JP7126235B2 - Superconducting wire bonding structure and device using the same - Google Patents

Superconducting wire bonding structure and device using the same Download PDF

Info

Publication number
JP7126235B2
JP7126235B2 JP2018006887A JP2018006887A JP7126235B2 JP 7126235 B2 JP7126235 B2 JP 7126235B2 JP 2018006887 A JP2018006887 A JP 2018006887A JP 2018006887 A JP2018006887 A JP 2018006887A JP 7126235 B2 JP7126235 B2 JP 7126235B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
alloy
wire
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006887A
Other languages
Japanese (ja)
Other versions
JP2018129294A (en
Inventor
義彦 高野
凌 松本
啓嗣 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JP2018129294A publication Critical patent/JP2018129294A/en
Application granted granted Critical
Publication of JP7126235B2 publication Critical patent/JP7126235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、上記課題を解決するものとして以下のことを特徴としている。
[1]第1の超伝導材料よりなる超伝導線材の端部と、第2の超伝導材料よりなる超伝導線材の端部とを接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造であって、前記第3の超伝導材料は、Pb 42 Sn 18 Bi 40 (単位はモル%)であることを特徴とする超伝導線材接合構造。
[2]前記第1の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であり、前記第2の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であることを特徴とする[1]に記載の超伝導線材接合構造。
[3]前記合金系材料は、NbTi、Nb3Sn、MgB2からなる群から選ばれる超伝導材料であることを特徴とする[2]に記載の超伝導線材接合構造。
[4]前記銅酸化物高温超伝導体材料は、BiSrCaCu、BiSrCa Cu10、YBaCu、REBaCu(REは希土類元素を表し、La(ランタン)、Pr(プラセオジム)、Nd(ネオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)からなる群から選ばれる)からなる群から選ばれる超伝導材料であることを特徴とする[2]に記載の超伝導線材接合構造。
]前記超伝導線材接合構造は、3本以上の超伝導線材の端部を接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造であって、前記超伝導接合部が前記3本以上の超伝導線材における分岐構造をなすことを特徴とする[1]から[]のいずれかに記載の超伝導線材接合構造。
][1]から[]のいずれかに記載の超伝導線材接合構造を用いた装置。
The present invention has the following features to solve the above problems.
[1] A superconducting joint made of a third superconducting material for joining an end of a superconducting wire made of a first superconducting material and an end of a superconducting wire made of a second superconducting material. A superconducting wire joint structure comprising: a superconducting wire joint structure, wherein the third superconducting material is Pb 42 Sn 18 Bi 40 (unit: mol %) .
[2] The first superconducting material is a superconducting material selected from the group consisting of an alloy material, a copper oxide high-temperature superconducting material, and an iron-based superconducting material, and the second superconducting material. is a superconducting material selected from the group consisting of alloy-based materials, copper oxide high-temperature superconductor materials, and iron-based superconducting materials.
[3] The superconducting wire joint structure according to [2], wherein the alloy material is a superconducting material selected from the group consisting of NbTi, Nb3Sn, and MgB2.
[ 4 ] The copper oxide high temperature superconductor material is Bi2Sr2CaCu2O8 , Bi2Sr2Ca2Cu3O10 , YBa2Cu3O7 , REBa2Cu3O7 ( RE is represents rare earth elements, La (lanthanum), Pr (praseodymium), Nd (neodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Dy (dysprosium), Ho (holmium), Er (erbium), The superconducting wire joint structure according to [2], wherein the superconducting material is selected from the group consisting of Tm (thulium), Yb (ytterbium), and Lu (lutetium).
[ 5 ] The superconducting wire joining structure is a superconducting wire joining structure comprising a superconducting joint made of a third superconducting material that joins ends of three or more superconducting wires, wherein the superconducting The superconducting wire joint structure according to any one of [1] to [ 4 ], wherein the joint portion forms a branched structure of the three or more superconducting wires.
[ 6 ] A device using the superconducting wire bonding structure according to any one of [1] to [ 5 ].

医療用のMRI(核磁気共鳴画像法)では、超伝導線材材料としてNbTi(ニオブチタン)が使用されており、生成磁場が0.5テスラから3.0テスラ程度である。NbTiの転移温度は約10Kであり、液体ヘリウムの沸点温度である4.2Kの状態で約12T(テスラ)の臨界磁場をもつ。 In medical MRI (magnetic resonance imaging), NbTi (niobium titanium) is used as a superconducting wire material, and the generated magnetic field is about 0.5 tesla to 3.0 tesla. NbTi has a transition temperature of about 10K and has a critical magnetic field of about 12T (Tesla) at 4.2K, which is the boiling point temperature of liquid helium.

しかし、核磁気共鳴装置において、例えば20テスラ程度の高磁場を生成する場合は、超伝導線材材料としてNbTiとNbSn、銅酸化物高温超伝導体(イットリウム系超伝導体、ビスマス系超伝導体)、二ホウ化マグネシウムなどの高い臨界磁場をもつ超伝導体材料を組み合わせて使用されている。この場合、超伝導線材接合構造においては、複数の超伝導材料よりなる超伝導線材同士を接合させる場合に、低融点の超伝導材料を介在させるのが一般的である(特許文献1参照)。この接合構造用の超伝導材料には、例えば鉛-スズ合金が使用されている。 However, when generating a high magnetic field of, for example, about 20 Tesla in a nuclear magnetic resonance apparatus, NbTi and Nb 3 Sn are used as superconducting wire materials, and cuprate high-temperature superconductors (yttrium-based superconductors, bismuth-based superconductors, It is used in combination with superconducting materials with high critical magnetic fields, such as magnesium diboride. In this case, in the superconducting wire joining structure, when joining superconducting wires made of a plurality of superconducting materials, it is common to interpose a superconducting material with a low melting point (see Patent Document 1). A lead-tin alloy, for example, is used as the superconducting material for this junction structure.

しかしながら、上記構成の従来の超伝導線材接合構造においては、従来用いられてきた鉛-スズ合金では、接合部分に生じる合金の組成ムラが原因で発熱が生じ、超伝導線材にゼロ抵抗で流せる電流の最大値(臨界電流密度)が低下してしまう問題があった。 However, in the conventional superconducting wire bonding structure having the above configuration, in the lead-tin alloy that has been used conventionally, heat is generated due to uneven composition of the alloy occurring in the bonding portion, and the current that can flow through the superconducting wire with zero resistance. There is a problem that the maximum value of (critical current density) decreases.

特開2003-173718号公報(特許第4171253号)Japanese Patent Application Laid-Open No. 2003-173718 (Patent No. 4171253)

本発明は、上記従来技術の問題点を解決したもので、常伝導材料を介在させることなく、複数の超伝導材料よりなる超伝導線材同士を接合させる超伝導線材接合構造を提供することを課題とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a superconducting wire bonding structure for bonding superconducting wires made of a plurality of superconducting materials without intervening a normal conducting material. and

本発明は、上記課題を解決するものとして以下のことを特徴としている。
[1]第1の超伝導材料よりなる超伝導線材の端部と、第2の超伝導材料よりなる超伝導線材の端部とを接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造であって、前記第3の超伝導材料は、鉛-スズ合金に低融点金属を添加してなることを特徴とする超伝導線材接合構造。
[2]前記第1の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であり、前記第2の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であることを特徴とする[1]に記載の超伝導線材接合構造。
[3]前記合金系材料は、NbTi、NbSn、MgBからなる群から選ばれる超伝導材料であることを特徴とする[2]に記載の超伝導線材接合構造。
[4]前記銅酸化物高温超伝導体材料は、BiSrCaCu、BiSrCaCu10、YBaCu、REBaCu(REは希土類元素を表し、La(ランタン)、Pr(プラセオジム)、Nd(ネオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)からなる群から選ばれる)からなる群から選ばれる超伝導材料であることを特徴とする[2]に記載の超伝導線材接合構造。
[5]前記第3の超伝導材料において、鉛とスズの組成割合は、モル比で、鉛1%から99%:スズ99%から1%の割合であり、前記低融点金属の添加量は鉛スズ合金に対してモル比で1%以上99%以下の割合で添加されたことを特徴とする[1]から[4]のいずれかに記載の超伝導線材接合構造。
鉛とスズの組成割合は、モル比で、好ましくは鉛10%から90%:スズ90%から10%の割合、更に好ましくは鉛60%から80%:スズ40%から20%の割合であるとよい。
前記低融点金属の添加量は、鉛スズ合金に対して、モル比で、好ましくは10%以上90%以下の割合、更に好ましくは20%以上70%以下の割合であるとよい。
[6]前記低融点金属は、ビスマス、アンチモン、ガリウム、インジウム、もしくはこれらの元素の二種以上を組み合わせた合金から選ばれる低融点金属であることを特徴とする[1]から[5]のいずれかに記載の超伝導線材接合構造。
[7][1]に記載の超伝導線材接合構造は、3本以上の超伝導線材の端部を接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造であって、前記超伝導接合部が前記3本以上の超伝導線材における分岐構造をなすことを特徴とする[1]から[6]のいずれかに記載の超伝導線材接合構造。
[8][1]から[7]のいずれかに記載の超伝導線材接合構造を用いた装置。
The present invention has the following features to solve the above problems.
[1] A superconducting joint made of a third superconducting material for joining an end of a superconducting wire made of a first superconducting material and an end of a superconducting wire made of a second superconducting material. wherein the third superconducting material is a lead-tin alloy to which a low-melting-point metal is added.
[2] The first superconducting material is a superconducting material selected from the group consisting of an alloy material, a copper oxide high-temperature superconducting material, and an iron-based superconducting material, and the second superconducting material. is a superconducting material selected from the group consisting of alloy-based materials, copper oxide high-temperature superconductor materials, and iron-based superconducting materials.
[3] The superconducting wire joint structure according to [ 2 ], wherein the alloy material is a superconducting material selected from the group consisting of NbTi, Nb3Sn , and MgB2.
[ 4 ] The copper oxide high temperature superconductor material is Bi2Sr2CaCu2O8 , Bi2Sr2Ca2Cu3O10 , YBa2Cu3O7 , REBa2Cu3O7 ( RE is represents rare earth elements, La (lanthanum), Pr (praseodymium), Nd (neodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Dy (dysprosium), Ho (holmium), Er (erbium), The superconducting wire joint structure according to [2], wherein the superconducting material is selected from the group consisting of Tm (thulium), Yb (ytterbium), and Lu (lutetium).
[5] In the third superconducting material, the composition ratio of lead and tin is 1% to 99% lead: 99% to 1% tin in molar ratio, and the amount of the low melting point metal added is The superconducting wire joint structure according to any one of [1] to [4], wherein the lead-tin alloy is added at a molar ratio of 1% or more to 99% or less.
The molar ratio of lead and tin is preferably 10% to 90% lead: 90% to 10% tin, more preferably 60% to 80% lead: 40% to 20% tin. Good.
The amount of the low-melting-point metal to be added is preferably 10% or more and 90% or less, more preferably 20% or more and 70% or less, in terms of molar ratio with respect to the lead-tin alloy.
[6] The low melting point metal is a low melting point metal selected from bismuth, antimony, gallium, indium, or alloys in which two or more of these elements are combined. The superconducting wire bonding structure according to any one of the above.
[7] The superconducting wire joint structure described in [1] is a superconducting wire joint structure comprising a superconducting joint made of a third superconducting material that joins the ends of three or more superconducting wires. The superconducting wire joint structure according to any one of [1] to [6], wherein the superconducting joint has a branched structure in the three or more superconducting wires.
[8] A device using the superconducting wire bonding structure according to any one of [1] to [7].

鉛とスズの組成割合は、低融点金属を含まない場合は、Pb70Sn30の領域とSn100領域に分かれる。Pb70Sn30の領域は、液体ヘリウム温度において超伝導領域となる。Sn100領域は、液体ヘリウム温度において非超伝導領域となる。 The composition ratio of lead and tin is divided into a Pb 70 Sn 30 region and a Sn 100 region when the low melting point metal is not included. The region of Pb 70 Sn 30 becomes superconducting region at liquid helium temperature. The Sn 100 region becomes a non-superconducting region at liquid helium temperatures.

本発明の超伝導線材接合構造によれば、鉛-スズ合金に少量のビスマスを添加することで接合部の組成ムラを大幅に抑制した。また、添加したビスマスは磁束のピン留め中心として働き、合金の上部臨界磁場・不可逆磁場ともに大きく向上した。 According to the superconducting wire rod joint structure of the present invention, composition unevenness at the joint is greatly suppressed by adding a small amount of bismuth to the lead-tin alloy. Moreover, the added bismuth acted as a pinning center of the magnetic flux, and both the upper critical magnetic field and the irreversible magnetic field of the alloy were greatly improved.

本発明の一実施例を示す超伝導線材接合構造の構成図で、要部構成図を示している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a superconducting wire bonding structure showing an embodiment of the present invention, showing a main configuration diagram; 本発明の一実施例を示す超伝導線材接合構造のミクロ組織を説明する図で、液体ヘリウム温度における超伝導領域(白い部分)と非超伝導状態(黒い部分)の分布状態を説明している図である。A diagram for explaining the microstructure of a superconducting wire bonding structure showing an embodiment of the present invention, and explaining the distribution state of superconducting regions (white parts) and non-superconducting states (black parts) at liquid helium temperature. It is a diagram. 鉛-スズ合金へのビスマス添加量を様々に変えた場合の臨界電流値を見積もるための電流-電圧特性を示している。The current-voltage characteristics for estimating the critical current values are shown for various amounts of bismuth added to lead-tin alloys. 鉛-スズ合金へのビスマス添加量を40モル%とした場合の、様々な印加磁場における臨界電流値を見積もるための電流-電圧特性を示している。The current-voltage characteristics for estimating the critical current value in various applied magnetic fields are shown when the amount of bismuth added to the lead-tin alloy is 40 mol%.

以下、本発明を実施形態に基づいて詳細に説明する。
図1は、本発明の実施形態を示す超伝導線材接合構造の構成図である。
図1に示す実施例では、第1の超伝導材料よりなる超伝導線材としてNbTi線材、第2の超伝導材料よりなる超伝導線材としてBiSrCaCu10(以下、Bi2223と表記する)線材を接合した。第3の超伝導材料は、鉛-スズ合金にビスマスを添加してなる鉛-スズ-ビスマス合金を用いた。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on embodiments.
FIG. 1 is a configuration diagram of a superconducting wire bonding structure showing an embodiment of the present invention.
In the embodiment shown in FIG. 1, NbTi wire is used as the superconducting wire made of the first superconducting material, and Bi 2 Sr 2 Ca 2 Cu 3 O 10 (hereinafter referred to as Bi2223) is used as the superconducting wire made of the second superconducting material. shown) wires were joined. A lead-tin-bismuth alloy obtained by adding bismuth to a lead-tin alloy was used as the third superconducting material.

このように構成された超伝導線材接合構造の製造工程は以下の如くである。即ち、溶融させた鉛-スズ-ビスマス合金に、銀や銅を安定化剤とした複数の超伝導線材を挿入して、溶融状態の温度で所定時間保持したのち冷却することで超伝導接合を作製する。線材を溶融した合金に浸漬させる際、安定化剤である銀や銅は自然と溶け出し、超伝導線材と合金が強固に接合する。
ここで、溶融状態の温度は180℃以上1000℃以下がよく、好ましくは230℃以上800℃以下がよく、更に好ましくは320℃以上500℃以下がよい。また、溶融状態を保持する時間は、1分以上100時間がよく、好ましくは5分以上10時間がよく、更に好ましくは10分以上1時間がよい。
The manufacturing process of the superconducting wire bonding structure thus constructed is as follows. That is, a plurality of superconducting wires containing silver or copper as a stabilizer are inserted into a melted lead-tin-bismuth alloy, held at the temperature of the molten state for a predetermined time, and then cooled to form a superconducting joint. make. When the wire is immersed in the molten alloy, the stabilizing agents such as silver and copper naturally dissolve out, and the superconducting wire and the alloy are strongly bonded.
Here, the temperature of the molten state is preferably 180° C. or higher and 1000° C. or lower, preferably 230° C. or higher and 800° C. or lower, more preferably 320° C. or higher and 500° C. or lower. The time for which the molten state is maintained is preferably 1 minute to 100 hours, preferably 5 minutes to 10 hours, and more preferably 10 minutes to 1 hour.

図2は、本発明の一実施例を示す超伝導線材接合構造のミクロ組織を説明する図で、液体ヘリウム温度における超伝導領域(白い部分)と非超伝導状態(黒い部分)の分布状態を説明している図である。図2(A)はPb42Sn18Bi40、図2(B)はPb36Sn64を示している。図2(B)に示すように、鉛-スズ合金は、ミクロ組織がPb70Sn30の領域とSn100の領域に分かれている。
液体ヘリウム温度において、Pb70Sn30の領域が超伝導領域(白い部分)、Sn100の領域が非超伝導状態(黒い部分)である。電流がこの黒い領域を通る際に熱が発生し、白い領域の臨界電流密度が小さくなる。
FIG. 2 is a diagram for explaining the microstructure of a superconducting wire joint structure showing an embodiment of the present invention, showing the distribution of superconducting regions (white areas) and non-superconducting states (black areas) at liquid helium temperature. It is a figure explaining. FIG. 2A shows Pb 42 Sn 18 Bi 40 and FIG. 2B shows Pb 36 Sn 64 . As shown in FIG. 2B, the lead-tin alloy has a microstructure divided into a Pb 70 Sn 30 region and a Sn 100 region.
At the liquid helium temperature, the Pb 70 Sn 30 region is the superconducting region (white area) and the Sn 100 region is the non-superconducting state (black area). Heat is generated as current passes through this black area, reducing the critical current density in the white area.

鉛-スズ-ビスマス合金では、添加したビスマスの作用によって、Pb70Sn30の領域とSn100の領域に分かれることなく、合金のミクロ組織にムラが少なくなっている。そこで、超伝導相のみの電流経路が得られる鉛-スズ-ビスマス合金での接合が臨界電流密度に関して優位である。 In the lead-tin-bismuth alloy, due to the action of the added bismuth, the microstructure of the alloy is less uneven without dividing into the Pb70Sn30 region and the Sn100 region. Therefore, bonding with lead-tin-bismuth alloy, which can obtain a current path only in the superconducting phase, is superior in terms of critical current density.

図3は、鉛-スズ合金へのビスマス添加量を様々に変えた場合の臨界電流値を見積もるための電流-電圧特性を示している。鉛-スズ合金へのビスマス添加量を様々に変えた場合、全ての添加量で鉛-スズ合金の臨界電流値を上回った。 FIG. 3 shows the current-voltage characteristics for estimating the critical current value when the amount of bismuth added to the lead-tin alloy is varied. When the amount of bismuth added to the lead-tin alloy was changed variously, the critical current value of the lead-tin alloy was exceeded at all the addition amounts.

図4は、鉛-スズ合金へのビスマス添加量を40モル%とした場合の、様々な印加磁場における臨界電流値を見積もるための電流-電圧特性を示している。図3の測定値で、最も臨界電流値が大きかったビスマス添加40%合金では、ゼロ磁場下もしくは1000Oe磁場下で200A以上(測定限界)、2000Oe磁場下でも125A以上、5000Oe磁場下でも50A程度と非常に大きな電流をゼロ抵抗で流すことができた。 FIG. 4 shows the current-voltage characteristics for estimating the critical current values in various applied magnetic fields when the bismuth addition amount to the lead-tin alloy is 40 mol %. In the bismuth-added 40% alloy, which had the largest critical current value in the measurement values in FIG. A very large current could flow with zero resistance.

本発明のビスマス添加鉛-スズ合金において、添加物はビスマスに限定されない。例えば、鉛やスズと同様に低融点金属であるアンチモンやガリウム、インジウム、もしくはこのいずれかの組み合わせからなる合金などでも代替可能である。 In the bismuth-added lead-tin alloy of the present invention, the additive is not limited to bismuth. For example, antimony, gallium, and indium, which are low-melting-point metals like lead and tin, or an alloy made of a combination of these can be used instead.

なお、実施例では低温超伝導体であるNbTi線材と、高温超伝導体であるBi2223線材の接合を示したが、超伝導線材の種類はこれに限らない。例えば、金属系超伝導線材(NbTi線材の他、NbSnやMgB線材など)同士の接合、第一世代および第二世代高温超伝導線材(Bi2223線材の他、BiSrCaCu(Bi2212)線材やYBaCu(Y123)線材、鉄系超伝導線材など)同士の接合など、同種・異種の任意の組み合わせおよび3本または4本、もしくはそれ以上の組み合わせの接合も同様の方法で実施可能である。3本以上の超伝導線材を接合する場合には、超伝導線材の分岐構造を実現できる。 In the examples, the NbTi wire, which is a low-temperature superconductor, and the Bi2223 wire, which is a high-temperature superconductor, are joined together, but the type of superconducting wire is not limited to this. For example, bonding between metallic superconducting wires (NbTi wires , Nb3Sn, MgB2 wires, etc.), first-generation and second -generation high - temperature superconducting wires ( Bi2223 wires, Bi2Sr2CaCu2O 8 (Bi2212) wire rods, YBa 2 Cu 3 O 7 (Y123) wire rods, iron-based superconducting wire rods, etc.), any combination of the same or different types, and the combination of three or four or more. can also be implemented in a similar manner. When joining three or more superconducting wires, a branched structure of the superconducting wires can be realized.

本発明の超伝導線材接合構造を用いることで、高温超伝導マグネットを永久電流モードで使用することが可能になるなどの様々な応用が見込まれる。 By using the superconducting wire joint structure of the present invention, various applications are expected, such as enabling the use of a high-temperature superconducting magnet in a persistent current mode.

Claims (6)

第1の超伝導材料よりなる超伝導線材の端部と、第2の超伝導材料よりなる超伝導線材 の端部とを接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造 であって、
前記第3の超伝導材料は、Pb 42 Sn 18 Bi 40 (単位はモル%)であることを特徴とする超伝導線材接合構造。
Superconductivity comprising a superconducting joint made of a third superconducting material joining an end of a superconducting wire made of a first superconducting material and an end of a superconducting wire made of a second superconducting material A wire rod bonding structure,
The superconducting wire joint structure, wherein the third superconducting material is Pb 42 Sn 18 Bi 40 (unit: mol %) .
前記第1の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であり、
前記第2の超伝導材料は、合金系材料、銅酸化物高温超伝導体材料、及び鉄系超伝導物質からなる群から選ばれる超伝導材料であることを特徴とする請求項1に記載の超伝導線材接合構造。
The first superconducting material is a superconducting material selected from the group consisting of alloy-based materials, cuprate high-temperature superconducting materials, and iron-based superconducting materials,
2. The method according to claim 1, wherein said second superconducting material is a superconducting material selected from the group consisting of alloy-based materials, cuprate high-temperature superconducting materials, and iron-based superconducting materials. Superconducting wire bonding structure.
前記合金系材料は、NbTi、NbSn、MgBからなる群から選ばれる超伝導材料であることを特徴とする請求項2に記載の超伝導線材接合構造。 3. The superconducting wire joint structure according to claim 2 , wherein the alloy material is a superconducting material selected from the group consisting of NbTi, Nb3Sn, and MgB2. 前記銅酸化物高温超伝導体材料は、BiSrCaCu、BiSrCa Cu10、YBaCu、REBaCu(REは希土類元素を表し、 La(ランタン)、Pr(プラセオジム)、Nd(ネオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Dy(ジスプロシウム)、Ho(ホルミウ ム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチ ウム)からなる群から選ばれる)からなる群から選ばれる超伝導材料であることを特徴とする請求項2に記載の超伝導線材接合構造。 The cuprate high temperature superconductor materials include Bi2Sr2CaCu2O8 , Bi2Sr2Ca2Cu3O10 , YBa2Cu3O7 , REBa2Cu3O7 ( RE is a rare earth element). La (lanthanum), Pr (praseodymium), Nd (neodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm ( 3. The superconducting wire joint structure according to claim 2, wherein the superconducting material is selected from the group consisting of thulium), Yb (ytterbium), and Lu (lutetium). 前記超伝導線材接合構造は、3本以上の超伝導線材の端部を接合する第3の超伝導材料よりなる超伝導接合部を備える超伝導線材接合構造であって、前記超伝導接合部が前記3本以上の超伝導線材における分岐構造をなすことを特徴とする請求項1からのいずれか一項に記載の超伝導線材接合構造。 The superconducting wire joint structure is a superconducting wire joint structure comprising a superconducting joint made of a third superconducting material that joins ends of three or more superconducting wires, wherein the superconducting joint is The superconducting wire bonding structure according to any one of claims 1 to 4 , wherein the three or more superconducting wires form a branched structure. 請求項1からのいずれか一項に記載の超伝導線材接合構造を用いた装置。

A device using the superconducting wire bonding structure according to any one of claims 1 to 5 .

JP2018006887A 2017-02-10 2018-01-19 Superconducting wire bonding structure and device using the same Active JP7126235B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017023659 2017-02-10
JP2017023659 2017-02-10

Publications (2)

Publication Number Publication Date
JP2018129294A JP2018129294A (en) 2018-08-16
JP7126235B2 true JP7126235B2 (en) 2022-08-26

Family

ID=63174446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006887A Active JP7126235B2 (en) 2017-02-10 2018-01-19 Superconducting wire bonding structure and device using the same

Country Status (1)

Country Link
JP (1) JP7126235B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283660A (en) 2000-03-31 2001-10-12 Hitachi Ltd Connection structure for superconducting wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449818A (en) * 1967-05-16 1969-06-17 North American Rockwell Superconductor joint
JPH04272670A (en) * 1991-02-27 1992-09-29 Hitachi Ltd Connecting device for superconducting wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283660A (en) 2000-03-31 2001-10-12 Hitachi Ltd Connection structure for superconducting wire

Also Published As

Publication number Publication date
JP2018129294A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
Brittles et al. Persistent current joints between technological superconductors
Park et al. A superconducting joint for GdBa2Cu3O7− δ-coated conductors
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
CN103875125A (en) Method for joining second generation ReBCO high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment
US7602269B2 (en) Permanent current switch
Maeda et al. Future prospects for NMR magnets: A perspective
Bray Superconductors in applications; some practical aspects
Fujishiro et al. Thermal conductivity, thermal diffusivity and thermoelectric power of Sm-based bulk superconductors
JP7126235B2 (en) Superconducting wire bonding structure and device using the same
Mousavi et al. Superconducting joint structures for Bi-2212 wires using a powder-in-tube technique
JP5675232B2 (en) Superconducting current lead
KR101535844B1 (en) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
EP3511953B1 (en) Low-temperature superconducting wire rod having low stabilizing matrix ratio, and superconducting coil having same
US20200075207A1 (en) Superconducting magnet
JP4612311B2 (en) Oxide superconductor current lead
Matsushita et al. History effect of critical current density and weak links in superconducting BiPbSrCaCuO tape wires
Liang et al. Recent progress in MgB2 superconducting joint technology
JP2022500817A (en) Flexible HTS current lead, its manufacturing method and reforming method
Banno et al. Novel Pb-Free Superconducting Joint Between NbTi and Nb 3 Sn Wires Using High-Temperature-Tolerable Superconducting Nb–3Hf Intermedia
CN105408969B (en) Superconductive current lead
Matsumoto et al. Microstructure and critical current properties of Bi-2212 round wires fabricated with different nominal compositions
Larbalestier et al. A transformative superconducting magnet technology for fields well above 30 T using isotropic round wire multifilament Bi2Sr2CaCu2O8-x conductor
US8307534B2 (en) Method of forming a coupled coil arrangement
JP2023077662A (en) Hybrid superlow resistance connection structure for high temperature oxide superconducting wire material and metal-based low temperature superconducting wire material, and connection method therefor
JP2023008589A (en) Permanent current switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7126235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150