JP2020076285A - Quay wall structure and construction method for quay wall structure - Google Patents

Quay wall structure and construction method for quay wall structure Download PDF

Info

Publication number
JP2020076285A
JP2020076285A JP2019046915A JP2019046915A JP2020076285A JP 2020076285 A JP2020076285 A JP 2020076285A JP 2019046915 A JP2019046915 A JP 2019046915A JP 2019046915 A JP2019046915 A JP 2019046915A JP 2020076285 A JP2020076285 A JP 2020076285A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe sheet
pile
sheet piles
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019046915A
Other languages
Japanese (ja)
Inventor
祐輔 持田
Yusuke Mochida
祐輔 持田
妙中 真治
Shinji Myonaka
真治 妙中
久保田 一男
Kazuo Kubota
一男 久保田
健郎 吉原
Tateo Yoshihara
健郎 吉原
直也 永尾
Naoya Nagao
直也 永尾
正和 武野
Masakazu Takeno
正和 武野
阿形 淳
Atsushi Agata
淳 阿形
直志 中村
Naoshi Nakamura
直志 中村
宏紹 笠原
Hirotsugu Kasahara
宏紹 笠原
朋裕 松原
Tomohiro Matsubara
朋裕 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Publication of JP2020076285A publication Critical patent/JP2020076285A/en
Priority to JP2023062896A priority Critical patent/JP2023076734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Abstract

To configure an earth retaining wall using members that have appropriate flexural rigidity to improve workability and reduce an increase in the amount of steel materials.SOLUTION: A wall structure is provided that includes: a plurality of steel pipe sheet piles that are arranged in a convex shape which protrudes to the ground side in horizontal cross-section; joints that connect the plurality of steel pipe sheet piles; and support pile structures that are connected to steel pipe sheet piles at the ends of the convex shape.SELECTED DRAWING: Figure 1

Description

本発明は、岸壁構造および岸壁構造の構築方法に関する。   The present invention relates to a quay structure and a method for constructing a quay structure.

岸壁構造では、海底面よりも深くまで打設された鋼製の土留め壁が背面土圧に対抗する。土留め壁を構成する鋼材としては、地中への打設が容易であることから鋼矢板や鋼管矢板が一般的に用いられている。土留め壁に作用する背面土圧は、例えば海側に構築されるジャケット構造に伝達されるが、控え工は土留め壁が延びる水平方向について間欠的に配置されるため、ジャケット構造の間にあたる部分では背面土圧を土留め壁の曲げ剛性で支持することになる。従って、背面土圧が大きい場合には、土留め壁を構成する鋼矢板や鋼管矢板の断面を増加させて剛性を高めたり、鋼矢板や鋼管矢板を横断して延びる腹起し工を追加したりして土留め壁の曲げ剛性を高める必要があった。   In the quay structure, a steel retaining wall, which is cast deeper than the sea floor, counters the back pressure. As a steel material constituting the earth retaining wall, a steel sheet pile or a steel pipe sheet pile is generally used because it can be easily placed in the ground. The back surface earth pressure acting on the retaining wall is transmitted to the jacket structure constructed on the sea side, for example, but since the stays are arranged intermittently in the horizontal direction in which the retaining wall extends, they are located between the jacket structures. In the part, the back earth pressure is supported by the bending rigidity of the earth retaining wall. Therefore, when the back earth pressure is large, increase the cross-section of the steel sheet pile or the steel pipe sheet pile that constitutes the earth retaining wall to increase the rigidity, or add a waving work that extends across the steel sheet pile or the steel pipe sheet pile. It was necessary to increase the bending rigidity of the earth retaining wall.

これに対して、特許文献1では、シート状の部材、例えば直線鋼矢板を用いて海側に凸なアーチ形状の土留め壁を構成する技術が提案されている。この場合、背面土圧を土留め壁の水平方向の張力で支持することになるため、土留め壁の曲げ剛性は低くてもよい。従って、断面の増加や腹起し工の追加による鋼材量の増加を抑制しつつ、背面土圧に対抗することが可能な鋼矢板壁を構築することができる。   On the other hand, Patent Document 1 proposes a technique of forming an arch-shaped earth retaining wall that is convex toward the sea side by using a sheet-shaped member, for example, a straight steel sheet pile. In this case, since the back surface earth pressure is supported by the tension in the horizontal direction of the earth retaining wall, the bending rigidity of the earth retaining wall may be low. Therefore, it is possible to construct a steel sheet pile wall capable of resisting the earth pressure on the back surface while suppressing an increase in the amount of steel material due to an increase in the cross section and the addition of waving.

特開2005−194867号公報JP 2005-194867 A

しかしながら、特許文献1に記載の技術では、土留め壁を構成する部材の曲げ剛性が低いために、土留め壁を打設するときの施工性が高くない。つまり、打設後に背面土圧を張力で支持できるように部材の曲げ剛性をあえて低くしているため、土留め壁の施工時に地中に打設される部材に壁厚方向の曲がりが生じやすい。   However, in the technique described in Patent Document 1, the workability when placing the earth retaining wall is not high because the bending rigidity of the member forming the earth retaining wall is low. In other words, since the bending rigidity of the member is intentionally lowered so that the back surface earth pressure can be supported by tension after placing, the member placed in the ground during construction of the earth retaining wall is likely to bend in the wall thickness direction. ..

そこで、本発明は、適度な曲げ剛性をもった部材で土留め壁を構成することによって、施工性を高めつつ鋼材量の増加を抑制することが可能な岸壁構造および岸壁構造の構築方法を提供することを目的とする。   Therefore, the present invention provides a quay wall structure and a method for constructing a quay wall structure that can suppress an increase in the amount of steel material while improving the workability by configuring the earth retaining wall with a member having an appropriate bending rigidity. The purpose is to do.

本発明のある観点によれば、水平断面において地盤側に凸な凸形状に配列された複数の鋼管矢板と、複数の鋼管矢板を互いに連結する継手と、凸形状の両端に位置する鋼管矢板に連結される支持杭構造体とを備える岸壁構造が提供される。   According to a certain aspect of the present invention, a plurality of steel pipe sheet piles arranged in a convex shape convex to the ground side in a horizontal cross section, a joint connecting the plurality of steel pipe sheet piles to each other, and steel pipe sheet piles located at both ends of the convex shape. There is provided a quay structure including a support pile structure to be connected.

上記の岸壁構造は、支持杭構造体よりも海側に位置する控え杭構造体と、支持杭構造体を控え杭構造体に連結する圧縮部材とをさらに備えてもよい。   The above-mentioned quay structure may further include a retaining pile structure located on the sea side of the supporting pile structure, and a compression member connecting the supporting pile structure to the retaining pile structure.

上記の岸壁構造は、地盤に貫入するアンカー体と、支持杭構造体をアンカー体に連結する引張部材とをさらに備えてもよい。   The above-mentioned quay structure may further include an anchor body that penetrates into the ground, and a tension member that connects the support pile structure body to the anchor body.

上記の岸壁構造において、凸形状は、円弧状、放物線状もしくは双曲線状のアーチ形状、または逆V字形状であってもよい。   In the above quay structure, the convex shape may be an arc shape, a parabolic shape or a hyperbolic arch shape, or an inverted V shape.

上記の岸壁構造において、凸形状の中央において、複数の鋼管矢板の打設深さが凸形状の両端よりも浅くてもよい。   In the above quay structure, the casting depth of the plurality of steel pipe sheet piles may be shallower at the center of the convex shape than at both ends of the convex shape.

上記の岸壁構造において、複数の鋼管矢板のそれぞれは、地盤の円弧すべり面よりも深くまで打設されてもよい。   In the above quay structure, each of the plurality of steel pipe sheet piles may be driven to a depth deeper than the arc slip surface of the ground.

上記の岸壁構造において、複数の鋼管矢板は、第1の鋼管矢板および第2の鋼管矢板を含み、継手は、第1の鋼管矢板の周面に間隔を開けて接合される1対の雌側継手部材と、第2の鋼管矢板の周面に間隔を開けて接合される1対の雄側継手部材と、雌側継手部材、雄側継手部材、ならびに第1および第2の鋼管矢板の周面で囲まれた領域に充填される充填材とを含み、1対の雌側継手部材は、それぞれが内側を向いた逆L字状になるように配置され、1対の雄側継手部材は、それぞれが外側を向いた逆L字状になるように配置されて1対の雌側継手部材の内側に係合してもよい。   In the above quay structure, the plurality of steel pipe sheet piles include a first steel pipe sheet pile and a second steel pipe sheet pile, and the joint is a pair of female sides joined to the peripheral surface of the first steel pipe sheet pile with a space therebetween. Joint member, a pair of male-side joint members joined to the peripheral surface of the second steel pipe sheet pile with a space, a female-side joint member, a male-side joint member, and peripheries of the first and second steel pipe sheet piles A pair of female side joint members are arranged so as to have an inverted L shape inwardly facing each other, and a pair of male side joint members are provided. , May be arranged so as to have an inverted L shape facing outward and engage with the inside of the pair of female side joint members.

本発明の別の観点によれば、複数の鋼管矢板を、継手で互いに連結しながら、水平断面において地盤側に凸な凸形状が形成されるように順次打設する工程と、凸形状の両端に位置する鋼管矢板に支持杭構造体を連結する工程とを含む、岸壁構造の構築方法が提供される。   According to another aspect of the present invention, while connecting a plurality of steel pipe sheet piles to each other with a joint, a step of sequentially driving so as to form a convex convex shape on the ground side in a horizontal cross section, and both ends of the convex shape. And a step of connecting the support pile structure to the steel pipe sheet pile located at.

上記の岸壁構造の構築方法は、支持杭構造体よりも海側に位置し、圧縮部材で支持杭構造体に連結される控え杭を構築する工程をさらに含んでもよい。   The above-mentioned construction method of the quay structure may further include a step of constructing a retaining pile located on the sea side of the support pile structure and connected to the support pile structure by a compression member.

上記の岸壁構造の構築方法は、地盤に貫入し、引張部材で支持杭構造体に連結されるアンカー体を構築する工程をさらに含んでもよい。   The method for constructing the quay structure may further include a step of constructing an anchor body which penetrates into the ground and is connected to the support pile structure by a tension member.

上記の岸壁構造の構築方法において、複数の鋼管矢板は、凸形状の中央において、凸形状の両端よりも浅く打設されてもよい。   In the method for constructing the quay wall structure described above, the plurality of steel pipe sheet piles may be cast in the center of the convex shape so as to be shallower than both ends of the convex shape.

上記の構成によれば、複数の鋼管矢板によって構成される土留め壁の形状を地盤側に凸にすることで、背面土圧が土留め壁の内部で圧縮力として伝達されるため、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板で土留め壁を構成することができ、これによって施工性が向上する。また、凸形状に配列された複数の鋼管矢板によって構成される土留め壁が背面土圧に対して全体として大きな曲げ剛性をもつため、それぞれの鋼管矢板の断面を大きくしたり、腹起し工などの追加の部材を配置したりしなくてよい。つまり、本発明では、適度な曲げ剛性をもった部材で土留め壁を構成することによって、施工性を高めつつ鋼材量の増加を抑制することができる。   According to the above configuration, by making the shape of the earth retaining wall constituted by a plurality of steel pipe sheet piles convex toward the ground side, the back earth pressure is transmitted as a compressive force inside the earth retaining wall, so at least the construction The earth retaining wall can be made of a steel pipe sheet pile having a bending rigidity that does not cause bending at times, which improves workability. In addition, since the earth retaining wall composed of a plurality of steel pipe sheet piles arranged in a convex shape has a large bending rigidity as a whole against the back surface earth pressure, the cross section of each steel pipe sheet pile is increased, and the waving work is performed. It is not necessary to arrange additional members such as. That is, in the present invention, by constructing the earth retaining wall with a member having an appropriate bending rigidity, it is possible to suppress an increase in the amount of steel material while improving the workability.

本発明の第1の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure concerning a 1st embodiment of the present invention. 図1に示す継手の拡大図である。It is an enlarged view of the joint shown in FIG. 図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 本発明の第2の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure concerning a 2nd embodiment of the present invention. 第1の実施形態および第2の実施形態における土留め壁のアーチ形状についての検討結果を示すグラフである。It is a graph which shows the examination result about the arch shape of the earth retaining wall in the first embodiment and the second embodiment. 第1の実施形態および第2の実施形態における継手の幅についての検討結果を示すグラフである。It is a graph which shows the examination result about the width of the joint in a 1st embodiment and a 2nd embodiment. 本発明の第3の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係る岸壁構造の平面図である。It is a top view of the wharf structure concerning a 4th embodiment of the present invention. 土留め壁の配列がアーチ形状の場合の第1鋼管矢板にかかる力を示す図である。It is a figure which shows the force applied to a 1st steel pipe sheet pile when the arrangement of the earth retaining wall is an arch shape. 土留め壁の配列が逆V字形状の場合の第1鋼管矢板にかかる力を示す図である。It is a figure which shows the force applied to the 1st steel pipe sheet pile when the arrangement of the earth retaining wall is an inverted V shape. 第1鋼管矢板が鋼管杭に連結される角度と、第1鋼管矢板に作用する圧縮力との関係を示すグラフである。It is a graph which shows the relationship between the angle which a 1st steel pipe sheet pile connects with a steel pipe pile, and the compressive force which acts on a 1st steel pipe sheet pile.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, and duplicate description will be omitted.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る岸壁構造の平面図である。図1に示されるように、岸壁構造1は、水平断面において地盤G側に凸なアーチ形状に配列された複数の鋼管矢板2と、複数の鋼管矢板2を互いに連結する継手3と、アーチ形状の両端に位置する鋼管矢板2Aに継手3を介して連結される鋼管杭4Aおよびジャケットレグ4Bを含む支持杭構造体4とを含む。継手3によって、複数の鋼管矢板2の間で圧縮荷重およびせん断荷重が伝達される。図示された例において、岸壁構造1は、支持杭構造体4よりも海側に位置する控え杭構造体5と、支持杭構造体4を控え杭構造体5に連結する圧縮部材である梁6とをさらに含み、控え杭構造体5は鋼管杭5Aおよびジャケットレグ5Bを含む。
(First embodiment)
FIG. 1 is a plan view of a quay structure according to a first embodiment of the present invention. As shown in FIG. 1, the quay structure 1 includes a plurality of steel pipe sheet piles 2 arranged in a convex arch shape on the ground G side in a horizontal section, a joint 3 connecting the plurality of steel pipe sheet piles 2 to each other, and an arch shape. And a support pile structure 4 including a steel pipe pile 4A and a jacket leg 4B that are connected to the steel pipe sheet piles 2A located at both ends of the joint via a joint 3. The joint 3 transmits the compressive load and the shear load between the plurality of steel pipe sheet piles 2. In the illustrated example, the quay structure 1 is a retaining pile structure 5 located on the sea side of the supporting pile structure 4, and a beam 6 that is a compression member that connects the supporting pile structure 4 to the retaining pile structure 5. Further, the retaining pile structure 5 includes a steel pipe pile 5A and a jacket leg 5B.

図2は、図1に示す継手の拡大図である。継手3は、例えば特公昭49−22404号公報や地盤工学会誌第62巻第4号(2014年)、p.42−43「鋼管矢板に用いる広幅継手『Wide Junction(登録商標)』」などに記載されたような、鋼管矢板2同士を水平方向に連結しつつ、圧縮荷重およびせん断荷重を伝達することが可能な継手である。具体的には、継手3は、一方の鋼管矢板2の周面に間隔Wを開けて接合される1対の雌側継手部材3Aと、他方の鋼管矢板2の周面に間隔Wを開けて接合される1対の雄側継手部材3Bと、雌側継手部材3A、雄側継手部材3B、およびそれぞれの鋼管矢板2の周面で囲まれた領域に充填される充填材3Cとを含む。1対の雌側継手部材3Aは、例えば山形鋼であり、それぞれが内側を向いた逆L字状になるように配置される。1対の雄側継手部材3Bも、例えば山形鋼であり、それぞれが外側を向いた逆L字状になるように配置されて1対の雌側継手部材3Aの内側に係合する。ここで、「逆L字状」は、雌側継手部材3Aおよび雄側継手部材3Bが接合されるそれぞれの鋼管矢板2の側から見た場合の断面形状である。充填材3Cには、モルタル、セメント、またはコンクリートなどを用いることができる。 FIG. 2 is an enlarged view of the joint shown in FIG. The joint 3 is disclosed, for example, in Japanese Examined Patent Publication No. Sho 49-22404, Journal of Geotechnical Engineering Vol. 62, No. 4 (2014), p. It is possible to transmit compressive load and shear load while horizontally connecting the steel pipe sheet piles 2 as described in 42-43 "Wide Junction (Wide Junction (registered trademark)" used for steel pipe sheet piles) and the like. It is a joint. Specifically, the joint 3, a pair of female joint member 3A which is joined at intervals W 2 on one of the peripheral surface of the steel pipe sheet pile 2, the distance W 1 on the other peripheral surface of the steel pipe sheet pile 2 A pair of male-side joint members 3B that are opened and joined, a female-side joint member 3A, a male-side joint member 3B, and a filler 3C filled in a region surrounded by the peripheral surfaces of the respective steel pipe sheet piles 2 are provided. Including. The pair of female side joint members 3A is, for example, chevron steel, and is arranged so that each has an inverted L shape facing inward. The pair of male side joint members 3B is also, for example, chevron steel, and is arranged so as to have an inverted L shape facing outward, and engages with the inside of the pair of female side joint members 3A. Here, the “inverted L-shape” is a cross-sectional shape when viewed from the side of each steel pipe sheet pile 2 to which the female joint member 3A and the male joint member 3B are joined. Mortar, cement, concrete, or the like can be used as the filler 3C.

複数の鋼管矢板2は、例えば上記のような継手3によって互いに連結されて、地盤G側に凸なアーチ形状の土留め壁を形成する。アーチ形状の土留め壁は背面土圧に対して全体として大きな曲げ剛性をもつため、それぞれの鋼管矢板2の曲げ剛性を単独で背面土圧に対抗できるほど高くしなくてもよい。背面土圧は、土留め壁の内部で圧縮力として伝達され、最終的にはアーチ形状の両端に位置する鋼管矢板2Aから支持杭構造体4に伝達される。従って、岸壁構造1では、鋼管矢板2から支持杭構造体4に背面土圧を伝達するための腹起し工などの部材を設けなくてもよい。また、背面土圧を土留め壁の内部で張力として伝達する場合とは異なり、土留め壁を構成する部材が曲げ剛性をもつことが許容されるため、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができ、これによって施工性が向上する。   The plurality of steel pipe sheet piles 2 are connected to each other by, for example, the joint 3 as described above to form an arch-shaped earth retaining wall that is convex toward the ground G side. Since the arch-shaped earth retaining wall has a large bending rigidity as a whole against the back surface earth pressure, the bending rigidity of each steel pipe sheet pile 2 does not have to be high enough to be able to independently oppose the back surface earth pressure. The back surface earth pressure is transmitted as a compressive force inside the earth retaining wall, and is finally transmitted to the support pile structure 4 from the steel pipe sheet piles 2A located at both ends of the arch shape. Therefore, in the quay structure 1, it is not necessary to provide a member such as a waving for transmitting the back surface earth pressure from the steel pipe sheet pile 2 to the support pile structure 4. In addition, unlike the case where rear surface earth pressure is transmitted as tension inside the retaining wall, it is permissible that the members that make up the retaining wall have bending rigidity, so bending at least to the extent that bending does not occur during construction. The steel pipe sheet pile 2 having rigidity can form an earth retaining wall, which improves workability.

図3は、図1のIII−III線断面図である。なお、図3では一部の鋼管矢板2および継手3の図示を省略している。図3に示されるように、支持杭構造体4において、ジャケットレグ4Bは鋼管杭4Aの上部に被さるように配置される。アーチ形状の両端に位置する鋼管矢板2Aは、図示された例のようにジャケットレグ4Bよりも深くまで打設され、寸法の異なる継手3(図示せず)を用いてジャケットレグ4Bおよび鋼管杭4Aのそれぞれに連結されてもよい。あるいは、鋼管矢板2Aの打設深さが浅い場合には、鋼管矢板2Aがジャケットレグ4Bだけに連結されてもよい。   FIG. 3 is a sectional view taken along line III-III in FIG. In addition, in FIG. 3, illustration of a part of the steel pipe sheet pile 2 and the joint 3 is omitted. As shown in FIG. 3, in the support pile structure 4, the jacket leg 4B is arranged so as to cover the upper portion of the steel pipe pile 4A. The steel pipe sheet piles 2A located at both ends of the arch shape are driven deeper than the jacket leg 4B as in the illustrated example, and the joints 3 (not shown) having different sizes are used to cover the jacket leg 4B and the steel pipe pile 4A. May be connected to each. Alternatively, when the casting depth of the steel pipe sheet pile 2A is shallow, the steel pipe sheet pile 2A may be connected only to the jacket leg 4B.

また、図3に示されるように、岸壁構造1では、複数の鋼管矢板2の打設深さが、土留め壁のアーチ形状の中央において、アーチ形状の両端よりも浅くなっている。具体的には、図1および図3に示されたアーチ形状の中央の鋼管矢板2Bの打設深さは、アーチ形状の両端の鋼管矢板2Aの打設深さよりも浅くなっている。ここで、土留め壁の構築にあたり、複数の鋼管矢板2のそれぞれは、地盤Gの円弧すべり面Cよりも深くまで打設されることが望ましい。円弧すべり面Cは海岸から離れるにつれて浅くなるため、複数の鋼管矢板2が地盤G側に凸なアーチ形状に配列されていることによって、アーチ形状の中央の鋼管矢板2Bの打設深さは、アーチ形状の両端の鋼管矢板2Aの打設深さよりも浅くてよくなる。   Further, as shown in FIG. 3, in the quay structure 1, the driving depth of the plurality of steel pipe sheet piles 2 is shallower at the center of the arch shape of the earth retaining wall than at both ends of the arch shape. Specifically, the driving depth of the steel pipe sheet pile 2B at the center of the arch shape shown in FIGS. 1 and 3 is shallower than the driving depth of the steel pipe sheet piles 2A at both ends of the arch shape. Here, in constructing the earth retaining wall, it is desirable that each of the plurality of steel pipe sheet piles 2 be driven to a depth deeper than the arc slip surface C of the ground G. Since the circular arc slip surface C becomes shallower as it moves away from the shore, a plurality of steel pipe sheet piles 2 are arranged in a convex arch shape on the ground G side, so that the driving depth of the steel pipe sheet pile 2B at the center of the arch shape is It may be shallower than the driving depth of the steel pipe sheet piles 2A at both ends of the arch shape.

次に、本実施形態に係る岸壁構造の構築方法の例について概略的に説明する。まず、支持杭構造体4の鋼管杭4Aを打設し、次に鋼管杭4Aにジャケットレグ4B、梁6およびジャケットレグ5Bを含むジャケット構造体を据え付け、さらにジャケットレグ5Bをガイドとして控え杭構造体5の鋼管杭5Aを打設する。これによって、支持杭構造体4および控え杭構造体5が構築される。その後、複数の鋼管矢板2を、継手3で互いに連結しながら、上述したようなアーチ形状が形成されるように順次打設する工程と、支持杭構造体4を構成するジャケットレグ4B(または鋼管杭4A)をアーチ形状の両端に位置する鋼管矢板2Aに連結する工程とが実施される。   Next, an example of a method for constructing a quay structure according to this embodiment will be schematically described. First, the steel pipe pile 4A of the support pile structure 4 is placed, and then the jacket structure including the jacket leg 4B, the beam 6 and the jacket leg 5B is installed on the steel pipe pile 4A, and further, the jacket leg 5B is used as a guide to construct the retaining pile structure. The steel pipe pile 5A of the body 5 is placed. As a result, the support pile structure 4 and the retaining pile structure 5 are constructed. Thereafter, a step of sequentially driving a plurality of steel pipe sheet piles 2 while connecting them with each other with a joint 3 so that the arch shape as described above is formed, and a jacket leg 4B (or a steel pipe) that constitutes the support pile structure 4 And a step of connecting the piles 4A) to the steel pipe sheet piles 2A located at both ends of the arch shape.

なお、本実施形態に係る岸壁構造の施工方法は上記の例には限られず、例えば仮杭などを用いてジャケット構造体(ジャケットレグ4B、梁6およびジャケットレグ5B)を先行して据え付け、ジャケットレグ4B,5Bをガイドとして鋼管杭4A,5Aをそれぞれ打設してもよい。また、ジャケット構造体の上方には、岸壁のエプロン部分を構成する上部工(図示せず)が設置されてもよい。   The construction method of the quay structure according to the present embodiment is not limited to the above example, and the jacket structure (jacket leg 4B, beam 6 and jacket leg 5B) is installed in advance by using, for example, temporary piles, and the The steel pipe piles 4A and 5A may be driven by using the legs 4B and 5B as guides, respectively. Further, a superstructure (not shown) that constitutes an apron portion of the quay wall may be installed above the jacket structure.

(第2の実施形態)
図4は、本発明の第2の実施形態に係る岸壁構造の平面図である。図4に示されるように、岸壁構造1Aは、第1の実施形態と同様の複数の鋼管矢板2および継手3を含む。第1の実施形態との違いとして、本実施形態では、支持杭構造体4がジャケットレグを含まず、アーチ形状の両端に位置する鋼管矢板2Aは継手3を介して鋼管杭4Aに連結される。図示された例において、岸壁構造1Aは、地盤Gに貫入するアンカー体7と、鋼管杭4Aをアンカー体7に連結する引張部材であるタイロッド8とを含む。このようにして、本実施形態では、地盤G側に凸なアーチ形状の土留め壁から鋼管杭4Aに伝達された背面土圧が、タイロッド8およびアンカー体7を介して地盤Gによって支持される。
(Second embodiment)
FIG. 4 is a plan view of the quay structure according to the second embodiment of the present invention. As shown in FIG. 4, the quay structure 1A includes a plurality of steel pipe sheet piles 2 and joints 3 similar to those in the first embodiment. As a difference from the first embodiment, in the present embodiment, the support pile structure 4 does not include a jacket leg, and the steel pipe sheet piles 2A located at both ends of the arch shape are connected to the steel pipe pile 4A via the joint 3. .. In the illustrated example, the quay structure 1A includes an anchor body 7 that penetrates into the ground G and a tie rod 8 that is a tensile member that connects the steel pipe pile 4A to the anchor body 7. Thus, in this embodiment, the back surface earth pressure transmitted to the steel pipe pile 4A from the arch-shaped earth retaining wall that is convex toward the ground G side is supported by the ground G through the tie rods 8 and the anchor body 7. ..

本実施形態でも、上記の第1の実施形態と同様に、アーチ形状の土留め壁が背面土圧に対して全体として大きな曲げ剛性をもつため、鋼管矢板2については径方向の圧縮に対する剛性が確保される以上に断面を増加させなくてもよい。鋼管矢板2から鋼管杭4Aに背面土圧を伝達するための腹起し工などの部材も不要である。また、本実施形態でも、少なくとも施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができることによって施工性が向上する。   Also in the present embodiment, as in the first embodiment, the arch-shaped earth retaining wall has a large bending rigidity as a whole against the back surface earth pressure, so that the steel pipe sheet pile 2 has a rigidity against radial compression. It is not necessary to increase the cross section more than it is secured. A member such as a waving for transmitting the back surface earth pressure from the steel pipe sheet pile 2 to the steel pipe pile 4A is also unnecessary. Further, also in the present embodiment, since the earth retaining wall can be configured by the steel pipe sheet pile 2 having bending rigidity at least so as not to bend at the time of construction, the workability is improved.

本実施形態に係る岸壁構造は、例えば、地盤に貫入させられたタイロッド8の先端にアンカー体7を構築するとともに、タイロッド8に支持杭構造体4の鋼管杭4Aを連結する。その後、複数の鋼管矢板2を、継手3で互いに連結しながら、上述したようなアーチ形状が形成されるように順次打設する工程と、支持杭構造体4の鋼管杭4Aをアーチ形状の両端に位置する鋼管矢板2Aに連結する工程とが実施される。   In the quay structure according to the present embodiment, for example, the anchor body 7 is constructed at the tip of the tie rod 8 penetrated into the ground, and the steel pipe pile 4A of the support pile structure 4 is connected to the tie rod 8. Thereafter, a step of sequentially placing a plurality of steel pipe sheet piles 2 while connecting them with each other with a joint 3 so that the arch shape as described above is formed, and the steel pipe piles 4A of the support pile structure 4 at both ends of the arch shape. And the step of connecting to the steel pipe sheet pile 2A located at.

図5は、上記の第1の実施形態および第2の実施形態における土留め壁のアーチ形状についての検討結果を示すグラフである。上記の実施形態において、複数の鋼管矢板2によって構成される土留め壁のアーチ形状は、例えば円弧状、放物線状または双曲線状でありうるが、その形状は、図1に示したアーチ形状の支間長Lに対するライズfの比(ライズ比)f/Lで規定することができる。図5のグラフは、鋼管矢板2の直径(鋼管径)が800mm、1200mm、および1600mm(板厚はいずれも11mm)である場合の土留め壁の単位幅あたりの断面二次モーメント(mm/mm)とライズ比との関係を示す。 FIG. 5: is a graph which shows the examination result about the arch shape of the earth retaining wall in the said 1st Embodiment and 2nd Embodiment. In the above-described embodiment, the arch shape of the earth retaining wall constituted by the plurality of steel pipe sheet piles 2 may be, for example, an arc shape, a parabolic shape, or a hyperbolic shape, but the shape is a span of the arch shape shown in FIG. 1. It can be defined by the ratio of the rise f to the length L (rise ratio) f / L. The graph of FIG. 5 shows that the second moment of area per unit width of the earth retaining wall when the diameter of the steel pipe sheet pile 2 (steel pipe diameter) is 800 mm, 1200 mm, and 1600 mm (all have a thickness of 11 mm) (mm 4 / mm) and the rise ratio.

グラフに示されるように、ライズ比が0、すなわち鋼管矢板2がアーチ形状ではなく直線状に配置される場合、断面二次モーメントは鋼管径が大きいほど大きくなる。土留め壁をアーチ形状にし、ライズ比が0よりも大きくなると、どの鋼管径でも断面二次モーメントは増加するが、1つの指標として、ライズ比が0.27になると、鋼管径800mmの場合の断面二次モーメントが、鋼管径1600mmの場合の直線状の配置(ライズ比が0)の断面二次モーメントと同等になる。また、ライズ比が0.3になると、鋼管径800mmの場合の断面二次モーメントは、同じ鋼管径800mmの直線状の配置の断面二次モーメントの約5倍になる。   As shown in the graph, when the rise ratio is 0, that is, when the steel pipe sheet pile 2 is arranged in a straight line rather than in an arched shape, the second moment of area increases as the diameter of the steel pipe increases. When the earth retaining wall is arched and the rise ratio becomes larger than 0, the second moment of area increases at any steel pipe diameter, but one index is that when the rise ratio is 0.27, the steel pipe diameter is 800 mm. The geometrical moment of inertia is equal to the geometrical moment of inertia in a linear arrangement (rise ratio is 0) when the diameter of the steel pipe is 1600 mm. Further, when the rise ratio becomes 0.3, the second moment of area when the steel pipe diameter is 800 mm is about 5 times the second moment of area when the steel pipe diameter is 800 mm and the linear arrangement is the same.

上記のような検討結果から、1つの基準として、鋼管矢板2が配置されるアーチ形状のライズ比を、0.27以上、または0.3以上としてもよい。なお、例えば鋼管径が1200mmまたは1600mmである場合には、図5のグラフに示されるようにライズ比に対する断面二次モーメントの増加率が高いため、0.27よりも小さいライズ比でも十分な効果が得られる。また、鋼管径が800mmの場合も、必要とされる断面二次モーメントがより小さい場合には、ライズ比が上記の範囲よりも小さくてもよい。   From the above examination results, as one criterion, the rise ratio of the arch shape in which the steel pipe sheet pile 2 is arranged may be 0.27 or more, or 0.3 or more. When the diameter of the steel pipe is 1200 mm or 1600 mm, for example, as shown in the graph of FIG. 5, the rate of increase of the second moment of area with respect to the rise ratio is high. Is obtained. Even when the diameter of the steel pipe is 800 mm, the rise ratio may be smaller than the above range when the required second moment of area is smaller.

図6は、上記の第1の実施形態および第2の実施形態における継手の幅についての検討結果を示すグラフである。図2に示すように、上記の実施形態において、継手3は、所定の幅W(雄側で幅W、雌側で幅W)でそれぞれの鋼管矢板2に接合される。図6のグラフは、鋼管矢板2の直径(鋼管径)が800mm、板厚tが1.3mmである場合に、継手3の接合幅Wごとに、それぞれの鋼管矢板2で継手3の反対側にかかる圧縮荷重(kN)と鋼管矢板2のひずみによる変位(mm)との関係を示す。 FIG. 6 is a graph showing the results of studying the width of the joint in the above-described first and second embodiments. As shown in FIG. 2, in the above embodiment, the joint 3 is joined to each steel pipe sheet pile 2 with a predetermined width W (width W 1 on the male side and width W 2 on the female side). The graph of FIG. 6 shows that, when the diameter (steel pipe diameter) of the steel pipe sheet pile 2 is 800 mm and the plate thickness t is 1.3 mm, the joint width W of the joint 3 is opposite to the joint 3 of each steel pipe sheet pile 2. 2 shows the relationship between the compressive load (kN) applied to and the displacement (mm) of the steel pipe sheet pile 2 due to strain.

グラフに示されるように、接合幅Wが0の場合、すなわち、上記で図2に示したような継手ではなく、実質的に幅をもたないピン状の継手の場合に対して、接合幅W(mm)が大きくなるほど荷重に対する変位が小さくなり、また最大荷重も増大する。この結果から、上記の実施形態では、幅Wをもった継手3が鋼管矢板2を連結することによって、鋼管矢板2と継手3とを合わせた構造体の圧縮荷重に対する剛性が向上している。   As shown in the graph, the joint width W is 0, that is, the joint width W is 0, that is, the joint width W is not the joint shown in FIG. As W (mm) increases, the displacement with respect to the load decreases, and the maximum load also increases. From this result, in the above-described embodiment, the joint 3 having the width W connects the steel pipe sheet piles 2, so that the rigidity of the structure including the steel pipe sheet pile 2 and the joint 3 with respect to the compressive load is improved.

(第3の実施形態)
図7は、本発明の第3の実施形態に係る岸壁構造の平面図である。図7に示されるように、岸壁構造1Bは、第1の実施形態と同様の複数の鋼管矢板2、継手3、支持杭構造体4、控え杭構造体5、および梁6を含む。第1の実施形態との違いとして、本実施形態では、複数の鋼管矢板2が、水平断面において地盤G側に凸な逆V字形状に配列される。それ以外の構成については、第1の実施形態と同様であるため重複した説明は省略する。
(Third Embodiment)
FIG. 7 is a plan view of the quay structure according to the third embodiment of the present invention. As shown in FIG. 7, the quay structure 1B includes a plurality of steel pipe sheet piles 2, joints 3, support pile structures 4, retaining pile structures 5, and beams 6 similar to those in the first embodiment. As a difference from the first embodiment, in the present embodiment, the plurality of steel pipe sheet piles 2 are arranged in an inverted V shape that is convex toward the ground G side in a horizontal cross section. The rest of the configuration is the same as that of the first embodiment, so duplicated description will be omitted.

(第4の実施形態)
図8は、本発明の第4の実施形態に係る岸壁構造の平面図である。図8に示されるように、岸壁構造1Cは、第2の実施形態と同様の複数の鋼管矢板2、継手3、支持杭構造体4、アンカー体7、およびタイロッド8を含む。第2の実施形態との違いとして、本実施形態では、複数の鋼管矢板2が、上記の第3の実施形態と同様に水平断面において地盤G側に凸な逆V字形状に配列される。それ以外の構成については、第2の実施形態と同様であるため重複した説明は省略する。
(Fourth Embodiment)
FIG. 8 is a plan view of the quay structure according to the fourth embodiment of the present invention. As shown in FIG. 8, the quay structure 1C includes a plurality of steel pipe sheet piles 2, a joint 3, a support pile structure 4, an anchor body 7, and a tie rod 8 similar to those in the second embodiment. As a difference from the second embodiment, in the present embodiment, a plurality of steel pipe sheet piles 2 are arranged in an inverted V-shape that is convex toward the ground G side in a horizontal cross section as in the third embodiment. The rest of the configuration is the same as that of the second embodiment, so duplicated description will be omitted.

上記の第3の実施形態および第4の実施形態のように複数の鋼管矢板2を逆V字形状に配列する場合、土留め壁が背面土圧に対して全体としてもつ曲げ剛性が、第1の実施形態および第2の実施形態で複数の鋼管矢板2をアーチ形状に配列する場合よりも大きくなる。この曲げ剛性が発揮されることによって、既に述べたようにそれぞれの鋼管矢板2の曲げ剛性を抑えることができるのに加え、土留め壁を構成する複数の鋼管矢板2の根入れ深さをより深くし、土留め壁自体により大きな地盤G側からの背面土圧を負担させることもできる。この場合、例えば第3の実施形態における控え杭構造体5および梁6、または第4の実施形態におけるアンカー体7およびタイロッド8をより簡易な構造にすることができる。   When a plurality of steel pipe sheet piles 2 are arranged in an inverted V shape as in the above-described third and fourth embodiments, the bending rigidity of the earth retaining wall as a whole against the back earth pressure is the first. It becomes larger than the case where a plurality of steel pipe sheet piles 2 are arranged in an arch shape in the embodiment and the second embodiment. By exhibiting this bending rigidity, in addition to suppressing the bending rigidity of each steel pipe sheet pile 2 as already described, the depth of rooting of the plurality of steel pipe sheet piles 2 constituting the earth retaining wall can be further improved. The earth retaining wall itself can be made deeper to bear the back surface earth pressure from the large ground G side. In this case, for example, the retaining pile structure 5 and the beam 6 in the third embodiment, or the anchor body 7 and the tie rod 8 in the fourth embodiment can have a simpler structure.

また、上記の第3の実施形態および第4の実施形態でも、背面土圧は土留め壁の内部で主に圧縮力として伝達されるため、腹起し工などの部材は不要である。また、土留め壁を構成する部材が曲げ剛性をもつことが許容されるため、施工時に曲がりを生じない程度の曲げ剛性をもった鋼管矢板2で土留め壁を構成することができ、これによって施工性が向上する。なお、これらの効果は、複数の鋼管矢板2が水平断面において地盤G側に凸な凸形状に配置されることによって得られ、凸形状がアーチ形状または逆V字形状である場合には限られない。例えば、以下で図9〜図11を参照して説明するように、凸形状としてアーチ形状または逆V字形状のいずれかを選択することによって、土留め壁のライズ比と、鋼管矢板2に作用する圧縮力とのバランスを調節することもできる。   Further, also in the above-described third and fourth embodiments, the back surface earth pressure is mainly transmitted as a compressive force inside the earth retaining wall, so a member such as a waving work is not necessary. Further, since the member forming the earth retaining wall is allowed to have bending rigidity, it is possible to form the earth retaining wall with the steel pipe sheet pile 2 having a bending rigidity that does not cause bending during construction. Workability is improved. Note that these effects are obtained by arranging a plurality of steel pipe sheet piles 2 in a convex shape that is convex toward the ground G side in a horizontal cross section, and is limited only when the convex shape is an arch shape or an inverted V shape. Absent. For example, as described below with reference to FIGS. 9 to 11, by selecting either the arch shape or the inverted V shape as the convex shape, the rise ratio of the earth retaining wall and the steel pipe sheet pile 2 are acted on. It is also possible to adjust the balance with the compression force.

図9および図10は、それぞれ、土留め壁の配列がアーチ形状および逆V字形状の場合の第1鋼管矢板にかかる力を示す図である。凸形状の両端にそれぞれ位置する鋼管矢板2C(以下、第1鋼管矢板2Cともいう)と支持杭構造体4の鋼管杭4Aの間に作用する力Qは、支持杭構造体4が負担する背面土圧の反力Rの1/2に相当する。図9に示された例において、第1鋼管矢板2Cは、継手3(図示せず)を介して、壁幅方向に対する角度θで鋼管杭4Aに連結されている。この場合、力Qの分力として、第1鋼管矢板2Cと鋼管杭4Aとの間に圧縮力Qsinθおよびせん断力Qcosθが作用する。図10に示された例では、第1鋼管矢板2Cが壁幅方向に対する角度θで鋼管杭4Aに連結され、第1鋼管矢板2Cと鋼管杭4Aとの間に圧縮力Qsinθおよびせん断力Qcosθが作用する。 FIG. 9 and FIG. 10 are diagrams showing the force applied to the first steel pipe sheet pile when the arrangement of the earth retaining walls is arch-shaped and inverted V-shaped, respectively. The force Q acting between the steel pipe sheet pile 2C (hereinafter also referred to as the first steel pipe sheet pile 2C) and the steel pipe pile 4A of the support pile structure 4 located at both ends of the convex shape is the back surface that the support pile structure 4 bears. It is equivalent to 1/2 of the reaction force R of earth pressure. In the example shown in FIG. 9, the first steel pipe sheet pile 2C is connected to the steel pipe pile 4A via the joint 3 (not shown) at an angle θ 1 with respect to the wall width direction. In this case, as a component of the force Q, the compressive force Qsinθ 1 and the shear force Qcosθ 1 act between the first steel pipe sheet pile 2C and the steel pipe pile 4A. In the example shown in FIG. 10, the first steel pipe sheet pile 2C is connected to the steel pipe pile 4A at an angle θ 2 with respect to the wall width direction, and the compressive force Qsinθ 2 and the shear force are generated between the first steel pipe sheet pile 2C and the steel pipe pile 4A. Qcos θ 2 acts.

ここで、図9および図10に示されているように、鋼管矢板2によって構成される土留め壁のライズ比(図1および図7に示した凸形状の支間長Lに対するライズfの比f/L)が等しい場合、アーチ形状の場合の第1鋼管矢板2Cの角度θよりも、逆V字形状の場合の第1鋼管矢板2Cの角度θの方が小さくなる(θ>θ)。この結果、第1鋼管矢板2Cと鋼管杭4Aとの間に作用する圧縮力も、アーチ形状の場合よりも逆V字形状の場合に小さくなる(Qsinθ>Qsinθ)。図11のグラフに、角度θ(上記の角度θ,θに相当する)と第1鋼管矢板2Cに作用する圧縮力との関係を示す。従って、例えば、ライズfを確保しながら第1鋼管矢板2Cに作用する圧縮力を小さくしたい場合は、上記の第3の実施形態および第4の実施形態で説明したような逆V字形状が有利でありうる。逆に、例えば同じライズfで継手3にかかるせん断力を小さくしたい場合は、上記の第1の実施形態および第2の実施形態で説明したようなアーチ形状が有利でありうる。 Here, as shown in FIGS. 9 and 10, the rise ratio of the earth retaining wall constituted by the steel pipe sheet pile 2 (ratio f of rise f to convex span length L shown in FIGS. 1 and 7 f / L) are equal, than the angle theta 1 of the first steel pipe sheet pile 2C in the case of an arch shape, towards the angle theta 2 of the first steel pipe sheet pile 2C in the case of inverted V-shape is small (theta 1> theta 2 ). As a result, the compressive force acting between the first steel pipe sheet pile 2C and the steel pipe pile 4A is smaller in the case of the inverted V shape than in the case of the arch shape (Qsinθ 1 > Qsinθ 2 ). The graph of FIG. 11 shows the relationship between the angle θ (corresponding to the above angles θ 1 and θ 2 ) and the compressive force acting on the first steel pipe sheet pile 2C. Therefore, for example, when it is desired to reduce the compressive force acting on the first steel pipe sheet pile 2C while securing the rise f, the inverted V-shape as described in the third embodiment and the fourth embodiment is advantageous. Can be On the contrary, for example, when it is desired to reduce the shearing force applied to the joint 3 with the same rise f, the arch shape as described in the first embodiment and the second embodiment may be advantageous.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various alterations or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1、1A、1B、1C…岸壁構造、2、2A、2B、2C…鋼管矢板、3…継手、4…支持杭構造体、4A…鋼管杭、4B…ジャケットレグ、5…控え杭構造体、5A…鋼管杭、5B…ジャケットレグ、6…梁、7…アンカー体、8…タイロッド。   1, 1A, 1B, 1C ... Quay structure, 2, 2A, 2B, 2C ... Steel pipe sheet pile, 3 ... Joint, 4 ... Support pile structure, 4A ... Steel pipe pile, 4B ... Jacket leg, 5 ... Rest pile structure, 5A ... Steel pipe pile, 5B ... Jacket leg, 6 ... Beam, 7 ... Anchor body, 8 ... Tie rod.

Claims (11)

水平断面において地盤側に凸な凸形状に配列された複数の鋼管矢板と、
前記複数の鋼管矢板を互いに連結する継手と、
前記凸形状の両端に位置する鋼管矢板に連結される支持杭構造体と
を備える岸壁構造。
A plurality of steel pipe sheet piles arranged in a convex shape that is convex on the ground side in the horizontal cross section,
A joint connecting the plurality of steel pipe sheet piles to each other,
And a support pile structure connected to the steel pipe sheet piles located at both ends of the convex shape.
前記支持杭構造体よりも海側に位置する控え杭構造体と、前記支持杭構造体を前記控え杭構造体に連結する圧縮部材とをさらに備える、請求項1に記載の岸壁構造。   The quay wall structure according to claim 1, further comprising: a retaining pile structure located on the sea side of the supporting pile structure, and a compression member that connects the supporting pile structure to the retaining pile structure. 前記地盤に貫入するアンカー体と、前記支持杭構造体を前記アンカー体に連結する引張部材とをさらに含む、請求項1に記載の岸壁構造。   The quay structure according to claim 1, further comprising an anchor body that penetrates into the ground, and a tension member that connects the support pile structure body to the anchor body. 前記凸形状は、円弧状、放物線状もしくは双曲線状のアーチ形状、または逆V字形状である、請求項1から請求項3のいずれか1項に記載の岸壁構造。   The quay wall structure according to any one of claims 1 to 3, wherein the convex shape is an arc shape, a parabolic shape or a hyperbolic arch shape, or an inverted V shape. 前記凸形状の中央において、前記複数の鋼管矢板の打設深さが前記凸形状の両端よりも浅い、請求項1から請求項4のいずれか1項に記載の岸壁構造。   The quay structure according to any one of claims 1 to 4, wherein, in the center of the convex shape, the driving depth of the plurality of steel pipe sheet piles is shallower than both ends of the convex shape. 前記複数の鋼管矢板のそれぞれは、前記地盤の円弧すべり面よりも深くまで打設される、請求項5に記載の岸壁構造。   The quay structure according to claim 5, wherein each of the plurality of steel pipe sheet piles is driven to a depth deeper than an arc slip surface of the ground. 前記複数の鋼管矢板は、第1の鋼管矢板および第2の鋼管矢板を含み、
前記継手は、前記第1の鋼管矢板の周面に間隔を開けて接合される1対の雌側継手部材と、前記第2の鋼管矢板の周面に間隔を開けて接合される1対の雄側継手部材と、前記雌側継手部材、前記雄側継手部材、ならびに前記第1および第2の鋼管矢板の周面で囲まれた領域に充填される充填材とを含み、
前記1対の雌側継手部材は、それぞれが内側を向いた逆L字状になるように配置され、
前記1対の雄側継手部材は、それぞれが外側を向いた逆L字状になるように配置されて前記1対の雌側継手部材の内側に係合する、請求項1から請求項6のいずれか1項に記載の岸壁構造。
The plurality of steel pipe sheet piles include a first steel pipe sheet pile and a second steel pipe sheet pile,
The joint includes a pair of female-side joint members that are joined to the peripheral surface of the first steel pipe sheet pile at intervals and a pair of female side joint members that are joined to the peripheral surface of the second steel pipe sheet pile at intervals. A male-side joint member, a female-side joint member, the male-side joint member, and a filler filled in a region surrounded by the peripheral surfaces of the first and second steel pipe sheet piles,
The pair of female-side joint members are arranged so that each has an inverted L-shape facing inward,
7. The pair of male side joint members are arranged so as to have an inverted L-shape facing outward, and engage with the inside of the pair of female side joint members. The quay structure according to any one of items.
複数の鋼管矢板を、継手で互いに連結しながら、水平断面において地盤側に凸な凸形状が形成されるように順次打設する工程と、
前記凸形状の両端に位置する鋼管矢板に支持杭構造体を連結する工程と
を含む、岸壁構造の構築方法。
While connecting the plurality of steel pipe sheet piles to each other with a joint, a step of sequentially placing so that a convex shape that is convex on the ground side in a horizontal cross section is formed,
Connecting the support pile structures to the steel pipe sheet piles located at both ends of the convex shape.
前記支持杭構造体よりも海側に位置し、圧縮部材で前記支持杭構造体に連結される控え杭構造体を構築する工程をさらに含む、請求項8に記載の岸壁構造の構築方法。   The method for constructing a quay wall structure according to claim 8, further comprising a step of constructing a retaining pile structure located on the sea side of the support pile structure and connected to the support pile structure by a compression member. 前記地盤に貫入し、引張部材で前記支持杭構造体に連結されるアンカー体を構築する工程をさらに含む、請求項8に記載の岸壁構造の構築方法。   The method for constructing a quay wall structure according to claim 8, further comprising the step of constructing an anchor body that penetrates into the ground and is connected to the support pile structure body by a tension member. 前記複数の鋼管矢板は、前記凸形状の中央において、前記凸形状の両端よりも浅く打設される、請求項8から請求項10のいずれか1項に記載の岸壁構造の構築方法。   The method for constructing a quay wall structure according to any one of claims 8 to 10, wherein the plurality of steel pipe sheet piles are cast in the center of the convex shape so as to be shallower than both ends of the convex shape.
JP2019046915A 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure Pending JP2020076285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023062896A JP2023076734A (en) 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207160 2018-11-02
JP2018207160 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023062896A Division JP2023076734A (en) 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure

Publications (1)

Publication Number Publication Date
JP2020076285A true JP2020076285A (en) 2020-05-21

Family

ID=70723654

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019046915A Pending JP2020076285A (en) 2018-11-02 2019-03-14 Quay wall structure and construction method for quay wall structure
JP2023062896A Pending JP2023076734A (en) 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023062896A Pending JP2023076734A (en) 2018-11-02 2023-04-07 Quay wall structure and construction method for quay wall structure

Country Status (1)

Country Link
JP (2) JP2020076285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605397A (en) * 2021-07-14 2021-11-05 广州市设计院集团有限公司 Trapezoidal staggered foundation pit supporting mechanism and foundation pit supporting method
CN113605398A (en) * 2021-07-14 2021-11-05 广州市设计院集团有限公司 Foundation pit supporting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922404B1 (en) * 1970-06-12 1974-06-08
JPS5127606Y1 (en) * 1967-03-27 1976-07-13
JPS63103112A (en) * 1986-10-17 1988-05-07 Kawasaki Steel Corp Steel jacket quaywall
JPH09296427A (en) * 1996-04-30 1997-11-18 Kawasaki Steel Corp Structure in water area and construction method thereof
JP2001248135A (en) * 2000-03-03 2001-09-14 Kawasaki Steel Corp Jacket structure
JP2007308896A (en) * 2006-05-16 2007-11-29 Jfe Engineering Kk Anti-earth pressure structure, saddle plate thereof, and method of constructing anti-earth pressure structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127606Y1 (en) * 1967-03-27 1976-07-13
JPS4922404B1 (en) * 1970-06-12 1974-06-08
JPS63103112A (en) * 1986-10-17 1988-05-07 Kawasaki Steel Corp Steel jacket quaywall
JPH09296427A (en) * 1996-04-30 1997-11-18 Kawasaki Steel Corp Structure in water area and construction method thereof
JP2001248135A (en) * 2000-03-03 2001-09-14 Kawasaki Steel Corp Jacket structure
JP2007308896A (en) * 2006-05-16 2007-11-29 Jfe Engineering Kk Anti-earth pressure structure, saddle plate thereof, and method of constructing anti-earth pressure structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605397A (en) * 2021-07-14 2021-11-05 广州市设计院集团有限公司 Trapezoidal staggered foundation pit supporting mechanism and foundation pit supporting method
CN113605398A (en) * 2021-07-14 2021-11-05 广州市设计院集团有限公司 Foundation pit supporting mechanism

Also Published As

Publication number Publication date
JP2023076734A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP2023076734A (en) Quay wall structure and construction method for quay wall structure
JPWO2011125347A1 (en) Connection structure of steel pipe sheet pile and steel sheet pile and its construction method
JP2016199861A (en) Pile foundation structure
JP2015165065A (en) liquefaction countermeasure structure
JP6143094B2 (en) Joint structure of reinforced concrete member and steel member
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP4229056B2 (en) External pressure resistance structure and construction method thereof
JP3044589B2 (en) Construction method of steel underground continuous wall
JP2016037840A (en) Scour prevention structure for abutment and bridge pier
JP6477586B2 (en) Steel sheet pile wall
JP2016528407A (en) Deflection prevention beam for construction of earth retaining facilities
JP2015229854A (en) Foundation structure
JP6606909B2 (en) Deformation prevention structure of retaining wall and deformation prevention method of retaining wall
JP5176381B2 (en) Steel pipe pile and footing joint structure
JP4652009B2 (en) Structure
JP2017053101A (en) Design method for structure for joining columns together, and structure for joining columns together
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP2021134655A (en) Quay wall structure and quay wall structure construction method
JP7265409B2 (en) Building foundation structure
JP6925091B1 (en) Box culvert
WO2019008866A1 (en) Foundation structure for building, and construction method therefor
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP7364526B2 (en) Quay wall structure and construction method of quay wall structure
JP7419627B2 (en) Welded reinforcing bar joint structure
KR20110132087A (en) Combination structure of sheet pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110