第3グループと、第9スイッチング素子Q9、第13スイッチング素子Q13の第4グループが相補関係となる。第2スイッチング素子Q2、第6スイッチング素子Q6の第5グループと、第3スイッチング素子Q3、第7スイッチング素子Q7の第6グループが相補関係となる。第11スイッチング素子Q11、第15スイッチング素子Q15の第7グループと、第10スイッチング素子Q10、第14スイッチング素子Q14の第8グループが相補関係となる。
制御部30は、第1グループを制御する駆動信号PWM1a、第2グループを制御する駆動信号PWM1b(駆動信号PWM1aの相補信号)、第3グループを制御する駆動信号PWM2a、第4グループを制御する駆動信号PWM2b(駆動信号PWM2aの相補信号)、第5グループを制御する駆動信号PWM3a、第6グループを制御する駆動信号PWM3b(駆動信号PWM3aの相補信号)、第7グループを制御する駆動信号PWM4a、第8グループを制御する駆動信号PWM4b(駆動信号PWM4aの相補信号)の8つの駆動信号で、各時点において制御対象となるマルチレベル出力部に含まれる8つのスイッチング素子を制御する。制御部30は、駆動信号PWM1、駆動信号PWM2、駆動信号PWM3、駆動信号PWM4を個別に制御することができる。極性切替部の動作は、第1のスイッチングパターンと同様である。
図4(a)-(d)は、第1及び第2のスイッチングパターンの正の半周期のスイッチングパターンを示す回路図である。図5(a)-(d)は、第1及び第2のスイッチングパターンの負の半周期のスイッチングパターンを示す回路図である。なお、図面の簡略化のためMOSFETを単純なスイッチ記号で描いている。
図4(a)に示すように、マルチレベルインバータ10から+0を出力する場合、制御部30は、第3スイッチング素子Q3、第4スイッチング素子Q4、第7スイッチング素子Q7、第8スイッチング素子Q8、第9スイッチング素子Q9、第10スイッチング素子Q10、第13スイッチング素子Q13、第14スイッチング素子Q14、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオン状態に制御し、第1スイッチング素子Q1、第2スイッチング素子Q2、第5スイッチング素子Q5、第6スイッチング素子Q6、第11スイッチング素子Q11、第12スイッチング素子Q12、第15スイッチング素子Q15、第16スイッチング素子Q16、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオフ状態に制御する。
図4(b)に示すように、直流電源2から第1フライングキャパシタC1及び第4フライングキャパシタC4を充電しつつ、マルチレベルインバータ10から+1/2Eを出力する場合、制御部30は、第1スイッチング素子Q1、第3スイッチング素子Q3、第5スイッチング素子Q5、第7スイッチング素子Q7、第10スイッチング素子Q10、第12スイッチング素子Q12、第14スイッチング素子Q14、第16スイッチング素子Q16、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオン状態に制御し、第2スイッチング素子Q2、第4スイッチング素子Q4、第6スイッチング素子Q6、第8スイッチング素子Q8、第9スイッチング素子Q9、第11スイッチング素子Q11、第13スイッチング素子Q13、第15スイッチング素子Q15、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオフ状態に制御する。
図4(c)に示すように、第1フライングキャパシタC1及び第4フライングキャパシタC4から電力系統3に放電しつつ、マルチレベルインバータ10から+1/2Eを出力する場合、制御部30は、第2スイッチング素子Q2、第4スイッチング素子Q4、第6スイッチング素子Q6、第8スイッチング素子Q8、第9スイッチング素子Q9、第11スイッチング素子Q11、第13スイッチング素子Q13、第15スイッチング素子Q15、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオン状態に制御し、第1スイッチング素子Q1、第3スイッチング素子Q3、第5スイッチング素子Q5、第7スイッチング素子Q7、第10スイッチング素子Q10、第12スイッチング素子Q12、第14スイッチング素子Q14、第16スイッチング素子Q16、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオフ状態に制御する。
制御部30は、図4(b)に示すスイッチングパターンと、図4(c)に示すスイッチングパターンを交互に繰り返すことにより、マルチレベルインバータ10から+1/2Eを出力させることができる。
図4(d)に示すように、マルチレベルインバータ10から+Eを出力する場合、制御部30は、第1スイッチング素子Q1、第2スイッチング素子Q2、第5スイッチング素子Q5、第6スイッチング素子Q6、第11スイッチング素子Q11、第12スイッチング素子Q12、第15スイッチング素子Q15、第16スイッチング素子Q16、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオン状態に制御し、第3スイッチング素子Q3、第4スイッチング素子Q4、第7スイッチング素子Q7、第8スイッチング素子Q8、第9スイッチング素子Q9、第10スイッチング素子Q10、第13スイッチング素子Q13、第14スイッチング素子Q14、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオフ状態に制御する。
図5(a)に示すように、マルチレベルインバータ10から-0を出力する場合、制御部30は、第1スイッチング素子Q1、第2スイッチング素子Q2、第5スイッチング素子Q5、第6スイッチング素子Q6、第11スイッチング素子Q11、第12スイッチング素子Q12、第15スイッチング素子Q15、第16スイッチング素子Q16、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオン状態に制御し、第3スイッチング素子Q3、第4スイッチング素子Q4、第7スイッチング素子Q7、第8スイッチング素子Q8、第9スイッチング素子Q9、第10スイッチング素子Q10、第13スイッチング素子Q13、第14スイッチング素子Q14、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオフ状態に制御する。
図5(b)に示すように、直流電源2から第2フライングキャパシタC2及び第3フライングキャパシタC3を充電しつつ、マルチレベルインバータ10から-1/2Eを出力する場合、制御部30は、第2スイッチング素子Q2、第4スイッチング素子Q4、第6スイッチング素子Q6、第8スイッチング素子Q8、第9スイッチング素子Q9、第11スイッチング素子Q11、第13スイッチング素子Q13、第15スイッチング素子Q15、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオン状態に制御し、第1スイッチング素子Q1、第3スイッチング素子Q3、第5スイッチング素子Q5、第7スイッチング素子Q7、第10スイッチング素子Q10、第12スイッチング素子Q12、第14スイッチング素子Q14、第16スイッチング素子Q16、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオフ状態に制御する。
図5(c)に示すように、第2フライングキャパシタC2及び第3フライングキャパシタC3から電力系統3に放電しつつ、マルチレベルインバータ10から-1/2Eを出力する場合、制御部30は、第1スイッチング素子Q1、第3スイッチング素子Q3、第5スイッチング素子Q5、第7スイッチング素子Q7、第10スイッチング素子Q10、第12スイッチング素子Q12、第14スイッチング素子Q14、第16スイッチング素子Q16、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオン状態に制御し、第2スイッチング素子Q2、第4スイッチング素子Q4、第6スイッチング素子Q6、第8スイッチング素子Q8、第9スイッチング素子Q9、第11スイッチング素子Q11、第13スイッチング素子Q13、第15スイッチング素子Q15、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオフ状態に制御する。
制御部30は、図5(b)に示すスイッチングパターンと、図5(c)に示すスイッチングパターンを交互に繰り返すことにより、マルチレベルインバータ10から-1/2Eを出力させることができる。
図5(d)に示すように、マルチレベルインバータ10から-Eを出力する場合、制御部30は、第3スイッチング素子Q3、第4スイッチング素子Q4、第7スイッチング素子Q7、第8スイッチング素子Q8、第9スイッチング素子Q9、第10スイッチング素子Q10、第13スイッチング素子Q13、第14スイッチング素子Q14、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21及び第22スイッチング素子Q22をオン状態に制御し、第1スイッチング素子Q1、第2スイッチング素子Q2、第5スイッチング素子Q5、第6スイッチング素子Q6、第11スイッチング素子Q11、第12スイッチング素子Q12、第15スイッチング素子Q15、第16スイッチング素子Q16、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23及び第24スイッチング素子Q24をオフ状態に制御する。
このように直流電源2と負荷側がフライングキャパシタを介在させずに導通すると、マルチレベルインバータ10から±Eが出力される。直流電源2と負荷側が2つのフライングキャパシタ(C1、C4又はC2、C3)を介在させて導通すると、マルチレベルインバータ10から±1/2Eが出力される。マルチレベルインバータ10の交流端子間が短絡すると、マルチレベルインバータ10から0が出力される。以上により5レベルの電圧を出力することができる。
図6は、実施の形態2に係る電力変換装置1の構成を説明するための図である。実施の形態2に係る電力変換装置1は、実施の形態1に係る電力変換装置1とマルチレベルインバータ10の構成が異なる。
実施の形態2に係るマルチレベル出力部は、2つのフライングキャパシタ回路11-12を含む。第1極性切替部15aは、第9スイッチング素子Q9-第16スイッチング素子Q16を含む。第2極性切替部15bは、第17スイッチング素子Q17-第24スイッチング素子Q24を含む。
直流電源2の正側バスと第1フライングキャパシタ回路11との間に、直列接続された第9スイッチング素子Q9及び第10スイッチング素子Q10が接続される。直流電源2の負側バスと第1フライングキャパシタ回路11との間に、直列接続された第11スイッチング素子Q11及び第12スイッチング素子Q12が接続される。第1フライングキャパシタ回路11と並列に、直列接続された第13スイッチング素子Q13、第14スイッチング素子Q14、第15スイッチング素子Q15、第16スイッチング素子Q16が接続される。
直流電源2の正側バスと第2フライングキャパシタ回路12との間に、直列接続された第17スイッチング素子Q17及び第18スイッチング素子Q18が接続される。直流電源2の負側バスと第2フライングキャパシタ回路12との間に、直列接続された第19スイッチング素子Q19及び第20スイッチング素子Q20が接続される。第2フライングキャパシタ回路12と並列に、直列接続された第21スイッチング素子Q21、第22スイッチング素子Q22、第23スイッチング素子Q23、第24スイッチング素子Q24が接続される。
図7は、実施の形態2に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第24スイッチング素子Q24の第1のスイッチングパターンをまとめた図である。図8は、実施の形態2に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第24スイッチング素子Q24の第2のスイッチングパターンをまとめた図である。
図7に示す第1のスイッチングパターンのマルチレベル出力部の動作を説明する。第1スイッチング素子Q1、第8スイッチング素子Q8の第1グループと、第4スイッチング素子Q4、第5スイッチング素子Q5の第2グループが相補関係となる。第2スイッチング素子Q2、第7スイッチング素子Q7の第3グループと、第3スイッチング素子Q3、第6スイッチング素子Q6の第4グループが相補関係となる。
制御部30は、第1グループを制御する駆動信号PWM1a、第2グループを制御する駆動信号PWM1b(駆動信号PWM1aの相補信号)、第3グループを制御する駆動信号PWM2a、第4グループを制御する駆動信号PWM2b(駆動信号PWM2aの相補信号)の4つの駆動信号で、マルチレベル出力部に含まれる8つのスイッチング素子Q1-Q8を制御する。制御部30は、駆動信号PWM1と駆動信号PWM2を個別に制御することができる。
次に、極性切替部の動作を説明する。第9スイッチング素子Q9、第10スイッチング素子Q10、第15スイッチング素子Q15、第16スイッチング素子Q16、第19スイッチング素子Q19、第20スイッチング素子Q20、第21スイッチング素子Q21、第22スイッチング素子Q22の正のグループは、基本波の正の半周期の期間に常時オンし、負の半周期の期間に常時オフする。第11スイッチング素子Q11、第12スイッチング素子Q12、第13スイッチング素子Q13、第14スイッチング素子Q14、第17スイッチング素子Q17、第18スイッチング素子Q18、第23スイッチング素子Q23、第24スイッチング素子Q24の負のグループは、基本波の負の半周期の期間に常時オンし、正の半周期の期間に常時オフする。正のグループと負のグループは相補関係となる。
図8に示す第2のスイッチングパターンのマルチレベル出力部の動作を説明する。第1スイッチング素子Q1と第4スイッチング素子Q4が相補関係となる。第2スイッチング素子Q2と第3スイッチング素子Q3が相補関係となる。第5スイッチング素子Q5と第8スイッチング素子Q8が相補関係となる。第6スイッチング素子Q6と第7スイッチング素子Q7が相補関係となる。
制御部30は、第1スイッチング素子Q1を制御する駆動信号PWM1a、第4スイッチング素子Q4を制御する駆動信号PWM1b(駆動信号PWM1aの相補信号)、第2スイッチング素子Q2を制御する駆動信号PWM2a、第3スイッチング素子Q3を制御する駆動信号PWM2b(駆動信号PWM2aの相補信号)、第5スイッチング素子Q5を制御する駆動信号PWM3a、第8スイッチング素子Q8を制御する駆動信号PWM3b(駆動信号PWM3aの相補信号)、第6スイッチング素子Q6を制御する駆動信号PWM4a、第7スイッチング素子Q7を制御する駆動信号PWM4b(駆動信号PWM4aの相補信号)の8つの駆動信号で、マルチレベル出力部に含まれる8つのスイッチング素子Q1-Q8を制御する。制御部30は、駆動信号PWM1、駆動信号PWM2、駆動信号PWM3、駆動信号PWM4を個別に制御することができる。極性切替部の動作は、第1のスイッチングパターンと同様である。
実施の形態2においても、直流電源2と負荷側がフライングキャパシタを介在させずに導通すると、マルチレベルインバータ10から±Eが出力される。直流電源2と負荷側が2つのフライングキャパシタ(C1-C2)を介在させて導通すると、マルチレベルインバータ10から±1/2Eが出力される。マルチレベルインバータ10の交流端子間が短絡すると、マルチレベルインバータ10から0が出力される。以上により5レベルの電圧を出力することができる。
図9は、実施の形態3に係る電力変換装置1の構成を説明するための図である。実施の形態3に係る電力変換装置1は、実施の形態1に係る電力変換装置1とマルチレベルインバータ10の構成が異なる。
実施の形態3に係るマルチレベル出力部は、2つのフライングキャパシタ回路11-12を含む。極性切替部15は、第9スイッチング素子Q9-第12スイッチング素子Q12を含む。第9スイッチング素子Q9-第12スイッチング素子Q12は、Hブリッジ回路を構成する。Hブリッジ回路は、第1フライングキャパシタ回路11の中点(具体的には、第2スイッチング素子Q2と第3スイッチング素子Q3との接続点)と、第2フライングキャパシタ回路12の中点(具体的には、第6スイッチング素子Q6と第7スイッチング素子Q7との接続点)との間に接続される。Hブリッジ回路で構成される極性切替部15は、5レベルの電圧を出力フィルタ20に出力する。
図10は、実施の形態3に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第12スイッチング素子Q12の第1のスイッチングパターンをまとめた図である。図11は、実施の形態3に係る電力変換装置1のマルチレベルインバータ10に含まれる第1スイッチング素子Q1-第12スイッチング素子Q12の第2のスイッチングパターンをまとめた図である。
図10に示す実施の形態3に係る第1のスイッチングパターンのマルチレベル出力部の動作は、図7に示した実施の形態2に係る第1のスイッチングパターンのマルチレベル出力部の動作と同様である。
次に、極性切替部の動作を説明する。第9スイッチング素子Q9、第12スイッチング素子Q12の正のグループは、基本波の正の半周期の期間に常時オンし、負の半周期の期間に常時オフする。第10スイッチング素子Q10、第11スイッチング素子Q11の負のグループは、基本波の負の半周期の期間に常時オンし、正の半周期の期間に常時オフする。正のグループと負のグループは相補関係となる。
図11に示す実施の形態3に係る第2のスイッチングパターンのマルチレベル出力部の動作は、図8に示した実施の形態2に係る第2のスイッチングパターンのマルチレベル出力部の動作と同様である。極性切替部の動作は、第1のスイッチングパターンと同様である。
実施の形態3においても、直流電源2と負荷側がフライングキャパシタを介在させずに導通すると、マルチレベルインバータ10から±Eが出力される。直流電源2と負荷側が2つのフライングキャパシタ(C1-C2)を介在させて導通すると、マルチレベルインバータ10から±1/2Eが出力される。マルチレベルインバータ10の交流端子間が短絡すると、マルチレベルインバータ10から0が出力される。以上により5レベルの電圧を出力することができる。
実施の形態1-3において、制御部30は、第1フライングキャパシタC1-第4フライングキャパシタC4、又は第1フライングキャパシタC1-第2フライングキャパシタC2の各フライングキャパシタの電圧が1/4Eを維持するように、フィードバック制御をかける。以下、実施の形態1に係る電力変換装置1の動作を例に具体的に説明する。
図12(a)-(b)は、実施の形態1に係る電力変換装置1の制御部30の機能ブロックを示す。図12(a)は、対角同期制御方式を採用した場合の機能ブロックを示す。制御部30は、主フィードバック制御部31、フライングキャパシタ電圧制御部32、減算部33、第1PWM信号生成部34、第2PWM信号生成部35を含む。
電力変換装置1を系統連系モードで運転させる際、制御部30は、第1リレーRY1をオン状態及び第2リレーRY2をオフ状態に制御する。主フィードバック制御部31は、第1電流センサ51により検出される第1出力リアクトルL1に流れる電流IL(検出値)、又は第2電流センサ52により検出される第2出力リアクトルL2に流れる電流IL(検出値)と、目標値とする電流指令値との偏差をもとに主デューティ値Duty_INV(操作量)を生成する。
電力変換装置1を自立運転モードで運転させる際、制御部30は、第1リレーRY1をオフ状態及び第2リレーRY2をオン状態に制御する。主フィードバック制御部31は、第7電圧センサ47により検出される出力電圧Voutと、目標値とする電圧指令値との偏差をもとに主デューティ値Duty_INV(操作量)を生成する。なお、出力電圧Voutのフィードバックループの内部ループとして、リアクトル電流ILのフィードバックループを設けてもよい。
主フィードバック制御部31は、主デューティ値Duty_INV(操作量)を、フライングキャパシタ電圧制御部32、減算部33、第1PWM信号生成部34に出力する。フライングキャパシタ電圧制御部32は、第1電圧センサ41-第4電圧センサ44によりそれぞれ検出される各フライングキャパシタC1-C4の電圧Vfc1-Vfc4(検出値)、目標値とする電圧指令値(1/4E)、主デューティ値Duty_INV(操作量)をもとに、補正デューティ値Duty_FC(操作量)を生成する。減算部33は、主デューティ値Duty_INV(操作量)から補正デューティ値Duty_FC(操作量)を減算して、補正後デューティ値Duty_NEW(操作量)を生成する。
第1PWM信号生成部34は、主デューティ値Duty_INV(操作量)と搬送波をもとに、第1スイッチング素子Q1、第5スイッチング素子Q5、第12スイッチング素子Q12、第16スイッチング素子Q16を駆動する駆動信号PWM1aを生成する。第1PWM信号生成部34は、駆動信号PWM1aの位相を反転させて、第4スイッチング素子Q4、第8スイッチング素子Q8、第9スイッチング素子Q9、第13スイッチング素子Q13を駆動する駆動信号PWM1bを生成する。
第2PWM信号生成部35は、補正後デューティ値Duty_NEW(操作量)と搬送波をもとに、第2スイッチング素子Q2、第6スイッチング素子Q6、第11スイッチング素子Q11、第15スイッチング素子Q15を駆動する駆動信号PWM2aを生成する。第2PWM信号生成部35は、駆動信号PWM2aの位相を反転させて、第3スイッチング素子Q3、第7スイッチング素子Q7、第10スイッチング素子Q10、第14スイッチング素子Q14を駆動する駆動信号PWM2bを生成する。
対角同期制御方式では、相補関係にない駆動信号PWM1と駆動信号PWM2の一方に対してフライングキャパシタの電圧制御が適用され、他方に対してフライングキャパシタの電圧制御が適用されない。なお、図12(a)では駆動信号PWM2に対してフライングキャパシタの電圧制御が適用され、駆動信号PWM1に対してフライングキャパシタの電圧制御が適用されない例を示した。この点、駆動信号PWM1に対してフライングキャパシタの電圧制御が適用され、駆動信号PWM2に対してフライングキャパシタの電圧制御が適用されない設定でもよい。
図12(b)は、対角非同期制御方式を採用した場合の機能ブロックを示す。制御部30は、主フィードバック制御部31、第1フライングキャパシタ電圧制御部32a、第2フライングキャパシタ電圧制御部32b、第1減算部33a、第2減算部33b、第1PWM信号生成部34、第2PWM信号生成部35、第3PWM信号生成部36、第4PWM信号生成部37を含む。
主フィードバック制御部31の動作は、対角同期制御方式と同様である。主フィードバック制御部31は、主デューティ値Duty_INV(操作量)を、第1フライングキャパシタ電圧制御部32a、第2フライングキャパシタ電圧制御部32b、第1減算部33a、第2減算部33b、第1PWM信号生成部34、第3PWM信号生成部36に出力する。
第1フライングキャパシタ電圧制御部32aは、第1電圧センサ41、第4電圧センサ44によりそれぞれ検出される各フライングキャパシタC1、C4の電圧Vfc1、Vfc4(検出値)、目標値とする電圧指令値(1/4E)、主デューティ値Duty_INV(操作量)をもとに、補正デューティ値Duty_FCa(操作量)を生成する。第1減算部33aは、主デューティ値Duty_INV(操作量)から補正デューティ値Duty_FCa(操作量)を減算して、補正後デューティ値Duty_NEWa(操作量)を生成する。
第2フライングキャパシタ電圧制御部32bは、第2電圧センサ42、第3電圧センサ43によりそれぞれ検出される各フライングキャパシタC2、C3の電圧Vfc2、Vfc3(検出値)、目標値とする電圧指令値(1/4E)、主デューティ値Duty_INV(操作量)をもとに、補正デューティ値Duty_FCb(操作量)を生成する。第2減算部33bは、主デューティ値Duty_INV(操作量)から補正デューティ値Duty_FCb(操作量)を減算して、補正後デューティ値Duty_NEWb(操作量)を生成する。
第1PWM信号生成部34は、主デューティ値Duty_INV(操作量)と搬送波をもとに、第1スイッチング素子Q1、第5スイッチング素子Q5を駆動する駆動信号PWM1aを生成する。第1PWM信号生成部34は、駆動信号PWM1aの位相を反転させて、第4スイッチング素子Q4、第8スイッチング素子Q8を駆動する駆動信号PWM1bを生成する。
第2PWM信号生成部35は、補正後デューティ値Duty_NEWa(操作量)と搬送波をもとに、第2スイッチング素子Q2、第6スイッチング素子Q6を駆動する駆動信号PWM2aを生成する。第2PWM信号生成部35は、駆動信号PWM2aの位相を反転させて、第3スイッチング素子Q3、第7スイッチング素子Q7を駆動する駆動信号PWM2bを生成する。
第3PWM信号生成部36は、主デューティ値Duty_INV(操作量)と搬送波をもとに、第12スイッチング素子Q12、第16スイッチング素子Q16を駆動する駆動信号PWM3aを生成する。第3PWM信号生成部36は、駆動信号PWM3aの位相を反転させて、第9スイッチング素子Q9、第13スイッチング素子Q13を駆動する駆動信号PWM3bを生成する。
第4PWM信号生成部37は、補正後デューティ値Duty_NEWb(操作量)と搬送波をもとに、第11スイッチング素子Q11、第15スイッチング素子Q15を駆動する駆動信号PWM4aを生成する。第4PWM信号生成部37は、駆動信号PWM4aの位相を反転させて、第10スイッチング素子Q10、第14スイッチング素子Q14を駆動する駆動信号PWM4bを生成する。
対角非同期制御方式では、相補関係にない駆動信号PWM1と駆動信号PWM2の一方に対してフライングキャパシタの電圧制御が適用され、他方に対してフライングキャパシタの電圧制御が適用されない。同様に、相補関係にない駆動信号PWM3と駆動信号PWM4の一方に対してフライングキャパシタの電圧制御が適用され、他方に対してフライングキャパシタの電圧制御が適用されない。
対角同期制御方式と対角非同期制御方式のいずれの方式においても、一つのフライングキャパシタ回路に含まれる4つのスイッチング素子の内、1番目と4番目の外側2つのスイッチング素子と、2番目と3番目の内側2つのスイッチング素子の、一方に対してフライングキャパシタの電圧制御が適用され、他方に対してフライングキャパシタの電圧制御が適用されない。即ち、制御部30は、一つのフライングキャパシタ回路に含まれる外側2つのスイッチング素子、又は内側2つのスイッチング素子の一方に供給する駆動信号で、当該フライングキャパシタ回路に含まれるフライングキャパシタの電圧を補正することになる。
図12(a)-(b)に示した構成を採用することにより、主フィードバック制御(リアクトル電流制御、又は出力電圧制御)と、フライングキャパシタの電圧制御を独立させることができ、相互干渉を防止することができる。
図13(a)-(c)は、対角同期制御方式におけるフライングキャパシタ電圧制御部32の構成例を示す図である。図13(a)において、加算部3211は、第1電圧センサ41により検出された第1フライングキャパシタC1の電圧Vfc1と、第4電圧センサ44により検出された第4フライングキャパシタC4の電圧Vfc4を加算する。乗算部3212は、加算部3211により算出された電圧値(Vfc1+Vfc4)に1/2を乗算して、第1フライングキャパシタC1と第4フライングキャパシタC4の平均電圧値(Vfc1+Vfc4)/2を算出する。
加算部3221は、第2電圧センサ42により検出された第2フライングキャパシタC2の電圧Vfc2と、第3電圧センサ43により検出された第3フライングキャパシタC3の電圧Vfc3を加算する。乗算部3222は、加算部3221により算出された電圧値(Vfc2+Vfc3)に1/2を乗算して、第2フライングキャパシタC2と第3フライングキャパシタC3の平均電圧値(Vfc2+Vfc3)/2を算出する。
乗算部3251は、直流電源2から供給される直流電圧Eに1/4を乗算して、電圧指令値1/4Eを算出する。減算部3213は、乗算部3251により算出された電圧指令値1/4Eから、第1フライングキャパシタC1と第4フライングキャパシタC4の平均電圧値(Vfc1+Vfc4)/2を減算して第1の偏差を算出する。減算部3223は、乗算部3251により算出された電圧指令値1/4Eから、第2フライングキャパシタC2と第3フライングキャパシタC3の平均電圧値(Vfc2+Vfc3)/2を減算して第2の偏差を算出する。
図13(b)において、電力変換装置1が系統連系モードまたは単相2線式の自立運転モードで運転されている場合、符号判定部3255は、第1電流センサ51又は第2電流センサ52により検出されたリアクトル電流ILに所定の符号関数を適用して符号情報を出力する。当該符号関数は、入力値が正のとき1を、入力値が負のとき-1を、入力値が0のとき0を出力する関数である。符号判定部3256は、第7電圧センサ47により検出された出力電圧Voutに上記の符号関数を適用して符号情報を出力する。乗算部3257は、符号判定部3255から入力される符号情報と、符号判定部3256から入力される符号情報を乗算して信号Aを生成する。信号Aの値は、リアクトル電流ILと出力電圧Voutが同符号のとき1、リアクトル電流ILと出力電圧Voutが異符号のとき-1、リアクトル電流ILと出力電圧Voutの少なくとも一方が0のとき0となる。
なお、電力変換装置1が単相3線式の自立運転モードで運転されている場合、符号判定部3255は、第1電流センサ51により検出されたリアクトル電流ILに所定の符号関数を適用して符号情報を出力する。符号判定部3256は、第5電圧センサ45により検出されたU-O間の出力電圧Vout_uoに上記の符号関数を適用して符号情報を出力する。乗算部3257は、符号判定部3255から入力される符号情報と、符号判定部3256から入力される符号情報を乗算してU相用の信号Aを生成する。また、符号判定部3255は、第2電流センサ52により検出されたリアクトル電流ILに所定の符号関数を適用して符号情報を出力する。符号判定部3256は、第6電圧センサ46により検出されたW-O間の出力電圧Vout_woに上記の符号関数を適用して符号情報を出力する。乗算部3257は、符号判定部3255から入力される符号情報と、符号判定部3256から入力される符号情報を乗算してW相用の信号Aを生成する。
単相3線式の自立運転モードにおいて、第1負荷R1と第2負荷R2が異なる場合、第1出力リアクトルL1に流れる電流と第2出力リアクトルL2に流れる電流が一致しない。そのため、偏差の符号制御に使用する符号判定では、U相とW相をそれぞれ独立して判定する必要がある。なお、自立運転モードであっても、第3負荷R3(200V負荷)しか接続されていない場合や単相2線式の場合は、第1出力リアクトルL1に流れる電流と第2出力リアクトルL2に流れる電流が一致するため、系統連系モードと同様の符号判定でよい。
図13(a)において、乗算部3214は、減算部3213により算出された第1の偏差と信号Aを乗算する。乗算部3224は、減算部3223により算出された第2の偏差と信号Aを乗算する。これらの処理により、リアクトル電流ILの符号と出力電圧Voutの符号が異なる場合、第1の偏差及び第2の偏差の符号が反転される。
リアクトル電流ILと出力電圧Voutの位相が一致している場合は力率が1になり、一致していない場合は力率が1未満になる。電力系統3への電力供給に対して電力消費が少ない期間には、電力系統3の力率が1未満(例えば、0.95)で運用されることがある。リアクトル電流ILと出力電圧Voutの位相が一致しない期間には無効電力が発生する。リアクトル電流ILと出力電圧Voutの位相が一致しない期間に第1の偏差及び第2の偏差の符号を反転させることにより、フライングキャパシタの電圧を制御することができる。なお、リアクトル電流ILと出力電圧Voutの位相が一致しない期間に第1の偏差及び第2の偏差の符号を反転させない場合、フライングキャパシタの電圧を目標値から乖離させる制御がかかってしまう。
また、電力変換装置1が双方向型の電力変換装置1である場合、電力変換装置1は、電力系統3から供給される交流電力を直流電力に変換して、直流電源2(例えば、定置型蓄電池や車載蓄電池)に供給することができる。この場合、電流の向きが反対になる。この場合も、第1の偏差及び第2の偏差の符号を反転させることにより、フライングキャパシタ電圧制御部32で共通にフライングキャパシタの電圧を補正することができる。
図13(c)において、比較部3258は、主デューティ値Duty_INV(操作量)と0を比較して、比較結果をもとに信号Bを生成する。信号Bの値は、主デューティ値Duty_INV(操作量)>0のとき1、主デューティ値Duty_INV(操作量)≦0のとき0となる。
図13(a)において、乗算部3215は、乗算部3214から入力される第1の偏差と信号Bを乗算する。反転部3253は信号Bの符号を反転させて乗算部3225に出力する。乗算部3225は、乗算部3224から入力される第2の偏差と、信号Bの反転信号を乗算する。これにより、主デューティ値Duty_INV(操作量)の符号が正のときは第2の偏差が0になり、主デューティ値Duty_INV(操作量)の符号が負のときは第1の偏差が0になる。
補償部3216は、乗算部3215から入力される第1の偏差をPI補償して補正デューティ値Duty_FC1,4(操作量)を生成する。補償部3226は、乗算部3225から入力される第2の偏差をPI補償して補正デューティ値Duty_FC2,3(操作量)を生成する。なお補償部3216及び補償部3226においてPI補償の代わりに、P補償またはPID補償を行ってもよい。
乗算部3217は、補償部3216から入力される補正デューティ値Duty_FC1,4(操作量)と信号Bを乗算する。反転部3254は信号Bの符号を反転させて乗算部3227に出力する。乗算部3227は、補償部3226から入力される補正デューティ値Duty_FC2,3(操作量)と、信号Bの反転信号を乗算する。
主デューティ値Duty_INV(操作量)の符号が正のときは補正デューティ値Duty_FC2,3(操作量)が0になり、第2フライングキャパシタC2及び第3フライングキャパシタC3の電圧補正が無効になる。主デューティ値Duty_INV(操作量)が負のときは補正デューティ値Duty_FC1,4(操作量)が0になり、第1フライングキャパシタC1及び第4フライングキャパシタC4の電圧補正が無効になる。
主デューティ値Duty_INV(操作量)の符号が正になる期間は、電圧基本波の正の半周期の期間(第1フライングキャパシタC1及び第4フライングキャパシタC4が充放電制御される期間)に相当する。主デューティ値Duty_INV(操作量)の符号が負になる期間は、電圧基本波の負の半周期の期間(第2フライングキャパシタC2及び第3フライングキャパシタC3が充放電制御される期間)に相当する。
このように、電圧基本波の正の半周期では第2フライングキャパシタC2及び第3フライングキャパシタC3の電圧補正が無効になり、電圧基本波の負の半周期では、第1フライングキャパシタC1及び第4フライングキャパシタC4の電圧補正が無効になる。これにより、例えば半周期の切り替わり時などに、不安定な動作(過電流等)が発生することを防止することができる。なお補償部3216及び補償部3226内で積分器を使用している場合、無効化期間に積分器の値をゼロにリセットする。これにより、積分器の飽和を防止することができる。
上記図2、図13(a)-(c)に示すように対角同期制御方式では、対角にあるスイッチング素子を同じPWM信号で駆動し、対角にある第1フライングキャパシタC1と第4フライングキャパシタC4、又は第2フライングキャパシタC2と第3フライングキャパシタC3の平均電圧値が1/4Eになるようにフライングキャパシタの電圧を制御している。第1フライングキャパシタC1と第4フライングキャパシタC4の電圧は、U相電圧が正の時のみ制御可能であり、第2フライングキャパシタC2と第3フライングキャパシタC3の電圧は、W相電圧が正の時のみ制御可能である。
対角同期制御方式において、回路ばらつき等により、同じPWM信号で駆動されるスイッチング素子のスイッチングタイミングが異なると、対角関係にある2つのフライングキャパシタの各電圧を1/4Eに制御することが困難になる。
図14は、実施の形態1に係る電力変換装置1を対角同期制御方式で制御する場合の一例を示す波形図である。図14に示す波形図は、シミュレーション結果をもとに、模式的に波形を描いた図である。
図14に示す例は、駆動信号PWM2a(図2参照)で制御される第2スイッチング素子Q2、第6スイッチング素子Q6、第11スイッチング素子Q11、第15スイッチング素子Q15の中で、第2スイッチング素子Q2のターンオフタイミングが他より遅延している例を示している。第2スイッチング素子Q2のターンオフタイミングの遅延により、第1フライングキャパシタC1の電圧Vfc1が目標値(図14に示す例では、100V)から低下していき、第4フライングキャパシタC4の電圧Vfc4が目標値から上昇していき、アンバランスになっている。
これは、第1フライングキャパシタC1の充電時間が第4フライングキャパシタC4の充電時間より減少し、かつ第1フライングキャパシタC1の放電時間が第4フライングキャパシタC4の放電時間より増加することに起因する。具体的には、第2スイッチング素子Q2のターンオフタイミングの遅延により、第1フライングキャパシタC1の充電開始タイミングが遅延し、第1フライングキャパシタC1の充電電流の積算量(面積)が減少する。これにより、第1フライングキャパシタC1の電圧Vfc1が低下する。また、フライングキャパシタ電圧制御部32の制御により、第4フライングキャパシタC4の電圧Vfc4が上昇すると、後続のスイッチングタイミングにおいて第1フライングキャパシタC1の放電電流の積算量が増加する。
このように、第2スイッチング素子Q2のターンオフタイミングの遅延により、Vfc1<Vfc4の関係が維持される。また、フライングキャパシタ電圧制御部32の制御により、(Vfc1+Vfc4)/2=1/4Eの関係が維持されるように制御される。これにより、Vfc1<1/4E<Vfc4の関係が維持される。
対角同期制御方式では、第1フライングキャパシタC1の電圧Vfc1と第4フライングキャパシタC4の電圧Vfc4がそれぞれ1/4Eになるように個別に制御していない。したがって、第1フライングキャパシタC1の電圧Vfc1と第4フライングキャパシタC4の電圧Vfc4を1:1の関係に制御できない状態が発生する。このような状態では、スイッチング素子やフライングキャパシタの耐圧保護のために設けられている過電圧保護機能又は不足電圧保護機能が作動して、電力変換装置1が停止する事態が発生しやすくなる。電力変換装置1の不要な停止は、ユーザのデメリット(売電量の減少、自家消費量の減少、充電時間の延長など)となるため、できるだけ回避することが望まれる。
これに対して、対角非同期制御方式では各フライングキャパシタの電圧を個別に制御でき、フライングキャパシタの過電圧又は不足電圧による、電力変換装置1の不要な停止を回避することができる。以下、具体的に説明する。
図15は、対角非同期制御方式におけるフライングキャパシタ電圧制御部32の構成例を示す図である。信号Aと信号Bの生成方法は、図13(b)-(c)に示した生成方法と同様である。
図15において、乗算部3251は、直流電源2から供給される直流電圧Eに1/4を乗算して、電圧指令値1/4Eを算出する。減算部3213は、乗算部3251により算出された電圧指令値1/4Eから、第1電圧センサ41により検出された第1フライングキャパシタC1の電圧Vfc1を減算して第1の偏差を算出する。減算部3223は、乗算部3251により算出された電圧指令値1/4Eから、第2電圧センサ42により検出された第2フライングキャパシタC2の電圧Vfc2を減算して第2の偏差を算出する。減算部3233は、乗算部3251により算出された電圧指令値1/4Eから、第3電圧センサ43により検出された第3フライングキャパシタC3の電圧Vfc3を減算して第3の偏差を算出する。減算部3243は、乗算部3251により算出された電圧指令値1/4Eから、第4電圧センサ44により検出された第4フライングキャパシタC4の電圧Vfc4を減算して第4の偏差を算出する。
乗算部3214は、減算部3213により算出された第1の偏差と信号Aを乗算する。乗算部3224は、減算部3223により算出された第2の偏差と信号Aを乗算する。乗算部3234は、減算部3233により算出された第3の偏差と信号Aを乗算する。乗算部3244は、減算部3243により算出された第4の偏差と信号Aを乗算する。これらの処理により、リアクトル電流ILの符号と出力電圧Voutの符号が異なる場合、第1の偏差、第2の偏差、第3の偏差、第4の偏差の符号が反転される。
乗算部3215は、乗算部3214から入力される第1の偏差と信号Bを乗算する。乗算部3245は、乗算部3244から入力される第4の偏差と信号Bを乗算する。反転部3253は信号Bの符号を反転させて乗算部3225、乗算部3235、乗算部3227、乗算部3237に出力する。乗算部3225は、乗算部3224から入力される第2の偏差と、信号Bの反転信号を乗算する。乗算部3235は、乗算部3234から入力される第3の偏差と、信号Bの反転信号を乗算する。これにより、主デューティ値Duty_INV(操作量)の符号が正のときは第2の偏差及び第3の偏差が0になり、主デューティ値Duty_INV(操作量)の符号が負のときは第1の偏差及び第4の偏差が0になる。
補償部3216は、乗算部3215から入力される第1の偏差をPI補償して補正デューティ値Duty_FC1(操作量)を生成する。補償部3226は、乗算部3225から入力される第2の偏差をPI補償して補正デューティ値Duty_FC2(操作量)を生成する。補償部3236は、乗算部3235から入力される第3の偏差をPI補償して補正デューティ値Duty_FC3(操作量)を生成する。補償部3246は、乗算部3245から入力される第4の偏差をPI補償して補正デューティ値Duty_FC4(操作量)を生成する。
乗算部3217は、補償部3216から入力される補正デューティ値Duty_FC1(操作量)と信号Bを乗算する。乗算部3247は、補償部3246から入力される補正デューティ値Duty_FC4(操作量)と信号Bを乗算する。乗算部3227は、補償部3226から入力される補正デューティ値Duty_FC2(操作量)と、信号Bの反転信号を乗算する。乗算部3237は、補償部3236から入力される補正デューティ値Duty_FC3(操作量)と、信号Bの反転信号を乗算する。
主デューティ値Duty_INV(操作量)の符号が正のときは補正デューティ値Duty_FC2(操作量)と補正デューティ値Duty_FC3(操作量)が0になり、第2フライングキャパシタC2及び第3フライングキャパシタC3の電圧補正が無効になる。主デューティ値Duty_INV(操作量)が負のときは補正デューティ値Duty_FC1と補正デューティ値Duty_FC4(操作量)が0になり、第1フライングキャパシタC1及び第4フライングキャパシタC4の電圧補正が無効になる。
このように、電圧基本波の正の半周期では第2フライングキャパシタC2及び第3フライングキャパシタC3の電圧補正が無効になり、電圧基本波の負の半周期では、第1フライングキャパシタC1及び第4フライングキャパシタC4の電圧補正が無効になる。
図16は、実施の形態1に係る電力変換装置1を対角非同期制御方式で制御する場合の一例を示す波形図である。以下、図14に示した対角同期制御方式の波形図と、図16に示す対角非同期制御方式の波形図を比較して説明する。前者では、対角関係にある第2スイッチング素子Q2と第15スイッチング素子Q15が同じ駆動信号PWM2aで制御されていたが、後者では、第2スイッチング素子Q2が駆動信号PWM3aで第15スイッチング素子Q15が駆動信号PWM4aで個別に制御されている。これにより、後者では第2スイッチング素子Q2と第15スイッチング素子Q15のターンオンとターンオフのタイミングが異なっている。
また後者では、第1フライングキャパシタC1の充電電流の積算量(面積)と第4フライングキャパシタC4の充電電流の積算量(面積)が等しくなるように、第1フライングキャパシタC1の充電開始タイミングと充電終了タイミング、及び第4フライングキャパシタC4の充電開始タイミングと充電終了タイミングがそれぞれに個別に制御される。これにより、第1フライングキャパシタC1の電圧Vfc1と第4フライングキャパシタC4の電圧Vfc4がいずれも、目標値(100V)通りに制御されている。
本実施の形態では電力変換装置1を対角非同期制御方式で制御することを基本とするが、対角非同期制御方式と、対角同期制御方式を使い分けてもよい。例えば、単相3線式において、自立運転モードでは対角非同期制御方式で制御し、系統連係モードでは対角同期制御方式で制御してもよい。
例えば、系統連係モードにおける漏洩電流が、対角非同期制御方式より対角同期制御方式の方が少ない場合、系統連係モードにおいて、対角同期制御方式が採用されてもよい。また、単相2線式の場合、自立運転モードも含めて対角同期制御方式で制御してもよい。また、単相3線式の自立運転モードであっても、第3負荷R3(200V負荷)しか接続されない場合、対角同期制御方式で制御してもよい。
以上説明したように本実施の形態によれば、対角非同期制御方式を採用することにより、フライングキャパシタの電圧を個別に制御することができ、フライングキャパシタの電圧を高精度に安定させることができる。これにより、フライングキャパシタが過充電又は過放電されて、電力変換装置1が不要に停止される事態を回避することができる。
以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
上記図13-図16では、実施の形態1に係る電力変換装置1の動作を説明した。この点、実施の形態2、3に係る電力変換装置1では、フライングキャパシタ電圧制御部32の構成が半分で足りる。実施の形態2、3では第1フライングキャパシタC1及び第2フライングキャパシタC2が正の半周期も負の半周期も使用されるため、使用しない補償部を無効化するための制御も不要になる。
なお、実施の形態1では正の半周期で使用する第1フライングキャパシタC1及び第4フライングキャパシタC4と、負の半周期で使用する第2フライングキャパシタC2及び第3フライングキャパシタC3を分けているため、フライングキャパシタC1-C4の発熱が抑制される。これにより、フライングキャパシタC1-C4の劣化が抑制され、長寿命化させることができる。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
直流電源(2)から出力される直流電圧をもとに、5レベルの電圧を有する擬似正弦波を生成するインバータ回路(10)と、
前記インバータ回路(10)に含まれる複数のスイッチング素子(Q1-Q24)を制御する制御回路(30)と、を備え、
前記インバータ回路(10)は、
2つ又は4つのフライングキャパシタ回路(11-12 or 11-14)を含み、各フライングキャパシタ回路(11-12 or 11-14)が3レベルの電位を出力可能なマルチレベル出力部(11-12 or 11-14)と、
前記マルチレベル出力部(11-12 or 11-14)の2点間に流れる電流の向きを制御する極性切替部(15)と、を含み、
前記フライングキャパシタ回路(C1)は、
直列接続された4つのスイッチング素子(Q1-Q4)と、
2番目と3番目の2つのスイッチング素子(Q2-Q3)に並列に接続された一つのフライングキャパシタ(C1)と、を含み、
前記制御回路(30)は、各時点において制御対象となる前記マルチレベル出力部(11-12 or 11-14)に含まれる8つのスイッチング素子(Q1-Q8 or Q1-Q4、Q13-Q16 or Q5-Q12)を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御する、
電力変換装置(1)。
これによれば、各フライングキャパシタ(C1-C2 or C1-C4)の電圧を個別に制御することができる。
[項目2]
前記マルチレベル出力部(11-12 or 11-14)に含まれる、2つ又は4つの前記フライングキャパシタ(C1-C2 or C1-C4)の各電圧を検出するフライングキャパシタ電圧検出部(41-42 or 41-44)をさらに備え、
前記直流電源(2)から出力される直流電圧をEとするとき、
前記制御回路(30)は、前記フライングキャパシタ電圧検出部(41-42 or 41-44)により検出される各フライングキャパシタ(C1-C2 or C1-C4)の電圧が、1/4Eになるように個別にフィードバック制御する、
項目1に記載の電力変換装置(1)。
これによれば、各フライングキャパシタ(C1-C2 or C1-C4)の電圧が1/4Eになるように個別に制御することで、5レベル動作が可能となる。
[項目3]
前記インバータ回路(10)の交流側に設置されたリアクトル(L1-L2)と、
前記リアクトル(L1-L2)に流れる電流を検出する電流検出部(51-52)と、
前記電力変換装置(1)の出力電圧を検出する出力電圧検出部(47)と、をさらに備え、
前記制御回路(30)は、前記電流検出部(51-52)により検出された前記リアクト(L1-L2)に流れる電流の符号と、前記出力電圧検出部(47)により検出された前記電力変換装置(1)の出力電圧の符号が異なる場合、前記フライングキャパシタ電圧検出部(41-42 or 41-44)で検出された各フライングキャパシタ(C1-C2 or C1-C4)の電圧と1/4Eとの偏差の符号を反転させる、
項目2に記載の電力変換装置(1)。
これによれば、力率が1未満の場合、又は直流電源(2)に充電する場合にも対応することができる。
[項目4]
前記制御回路(30)は、前記フライングキャパシタ回路(11)に含まれる4つのスイッチング素子(Q1-Q4)の内、1番目と4番目の2つのスイッチング素子(Q1、Q4)、又は2番目と3番目の2つのスイッチング素子(Q2-Q3)の一方に供給する駆動信号で、前記フライングキャパシタ回路(11)に含まれるフライングキャパシタ(C1)の電圧を補正する、
項目1から3のいずれか1項に記載の電力変換装置(1)。
これによれば、主フィードバック制御(リアクトル電流制御、又は出力電圧制御)と、各フライングキャパシタ(C1-C2 or C1-C4)の電圧制御との制御干渉を防止することができる。
[項目5]
前記マルチレベル出力部(11-14)は、
第1フライングキャパシタ回路(11)-第4フライングキャパシタ回路(14)と、を有し、
直列接続された前記第1フライングキャパシタ回路(11)と前記第2フライングキャパシタ回路(12)が、前記直流電源(2)と並列に接続され、
直列接続された前記第3フライングキャパシタ回路(13)と前記第4フライングキャパシタ回路(14)が、前記直流電源(2)と並列に接続される、
項目1から4のいずれか1項に記載の電力変換装置(1)。
これによれば、各フライングキャパシタ(C1-C4)の発熱を抑制することができる。
[項目6]
前記制御回路(30)は、
正の半周期では、前記第2フライングキャパシタ回路(12)に含まれるフライングキャパシタ(C2)と前記第3フライングキャパシタ回路(13)に含まれるフライングキャパシタ(C3)の電圧補正を無効化し、
負の半周期では、前記第1フライングキャパシタ回路(11)に含まれるフライングキャパシタ(C1)と前記第4フライングキャパシタ回路(14)に含まれるフライングキャパシタ(C4)の電圧補正を無効化する、
項目5に記載の電力変換装置(1)。
これによれば、不安定な動作を防止することができる。
[項目7]
前記電力変換装置(1)は単相3線式の配電線に接続され、
前記単相3線式の配電線の第1電圧線と中性線間の電圧を検出する第1相出力電圧検出部(45)と、
前記単相3線式の配電線の第2電圧線と前記中性線間の電圧を検出する第2相出力電圧検出部(46)と、をさらに備え、
前記リアクトル(L1、L2)は、
前記単相3線式の配電線の前記第1電圧線に接続された第1リアクトル(L1)と、
前記単相3線式の配電線の前記第2電圧線に接続された第2リアクトル(L2)と、を有し、
前記電流検出部(51-52)は、
前記第1リアクトル(L1)に流れる電流を検出する第1電流検出部(51)と、
前記第2リアクトル(L2)に流れる電流を検出する第2電流検出部(52)と、を有し、
前記制御回路(30)は、自立運転時において、
前記第1電流検出部(51)により検出された前記第1リアクトル(L1)に流れる電流の符号と、前記第1相出力電圧検出部(45)により検出された前記第1電圧線と前記中性線間の出力電圧の符号が異なる場合、前記偏差の符号を反転させ、
前記第2電流検出部(52)により検出された前記第2リアクトル(L2)に流れる電流の符号と、前記第2相出力電圧検出部(46)により検出された前記第2電圧線と前記中性線間の出力電圧の符号が異なる場合、前記偏差の符号を反転させる、
項目3に記載の電力変換装置(1)。
これによれば、各フライングキャパシタ(C1-C2 or C1-C4)の電圧を、相ごとに独立して補正することができる。
[項目8]
前記制御回路(30)は、
前記電力変換装置(1)が単相3線式の配電線に接続され、前記電力変換装置(1)を自立運転させる場合、
各時点において制御対象となる前記マルチレベル出力部(11-12 or 11-14)に含まれる8つのスイッチング素子(Q1-Q8 or Q1-Q4、Q13-Q16 or Q5-Q12)を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御し、
前記電力変換装置(1)を系統連系運転させる場合、又は前記電力変換装置(1)が単相2線式の配電線に接続されている場合、
各時点において制御対象となる前記マルチレベル出力部(11-12 or 11-14)に含まれる8つのスイッチング素子(Q1-Q8 or Q1-Q4、Q13-Q16 or Q5-Q12)を、それぞれ個別に制御可能な2つの駆動信号と、当該2つの駆動信号と相補関係にある2つの駆動信号を含む4つの駆動信号で制御する、
項目1から7のいずれか1項に記載の電力変換装置(1)。
これによれば、運転モードに応じて、対角非同期制御方式と対角同期制御方式を使い分けることができる。
1 電力変換装置、 2 直流電源、 3 電力系統、 10 マルチレベルインバータ、 11-14 フライングキャパシタ回路、 15a-15b 極性切替部、 20 出力フィルタ、 30 制御部、 31 主フィードバック制御部、 32 フライングキャパシタ電圧制御部、 33 減算部、 34-37 PWM信号生成部、 41-47 電圧センサ、 51-52 電流センサ、 R1-R3 負荷、 Q1-Q24 スイッチング素子、 C1-C4 フライングキャパシタ、 C5-C6 分割コンデンサ、 C7-C8 出力コンデンサ、 L1-L2 出力リアクトル、 RY1-RY2 第2リレー。

Claims (8)

  1. 直流電源から出力される直流電圧をもとに、5レベルの電圧を有する擬似正弦波を生成するインバータ回路と、
    前記インバータ回路に含まれる複数のスイッチング素子を制御する制御回路と、を備え、
    前記インバータ回路は、
    2つ又は4つのフライングキャパシタ回路を含み、各フライングキャパシタ回路が3レベルの電位を出力可能なマルチレベル出力部と、
    前記マルチレベル出力部の2点間に流れる電流の向きを制御する極性切替部と、を含み、
    前記フライングキャパシタ回路は、
    直列接続された4つのスイッチング素子と、
    2番目と3番目の2つのスイッチング素子に並列に接続された一つのフライングキャパシタと、を含み、
    前記制御回路は、各時点において制御対象となる前記マルチレベル出力部に含まれる8つのスイッチング素子を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御する、
    電力変換装置。
  2. 前記マルチレベル出力部に含まれる、2つ又は4つの前記フライングキャパシタの各電圧を検出するフライングキャパシタ電圧検出部をさらに備え、
    前記直流電源から出力される直流電圧をEとするとき、
    前記制御回路は、前記フライングキャパシタ電圧検出部により検出される各フライングキャパシタの電圧が、1/4Eになるように個別にフィードバック制御する、
    請求項1に記載の電力変換装置。
  3. 前記インバータ回路の交流側に設置されたリアクトルと、
    前記リアクトルに流れる電流を検出する電流検出部と、
    前記電力変換装置の出力電圧を検出する出力電圧検出部と、をさらに備え、
    前記制御回路は、前記電流検出部により検出された前記リアクトルに流れる電流の符号と、前記出力電圧検出部により検出された前記電力変換装置の出力電圧の符号が異なる場合、前記フライングキャパシタ電圧検出部で検出された各フライングキャパシタの電圧と1/4Eとの偏差の符号を反転させる、
    請求項2に記載の電力変換装置。
  4. 前記制御回路は、前記フライングキャパシタ回路に含まれる4つのスイッチング素子の内、1番目と4番目の2つのスイッチング素子、又は2番目と3番目の2つのスイッチング素子の一方に供給する駆動信号で、前記フライングキャパシタ回路に含まれるフライングキャパシタの電圧を補正する、
    請求項1から3のいずれか1項に記載の電力変換装置。
  5. 前記マルチレベル出力部は、
    第1フライングキャパシタ回路-第4フライングキャパシタ回路と、を有し、
    直列接続された前記第1フライングキャパシタ回路と前記第2フライングキャパシタ回路が、前記直流電源と並列に接続され、
    直列接続された前記第3フライングキャパシタ回路と前記第4フライングキャパシタ回路が、前記直流電源と並列に接続される、
    請求項1から4のいずれか1項に記載の電力変換装置。
  6. 前記制御回路は、
    正の半周期では、前記第2フライングキャパシタ回路に含まれるフライングキャパシタと前記第3フライングキャパシタ回路に含まれるフライングキャパシタの電圧補正を無効化し、
    負の半周期では、前記第1フライングキャパシタ回路に含まれるフライングキャパシタと前記第4フライングキャパシタ回路に含まれるフライングキャパシタの電圧補正を無効化する、
    請求項5に記載の電力変換装置。
  7. 前記電力変換装置は単相3線式の配電線に接続され、
    前記単相3線式の配電線の第1電圧線と中性線間の電圧を検出する第1相出力電圧検出部と、
    前記単相3線式の配電線の第2電圧線と前記中性線間の電圧を検出する第2相出力電圧検出部と、をさらに備え、
    前記リアクトルは、
    前記単相3線式の配電線の前記第1電圧線に接続された第1リアクトルと、
    前記単相3線式の配電線の前記第2電圧線に接続された第2リアクトルと、を有し、
    前記電流検出部は、
    前記第1リアクトルに流れる電流を検出する第1電流検出部と、
    前記第2リアクトルに流れる電流を検出する第2電流検出部と、を有し、
    前記制御回路は、自立運転時において、
    前記第1電流検出部により検出された前記第1リアクトルに流れる電流の符号と、前記第1相出力電圧検出部により検出された前記第1電圧線と前記中性線間の出力電圧の符号が異なる場合、前記偏差の符号を反転させ、
    前記第2電流検出部により検出された前記第2リアクトルに流れる電流の符号と、前記第2相出力電圧検出部により検出された前記第2電圧線と前記中性線間の出力電圧の符号が異なる場合、前記偏差の符号を反転させる、
    請求項3に記載の電力変換装置。
  8. 前記制御回路は、
    前記電力変換装置が単相3線式の配電線に接続され、前記電力変換装置を自立運転させる場合、
    各時点において制御対象となる前記マルチレベル出力部に含まれる8つのスイッチング素子を、それぞれ個別に制御可能な4つの駆動信号と、当該4つの駆動信号と相補関係にある4つの駆動信号を含む8つの駆動信号で制御し、
    前記電力変換装置を系統連系運転させる場合、又は前記電力変換装置が単相2線式の配電線に接続されている場合、
    各時点において制御対象となる前記マルチレベル出力部に含まれる8つのスイッチング素子を、それぞれ個別に制御可能な2つの駆動信号と、当該2つの駆動信号と相補関係にある2つの駆動信号を含む4つの駆動信号で制御する、
    請求項1から7のいずれか1項に記載の電力変換装置。
JP2021199369A 2021-12-08 2021-12-08 電力変換装置 Pending JP2023084957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021199369A JP2023084957A (ja) 2021-12-08 2021-12-08 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021199369A JP2023084957A (ja) 2021-12-08 2021-12-08 電力変換装置

Publications (1)

Publication Number Publication Date
JP2023084957A true JP2023084957A (ja) 2023-06-20

Family

ID=86775548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021199369A Pending JP2023084957A (ja) 2021-12-08 2021-12-08 電力変換装置

Country Status (1)

Country Link
JP (1) JP2023084957A (ja)

Similar Documents

Publication Publication Date Title
US11456679B2 (en) Voltage level multiplier module for multilevel power converters
US9013906B2 (en) Power system-interconnected inverter device
US9509229B2 (en) Power supply apparatus including power conversion circuit controlled by PWM control circuit
EP2491644B1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
US20140063884A1 (en) Inverter device
US10193434B2 (en) Power conversion device and three-phase AC power supply device
KR101688649B1 (ko) 중성점 전압의 불평형 제어에 의한 고효율 3 레벨 태양광 인버터
WO2007129456A1 (ja) 電力変換装置
US9755551B2 (en) Power conversion device
JP6538544B2 (ja) 自励式無効電力補償装置
JP6396135B2 (ja) 電力変換装置
JP2012239309A (ja) 電力変換装置
JP2007219591A (ja) 電力変換装置
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
JP2023084957A (ja) 電力変換装置
CN115241926A (zh) 母线电压控制方法、母线平衡控制方法及其系统
JP7153878B2 (ja) 電力変換装置
JP2019047701A (ja) 電力変換装置およびその制御方法
US20210028719A1 (en) Power conversion apparatus
Mohanasundaram et al. Voltage quality enrichment using transformerless dynamic voltage compensator based on asymmetrical multilevel inverter
Reddy et al. Hysteresis controller and delta modulator-a two viable scheme for current controlled voltage source inverter
JP7051600B2 (ja) 多段変換器の制御装置
Diab et al. A Zeta-converter based four-switch three-phase DC-AC inverter
JP2023093175A (ja) 電力変換装置
JP2023166738A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240123