JP2023077662A - Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor - Google Patents

Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor Download PDF

Info

Publication number
JP2023077662A
JP2023077662A JP2021191010A JP2021191010A JP2023077662A JP 2023077662 A JP2023077662 A JP 2023077662A JP 2021191010 A JP2021191010 A JP 2021191010A JP 2021191010 A JP2021191010 A JP 2021191010A JP 2023077662 A JP2023077662 A JP 2023077662A
Authority
JP
Japan
Prior art keywords
superconducting wire
temperature
lead
metal
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021191010A
Other languages
Japanese (ja)
Inventor
和朗 井上
Kazuo Inoue
義彦 高野
Yoshihiko Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2021191010A priority Critical patent/JP2023077662A/en
Publication of JP2023077662A publication Critical patent/JP2023077662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To reduce a junction length and realize e.g., 1x10-10 Ω or less as junction resistance when connecting a high temperature oxide superconducting wire material and a metal-based low temperature superconducting wire material.SOLUTION: As a high temperature oxide superconducting wire material, a Bi2Sr2Ca2Cu3O10 (described as Bi2223 hereinafter) wire material is prepared and as a metal-based low temperature superconducting wire material, an NbTi wire material is prepared. As a junction material of the high temperature oxide superconducting wire material and the metal-based low temperature superconducting wire material, a lead-bismuth binary alloy is prepared. Regarding a composition ratio of the lead-bismuth binary alloy, lead is 40% to 60% in mass% and the remaining is bismuth and an inevitable impurity. An end of a superconducting wire material consisting of the high temperature oxide superconducting wire material and an end of a superconducting wire material consisting of the metal-based low temperature superconducting wire material are immersed in the lead-bismuth binary alloy in a molten state for a fixed time, cooled and modified, such that the high temperature oxide superconducting wire material and the metal-based low temperature superconducting wire material are connected via the lead-bismuth binary alloy.SELECTED DRAWING: Figure 1

Description

特許法第30条第2項適用申請有り (1) 令和2年12月3日公開 公益社団法人 低温工学・超電導学会発行 第100回2020年度秋季低温工学・超電導学会の講演概要集(https://www.csj.or.jp/conference/2020a/index.html) (2) 令和2年12月9日開催 公益社団法人 低温工学・超電導学会主催 第100回2020年度秋季低温工学・超電導学会(https://www.csj.or.jp/conference/2020a/index.html) (3) 令和3年9月16日公開 公益社団法人 低温工学・超電導学会発行 the 27th International Conference on Magnet Technology(MT27)の予稿集 (4) 令和3年11月15~19日開催 公益社団法人 低温工学・超電導学会主催 the 27th International Conference on Magnet Technology(MT27) 福岡国際会議場(福岡県福岡市博多区石城町2-1)Application for application of Article 30, Paragraph 2 of the Patent Law (1) Released on December 3, 2020 Public Interest Incorporated Association Cryogenics and Superconductivity Society 100th Fall 2020 Cryogenics and Superconductivity Society Lecture Abstracts (https: //www.csj.or.jp/conference/2020a/index.html) (2) Held on December 9, 2020, hosted by the Society of Cryogenics and Superconductivity, the 100th 2020 Autumn Meeting of the Society of Cryogenics and Superconductivity (https://www.csj.or.jp/conference/2020a/index.html) (3) Published on September 16, 2021 Published by the Society of Cryogenics and Superconductivity, the 27th International Conference on Magnet Technology ( (4) November 15-19, 2021 The 27th International Conference on Magnet Technology (MT27) hosted by the Society of Cryogenics and Superconductivity, Fukuoka International Conference Center (Ishiki, Hakata-ku, Fukuoka City, Fukuoka Prefecture) Town 2-1)

本発明は高温酸化物超伝導線材と金属系低温超伝導線材のハイブリッド型超低抵抗接続構造及びその接続方法に関する。 The present invention relates to a hybrid type ultra-low resistance connection structure of a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire, and a connection method thereof.

NMRや医療用MRIでは、超伝導線材材料としてNbTi(ニオブチタン)の超伝導マグネットが使用されており、生成磁場が0.5Tから3T程度である。しかし、NMRやMRIにおいて、例えば20T以上の高磁場を生成する場合は、金属系低温超伝導線材(NbTi、NbSn)と高温酸化物超伝導線材(レアアース系超伝導体、ビスマス系超伝導体)を組み合わせて使用されている。特に、高磁場を生成する超伝導マグネットを永久電流運転モードで動作させるための解決策の一つとして、金属系低温超伝導線材と高温酸化物超伝導線材の異種超伝導線材間の接合が必要である。 In NMR and medical MRI, a superconducting magnet of NbTi (niobium titanium) is used as a superconducting wire material, and the generated magnetic field is about 0.5T to 3T. However, in NMR and MRI, when generating a high magnetic field of, for example, 20 T or more, metal-based low-temperature superconducting wires (NbTi, Nb 3 Sn) and high-temperature oxide superconducting wires (rare earth-based superconductors, bismuth-based superconductors body) are used in combination. In particular, as one of the solutions for operating a superconducting magnet that generates a high magnetic field in a persistent current operation mode, it is necessary to bond different types of superconducting wires, such as metallic low-temperature superconducting wires and high-temperature oxide superconducting wires. is.

金属系低温超伝導線材同士を接合する場合には、低融点のはんだ系低融点超伝導材料を介在させるのが一般的であり、抵抗ゼロの超伝導接合を実現している。金属系低温超伝導線材と高温酸化物超伝導線材を接合する場合、従来技術のはんだ系低融点超伝導材料で接合しても、抵抗ゼロの超伝導接合を実現できていない(例えば非特許文献2参照)。
代替技術として、レアアース系超伝導線材の場合、特許文献1では、常伝導接合を採用して、接合面積(接合長さ)を大きくすることで、永久電流運転可能とされる抵抗値まで下げる手法が開発された。しかしながら、接合長さが非常に長くなり、省スペース化のために、線材を巻き上げるなどの複雑な構造を必要とする。
ビスマス系超伝導線材の場合、特許文献2や非特許文献1、3では、スズ含有はんだにビスマス系超伝導線材を挿入して接合する方法を提案している。しかし、接合抵抗が9×10-9Ωで、NMR等の永久電流モードで使用可能な超伝導線材接合を実現することができなかった。
When metal-based low-temperature superconducting wires are joined together, it is common to interpose a low-melting-point solder-based low-melting-point superconducting material to achieve superconducting joining with zero resistance. When joining a metal-based low-temperature superconducting wire and a high-temperature oxide superconducting wire, even if the solder-based low-melting-point superconducting material of the prior art is used for joining, a superconducting joint with zero resistance cannot be realized (for example, non-patent literature 2).
As an alternative technology, in the case of a rare earth-based superconducting wire, Patent Document 1 adopts a normal-conducting joint to increase the joint area (joint length), thereby lowering the resistance value to a value that allows persistent current operation. was developed. However, the joining length becomes very long, and in order to save space, a complicated structure such as winding up the wire is required.
In the case of a bismuth-based superconducting wire, Patent Document 2 and Non-Patent Documents 1 and 3 propose a method of inserting a bismuth-based superconducting wire into tin-containing solder and joining them. However, the joint resistance was 9×10 −9 Ω, and a superconducting wire joint that could be used in a persistent current mode such as NMR could not be realized.

特許文献3では、実施例としてBiSrCaCu(Bi2212)が開示されており、接合長さ3cmで、接合抵抗が10-10Ω以下を達成している。Bi2212線材を利用したNMR用超伝導マグネットの開発は、主にアメリカで行われている。
他方で、日本ではBiSrCaCu10(以下、Bi2223と表記する)線材を採用しており、特許文献3の構成をそのまま適用したのでは、永久電流運転可能とされる抵抗値まで下げることが困難であった。
Patent Document 3 discloses Bi 2 Sr 2 CaCu 2 O 8 (Bi2212) as an example, which achieves a junction resistance of 10 −10 Ω or less with a junction length of 3 cm. The development of superconducting magnets for NMR using Bi2212 wires is mainly carried out in the United States.
On the other hand, in Japan, a wire made of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (hereinafter referred to as Bi2223) is used. It was difficult to lower the value.

特表2016-535431号公報Japanese Patent Publication No. 2016-535431 特開2018-129294号公報JP 2018-129294 A 特開2001-283660号公報JP-A-2001-283660

Applied Physics Express 10,093102(2017). doi:10.7567/APEX.10.093102Applied Physics Express 10,093102(2017). doi:10.7567/APEX.10.093102 Nobuya Banno et al “A new concept for developing a compact joint structure for reducing joint resistance between high-temperature superconductors (HTS) and low-temperature superconductors (LTS)”, 2020 Supercond. Sci. Technol. 33 115015Nobuya Banno et al “A new concept for developing a compact joint structure for reducing joint resistance between high-temperature superconductors (HTS) and low-temperature superconductors (LTS)”, 2020 Supercond. Sci. Technol. 33 115015 井上和朗 他、『Bi-Pb-Snはんだを利用したBi2223線材とNbTi線材の超伝導接合』、第98回 2019年度春季低温工学・超電導学会 2P―p09Kazuo Inoue et al., "Superconducting Bonding of Bi2223 Wire and NbTi Wire Using Bi-Pb-Sn Solder", 2019 Spring Cryogenics and Superconductivity Society of Japan 2P-p09

本発明は、上記従来技術の問題点を解決したもので、金属系低温超伝導線材と高温酸化物超伝導線材間の接続において、1GHz超級NMR用30T超伝導マグネットを永久電流モードで運転可能にするのに十分低い接合抵抗(具体的には、10-10Ω以下)を有する接合構造を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and makes it possible to operate a 30T superconducting magnet for over 1 GHz class NMR in a permanent current mode in the connection between a metallic low-temperature superconducting wire and a high-temperature oxide superconducting wire. It is an object of the present invention to provide a junction structure having a sufficiently low junction resistance (specifically, 10 −10 Ω or less) for

〔1〕本発明の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法は、
前記高温酸化物超伝導線材として、BiSrCaCu10線材を準備し、
前記金属系低温超伝導線材として、NbTi線材を準備し、
前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合材料として、鉛-ビスマス2元系合金を準備すると共に、前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:40%から60%、残部をビスマス及び不可避的不純物とし、
前記高温酸化物超伝導線材よりなる超伝導線材の端部と、前記金属系低温超伝導線材よりなる超伝導線材の端部を溶融状態にある前記鉛-ビスマス2元系合金の中で一定時間、浸漬後、冷却して固化し、
然して、前記鉛-ビスマス2元系合金を介して前記高温酸化物超伝導線材と前記金属系低温超伝導線材が接続されることを特徴とする。
[1] The ultra-low resistance connection method of the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire of the present invention comprises:
preparing a Bi 2 Sr 2 Ca 2 Cu 3 O 10 wire as the high-temperature oxide superconducting wire;
preparing an NbTi wire as the metallic low-temperature superconducting wire,
A lead-bismuth binary system alloy is prepared as a bonding material for the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire, and the composition ratio of the lead-bismuth binary system alloy is, in mass%, lead. : 40% to 60%, the balance being bismuth and unavoidable impurities,
An end portion of the superconducting wire made of the high-temperature oxide superconducting wire and an end portion of the superconducting wire made of the metal-based low-temperature superconducting wire are placed in the molten lead-bismuth binary alloy for a certain period of time. , solidified by cooling after immersion,
The high temperature oxide superconducting wire and the metal low temperature superconducting wire are connected via the lead-bismuth binary alloy.

〔2〕本発明の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法〔1〕において、好ましくは、鉛-ビスマス2元系合金の溶融状態での温度は210℃以下であるとよい。
〔3〕本発明の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法〔1〕または〔2〕において、好ましくは、前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合長さは60cm以下であり、前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合抵抗は10-10Ω以下であるとよい。
〔4〕本発明の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法〔1〕~〔3〕において、好ましくは、前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:50%、残部をビスマス及び不可避的不純物とするとよい。
[2] In the method [1] for ultra-low resistance connection of a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire according to the present invention, the temperature of the lead-bismuth binary alloy in a molten state is preferably 210°C or less. should be
[3] In the ultra-low resistance connection method [1] or [2] of the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire of the present invention, preferably, the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire are The bonding length of the conductive wire is preferably 60 cm or less, and the bonding resistance between the high-temperature oxide superconducting wire and the metallic low-temperature superconducting wire is preferably 10 −10 Ω or less.
[4] In the method [1] to [3] for ultra-low resistance connection of a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire according to the present invention, preferably, the composition ratio of the lead-bismuth binary alloy is In mass %, lead: 50%, the balance being bismuth and unavoidable impurities.

〔5〕本発明の超伝導線材接合構造は、高温酸化物超伝導線材よりなる超伝導線材の端部と、金属系低温超伝導線材よりなる超伝導線材の端部を接合材料を介して接合する超伝導線材接合構造であって、
前記高温酸化物超伝導線材はBiSrCaCu10線材であり、
前記金属系低温超伝導線材はNbTi線材であり、
前記接合材料は、鉛-ビスマス2元系合金であって、前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:40%から60%、残部をビスマス及び不可避的不純物とする。
〔6〕本発明のNMR、MRI、又は超伝導輸送機器は、高温酸化物超伝導線材と金属系低温超伝導線材の超伝導線材接合構造〔5〕を用いることを特徴としている。
[5] In the superconducting wire bonding structure of the present invention, the end of a superconducting wire made of a high-temperature oxide superconducting wire and the end of a superconducting wire made of a metal low-temperature superconducting wire are joined via a joining material. A superconducting wire joint structure that
The high -temperature oxide superconducting wire is a Bi2Sr2Ca2Cu3O10 wire,
The metallic low-temperature superconducting wire is an NbTi wire,
The joint material is a lead-bismuth binary alloy, and the composition ratio of the lead-bismuth binary alloy is, in mass%, lead: 40% to 60%, the balance being bismuth and unavoidable impurities. .
[6] The NMR, MRI, or superconducting transport equipment of the present invention is characterized by using the superconducting wire bonding structure [5] of a high-temperature oxide superconducting wire and a metallic low-temperature superconducting wire.

このように構成された高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法およびその構造によれば、次のように作用する。
[1]NbTi金属系低温超伝導線材よりなる超伝導線材の端部と接合材である鉛-ビスマス系合金超伝導材料は、超伝導接合であり、電気抵抗ゼロで接合界面を電流が流れる。
[2]Bi2223よりなる超伝導線材の端部と接合材である鉛-ビスマス系合金超伝導材料は、常伝導接合であり、接合界面でオーム抵抗が発生する。
[3]従って、本発明の超伝導線材接合構造は、上記2種の超伝導線材をはんだ系接合材料を介して、超伝導接合と常伝導接合を直列に接続したハイブリッド(複合)型を特徴としている。
The ultra-low-resistance connection method and structure of the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire thus constructed operate as follows.
[1] The end of a superconducting wire made of a NbTi metal-based low-temperature superconducting wire and the lead-bismuth alloy superconducting material as a joining material are superconducting joints, and current flows through the joint interface with zero electrical resistance.
[2] The end of the superconducting wire made of Bi2223 and the lead-bismuth-based alloy superconducting material, which is the joining material, are normally conducting joints, and ohmic resistance is generated at the joining interface.
[3] Therefore, the superconducting wire bonding structure of the present invention is characterized by a hybrid (composite) type in which the above two types of superconducting wires are connected in series by superconducting bonding and normal-conducting bonding via a solder-based bonding material. and

NMR等で使用される超伝導マグネットの永久電流モードで使用可能な超低抵抗を実現するためには、この常伝導接合部のオーム抵抗を極小化する必要があり、その方法を見出した。即ち、本発明の超伝導線材ハイブリッド型接合構造において、接合材の鉛-ビスマス合金の組成割合の最適化、鉛-ビスマス合金の溶融温度の低温化及び接合長さの長尺化により接合抵抗を大幅に抑制した。その結果、1GHz超級NMR用30T超伝導マグネットの永久電流運転モードで使用可能な超低抵抗(10-10Ω以下)の超伝導線材接合構造を実現した。
特に、接合長さの長尺化が重要なプロセスであり、Bi2223よりなる超伝導線材と接合材である鉛-ビスマス系合金超伝導材料の接合抵抗は、接合長さと逆比例の関係がある。接合長さ36cm以上でオーム抵抗が10-10Ω以下の超低抵抗となり、1GHz超級NMR用30T超伝導マグネットで永久電流運転モードが使用可能な接続が得られる。
In order to realize an ultra-low resistance that can be used in the persistent current mode of a superconducting magnet used in NMR, etc., it is necessary to minimize the ohmic resistance of this normal-conducting junction, and a method has been found. That is, in the superconducting wire hybrid type joint structure of the present invention, the joint resistance is increased by optimizing the composition ratio of the lead-bismuth alloy of the joint material, lowering the melting temperature of the lead-bismuth alloy, and lengthening the joint length. greatly suppressed. As a result, we realized a superconducting wire joint structure with ultra-low resistance (10 -10 Ω or less) that can be used in the persistent current operation mode of a 30T superconducting magnet for 1 GHz-class NMR.
In particular, lengthening the joint length is an important process, and the joint resistance between the superconducting wire made of Bi2223 and the lead-bismuth alloy superconducting material as the joint material is inversely proportional to the joint length. At a junction length of 36 cm or more, the ohmic resistance becomes ultra-low resistance of 10 −10 Ω or less, and a connection is obtained in which a persistent current operation mode can be used with a 30 T superconducting magnet for 1 GHz-class NMR.

本発明のビスマス系高温酸化物超伝導線材とNbTi系低温超伝導線材間のハイブリッド型接合構造において、接合抵抗を10-10Ω以下の超低抵抗に低減することに成功した。その結果、1GHz超級のNMR用30T超伝導マグネットの永久電流運転モードで十分使用可能な超伝導線材接合構造を実現した。
1GHz超級のNMRが運用され普及拡大すれば、タンパク質の詳細な分析など、医療、製薬及び物質科学の分野の発展に大いに貢献できる。また、NMRやMRI以外の他用途の高磁場超伝導マグネットを永久電流運転モードで使用可能になるなどの様々な応用が見込まれる。
In the hybrid joint structure between the bismuth-based high-temperature oxide superconducting wire and the NbTi-based low-temperature superconducting wire according to the present invention, the joint resistance was successfully reduced to an ultra-low resistance of 10 −10 Ω or less. As a result, we realized a superconducting wire joint structure that can be used sufficiently in the persistent current operation mode of a 30T superconducting magnet for NMR of over 1 GHz.
If NMR at over 1 GHz is operated and spread, it will greatly contribute to the development of the fields of medicine, pharmaceuticals, and material science, such as detailed analysis of proteins. In addition, various applications are expected, such as enabling the use of a high magnetic field superconducting magnet for purposes other than NMR and MRI in a persistent current operation mode.

本発明の一実施形態を示す超伝導線材ハイブリッド型接合構造の構成図である。1 is a configuration diagram of a superconducting wire hybrid joint structure showing an embodiment of the present invention; FIG. 本発明で開発した手法で実際に作製した超伝導線材ハイブリッド型接合部の写真である。4 is a photograph of a superconducting wire hybrid joint actually produced by the technique developed in the present invention. 本発明の超伝導線材接合構造のミクロ組織を説明する図で、Bi2223超伝導線材と接合材である鉛-ビスマス系はんだ合金の接合界面を説明している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining the microstructure of the superconducting wire bonding structure of the present invention, which illustrates the bonding interface between a Bi2223 superconducting wire and a lead-bismuth-based solder alloy as a bonding material. 本発明の超伝導線材接合構造のミクロ組織を説明する図で、NbTi線材と接合材である鉛-ビスマス系はんだ合金の接合界面を説明している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining the microstructure of the superconducting wire bonding structure of the present invention, and illustrates the bonding interface between the NbTi wire and the lead-bismuth solder alloy as the bonding material. 本発明の一実施形態を示す、超伝導線材ハイブリッド型接合部の接合抵抗と接合長さの逆比例の関係を示す図である。FIG. 2 is a diagram showing an inversely proportional relationship between the joint resistance and the joint length of a superconducting wire hybrid joint, showing an embodiment of the present invention; 本発明の一実施例を示すBi2223線材をリング状に巻いて接合する場合の構成図である。FIG. 2 is a configuration diagram showing an embodiment of the present invention when a Bi2223 wire rod is wound into a ring and joined. 実際に作製したリング型接合試料の写真である。4 is a photograph of an actually produced ring-shaped joint sample. 接合熱処理温度と接合抵抗の関係を示す図である。It is a figure which shows the relationship between the joining heat treatment temperature and joining resistance. Bi2223超伝導線材と接合材の鉛-ビスマス合金の界面付近のSEM像で、接合熱処理温度160℃である。This is an SEM image of the vicinity of the interface between the Bi2223 superconducting wire and the lead-bismuth alloy of the bonding material, at a bonding heat treatment temperature of 160°C. Bi2223超伝導線材と接合材の鉛-ビスマス合金の界面付近のSEM像で、接合熱処理温度260℃である。This is an SEM image of the vicinity of the interface between the Bi2223 superconducting wire and the lead-bismuth alloy of the bonding material, at a bonding heat treatment temperature of 260°C. Bi2223超伝導線材と接合材の鉛-ビスマス合金の界面付近のSEM像で、接合熱処理温度310℃である。This is an SEM image of the vicinity of the interface between the Bi2223 superconducting wire and the lead-bismuth alloy of the bonding material, at a bonding heat treatment temperature of 310°C.

以下、図面を用いて本発明を説明する。
図1は、本発明の実施形態を示す超伝導線材ハイブリッド型接合構造の構成図である。
図1に示す実施例では、高温酸化物超伝導線材としてBi2223線材、金属系低温超伝導線材としてNbTi線材を接合材を使用して接合した。接合材のはんだ系低融点超伝導材料には、鉛-ビスマス合金(Pb-50wt%Bi)を用いた。
The present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a superconducting wire hybrid type joint structure showing an embodiment of the present invention.
In the embodiment shown in FIG. 1, a Bi2223 wire as a high-temperature oxide superconducting wire and an NbTi wire as a metal-based low-temperature superconducting wire were joined using a joining material. A lead-bismuth alloy (Pb-50 wt % Bi) was used as a solder-based low melting point superconducting material for the joining material.

このように構成された超伝導線材ハイブリッド型接合構造の製造工程は以下の如くである。
[1]住友電工製DI-BSCCO Type HTシリーズのBi2223線材を使用する場合、予め補強材料を除去することが望ましい。
[2]NbTi線材は、銅シースを予め除去することが望ましい。
[3][1]及び[2]の工程で前処理されたBi2223線材とNbTi線材を、溶融状態の鉛-ビスマスはんだ合金に浸漬して、所定時間保持した後、冷却して固化することで超伝導線材とはんだ合金が強固に接合する。
The manufacturing process of the superconducting wire hybrid type joint structure constructed as described above is as follows.
[1] When using Sumitomo Electric's DI-BSCCO Type HT series Bi2223 wire, it is desirable to remove the reinforcing material in advance.
[2] It is desirable to remove the copper sheath in advance from the NbTi wire.
[3] The Bi2223 wire rod and the NbTi wire rod pretreated in steps [1] and [2] are immersed in a molten lead-bismuth solder alloy, held for a predetermined time, and then cooled and solidified. The superconducting wire and the solder alloy are strongly bonded.

図2に作製した超伝導線材接合部を示す。
図3は、本発明の超伝導線材接合構造のミクロ組織を説明する図で、図3Aは、Bi2223超伝導線材と接合材である鉛-ビスマス系はんだ合金の接合界面を説明している。接合界面には、Bi2223超伝導線材の周囲に銀シースが存在し、これを介して電流が流れるため、常伝導接合であり接合界面でオーム抵抗が発生する。図3Bは、NbTi線材と接合材である鉛-ビスマス系はんだ合金の接合界面を説明している。NbTi線材と鉛-ビスマス系はんだ合金が直接的に接合しており、超伝導接合を形成する。
はんだ溶融状態の温度は、はんだ合金の融点以上で210℃以下の範囲で接合すると、接合抵抗を低減できる効果がある。
FIG. 2 shows the fabricated superconducting wire joint.
FIG. 3 is a diagram illustrating the microstructure of the superconducting wire bonding structure of the present invention, and FIG. 3A illustrates a bonding interface between a Bi2223 superconducting wire and a lead-bismuth solder alloy as a bonding material. At the joint interface, there is a silver sheath around the Bi2223 superconducting wire, through which current flows, so that the joint is a normal-conducting joint and an ohmic resistance is generated at the joint interface. FIG. 3B explains the bonding interface between the NbTi wire and the lead-bismuth solder alloy as the bonding material. The NbTi wire and the lead-bismuth solder alloy are directly joined to form a superconducting joint.
If the temperature of the molten solder is in the range of the melting point of the solder alloy or higher and 210° C. or lower, the joint resistance can be reduced.

接合材である鉛-ビスマスはんだ合金の鉛とビスマスの組成割合は、質量%で、鉛40%から60%:ビスマス60%から40%の割合がよく、鉛ビスマス2元系の共焦点の組成付近(Pb-50wt%Bi)が好ましい。不可避的不純物は鉛やビスマスの原料に含有される第3の元素を含むものであり、純度100%の鉛やビスマスを調整することは実用上困難であるため、表記してある。
Bi2223よりなる超伝導線材と接合材である鉛-ビスマス系合金超伝導材料の接合抵抗は、接合長さと逆比例の関係がある。異なる接合長さをもつ複数の試料を作製し、Bi2223よりなる超伝導線材とNbTiよりなる超伝導線材に電極を取り付け、液体ヘリウムに浸漬し4端子法による抵抗測定を行った。各々の実測の抵抗値を基準にして、接合抵抗値R(Ω)と接合長さL(cm)の関係式(R=3.6×10-9/L)を導いた。
The composition ratio of lead and bismuth in the lead-bismuth solder alloy used as the joint material is preferably 40% to 60% lead: 60% to 40% bismuth in mass%, and a lead-bismuth binary confocal composition. Around (Pb-50wt%Bi) is preferred. The unavoidable impurities include third elements contained in raw materials of lead and bismuth, and are indicated because it is practically difficult to prepare lead and bismuth with 100% purity.
The bonding resistance between the superconducting wire made of Bi2223 and the lead-bismuth alloy superconducting material as the bonding material is inversely proportional to the bonding length. A plurality of samples with different joint lengths were prepared, electrodes were attached to a superconducting wire made of Bi2223 and a superconducting wire made of NbTi, and the wires were immersed in liquid helium to measure resistance by the four-probe method. A relational expression (R j =3.6×10 −9 /L j ) between the junction resistance value R j (Ω) and the junction length L j (cm) was derived based on each measured resistance value.

図4は、接合抵抗と接合長さの関係を示している。R-L関係式より、接合長さ36cm以上でオーム抵抗が10-10Ω以下の超低抵抗となり、1GHz超級NMR用30T超伝導マグネットで永久電流運転モードが使用可能な接続が得られる。
NbTiよりなる超伝導線材と接合材の鉛-ビスマス系合金超伝導材料の接合は、超伝導接合であるので、接合長さは、1cm程度で十分である。
FIG. 4 shows the relationship between junction resistance and junction length. According to the R j −L j relational expression, the ohmic resistance becomes ultra-low resistance of 10 −10 Ω or less at a junction length of 36 cm or more, and a connection that allows the use of a persistent current operation mode with a 30 T superconducting magnet for 1 GHz or higher NMR can be obtained. .
Since the joining of the superconducting wire made of NbTi and the lead-bismuth alloy superconducting material of the joining material is superconducting joining, a joining length of about 1 cm is sufficient.

図5Aは、Bi2223線材をリング状に巻いて接合する場合の構成図である。また、図5Bは、実際に作製した接合試料の写真である。リング形状にすることで接合部のコンパクト化を実現した。 FIG. 5A is a configuration diagram when a Bi2223 wire is wound into a ring and joined. Moreover, FIG. 5B is a photograph of a bonded sample that was actually produced. By making it a ring shape, we have achieved a more compact joint.

図6は、接合熱処理温度と接合抵抗の関係を示す図である。接合長さ3cmの接合試料を測定した。接合抵抗は、210℃を超えると急激に増加する。本件のNMR用超伝導マグネットの構造上の制約から、接合長さは、約60cm以下が望ましい。接合長さ60cmで、10-10Ω以下を達成するためには、接合抵抗値R(Ω)と接合長さL(cm)の関係式(R=6×10-9 /L)を用いて逆算すると、接合長さ3cmで2.0×10-9Ω以下に相当する。図6より、この条件を満たすためには、接合熱処理温度を210℃以下にすることが望ましい。 FIG. 6 is a diagram showing the relationship between the bonding heat treatment temperature and the bonding resistance. Bonded samples with a bond length of 3 cm were measured. The junction resistance sharply increases above 210°C. Due to the structural restrictions of the superconducting magnet for NMR, the joint length is preferably about 60 cm or less. In order to achieve 10 −10 Ω or less with a junction length of 60 cm, a relational expression (R j = 6 ×10 −9 /L j ), it corresponds to 2.0×10 −9 Ω or less at a junction length of 3 cm. From FIG. 6, in order to satisfy this condition, it is desirable to set the bonding heat treatment temperature to 210° C. or lower.

図7は、Bi2223超伝導線材と接合材の鉛-ビスマス合金の界面付近のSEM像である。図7(A)は接合熱処理温度160℃、図7(B)は接合熱処理温度260℃、及び図7(C)は接合熱処理温度310℃でそれぞれ作製した。
図7(A)は、接合熱処理温度160℃で作製した試料のSEM像を示す。Bi2223超伝導線材は、Ag(銀)シースで完全に覆われており、Ag外縁で鉛-ビスマス合金と接続している。図7(B)及び(C)は、接合熱処理温度260℃及び310℃でそれぞれ作製した試料のSEM像を示す。接合熱処理温度を上げるにつれて、Agシースが除去されていく様子が分かる。接合熱処理温度310℃では、中央部のAgはまだ残存しているが、外縁部では、ほぼ消失している。図6の接合熱処理温度と接合抵抗の関係と図7のSEM写真から、低い接合抵抗を達成するためには、Agシースが除去されないことが望ましく、低い接合熱処理温度で作製する必要がある。
FIG. 7 is an SEM image of the vicinity of the interface between the Bi2223 superconducting wire and the lead-bismuth alloy of the joining material. 7(A) was manufactured at a bonding heat treatment temperature of 160° C., FIG. 7(B) was manufactured at a bonding heat treatment temperature of 260° C., and FIG. 7(C) was manufactured at a bonding heat treatment temperature of 310° C., respectively.
FIG. 7A shows an SEM image of a sample produced at a bonding heat treatment temperature of 160.degree. The Bi2223 superconducting wire is completely covered with an Ag (silver) sheath and connected with a lead-bismuth alloy at the Ag outer edge. FIGS. 7(B) and (C) show SEM images of samples fabricated at bonding heat treatment temperatures of 260° C. and 310° C., respectively. It can be seen that the Ag sheath is removed as the bonding heat treatment temperature is increased. At a bonding heat treatment temperature of 310° C., Ag still remains in the central portion, but has almost disappeared in the outer edge portion. From the relationship between bonding heat treatment temperature and bonding resistance in FIG. 6 and the SEM photograph in FIG. 7, it is desirable that the Ag sheath is not removed in order to achieve low bonding resistance, and it is necessary to fabricate at a low bonding heat treatment temperature.

本件のNMR用超伝導マグネットの構造上の制約から、接合長さは、約60cm以下が望ましい。本実施の形態では、例えば接合長36cmで、例えば10-10Ω以下を達成しており、接合抵抗の技術的課題のみならず、NMR用超伝導マグネットの構造上の技術的課題も克服している。 Due to the structural restrictions of the superconducting magnet for NMR, the joint length is preferably about 60 cm or less. In the present embodiment, for example, 10 −10 Ω or less is achieved at a junction length of 36 cm, for example. there is

本発明のビスマス系高温酸化物超伝導線材とNbTi系低温超伝導線材間の超伝導線材接合構造において、接合抵抗を例えば10-10Ω以下の超低抵抗に低減することができる。その結果、例えば1GHz超級のNMR用30T超伝導マグネットの永久電流運転モードで十分使用可能な超伝導線材接合構造を提供できる。

In the superconducting wire bonding structure between the bismuth-based high-temperature oxide superconducting wire and the NbTi-based low-temperature superconducting wire according to the present invention, the bonding resistance can be reduced to an ultra-low resistance of, for example, 10 −10 Ω or less. As a result, it is possible to provide a superconducting wire joint structure that can be used sufficiently in the persistent current operation mode of a 30T superconducting magnet for NMR of over 1 GHz, for example.

Claims (6)

高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法であって、
前記高温酸化物超伝導線材として、BiSrCaCu10線材を準備し、
前記金属系低温超伝導線材として、NbTi線材を準備し、
前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合材料として、鉛-ビスマス2元系合金を準備すると共に、前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:40%から60%、残部をビスマス及び不可避的不純物とし、
前記高温酸化物超伝導線材よりなる超伝導線材の端部と、前記金属系低温超伝導線材よりなる超伝導線材の端部を溶融状態にある前記鉛-ビスマス2元系合金の中で一定時間、浸漬後、冷却して固化し、
然して、前記鉛-ビスマス2元系合金を介して前記高温酸化物超伝導線材と前記金属系低温超伝導線材が接続されること、
を特徴とする高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法。
A method for ultra-low resistance connection of a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire, comprising:
preparing a Bi 2 Sr 2 Ca 2 Cu 3 O 10 wire as the high-temperature oxide superconducting wire;
preparing an NbTi wire as the metallic low-temperature superconducting wire,
A lead-bismuth binary system alloy is prepared as a bonding material for the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire, and the composition ratio of the lead-bismuth binary system alloy is, in mass%, lead. : 40% to 60%, the balance being bismuth and unavoidable impurities,
An end portion of the superconducting wire made of the high-temperature oxide superconducting wire and an end portion of the superconducting wire made of the metal-based low-temperature superconducting wire are placed in the molten lead-bismuth binary alloy for a certain period of time. , solidified by cooling after immersion,
and connecting the high-temperature oxide superconducting wire and the metallic low-temperature superconducting wire through the lead-bismuth binary alloy;
A method for ultra-low resistance connection of a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire, characterized by:
前記鉛-ビスマス2元系合金の溶融状態での温度は210℃以下である請求項1に記載の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法。 2. A method for connecting a high-temperature oxide superconducting wire and a metal-based low-temperature superconducting wire according to claim 1, wherein said lead-bismuth binary alloy has a temperature of 210.degree. C. or less in a molten state. 前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合長さは60cm以下であり、
前記高温酸化物超伝導線材と前記金属系低温超伝導線材の接合抵抗は10-10Ω以下である請求項1又は2に記載の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法。
The bonding length between the high temperature oxide superconducting wire and the metal low temperature superconducting wire is 60 cm or less,
3. The ultra-low junction resistance of the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire according to claim 1 or 2, wherein the joint resistance between the high-temperature oxide superconducting wire and the metal-based low-temperature superconducting wire is 10 −10 Ω or less. Resistor connection method.
前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:50%、残部をビスマス及び不可避的不純物とする請求項1乃至3の何れかに記載の高温酸化物超伝導線材と金属系低温超伝導線材の超低抵抗接続方法。 The high-temperature oxide superconducting wire and metal according to any one of claims 1 to 3, wherein the composition ratio of the lead-bismuth binary alloy is, in mass%, lead: 50%, the balance being bismuth and unavoidable impurities. ultra-low-resistance connection method for low-temperature superconducting wires. 高温酸化物超伝導線材よりなる超伝導線材の端部と、金属系低温超伝導線材よりなる超伝導線材の端部を接合材料を介して接合する超伝導線材接合構造であって、
前記高温酸化物超伝導線材はBiSrCaCu10線材であり、
前記金属系低温超伝導線材はNbTi線材であり、
前記接合材料は、鉛-ビスマス2元系合金であって、前記鉛-ビスマス2元系合金の組成割合は、質量%で、鉛:40%から60%、残部をビスマス及び不可避的不純物とする、
超伝導線材接合構造。
A superconducting wire joining structure for joining an end of a superconducting wire made of a high-temperature oxide superconducting wire and an end of a superconducting wire made of a metal-based low-temperature superconducting wire through a joining material,
The high -temperature oxide superconducting wire is a Bi2Sr2Ca2Cu3O10 wire,
The metallic low-temperature superconducting wire is an NbTi wire,
The joint material is a lead-bismuth binary alloy, and the composition ratio of the lead-bismuth binary alloy is, in mass%, lead: 40% to 60%, the balance being bismuth and unavoidable impurities. ,
Superconducting wire bonding structure.
請求項5に記載の高温酸化物超伝導線材と金属系低温超伝導線材の超伝導線材接合構造を用いたNMR、MRI、又は超伝導輸送機器。

An NMR, MRI, or superconducting transport device using the superconducting wire bonding structure of the high-temperature oxide superconducting wire according to claim 5 and the metal-based low-temperature superconducting wire.

JP2021191010A 2021-11-25 2021-11-25 Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor Pending JP2023077662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021191010A JP2023077662A (en) 2021-11-25 2021-11-25 Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021191010A JP2023077662A (en) 2021-11-25 2021-11-25 Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor

Publications (1)

Publication Number Publication Date
JP2023077662A true JP2023077662A (en) 2023-06-06

Family

ID=86622771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021191010A Pending JP2023077662A (en) 2021-11-25 2021-11-25 Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor

Country Status (1)

Country Link
JP (1) JP2023077662A (en)

Similar Documents

Publication Publication Date Title
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
US20070194870A1 (en) Permanent current switch
JPS6039705A (en) Aluminum stabilized superconductive conductor
CN111243818B (en) Superconducting joint of niobium-tin superconducting wire and niobium-titanium superconducting wire and preparation method thereof
JP2004319107A (en) COMPOSITE SHEATH MgB2 SUPERCONDUCTING WIRE AND ITS MANUFACTURING METHOD
US4743713A (en) Aluminum-stabilized NB3SN superconductor
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2004192934A (en) Superconductive wire and its manufacturing method
JP2023077662A (en) Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor
JP7126235B2 (en) Superconducting wire bonding structure and device using the same
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
JP3447990B2 (en) Superconducting connection method and superconducting connection structure for superconducting wires
JP2013225598A (en) Mgb2 superconducting magnet
US6531233B1 (en) Superconducting joint between multifilamentary superconducting wires
JP3783518B2 (en) Superconducting wire connection structure
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
JP7438533B2 (en) Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire
US11177588B2 (en) High-temperature superconducting wire connection assembly
US8307534B2 (en) Method of forming a coupled coil arrangement
JPH06163255A (en) Superconducting current connection part
JP2022139398A (en) Rare earth-based oxide superconductive multi-core wire rod and method for producing the same
Aksoy et al. Microstructure Comparison of Superconducting Joints Fabricating by Using Different Techniques
JP2023008589A (en) Permanent current switch
JP3635893B2 (en) Nb-Al-based superconducting conductor and method for producing the same
EP1434280A1 (en) superconducting joint between multifilamentary superconducting wires

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20211201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240712