JP2023076734A - Quay wall structure and construction method for quay wall structure - Google Patents

Quay wall structure and construction method for quay wall structure Download PDF

Info

Publication number
JP2023076734A
JP2023076734A JP2023062896A JP2023062896A JP2023076734A JP 2023076734 A JP2023076734 A JP 2023076734A JP 2023062896 A JP2023062896 A JP 2023062896A JP 2023062896 A JP2023062896 A JP 2023062896A JP 2023076734 A JP2023076734 A JP 2023076734A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe sheet
sheet piles
pile
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023062896A
Other languages
Japanese (ja)
Inventor
祐輔 持田
Yusuke Mochida
真治 妙中
Shinji Myonaka
一男 久保田
Kazuo Kubota
健郎 吉原
Tateo Yoshihara
直也 永尾
Naoya Nagao
正和 武野
Masakazu Takeno
淳 阿形
Atsushi Agata
直志 中村
Naoshi Nakamura
宏紹 笠原
Hirotsugu Kasahara
朋裕 松原
Tomohiro Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Publication of JP2023076734A publication Critical patent/JP2023076734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Abstract

To configure an earth retaining wall using members that have appropriate flexural rigidity to improve workability and reduce an increase in the amount of steel materials.SOLUTION: A wall structure is provided that includes: a plurality of steel pipe sheet piles that are arranged in a convex shape which protrudes to the ground side in horizontal cross-section; joints that connect the plurality of steel pipe sheet piles; and support pile structures that are connected to steel pipe sheet piles at the ends of the convex shape.SELECTED DRAWING: Figure 1

Description

本発明は、岸壁構造および岸壁構造の構築方法に関する。 The present invention relates to a quay wall structure and a method for constructing a quay structure.

岸壁構造では、海底面よりも深くまで打設された鋼製の土留め壁が背面土圧に対抗する。土留め壁を構成する鋼材としては、地中への打設が容易であることから鋼矢板や鋼管矢板が一般的に用いられている。土留め壁に作用する背面土圧は、例えば海側に構築されるジャケット構造に伝達されるが、控え工は土留め壁が延びる水平方向について間欠的に配置されるため、ジャケット構造の間にあたる部分では背面土圧を土留め壁の曲げ剛性で支持することになる。従って、背面土圧が大きい場合には、土留め壁を構成する鋼矢板や鋼管矢板の断面を増加させて剛性を高めたり、鋼矢板や鋼管矢板を横断して延びる腹起し工を追加したりして土留め壁の曲げ剛性を高める必要があった。 In the quay wall structure, a steel retaining wall that is driven deeper than the sea floor counters the back earth pressure. Steel sheet piles and steel pipe sheet piles are generally used as the steel material for constructing earth retaining walls because they are easy to drive into the ground. The back earth pressure acting on the earth retaining wall is transmitted to the jacket structure constructed on the sea side, for example, but since the anchorage is intermittently arranged in the horizontal direction of the retaining wall, it hits between the jacket structures. In some parts, the back earth pressure is supported by the bending rigidity of the retaining wall. Therefore, when the back earth pressure is large, the cross section of the steel sheet piles and steel pipe sheet piles that make up the retaining wall is increased to increase the rigidity, and the wale that extends across the steel sheet piles and steel pipe sheet piles is added. Therefore, it was necessary to increase the bending rigidity of the retaining wall.

これに対して、特許文献1では、シート状の部材、例えば直線鋼矢板を用いて海側に凸なアーチ形状の土留め壁を構成する技術が提案されている。この場合、背面土圧を土留め壁の水平方向の張力で支持することになるため、土留め壁の曲げ剛性は低くてもよい。従って、断面の増加や腹起し工の追加による鋼材量の増加を抑制しつつ、背面土圧に対抗することが可能な鋼矢板壁を構築することができる。 On the other hand, Patent Literature 1 proposes a technique of constructing an arch-shaped earth retaining wall projecting toward the sea using a sheet-like member such as a straight steel sheet pile. In this case, since the back earth pressure is supported by the horizontal tension of the retaining wall, the bending rigidity of the retaining wall may be low. Therefore, it is possible to construct a steel sheet pile wall capable of resisting back surface earth pressure while suppressing an increase in the amount of steel material due to an increase in cross section or addition of wale work.

特開2005-194867号公報JP 2005-194867 A

しかしながら、特許文献1に記載の技術では、土留め壁を構成する部材の曲げ剛性が低いために、土留め壁を打設するときの施工性が高くない。つまり、打設後に背面土圧を張力で支持できるように部材の曲げ剛性をあえて低くしているため、土留め壁の施工時に地中に打設される部材に壁厚方向の曲がりが生じやすい。 However, in the technique described in Patent Document 1, since the bending rigidity of the members constituting the earth retaining wall is low, the workability when driving the earth retaining wall is not high. In other words, the flexural rigidity of the members is intentionally lowered so that the back earth pressure can be supported by tension after placement. .

そこで、本発明は、適度な曲げ剛性をもった部材で土留め壁を構成することによって、施工性を高めつつ鋼材量の増加を抑制することが可能な岸壁構造および岸壁構造の構築方法を提供することを目的とする。 Therefore, the present invention provides a quay wall structure and a method for constructing a quay structure that can suppress an increase in the amount of steel materials while improving workability by configuring an earth retaining wall with members having appropriate bending rigidity. intended to

本発明のある観点によれば、水平断面において地盤側に凸な凸形状に配列された複数の鋼管矢板と、複数の鋼管矢板を互いに連結する継手と、凸形状の両端に位置する鋼管矢板に連結される支持杭構造体とを備える岸壁構造が提供される。 According to one aspect of the present invention, a plurality of steel pipe sheet piles arranged in a convex shape projecting toward the ground in a horizontal cross section, joints connecting the plurality of steel pipe sheet piles to each other, and steel pipe sheet piles positioned at both ends of the convex shape. A quay wall structure is provided comprising a supporting pile structure coupled thereto.

上記の岸壁構造は、支持杭構造体よりも海側に位置する控え杭構造体と、支持杭構造体を控え杭構造体に連結する圧縮部材とをさらに備えてもよい。 The quay wall structure may further include a stay pile structure located further to the sea than the support pile structure, and a compression member connecting the support pile structure to the stay pile structure.

上記の岸壁構造は、地盤に貫入するアンカー体と、支持杭構造体をアンカー体に連結する引張部材とをさらに備えてもよい。 The above wharf structure may further comprise an anchor body penetrating into the ground and a tension member connecting the support pile structure to the anchor body.

上記の岸壁構造において、凸形状は、円弧状、放物線状もしくは双曲線状のアーチ形状、または逆V字形状であってもよい。 In the above wharf structure, the convex shape may be an arc shape, a parabolic or hyperbolic arch shape, or an inverted V shape.

上記の岸壁構造において、凸形状の中央において、複数の鋼管矢板の打設深さが凸形状の両端よりも浅くてもよい。 In the quay wall structure described above, the driving depth of the plurality of steel pipe sheet piles may be shallower at the center of the convex shape than at both ends of the convex shape.

上記の岸壁構造において、複数の鋼管矢板のそれぞれは、地盤の円弧すべり面よりも深くまで打設されてもよい。 In the above quay wall structure, each of the plurality of steel pipe sheet piles may be driven deeper than the arc slip surface of the ground.

上記の岸壁構造において、複数の鋼管矢板は、第1の鋼管矢板および第2の鋼管矢板を含み、継手は、第1の鋼管矢板の周面に間隔を開けて接合される1対の雌側継手部材と、第2の鋼管矢板の周面に間隔を開けて接合される1対の雄側継手部材と、雌側継手部材、雄側継手部材、ならびに第1および第2の鋼管矢板の周面で囲まれた領域に充填される充填材とを含み、1対の雌側継手部材は、それぞれが内側を向いた逆L字状になるように配置され、1対の雄側継手部材は、それぞれが外側を向いた逆L字状になるように配置されて1対の雌側継手部材の内側に係合してもよい。 In the above quay wall structure, the plurality of steel pipe sheet piles includes a first steel pipe sheet pile and a second steel pipe sheet pile, and the joint is a pair of female side joints spaced apart on the peripheral surface of the first steel pipe sheet pile. A joint member, a pair of male side joint members joined to the peripheral surface of the second steel pipe sheet pile with a space therebetween, the female side joint member, the male side joint member, and the circumferences of the first and second steel pipe sheet piles and a filler to be filled in the area surrounded by the faces, the pair of female side joint members are arranged so as to form an inverted L shape each facing inward, and the pair of male side joint members are , each arranged in an inverted L shape facing outward to engage the inside of a pair of female side coupling members.

本発明の別の観点によれば、複数の鋼管矢板を、継手で互いに連結しながら、水平断面において地盤側に凸な凸形状が形成されるように順次打設する工程と、凸形状の両端に位置する鋼管矢板に支持杭構造体を連結する工程とを含む、岸壁構造の構築方法が提供される。 According to another aspect of the present invention, a step of sequentially driving a plurality of steel pipe sheet piles while connecting them with joints so as to form a convex shape protruding toward the ground in a horizontal cross section; and connecting a support pile structure to a steel pipe sheet pile located at a quay wall structure.

上記の岸壁構造の構築方法は、支持杭構造体よりも海側に位置し、圧縮部材で支持杭構造体に連結される控え杭を構築する工程をさらに含んでもよい。 The method of constructing the quay structure described above may further include the step of constructing a stay pile positioned further to the sea than the support pile structure and connected to the support pile structure with a compression member.

上記の岸壁構造の構築方法は、地盤に貫入し、引張部材で支持杭構造体に連結されるアンカー体を構築する工程をさらに含んでもよい。 The above method of constructing a quay wall structure may further include constructing an anchor body that penetrates the ground and is connected to the support pile structure with a tension member.

上記の岸壁構造の構築方法において、複数の鋼管矢板は、凸形状の中央において、凸形状の両端よりも浅く打設されてもよい。 In the method for constructing a quay wall structure, the plurality of steel pipe sheet piles may be driven shallower at the center of the convex shape than at both ends of the convex shape.

上記の構成によれば、複数の鋼管矢板によって構成される土留め壁の形状を地盤側に凸にすることで、背面土圧が土留め壁の内部で圧縮力として伝達されるため、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板で土留め壁を構成することができ、これによって施工性が向上する。また、凸形状に配列された複数の鋼管矢板によって構成される土留め壁が背面土圧に対して全体として大きな曲げ剛性をもつため、それぞれの鋼管矢板の断面を大きくしたり、腹起し工などの追加の部材を配置したりしなくてよい。つまり、本発明では、適度な曲げ剛性をもった部材で土留め壁を構成することによって、施工性を高めつつ鋼材量の増加を抑制することができる。 According to the above configuration, the earth retaining wall made up of a plurality of steel pipe sheet piles is made convex toward the ground, so that the back earth pressure is transmitted as a compressive force inside the retaining wall. An earth retaining wall can be constructed from steel pipe sheet piles that have a bending rigidity that does not cause bending, which improves workability. In addition, since the earth retaining wall, which is composed of multiple steel pipe sheet piles arranged in a convex shape, has a large bending rigidity against the back earth pressure as a whole, it is possible to increase the cross section of each steel pipe It is not necessary to arrange additional members such as In other words, according to the present invention, by constructing the earth retaining wall with a member having an appropriate bending rigidity, it is possible to suppress an increase in the amount of steel material while improving workability.

本発明の第1の実施形態に係る岸壁構造の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view of the quay wall structure which concerns on the 1st Embodiment of this invention. 図1に示す継手の拡大図である。2 is an enlarged view of the joint shown in FIG. 1; FIG. 図1のIII-III線断面図である。2 is a cross-sectional view taken along line III-III of FIG. 1; FIG. 本発明の第2の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure which concerns on the 2nd Embodiment of this invention. 第1の実施形態および第2の実施形態における土留め壁のアーチ形状についての検討結果を示すグラフである。4 is a graph showing the results of examination of the arch shape of retaining walls in the first embodiment and the second embodiment. 第1の実施形態および第2の実施形態における継手の幅についての検討結果を示すグラフである。FIG. 5 is a graph showing the results of examination of joint widths in the first embodiment and the second embodiment; FIG. 本発明の第3の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure which concerns on the 4th Embodiment of this invention. 土留め壁の配列がアーチ形状の場合の第1鋼管矢板にかかる力を示す図である。FIG. 10 is a diagram showing the force applied to the first steel pipe sheet pile when the earth retaining walls are arranged in an arch shape; 土留め壁の配列が逆V字形状の場合の第1鋼管矢板にかかる力を示す図である。FIG. 10 is a diagram showing the force applied to the first steel pipe sheet pile when the earth retaining walls are arranged in an inverted V shape; 第1鋼管矢板が鋼管杭に連結される角度と、第1鋼管矢板に作用する圧縮力との関係を示すグラフである。It is a graph which shows the relationship between the angle by which a 1st steel pipe sheet pile is connected with a steel pipe pile, and the compressive force which acts on a 1st steel pipe sheet pile.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る岸壁構造の平面図である。図1に示されるように、岸壁構造1は、水平断面において地盤G側に凸なアーチ形状に配列された複数の鋼管矢板2と、複数の鋼管矢板2を互いに連結する継手3と、アーチ形状の両端に位置する鋼管矢板2Aに継手3を介して連結される鋼管杭4Aおよびジャケットレグ4Bを含む支持杭構造体4とを含む。継手3によって、複数の鋼管矢板2の間で圧縮荷重およびせん断荷重が伝達される。図示された例において、岸壁構造1は、支持杭構造体4よりも海側に位置する控え杭構造体5と、支持杭構造体4を控え杭構造体5に連結する圧縮部材である梁6とをさらに含み、控え杭構造体5は鋼管杭5Aおよびジャケットレグ5Bを含む。
(First embodiment)
FIG. 1 is a plan view of a quay wall structure according to a first embodiment of the present invention. As shown in FIG. 1, the quay wall structure 1 includes a plurality of steel pipe sheet piles 2 arranged in an arch shape projecting toward the ground G side in a horizontal cross section, a joint 3 connecting the plurality of steel pipe sheet piles 2 to each other, and an arch shape. support pile structure 4 including steel pipe piles 4A and jacket legs 4B connected via joints 3 to steel pipe sheet piles 2A located at both ends of the . Compressive loads and shear loads are transmitted between the plurality of steel pipe sheet piles 2 by the joints 3 . In the illustrated example, the quay wall structure 1 includes a stay pile structure 5 located further to the sea than the support pile structure 4, and a beam 6 which is a compression member connecting the support pile structure 4 to the stay pile structure 5. and the stay pile structure 5 includes a steel pipe pile 5A and a jacket leg 5B.

図2は、図1に示す継手の拡大図である。継手3は、例えば特公昭49-22404号公報や地盤工学会誌第62巻第4号(2014年)、p.42-43「鋼管矢板に用いる広幅継手『Wide Junction(登録商標)』」などに記載されたような、鋼管矢板2同士を水平方向に連結しつつ、圧縮荷重およびせん断荷重を伝達することが可能な継手である。具体的には、継手3は、一方の鋼管矢板2の周面に間隔Wを開けて接合される1対の雌側継手部材3Aと、他方の鋼管矢板2の周面に間隔Wを開けて接合される1対の雄側継手部材3Bと、雌側継手部材3A、雄側継手部材3B、およびそれぞれの鋼管矢板2の周面で囲まれた領域に充填される充填材3Cとを含む。1対の雌側継手部材3Aは、例えば山形鋼であり、それぞれが内側を向いた逆L字状になるように配置される。1対の雄側継手部材3Bも、例えば山形鋼であり、それぞれが外側を向いた逆L字状になるように配置されて1対の雌側継手部材3Aの内側に係合する。ここで、「逆L字状」は、雌側継手部材3Aおよび雄側継手部材3Bが接合されるそれぞれの鋼管矢板2の側から見た場合の断面形状である。充填材3Cには、モルタル、セメント、またはコンクリートなどを用いることができる。 2 is an enlarged view of the joint shown in FIG. 1; FIG. The joint 3 is disclosed, for example, in Japanese Patent Publication No. 49-22404, Geotechnical Journal, Vol. 62, No. 4 (2014), p. 42-43 "Wide Junction (Registered Trademark)" for Steel Pipe Sheet Piles", etc. It is possible to transmit compressive load and shear load while connecting steel pipe sheet piles 2 in the horizontal direction. It is a fitting. Specifically, the joint 3 consists of a pair of female side joint members 3A that are joined on the peripheral surface of one of the steel pipe sheet piles 2 with an interval W2 , and a pair of female side joint members 3A that are joined on the peripheral surface of the other steel pipe sheet pile 2 with an interval W1 . A pair of male side joint members 3B that are opened and joined, and a filling material 3C that fills a region surrounded by the peripheral surfaces of the female side joint member 3A, the male side joint member 3B, and the respective steel pipe sheet piles 2. include. The pair of female joint members 3A are angle steels, for example, and are arranged in an inverted L shape facing inward. The pair of male joint members 3B are also angle irons, for example, and are arranged in an inverted L shape facing outward to engage the inside of the pair of female joint members 3A. Here, the "inverted L shape" is a cross-sectional shape when viewed from the side of each steel pipe sheet pile 2 to which the female side joint member 3A and the male side joint member 3B are joined. Mortar, cement, concrete, or the like can be used for the filler 3C.

複数の鋼管矢板2は、例えば上記のような継手3によって互いに連結されて、地盤G側に凸なアーチ形状の土留め壁を形成する。アーチ形状の土留め壁は背面土圧に対して全体として大きな曲げ剛性をもつため、それぞれの鋼管矢板2の曲げ剛性を単独で背面土圧に対抗できるほど高くしなくてもよい。背面土圧は、土留め壁の内部で圧縮力として伝達され、最終的にはアーチ形状の両端に位置する鋼管矢板2Aから支持杭構造体4に伝達される。従って、岸壁構造1では、鋼管矢板2から支持杭構造体4に背面土圧を伝達するための腹起し工などの部材を設けなくてもよい。また、背面土圧を土留め壁の内部で張力として伝達する場合とは異なり、土留め壁を構成する部材が曲げ剛性をもつことが許容されるため、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができ、これによって施工性が向上する。 A plurality of steel pipe sheet piles 2 are connected to each other by, for example, the joints 3 as described above to form an arch-shaped retaining wall projecting toward the ground G side. Since the arch-shaped earth retaining wall has a large bending rigidity against the back earth pressure as a whole, the bending rigidity of each of the steel pipe sheet piles 2 does not have to be so high that it can stand against the back earth pressure. The back earth pressure is transmitted as a compressive force inside the retaining wall, and finally transmitted to the supporting pile structure 4 from the steel pipe sheet piles 2A located at both ends of the arch shape. Therefore, in the quay wall structure 1, it is not necessary to provide a member such as a wale for transmitting the back earth pressure from the steel pipe sheet pile 2 to the support pile structure 4. In addition, unlike the case where back earth pressure is transmitted as tension inside the retaining wall, it is permissible for the members that make up the retaining wall to have bending rigidity. The steel pipe sheet pile 2 having rigidity can form the earth retaining wall, thereby improving workability.

図3は、図1のIII-III線断面図である。なお、図3では一部の鋼管矢板2および継手3の図示を省略している。図3に示されるように、支持杭構造体4において、ジャケットレグ4Bは鋼管杭4Aの上部に被さるように配置される。アーチ形状の両端に位置する鋼管矢板2Aは、図示された例のようにジャケットレグ4Bよりも深くまで打設され、寸法の異なる継手3(図示せず)を用いてジャケットレグ4Bおよび鋼管杭4Aのそれぞれに連結されてもよい。あるいは、鋼管矢板2Aの打設深さが浅い場合には、鋼管矢板2Aがジャケットレグ4Bだけに連結されてもよい。 FIG. 3 is a cross-sectional view taken along line III--III in FIG. In addition, illustration of some steel pipe sheet piles 2 and joints 3 is omitted in FIG. As shown in FIG. 3, in the support pile structure 4, the jacket leg 4B is arranged so as to cover the upper portion of the steel pipe pile 4A. The steel pipe sheet piles 2A located at both ends of the arch shape are driven deeper than the jacket legs 4B as in the illustrated example, and joints 3 (not shown) with different dimensions are used to connect the jacket legs 4B and the steel pipe piles 4A. may be connected to each of the Alternatively, when the installation depth of the steel pipe sheet pile 2A is shallow, the steel pipe sheet pile 2A may be connected only to the jacket leg 4B.

また、図3に示されるように、岸壁構造1では、複数の鋼管矢板2の打設深さが、土留め壁のアーチ形状の中央において、アーチ形状の両端よりも浅くなっている。具体的には、図1および図3に示されたアーチ形状の中央の鋼管矢板2Bの打設深さは、アーチ形状の両端の鋼管矢板2Aの打設深さよりも浅くなっている。ここで、土留め壁の構築にあたり、複数の鋼管矢板2のそれぞれは、地盤Gの円弧すべり面Cよりも深くまで打設されることが望ましい。円弧すべり面Cは海岸から離れるにつれて浅くなるため、複数の鋼管矢板2が地盤G側に凸なアーチ形状に配列されていることによって、アーチ形状の中央の鋼管矢板2Bの打設深さは、アーチ形状の両端の鋼管矢板2Aの打設深さよりも浅くてよくなる。 Further, as shown in FIG. 3, in the quay wall structure 1, the driving depth of the plurality of steel pipe sheet piles 2 is shallower at the center of the arch shape of the retaining wall than at both ends of the arch shape. Specifically, the placement depth of the steel pipe sheet pile 2B in the center of the arch shape shown in FIGS. 1 and 3 is shallower than the placement depth of the steel pipe sheet piles 2A at both ends of the arch shape. Here, in constructing the earth retaining wall, it is desirable that each of the plurality of steel pipe sheet piles 2 is driven deeper than the arc slip surface C of the ground G. Since the circular arc slip surface C becomes shallower as it moves away from the coast, the plurality of steel pipe sheet piles 2 are arranged in an arch shape convex toward the ground G side, so that the driving depth of the steel pipe sheet pile 2B in the center of the arch shape is It may be shallower than the driving depth of the steel pipe sheet piles 2A at both ends of the arch shape.

次に、本実施形態に係る岸壁構造の構築方法の例について概略的に説明する。まず、支持杭構造体4の鋼管杭4Aを打設し、次に鋼管杭4Aにジャケットレグ4B、梁6およびジャケットレグ5Bを含むジャケット構造体を据え付け、さらにジャケットレグ5Bをガイドとして控え杭構造体5の鋼管杭5Aを打設する。これによって、支持杭構造体4および控え杭構造体5が構築される。その後、複数の鋼管矢板2を、継手3で互いに連結しながら、上述したようなアーチ形状が形成されるように順次打設する工程と、支持杭構造体4を構成するジャケットレグ4B(または鋼管杭4A)をアーチ形状の両端に位置する鋼管矢板2Aに連結する工程とが実施される。 Next, an example of a method for constructing a quay wall structure according to this embodiment will be schematically described. First, the steel pipe pile 4A of the supporting pile structure 4 is driven, then the jacket structure including the jacket leg 4B, the beam 6 and the jacket leg 5B is installed on the steel pipe pile 4A, and the jacket leg 5B is used as a guide to form a stay pile structure. The steel pipe pile 5A of the body 5 is driven. Thereby, the support pile structure 4 and the stay pile structure 5 are constructed. After that, a step of sequentially driving a plurality of steel pipe sheet piles 2 while connecting them with joints 3 so as to form an arch shape as described above, and a jacket leg 4B (or steel pipe and connecting the piles 4A) to the steel pipe sheet piles 2A located at both ends of the arch shape.

なお、本実施形態に係る岸壁構造の施工方法は上記の例には限られず、例えば仮杭などを用いてジャケット構造体(ジャケットレグ4B、梁6およびジャケットレグ5B)を先行して据え付け、ジャケットレグ4B,5Bをガイドとして鋼管杭4A,5Aをそれぞれ打設してもよい。また、ジャケット構造体の上方には、岸壁のエプロン部分を構成する上部工(図示せず)が設置されてもよい。 The construction method of the quay wall structure according to the present embodiment is not limited to the above example. The steel pipe piles 4A and 5A may be driven using the legs 4B and 5B as guides. Moreover, a superstructure (not shown) that constitutes the apron portion of the quay may be installed above the jacket structure.

(第2の実施形態)
図4は、本発明の第2の実施形態に係る岸壁構造の平面図である。図4に示されるように、岸壁構造1Aは、第1の実施形態と同様の複数の鋼管矢板2および継手3を含む。第1の実施形態との違いとして、本実施形態では、支持杭構造体4がジャケットレグを含まず、アーチ形状の両端に位置する鋼管矢板2Aは継手3を介して鋼管杭4Aに連結される。図示された例において、岸壁構造1Aは、地盤Gに貫入するアンカー体7と、鋼管杭4Aをアンカー体7に連結する引張部材であるタイロッド8とを含む。このようにして、本実施形態では、地盤G側に凸なアーチ形状の土留め壁から鋼管杭4Aに伝達された背面土圧が、タイロッド8およびアンカー体7を介して地盤Gによって支持される。
(Second embodiment)
FIG. 4 is a plan view of a quay wall structure according to a second embodiment of the present invention. As shown in FIG. 4, the quay wall structure 1A includes a plurality of steel pipe sheet piles 2 and joints 3 similar to those of the first embodiment. As a difference from the first embodiment, in this embodiment, the support pile structure 4 does not include jacket legs, and the steel pipe sheet piles 2A positioned at both ends of the arch shape are connected to the steel pipe piles 4A via joints 3. . In the illustrated example, the quay wall structure 1A includes anchor bodies 7 penetrating into the ground G and tie rods 8 that are tensile members that connect the steel pipe piles 4A to the anchor bodies 7 . In this way, in this embodiment, the back earth pressure transmitted from the arch-shaped earth retaining wall projecting toward the ground G to the steel pipe pile 4A is supported by the ground G via the tie rod 8 and the anchor body 7. .

本実施形態でも、上記の第1の実施形態と同様に、アーチ形状の土留め壁が背面土圧に対して全体として大きな曲げ剛性をもつため、鋼管矢板2については径方向の圧縮に対する剛性が確保される以上に断面を増加させなくてもよい。鋼管矢板2から鋼管杭4Aに背面土圧を伝達するための腹起し工などの部材も不要である。また、本実施形態でも、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができることによって施工性が向上する。 In this embodiment, as in the first embodiment, since the arch-shaped earth retaining wall has a large bending rigidity against the back earth pressure as a whole, the steel pipe sheet pile 2 has a rigidity against radial compression. It is not necessary to increase the cross-section beyond what is guaranteed. A member such as a wale for transmitting back earth pressure from the steel pipe sheet pile 2 to the steel pipe pile 4A is also unnecessary. Further, in this embodiment as well, the workability is improved because the earth retaining wall can be constructed of the steel pipe sheet piles 2 having bending rigidity to the extent that bending does not occur at least during construction.

本実施形態に係る岸壁構造は、例えば、地盤に貫入させられたタイロッド8の先端にアンカー体7を構築するとともに、タイロッド8に支持杭構造体4の鋼管杭4Aを連結する。その後、複数の鋼管矢板2を、継手3で互いに連結しながら、上述したようなアーチ形状が形成されるように順次打設する工程と、支持杭構造体4の鋼管杭4Aをアーチ形状の両端に位置する鋼管矢板2Aに連結する工程とが実施される。 In the quay wall structure according to the present embodiment, for example, anchor bodies 7 are constructed at the ends of tie rods 8 penetrated into the ground, and steel pipe piles 4A of the support pile structure 4 are connected to the tie rods 8. After that, a step of sequentially driving a plurality of steel pipe sheet piles 2 while connecting them with joints 3 so as to form an arch shape as described above; A step of connecting to the steel pipe sheet pile 2A located in is performed.

図5は、上記の第1の実施形態および第2の実施形態における土留め壁のアーチ形状についての検討結果を示すグラフである。上記の実施形態において、複数の鋼管矢板2によって構成される土留め壁のアーチ形状は、例えば円弧状、放物線状または双曲線状でありうるが、その形状は、図1に示したアーチ形状の支間長Lに対するライズfの比(ライズ比)f/Lで規定することができる。図5のグラフは、鋼管矢板2の直径(鋼管径)が800mm、1200mm、および1600mm(板厚はいずれも11mm)である場合の土留め壁の単位幅あたりの断面二次モーメント(mm/mm)とライズ比との関係を示す。 FIG. 5 is a graph showing the results of examination of the arch shape of the earth retaining wall in the first embodiment and the second embodiment. In the above-described embodiment, the arch shape of the retaining wall constructed by the plurality of steel pipe sheet piles 2 can be, for example, an arc shape, a parabolic shape, or a hyperbolic shape. It can be defined by the ratio of rise f to length L (rise ratio) f/L. The graph in FIG. 5 shows the geometric moment of inertia per unit width of the retaining wall (mm 4 / mm) and the rise ratio.

グラフに示されるように、ライズ比が0、すなわち鋼管矢板2がアーチ形状ではなく直線状に配置される場合、断面二次モーメントは鋼管径が大きいほど大きくなる。土留め壁をアーチ形状にし、ライズ比が0よりも大きくなると、どの鋼管径でも断面二次モーメントは増加するが、1つの指標として、ライズ比が0.27になると、鋼管径800mmの場合の断面二次モーメントが、鋼管径1600mmの場合の直線状の配置(ライズ比が0)の断面二次モーメントと同等になる。また、ライズ比が0.3になると、鋼管径800mmの場合の断面二次モーメントは、同じ鋼管径800mmの直線状の配置の断面二次モーメントの約5倍になる。 As shown in the graph, when the rise ratio is 0, that is, when the steel pipe sheet pile 2 is arranged linearly rather than arched, the moment of inertia increases as the steel pipe diameter increases. When the earth retaining wall is arch-shaped and the rise ratio is greater than 0, the moment of inertia increases regardless of the steel pipe diameter. The geometrical moment of inertia becomes equivalent to the geometrical moment of inertia of the linear arrangement (the rise ratio is 0) in the case of a steel pipe with a diameter of 1600 mm. Also, when the rise ratio is 0.3, the geometrical moment of inertia in the case of a steel pipe with a diameter of 800 mm is approximately five times the geometrical moment of inertia in a linear arrangement of steel pipes with the same diameter of 800 mm.

上記のような検討結果から、1つの基準として、鋼管矢板2が配置されるアーチ形状のライズ比を、0.27以上、または0.3以上としてもよい。なお、例えば鋼管径が1200mmまたは1600mmである場合には、図5のグラフに示されるようにライズ比に対する断面二次モーメントの増加率が高いため、0.27よりも小さいライズ比でも十分な効果が得られる。また、鋼管径が800mmの場合も、必要とされる断面二次モーメントがより小さい場合には、ライズ比が上記の範囲よりも小さくてもよい。 Based on the above study results, as one criterion, the rise ratio of the arch shape in which the steel pipe sheet pile 2 is arranged may be set to 0.27 or more, or 0.3 or more. For example, when the steel pipe diameter is 1200 mm or 1600 mm, as shown in the graph of FIG. is obtained. Also, when the steel pipe diameter is 800 mm, the rise ratio may be smaller than the above range if the required moment of inertia of area is smaller.

図6は、上記の第1の実施形態および第2の実施形態における継手の幅についての検討結果を示すグラフである。図2に示すように、上記の実施形態において、継手3は、所定の幅W(雄側で幅W、雌側で幅W)でそれぞれの鋼管矢板2に接合される。図6のグラフは、鋼管矢板2の直径(鋼管径)が800mm、板厚tが1.3mmである場合に、継手3の接合幅Wごとに、それぞれの鋼管矢板2で継手3の反対側にかかる圧縮荷重(kN)と鋼管矢板2のひずみによる変位(mm)との関係を示す。 FIG. 6 is a graph showing the results of examination of joint widths in the first and second embodiments. As shown in FIG. 2, in the above embodiment, the joints 3 are joined to the respective steel pipe sheet piles 2 with a predetermined width W (width W 1 on the male side and width W 2 on the female side). The graph in FIG. 6 shows that when the diameter (steel pipe diameter) of the steel pipe sheet pile 2 is 800 mm and the plate thickness t is 1.3 mm, the steel pipe sheet pile 2 on the opposite side of the joint 3 for each joint width W of the joint 3 and the displacement (mm) due to the strain of the steel pipe sheet pile 2.

グラフに示されるように、接合幅Wが0の場合、すなわち、上記で図2に示したような継手ではなく、実質的に幅をもたないピン状の継手の場合に対して、接合幅W(mm)が大きくなるほど荷重に対する変位が小さくなり、また最大荷重も増大する。この結果から、上記の実施形態では、幅Wをもった継手3が鋼管矢板2を連結することによって、鋼管矢板2と継手3とを合わせた構造体の圧縮荷重に対する剛性が向上している。 As shown in the graph, for a joint width W of 0, i.e., a pin joint having substantially no width, rather than a joint such as that shown in FIG. 2 above, the joint width As W (mm) increases, the displacement against the load decreases, and the maximum load also increases. From this result, in the above-described embodiment, by connecting the steel pipe sheet piles 2 with the joints 3 having the width W, the rigidity against the compressive load of the structure combining the steel pipe sheet piles 2 and the joints 3 is improved.

(第3の実施形態)
図7は、本発明の第3の実施形態に係る岸壁構造の平面図である。図7に示されるように、岸壁構造1Bは、第1の実施形態と同様の複数の鋼管矢板2、継手3、支持杭構造体4、控え杭構造体5、および梁6を含む。第1の実施形態との違いとして、本実施形態では、複数の鋼管矢板2が、水平断面において地盤G側に凸な逆V字形状に配列される。それ以外の構成については、第1の実施形態と同様であるため重複した説明は省略する。
(Third Embodiment)
FIG. 7 is a plan view of a quay wall structure according to a third embodiment of the present invention. As shown in FIG. 7, the quay wall structure 1B includes a plurality of steel pipe sheet piles 2, joints 3, support pile structures 4, stay pile structures 5, and beams 6 similar to those of the first embodiment. As a difference from the first embodiment, in the present embodiment, a plurality of steel pipe sheet piles 2 are arranged in an inverted V shape projecting toward the ground G side in a horizontal cross section. Since other configurations are the same as those of the first embodiment, redundant description will be omitted.

(第4の実施形態)
図8は、本発明の第4の実施形態に係る岸壁構造の平面図である。図8に示されるように、岸壁構造1Cは、第2の実施形態と同様の複数の鋼管矢板2、継手3、支持杭構造体4、アンカー体7、およびタイロッド8を含む。第2の実施形態との違いとして、本実施形態では、複数の鋼管矢板2が、上記の第3の実施形態と同様に水平断面において地盤G側に凸な逆V字形状に配列される。それ以外の構成については、第2の実施形態と同様であるため重複した説明は省略する。
(Fourth embodiment)
FIG. 8 is a plan view of a quay wall structure according to a fourth embodiment of the present invention. As shown in FIG. 8, the quay wall structure 1C includes a plurality of steel pipe sheet piles 2, joints 3, support pile structures 4, anchor bodies 7, and tie rods 8 similar to those of the second embodiment. As a difference from the second embodiment, in the present embodiment, a plurality of steel pipe sheet piles 2 are arranged in an inverted V shape projecting toward the ground G side in the horizontal cross section as in the third embodiment. Since other configurations are the same as those of the second embodiment, redundant description will be omitted.

上記の第3の実施形態および第4の実施形態のように複数の鋼管矢板2を逆V字形状に配列する場合、土留め壁が背面土圧に対して全体としてもつ曲げ剛性が、第1の実施形態および第2の実施形態で複数の鋼管矢板2をアーチ形状に配列する場合よりも大きくなる。この曲げ剛性が発揮されることによって、既に述べたようにそれぞれの鋼管矢板2の曲げ剛性を抑えることができるのに加え、土留め壁を構成する複数の鋼管矢板2の根入れ深さをより深くし、土留め壁自体により大きな地盤G側からの背面土圧を負担させることもできる。この場合、例えば第3の実施形態における控え杭構造体5および梁6、または第4の実施形態におけるアンカー体7およびタイロッド8をより簡易な構造にすることができる。 When a plurality of steel pipe sheet piles 2 are arranged in an inverted V shape as in the above-described third and fourth embodiments, the bending rigidity of the earth retaining wall as a whole against the back earth pressure is the first 1 and the second embodiment in which a plurality of steel pipe sheet piles 2 are arranged in an arch shape. By demonstrating this bending rigidity, in addition to being able to suppress the bending rigidity of each steel pipe sheet pile 2 as already described, the penetration depth of the plurality of steel pipe sheet piles 2 constituting the earth retaining wall can be increased. It is also possible to make the earth retaining wall itself deep and bear the large rear earth pressure from the ground G side. In this case, for example, the stay pile structure 5 and the beam 6 in the third embodiment, or the anchor body 7 and the tie rod 8 in the fourth embodiment can be made simpler.

また、上記の第3の実施形態および第4の実施形態でも、背面土圧は土留め壁の内部で主に圧縮力として伝達されるため、腹起し工などの部材は不要である。また、土留め壁を構成する部材が曲げ剛性をもつことが許容されるため、施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができ、これによって施工性が向上する。なお、これらの効果は、複数の鋼管矢板2が水平断面において地盤G側に凸な凸形状に配置されることによって得られ、凸形状がアーチ形状または逆V字形状である場合には限られない。例えば、以下で図9~図11を参照して説明するように、凸形状としてアーチ形状または逆V字形状のいずれかを選択することによって、土留め壁のライズ比と、鋼管矢板2に作用する圧縮力とのバランスを調節することもできる。 Also in the above-described third and fourth embodiments, since the back earth pressure is mainly transmitted as a compressive force inside the earth retaining wall, members such as wales are unnecessary. In addition, since the members constituting the earth retaining wall are permitted to have bending rigidity, the earth retaining wall can be constructed of the steel pipe sheet piles 2 having such bending rigidity as not to cause bending during construction. Improves workability. These effects are obtained by arranging the plurality of steel pipe sheet piles 2 in a convex shape that is convex toward the ground G side in the horizontal cross section, and are limited when the convex shape is an arch shape or an inverted V shape. do not have. For example, as described below with reference to FIGS. It is also possible to adjust the balance with the compression force to be applied.

図9および図10は、それぞれ、土留め壁の配列がアーチ形状および逆V字形状の場合の第1鋼管矢板にかかる力を示す図である。凸形状の両端にそれぞれ位置する鋼管矢板2C(以下、第1鋼管矢板2Cともいう)と支持杭構造体4の鋼管杭4Aの間に作用する力Qは、支持杭構造体4が負担する背面土圧の反力Rの1/2に相当する。図9に示された例において、第1鋼管矢板2Cは、継手3(図示せず)を介して、壁幅方向に対する角度θで鋼管杭4Aに連結されている。この場合、力Qの分力として、第1鋼管矢板2Cと鋼管杭4Aとの間に圧縮力Qsinθおよびせん断力Qcosθが作用する。図10に示された例では、第1鋼管矢板2Cが壁幅方向に対する角度θで鋼管杭4Aに連結され、第1鋼管矢板2Cと鋼管杭4Aとの間に圧縮力Qsinθおよびせん断力Qcosθが作用する。 9 and 10 are diagrams showing the force applied to the first steel pipe sheet pile when the earth retaining walls are arranged in an arch shape and an inverted V shape, respectively. The force Q acting between the steel pipe sheet piles 2C (hereinafter also referred to as the first steel pipe sheet piles 2C) positioned at both ends of the convex shape and the steel pipe piles 4A of the support pile structure 4 is the back surface borne by the support pile structure 4. It corresponds to 1/2 of the reaction force R of earth pressure. In the example shown in FIG. 9, the first steel pipe sheet pile 2C is connected to the steel pipe pile 4A via a joint 3 (not shown) at an angle θ 1 with respect to the wall width direction. In this case, as components of the force Q, a compressive force Q sin θ 1 and a shear force Q cos θ 1 act between the first steel pipe sheet pile 2C and the steel pipe pile 4A. In the example shown in FIG. 10, the first steel pipe sheet pile 2C is connected to the steel pipe pile 4A at an angle θ 2 with respect to the wall width direction, and the compressive force Q sin θ 2 and the shear force Q sin θ 2 between the first steel pipe sheet pile 2C and the steel pipe pile 4A Q cos θ 2 acts.

ここで、図9および図10に示されているように、鋼管矢板2によって構成される土留め壁のライズ比(図1および図7に示した凸形状の支間長Lに対するライズfの比f/L)が等しい場合、アーチ形状の場合の第1鋼管矢板2Cの角度θよりも、逆V字形状の場合の第1鋼管矢板2Cの角度θの方が小さくなる(θ>θ)。この結果、第1鋼管矢板2Cと鋼管杭4Aとの間に作用する圧縮力も、アーチ形状の場合よりも逆V字形状の場合に小さくなる(Qsinθ>Qsinθ)。図11のグラフに、角度θ(上記の角度θ,θに相当する)と第1鋼管矢板2Cに作用する圧縮力との関係を示す。従って、例えば、ライズfを確保しながら第1鋼管矢板2Cに作用する圧縮力を小さくしたい場合は、上記の第3の実施形態および第4の実施形態で説明したような逆V字形状が有利でありうる。逆に、例えば同じライズfで継手3にかかるせん断力を小さくしたい場合は、上記の第1の実施形態および第2の実施形態で説明したようなアーチ形状が有利でありうる。 Here, as shown in FIGS. 9 and 10, the rise ratio of the retaining wall constructed by the steel pipe sheet pile 2 (ratio f of rise f to span length L of the convex shape shown in FIGS. 1 and 7 /L) are equal, the angle θ 2 of the first steel pipe sheet pile 2C in the case of the inverted V shape is smaller than the angle θ 1 of the first steel pipe sheet pile 2C in the case of the arch shape (θ 1 > θ 2 ). As a result, the compressive force acting between the first steel pipe sheet pile 2C and the steel pipe pile 4A is also smaller in the inverted V shape than in the arch shape (Qsin θ 1 >Qsin θ 2 ). The graph of FIG. 11 shows the relationship between the angle θ (corresponding to the angles θ 1 and θ 2 above) and the compressive force acting on the first steel pipe sheet pile 2C. Therefore, for example, when it is desired to reduce the compressive force acting on the first steel pipe sheet pile 2C while ensuring the rise f, the inverted V shape as described in the above third and fourth embodiments is advantageous. can be Conversely, for example, if it is desired to reduce the shear force applied to the joint 3 at the same rise f, the arch shape as described in the above first and second embodiments may be advantageous.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

本発明は、岸壁構造および岸壁構造の構築方法に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a quay structure and a method for constructing the quay structure.

1、1A、1B、1C…岸壁構造、2、2A、2B、2C…鋼管矢板、3…継手、4…支持杭構造体、4A…鋼管杭、4B…ジャケットレグ、5…控え杭構造体、5A…鋼管杭、5B…ジャケットレグ、6…梁、7…アンカー体、8…タイロッド。
Reference Signs List 1, 1A, 1B, 1C... quay structure, 2, 2A, 2B, 2C... steel pipe sheet pile, 3... joint, 4... support pile structure, 4A... steel pipe pile, 4B... jacket leg, 5... stay pile structure, 5A... Steel pipe pile, 5B... Jacket leg, 6... Beam, 7... Anchor body, 8... Tie rod.

Claims (9)

水平断面において地盤側に凸な凸形状に配列された複数の鋼管矢板と、
前記複数の鋼管矢板を互いに連結する継手と、
前記凸形状の両端に位置する鋼管矢板に連結される支持杭構造体と、を備え、
前記凸形状の中央において、前記複数の鋼管矢板の打設深さが前記凸形状の両端よりも浅い、岸壁構造。
a plurality of steel pipe sheet piles arranged in a convex shape convex toward the ground side in a horizontal cross section;
a joint that connects the plurality of steel pipe sheet piles to each other;
A support pile structure connected to the steel pipe sheet piles located at both ends of the convex shape,
A wharf structure, wherein the installation depth of the plurality of steel pipe sheet piles is shallower at the center of the convex shape than at both ends of the convex shape.
前記支持杭構造体よりも海側に位置する控え杭構造体と、前記支持杭構造体を前記控え杭構造体に連結する圧縮部材とをさらに備える、請求項1に記載の岸壁構造。 2. The quay wall structure according to claim 1, further comprising: a stay pile structure located further to the sea than said support pile structure; and a compression member connecting said support pile structure to said stay pile structure. 前記地盤に貫入するアンカー体と、前記支持杭構造体を前記アンカー体に連結する引張部材とをさらに含む、請求項1に記載の岸壁構造。 The wharf structure according to claim 1, further comprising an anchor body penetrating the ground and a tension member connecting the support pile structure to the anchor body. 前記凸形状は、円弧状、放物線状もしくは双曲線状のアーチ形状、または逆V字形状である、請求項1から請求項3のいずれか1項に記載の岸壁構造。 The quay wall structure according to any one of claims 1 to 3, wherein the convex shape is an arc shape, a parabolic or hyperbolic arch shape, or an inverted V shape. 前記複数の鋼管矢板のそれぞれは、前記地盤の円弧すべり面よりも深くまで打設される、請求項1から請求項4のいずれか1項に記載の岸壁構造。 The quay wall structure according to any one of claims 1 to 4, wherein each of the plurality of steel pipe sheet piles is driven deeper than the arc slip surface of the ground. 前記複数の鋼管矢板は、第1の鋼管矢板および第2の鋼管矢板を含み、
前記継手は、前記第1の鋼管矢板の周面に間隔を開けて接合される1対の雌側継手部材と、前記第2の鋼管矢板の周面に間隔を開けて接合される1対の雄側継手部材と、前記雌側継手部材、前記雄側継手部材、ならびに前記第1および第2の鋼管矢板の周面で囲まれた領域に充填される充填材とを含み、
前記1対の雌側継手部材は、それぞれが内側を向いた逆L字状になるように配置され、
前記1対の雄側継手部材は、それぞれが外側を向いた逆L字状になるように配置されて前記1対の雌側継手部材の内側に係合する、請求項1から請求項5のいずれか1項に記載の岸壁構造。
The plurality of steel pipe sheet piles includes a first steel pipe sheet pile and a second steel pipe sheet pile,
The joint includes a pair of female side joint members that are joined to the peripheral surface of the first steel pipe sheet pile with a space therebetween, and a pair of female side joint members that are joined to the peripheral surface of the second steel pipe sheet pile with a space therebetween. a male joint member; and a filling material filled in a region surrounded by the peripheral surfaces of the female joint member, the male joint member, and the first and second steel pipe sheet piles;
The pair of female joint members are arranged in an inverted L shape facing inward,
6. The pair of male joint members of claim 1 to claim 5, wherein the pair of male joint members are arranged in an inverted L shape facing outward to engage insides of the pair of female joint members. The quay wall structure according to any one of the items.
複数の鋼管矢板を、継手で互いに連結しながら、水平断面において地盤側に凸な凸形状が形成されるように順次打設する工程と、
前記凸形状の両端に位置する鋼管矢板に支持杭構造体を連結する工程と、を含み、
前記複数の鋼管矢板は、前記凸形状の中央において、前記凸形状の両端よりも浅く打設される、岸壁構造の構築方法。
A step of sequentially placing a plurality of steel pipe sheet piles while connecting them with joints so as to form a convex shape convex toward the ground side in a horizontal cross section;
connecting a support pile structure to steel pipe sheet piles positioned at both ends of the convex shape;
The method for constructing a quay wall structure, wherein the plurality of steel pipe sheet piles are driven shallower at the center of the convex shape than at both ends of the convex shape.
前記支持杭構造体よりも海側に位置し、圧縮部材で前記支持杭構造体に連結される控え杭構造体を構築する工程をさらに含む、請求項7に記載の岸壁構造の構築方法。 8. The method of constructing a quay wall structure according to claim 7, further comprising the step of constructing a stay pile structure located further to the sea than said support pile structure and connected to said support pile structure with a compression member. 前記地盤に貫入し、引張部材で前記支持杭構造体に連結されるアンカー体を構築する工程をさらに含む、請求項7に記載の岸壁構造の構築方法。 8. The method of constructing a quay wall structure according to claim 7, further comprising constructing an anchor body that penetrates the ground and is connected to the support pile structure with a tension member.
JP2023062896A 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure Pending JP2023076734A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018207160 2018-11-02
JP2018207160 2018-11-02
JP2019046915A JP2020076285A (en) 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019046915A Division JP2020076285A (en) 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure

Publications (1)

Publication Number Publication Date
JP2023076734A true JP2023076734A (en) 2023-06-01

Family

ID=70723654

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019046915A Pending JP2020076285A (en) 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure
JP2023062896A Pending JP2023076734A (en) 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019046915A Pending JP2020076285A (en) 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure

Country Status (1)

Country Link
JP (2) JP2020076285A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605397B (en) * 2021-07-14 2022-12-02 广州市设计院集团有限公司 Trapezoidal staggered foundation pit supporting mechanism and foundation pit supporting method
CN113605398B (en) * 2021-07-14 2023-04-07 广州市设计院集团有限公司 Foundation pit supporting mechanism

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127606Y1 (en) * 1967-03-27 1976-07-13
JPS4922404B1 (en) * 1970-06-12 1974-06-08
JPS63103112A (en) * 1986-10-17 1988-05-07 Kawasaki Steel Corp Steel jacket quaywall
JPH09296427A (en) * 1996-04-30 1997-11-18 Kawasaki Steel Corp Structure in water area and construction method thereof
JP3799939B2 (en) * 2000-03-03 2006-07-19 Jfeエンジニアリング株式会社 Jacket structure
JP4645522B2 (en) * 2006-05-16 2011-03-09 Jfeエンジニアリング株式会社 Anti-earth pressure structure, its saddle plate, and anti-earth pressure structure construction method

Also Published As

Publication number Publication date
JP2020076285A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP2023076734A (en) Quay wall structure and construction method for quay wall structure
KR101827846B1 (en) Joint structure for steel bridge pier and concrete pile foundation
JP6033139B2 (en) Joint structure of pile and footing
JP2016199861A (en) Pile foundation structure
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP6201929B2 (en) Abutment scour prevention structure
JP4229056B2 (en) External pressure resistance structure and construction method thereof
JP2016528407A (en) Deflection prevention beam for construction of earth retaining facilities
JP6070118B2 (en) Retaining wall structure, method for constructing retaining wall structure
JP6606909B2 (en) Deformation prevention structure of retaining wall and deformation prevention method of retaining wall
JP5176381B2 (en) Steel pipe pile and footing joint structure
JP5551943B2 (en) Foundation structure using ground improvement body
JPS6233926A (en) Pile foundation of pile-up structure
JP2016223092A (en) Pile foundation structure
JP2021134655A (en) Quay wall structure and quay wall structure construction method
JP6925091B1 (en) Box culvert
JP7364526B2 (en) Quay wall structure and construction method of quay wall structure
JP2006097429A (en) Structure
JP7265409B2 (en) Building foundation structure
JP2017150142A (en) Structure
JP6496464B2 (en) Joint structure of ready-made pillar and footing
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP2018178598A (en) Bottom plate structure in excavation space and construction method of the same
JP5503569B2 (en) Joint structure of pile and foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409