JP4652009B2 - Structure - Google Patents

Structure Download PDF

Info

Publication number
JP4652009B2
JP4652009B2 JP2004287767A JP2004287767A JP4652009B2 JP 4652009 B2 JP4652009 B2 JP 4652009B2 JP 2004287767 A JP2004287767 A JP 2004287767A JP 2004287767 A JP2004287767 A JP 2004287767A JP 4652009 B2 JP4652009 B2 JP 4652009B2
Authority
JP
Japan
Prior art keywords
blocks
adjacent blocks
elastic
deformation
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004287767A
Other languages
Japanese (ja)
Other versions
JP2006097429A (en
Inventor
文勇 榎本
雪松 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTI Engineering Co Ltd
Original Assignee
CTI Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTI Engineering Co Ltd filed Critical CTI Engineering Co Ltd
Priority to JP2004287767A priority Critical patent/JP4652009B2/en
Publication of JP2006097429A publication Critical patent/JP2006097429A/en
Application granted granted Critical
Publication of JP4652009B2 publication Critical patent/JP4652009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ボックスカルバート、トンネル覆工、杭やケーソンその他の地中構造物又は水中構造物に係り、特に構造部の一部をなす構成部材自体が自らのせん断変形に基づく減震や免震機能を備えた構造物に関する。 The present invention, box culverts, tunnels lining, GenShin and immune also piles or caissons other underground structures relates to an underwater structure, component itself based on its own shear deformation in particular forming part of the structure section It relates to structures with earthquake function.

構造物の耐震性の向上が求められ中で、安全性、耐久性、経済性及び施工性を確保しつつ耐震性に優れた構造物の設計、施工が切望されている。最近では大規模地震に対する耐震性能を確保するため、構造物はより剛構造になる傾向があり、そのため断面積はより大きく、鉄筋量は増加し、道路橋示方書などの配筋細目の改訂その他の原因で構造物の設計、施工に厳しい条件が課せられるようになった結果、構造物がコスト高になるという不具合がある。   Improvement of the earthquake resistance of structures is demanded, and the design and construction of structures excellent in earthquake resistance while ensuring safety, durability, economy and workability are desired. Recently, in order to ensure seismic performance against large-scale earthquakes, structures tend to be more rigid, so the cross-sectional area is larger, the amount of reinforcing bars is increased, the details of reinforcement arrangements such as road bridge specifications, etc. As a result, severe conditions are imposed on the design and construction of the structure, resulting in a problem that the structure becomes expensive.

一方、地盤と構造物との間、あるいは下部工と上部工との接続部等の構造の変化点に免震装置を介在させることにより両者間を遮断して、或る値を超える地震動が免震装置の上の構造物や部材に伝達されることを防止する技術も周知になっている。
しかし、この免震装置は地盤と構造物の間、又は構造物の構造の変化部位(例えば基礎梁と柱の間)に介在される物であるため、構造物に対して設置できる免震装置の数に制約があって充分な免震機能を得ることが困難であり、そのため構造物あるいはその部材に発生する断面力は十分に低下しないためその強度を上げて剛性を高めることが余儀なくされるという不具合がある。
また、免震装置の数に制約があるため、前記剛性の向上による荷重の増加とも相まって個別の免震装置の負荷が大となるから、免震装置自体の規模も大きくならざるを得ず、その結果としてコスト高になるという不具合もある。
On the other hand, the seismic isolation device is interposed between the ground and the structure, or at the structural change point such as the connection between the substructure and the superstructure, and the seismic motion exceeding a certain value is exempted. Techniques for preventing transmission to structures and members on seismic devices are also well known.
However, since this seismic isolation device is an object interposed between the ground and the structure, or a structural change part of the structure (for example, between the foundation beam and the column), it can be installed on the structure. It is difficult to obtain a sufficient seismic isolation function due to the limited number of components, and therefore the cross-sectional force generated in the structure or its members does not decrease sufficiently, so it is necessary to increase its strength and increase its rigidity. There is a problem that.
In addition, since the number of seismic isolation devices is limited, the load of the individual seismic isolation devices increases due to the increase in load due to the improvement in rigidity, so the size of the seismic isolation devices themselves must be increased, As a result, there is a problem that the cost is increased.

そこで、本発明は、構造物を構成する部材を剛構造から柔構造に変更することにより、安全性、耐久性及び施工性を確保しつつ前記の不具合を解消して経済性及び耐震性にも優れる構造物を提供することを課題としている。   Therefore, the present invention eliminates the above-mentioned problems while ensuring safety, durability, and workability by changing the members constituting the structure from a rigid structure to a flexible structure, and is also economical and earthquake resistant. The problem is to provide an excellent structure.

前記課題を解決するため、本発明は、構造物の一部をなす構成部材を連続する複数のブロックにより構成し、前記連続する各ブロックを緊張材により各ブロックが連続する方向である軸方向に緊張し、隣り合うブロックの間にゴム状の弾性材又は低摩擦の摺動材を介在させて前記ブロックの間を相対移動可能に接合して、前記隣り合うブロックを前記構成部材のせん断変形が軸変位及び曲げ変形よりも卓越するように相対移動可能に接合し、前記隣り合うブロック間の複数箇所の接合部を、地中または水中に配置したことを特徴としている。
前記構成部材としては、柱、梁、壁、版、アーチ及びシェルのうちの少なくとも一つであり、柱、梁及びアーチの軸は部材軸方向に形成され、壁の軸は上下方向に形成され、版とシェルの軸は、これらの主軸方向に形成されている。
To solve the above problems, the present invention is the axial direction in which the components forming a part constituted by a plurality of blocks of continuous, each block successive blocks said consecutive by tendons of the structure The rubber is elastically bonded between the adjacent blocks so as to be relatively movable between the adjacent blocks, and the adjacent blocks are subjected to shear deformation of the constituent members. Are joined so as to be relatively movable so as to be superior to axial displacement and bending deformation, and a plurality of joints between the adjacent blocks are arranged in the ground or in water.
The component is at least one of a column, a beam, a wall, a plate, an arch, and a shell, and the axis of the column, the beam, and the arch is formed in the member axis direction, and the axis of the wall is formed in the vertical direction. The plate and shell axes are formed in these principal axis directions.

ム状の弾性材は、その材料がせん断変形することで、隣接するブロック間の接合部にせん断変形を許容し、低摩擦の摺動材は、隣接するブロックの少なくとも一方との間で滑りを生じて、隣接するブロック間にせん断変形を生じさせる。また、各ブロック軸方向に緊張材によって緊張することでブロック間に発生する軸変位及び曲げ変形を、所定の許容値以下に制御できる。 Rubber-like elastic material, that the material is shear deformation, allowing the shear deformation to the joint portion between adjacent blocks, the low-friction sliding member is sliding between at least one of the adjacent blocks To cause shear deformation between adjacent blocks. Furthermore, by tensioning the tendons each block in the axial direction, the axial displacement and bending deformation occurs between the blocks can be controlled to below a predetermined allowable value.

また、隣りあうブロック間の対向面を予測される前記せん断方向に平行に形成して、これをブロックの相対移動の案内面とすると、前記せん断変形が容易になる。前記対向面は多くの場合、水平面であることが好ましい。さらに前記隣り合うブロックの間に、前記相対移動の距離が所定値内になるように規制するストッパを形成するとよい。   Further, when the opposing surfaces between adjacent blocks are formed in parallel to the predicted shear direction and used as a guide surface for relative movement of the blocks, the shear deformation is facilitated. In many cases, the facing surface is preferably a horizontal surface. Furthermore, it is preferable to form a stopper for restricting the relative movement distance to be within a predetermined value between the adjacent blocks.

かくして、構成部材を構成する各ブロックは構成部材のせん断変形が卓越するように相対移動可能に接合しているという意味で、構成部材には軸方向の複数箇所にせん断変形の弾性接合部が形成されている。このため、かかる構成部材を備えてなる構造物は、柔構造化され、以てこの構造物が地中構造物であれば、地震による周辺地盤のせん断変形に追随して変形することにより免震構造物とすることができる。また、この構造物が地上構造物又は水中構造物であれば、前記柔構造化により、地震動の入力に対して固有周期の長周期化を図ると共に、構造物全体のより高い免震化を実現することができる。   Thus, each block constituting the component member is joined so as to be relatively movable so that the shear deformation of the component member is excellent, and the elastic joint portion of the shear deformation is formed in the component member at a plurality of axial positions. Has been. For this reason, a structure including such a structural member is made flexible, and if this structure is an underground structure, it is seismically isolated by deformation following the shear deformation of the surrounding ground due to the earthquake. It can be a structure. Also, if this structure is a ground structure or an underwater structure, the flexible structure will make the natural period longer with respect to the input of seismic motion and realize higher seismic isolation of the entire structure. can do.

本発明によれば、地中構造物又は基礎構造物にあっては、地震時の周辺地盤のせん断変形に対して平行方向に設置する複数の弾性接合部を地盤のせん断変形に追随させることにより、構造物に発生する断面力を大幅に低減すると同時に、構造物の減震化や免震化を図ることができる。従って、従来の剛構造からより合理的な柔構造物として設計・施工することができ、安全性が向上しつつ、大きなコスト縮減が期待できる。
また、地上構造物にあっては、複数の弾性接合部を設置することで構造物全体の免震化が容易となるので、大規模地震時においても十分な耐震性能を確保することができるという効果を奏する。
According to the present invention, in the underground structure or the foundation structure, by causing the plurality of elastic joints installed in a parallel direction to the shear deformation of the surrounding ground at the time of the earthquake to follow the shear deformation of the ground. In addition, the cross-sectional force generated in the structure can be greatly reduced, and at the same time, the structure can be reduced in seismicity or isolated. Therefore, it can be designed and constructed as a more rational flexible structure from the conventional rigid structure, and a large cost reduction can be expected while improving safety.
In addition, for ground structures, the installation of multiple elastic joints facilitates seismic isolation of the entire structure, so sufficient seismic performance can be ensured even during large-scale earthquakes. There is an effect.

本発明の構造物は、地震時に必要とされる耐震性能の確保が困難な地中または水中構造物に、所定の構成部材を設置することで構造物の耐震性の向上を図るものである。
ここで、構成部材とは、当該構成部材の軸方向に連続する2個以上のブロックにより構成し、連続するブロックを緊張材により前記軸方向に緊張して、隣り合う前記各ブロック間において、軸変位・曲げ変形に対してせん断変形が卓越し、せん断力が伝達されるようにせん断方向への相対移動が可能に接合した部材であり、この接合部は弾性接合部と称する。なお、隣り合うブロック間の複数箇所の接合部は、地中または水中に配置する。
The structure of the present invention is intended to improve the earthquake resistance of the structure by installing predetermined constituent members in the underground or underwater structure where it is difficult to ensure the earthquake resistance required for an earthquake.
Here, the component member is constituted by two or more blocks that are continuous in the axial direction of the component member, the continuous block is tensioned in the axial direction by a tension material, and the shaft is adjacent between the adjacent blocks. This is a member joined so that the shear deformation is superior to the displacement / bending deformation and the relative movement in the shear direction is possible so that the shear force is transmitted, and this joint is called an elastic joint. In addition, the joint part of several places between adjacent blocks is arrange | positioned in the ground or underwater.

そして、柱、梁及びアーチ部材、若しくは壁又は版及びシェルを構成する場合には、部材軸方向、若しくは壁の上下方向又は版及びシェルの少なくとも互いに直交する2方向に沿って複数箇所にせん断変形の前記弾性接合部を形成することが好適である。
また、前記構成部材における軸方向の緊張力は、地震荷重作用時に弾性接合部におけるせん断変形を卓越させ、軸変位(開口)、折れ角を抑制すると同時に、必要に応じて部材の耐力を向上させるためにアンボンド方式により負荷することが好ましい。この緊張方式には、部材内部を貫通する方式に加えてアウトケーブル方式、アウトベルト方式及びアウトメンブレン方式も考えられる。
以下、本発明の好ましい実施例を図面に基づいて説明する。
And in the case of constituting a column, a beam and an arch member, or a wall or a plate and a shell, shear deformation is performed at a plurality of locations along the member axial direction, the vertical direction of the wall, or at least two directions perpendicular to each other of the plate and the shell. It is preferable to form the elastic joint portion.
Further, the axial tension in the component member predominates shear deformation at the elastic joint during the action of seismic load, suppresses axial displacement (opening) and bending angle, and at the same time improves the yield strength of the member as necessary. Therefore, it is preferable to load by an unbond method. As the tension method, an out cable method, an out belt method, and an out membrane method can be considered in addition to the method of penetrating the inside of the member.
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の構造物の第1実施例を示すもので、頂版1と、底版2と、これらを支持する側壁3と中壁4とによって、地中に構築されたボックスカルバートAの全体を示す概略斜視図である。図2は、該ボックスカルバートAの一部をなす構成部材である側壁3における弾性接合部5の要部を示す拡大図である。
このボックスカルバートA(地中構造物)は、それぞれ分割されたプレキャストコンクリート製の頂版1、底版2、側壁3及び中壁4を接合することにより構築されている。この場合には、頂版1及び底版2と、側壁3及び中壁4との接合部には、弾性接合部5を設置する。これにより、ボックスカルバートAの横断方向の柔構造化が可能となる。
FIG. 1 shows a first embodiment of the structure of the present invention. A box culvert A constructed in the ground by a top plate 1, a bottom plate 2, a side wall 3 and a middle wall 4 supporting them. It is a schematic perspective view which shows the whole. FIG. 2 is an enlarged view showing a main part of the elastic joint 5 in the side wall 3 which is a constituent member forming a part of the box culvert A. FIG.
This box culvert A (underground structure) is constructed by joining a divided top plate 1, bottom plate 2, side wall 3 and middle wall 4 made of precast concrete. In this case, an elastic joint portion 5 is installed at a joint portion between the top plate 1 and the bottom plate 2 and the side wall 3 and the middle wall 4. Thereby, a flexible structure in the transverse direction of the box culvert A is possible.

さらに、地震時の周辺地盤のせん断変形に追随しやすくするために、前記側壁3及び中壁4は、それぞれの四つのブロック31、ブロック41に分割され、前記隣接するブロック31、31、ブロック41、41の間には、ボックスカルバートAの縦断方向に沿って、弾性接合部5を設置する。また、側壁3及び中壁4には、頂版1〜底版2にわたって緊張材6を貫通させて、アンボンド方式等(図示せず)により該緊張材6の両端を定着する。また、必要の強度に応じて、前記中壁4の代わりに、所定間隔をおいて中柱4(図示せず)を採用してもよい。そして、該中柱4には、その部材軸方向に、前記弾性接合部5を所定間隔に設置する。   Further, in order to easily follow the shear deformation of the surrounding ground at the time of the earthquake, the side wall 3 and the middle wall 4 are divided into four blocks 31, 41, respectively, and the adjacent blocks 31, 31, 41 , 41, the elastic joint 5 is installed along the longitudinal direction of the box culvert A. Moreover, the tension material 6 is penetrated through the side wall 3 and the middle wall 4 over the top plate 1 to the bottom plate 2, and both ends of the tension material 6 are fixed by an unbonding method or the like (not shown). Further, depending on the required strength, instead of the middle wall 4, middle pillars 4 (not shown) may be employed at a predetermined interval. And the said elastic junction part 5 is installed in this center pillar 4 in the member axial direction at predetermined intervals.

一方、弾性接合部5においては、図2(a)のように、前記ブロック31、31の対向面の中央部には、嵌合する一対の凹部51と凸部52がそれぞれ形成され、前記対向面の平坦部32、32の間には、ゴム状の弾性材53が介在される。この場合、前記凹部51と凸部52の間には、前記弾性材53のせん断変形を所定値内に規制する隙間54が形成されると共に、この隙間54を挟む左右の面がストッパとして機能する。なお、前記対向面の平坦部32、32は、周辺地盤のせん断方向に対して平行に形成すると共に、前記ブロックのせん断変位を案内する。この実施例では平坦部32、32は水平面である。   On the other hand, in the elastic joint portion 5, as shown in FIG. 2 (a), a pair of concave portions 51 and convex portions 52 to be fitted are formed at the center portions of the opposing surfaces of the blocks 31, 31, respectively. A rubber-like elastic material 53 is interposed between the flat portions 32 and 32 of the surface. In this case, a gap 54 is formed between the concave portion 51 and the convex portion 52 to restrict the shear deformation of the elastic material 53 within a predetermined value, and the left and right surfaces sandwiching the gap 54 function as a stopper. . The flat portions 32, 32 of the facing surface are formed in parallel to the shear direction of the surrounding ground and guide the shear displacement of the block. In this embodiment, the flat portions 32 and 32 are horizontal surfaces.

また、図2(b)のように、ゴム状の弾性材53の代りに、前記ブロック31より低摩擦のシート状の摺動材55を介在しても良い。また、前記摺動材55の摩擦特性を変更することにより、前記ブロック間のせん断変形性能を制御することができる。摺動材55としては、ステンレス等の金属プレートが好適である。
図3は、本発明に係る地中構造物の減震・免震効果を示す説明図である。図3(a)、(b)、(c)にはそれぞれ、前記ボックスカルバートAの一部(側壁3)、地震時における周辺地盤の深度別の水平変位分布g、及びこれに対応する側壁3の水平変位w、w'を示す。なお、図3(b)、(c)における符号w及びw'は、弾性接合部5を設置した側壁3の場合及び通常の剛接合を有する側壁の水平変位のそれぞれを示すものである。
Further, as shown in FIG. 2B, a sheet-like sliding material 55 having a lower friction than the block 31 may be interposed instead of the rubber-like elastic material 53. Further, the shear deformation performance between the blocks can be controlled by changing the friction characteristic of the sliding member 55. As the sliding material 55, a metal plate such as stainless steel is suitable.
FIG. 3 is an explanatory diagram showing the seismic reduction / isolation effect of the underground structure according to the present invention. 3 (a), (b), and (c), respectively, a part (side wall 3) of the box culvert A, the horizontal displacement distribution g according to the depth of the surrounding ground at the time of the earthquake, and the side wall 3 corresponding thereto. Horizontal displacements w, w ′ of 3B and 3C respectively indicate the horizontal displacement of the side wall 3 provided with the elastic joint portion 5 and the side wall having a normal rigid joint.

同図に示すように、側壁3(又は中壁4)の水平変位wは、地震時における周辺地盤の水平変位(せん断変形)gに対し、複数の弾性接合部5により区分的せん断変形が発生して地盤変位に追随するので、両者の相対変位rを低減することが可能となる。これに対して、弾性接合部5を設置しない通常の剛接合の場合における側壁の水平変位w'は、周辺地盤のせん断変形に追随せず、周辺地盤との相対変位r'が大きいことは明らかである。   As shown in the figure, the horizontal displacement w of the side wall 3 (or the middle wall 4) is a piecewise shear deformation caused by a plurality of elastic joints 5 with respect to the horizontal displacement (shear deformation) g of the surrounding ground at the time of the earthquake. Then, since it follows the ground displacement, it is possible to reduce the relative displacement r between the two. On the other hand, it is clear that the horizontal displacement w ′ of the side wall in the case of the normal rigid joint in which the elastic joint portion 5 is not installed does not follow the shear deformation of the surrounding ground, and the relative displacement r ′ with the surrounding ground is large. It is.

以上のような弾性接合部5を設置することにより、前記ボックスカルバートAの横断方向の柔構造化が可能となり、側壁3や中壁4に作用する断面力を大幅に低減できる。また、弾性接合部5のせん断変形によって、地震エネルギー吸収能力を向上させて、従来技術より、優れる減震、免震性能を得ることが可能となる。   By installing the elastic joint 5 as described above, the box culvert A can be made flexible in the transverse direction, and the cross-sectional force acting on the side wall 3 and the middle wall 4 can be greatly reduced. In addition, it is possible to improve the seismic energy absorption capacity by the shear deformation of the elastic joint 5 and to obtain a superior seismic reduction and seismic isolation performance than the prior art.

図4は、本発明の第2実施例に係るアーチトンネル覆工体Bを示すものである。このアーチトンネル覆工体Bは、開削トンネル工法を用いてコンクリート製のアーチ7と底版8とによって構成される。前記アーチ7は、複数のブロック71を緊張材72によりアーチの軸方向に緊張すると共に、前記隣り合うブロック71間に弾性接合部73を水平方向に介在する点を特徴とするものである。なお、前記弾性接合部73は、水平方向だけでなく、アーチ7の曲率や入力地震動の特性等に応じて、最適な方向に配置すればよい。また、この実施例では、第1実施例と同様な構成を有する弾性接合部を採用する。   FIG. 4 shows an arch tunnel lining body B according to the second embodiment of the present invention. The arch tunnel lining body B is constituted by a concrete arch 7 and a bottom slab 8 using an open-cut tunneling method. The arch 7 is characterized in that a plurality of blocks 71 are tensioned in the axial direction of the arch by a tension material 72 and an elastic joint 73 is interposed between the adjacent blocks 71 in the horizontal direction. The elastic joint 73 may be arranged in an optimal direction not only in the horizontal direction but also in accordance with the curvature of the arch 7 and the characteristics of the input ground motion. In this embodiment, an elastic joint having the same configuration as that of the first embodiment is employed.

以上のように、アーチ7の軸方向に所定の間隔をおいて弾性接合部73を設置することにより、地震時の大きな水平荷重の作用時に、前記ブロック71間に曲げやせん断力の伝達を適切な範囲に抑制し、軸力を伝達すると同時に、緊張材の緊張力を制御することにより、アーチ7における座屈の発生が生じないという効果が期待できる。   As described above, by installing the elastic joint 73 at a predetermined interval in the axial direction of the arch 7, it is possible to appropriately transmit bending and shearing force between the blocks 71 when a large horizontal load is applied during an earthquake. It is possible to expect an effect that buckling does not occur in the arch 7 by controlling the tension force of the tendon at the same time as suppressing to a wide range and transmitting the axial force.

図5は、本発明の第3実施例に係る3連アーチトンネル覆工体Cを示すものである。該3連アーチトンネル覆工体Cは、第2実施例のアーチトンネル覆工体Bを横方向に3個連結して構成されたものである。この場合には、アーチ7と底版8は、第2実施例と同様な構造を有するが、隣接するアーチトンネル間に内壁9がそれぞれ設けられる。この内壁9には、ブロック91を緊張材92により上下方向に緊張して、隣り合うブロック91の間に弾性接合部93が設置される。なお、前記緊張材92の端部はアンボンド方式等により定着されている。なお、弾性接合部73、93の構造も第1実施例の弾性接合部と同様の構造である。
以上の構成により、第1、2実施例の効果に加えて、構造物全体が地震時の周辺地盤の水平変形に追随しやすくなり、大規模地震時においても十分な耐震性能を確保することが可能となる。
FIG. 5 shows a triple arch tunnel lining body C according to a third embodiment of the present invention. The triple arch tunnel lining body C is constructed by connecting three arch tunnel lining bodies B of the second embodiment in the lateral direction. In this case, the arch 7 and the bottom slab 8 have the same structure as that of the second embodiment, but an inner wall 9 is provided between adjacent arch tunnels. On the inner wall 9, a block 91 is tensioned in the vertical direction by a tension material 92, and an elastic joint portion 93 is installed between adjacent blocks 91. The end portion of the tendon material 92 is fixed by an unbond method or the like. The structures of the elastic joint portions 73 and 93 are the same as those of the elastic joint portion of the first embodiment.
With the above configuration, in addition to the effects of the first and second embodiments, the entire structure can easily follow the horizontal deformation of the surrounding ground during an earthquake, and sufficient seismic performance can be ensured even during a large-scale earthquake. It becomes possible.

図6は、本発明の第4実施例に係る橋梁Dを示すもので、上部構造11を支持する橋脚10として使用する場合を例示する概念図である。この実施例では、橋脚10は、PCウェル工法によって、場所打ち鉄筋コンクリート又はプレキャストコンクリートブロック10aによって円形断面に構築される。
ここで、前記ブロック10aを組立てる際に、隣接するブロック10a、10a間には、前述した第1〜第3実施例の弾性接合部と同一の構造を有する弾性接合部10bを水平方向に複数段設置している。この場合には、地中のみならず、水中又は地上の部分においても、弾性接合部10bを設置している。さらに鉛直方向にアンボンド方式緊張材10cを橋脚10の周方向に所定間隔おきに挿通してプレストレスを導入する。
以上のようにして弾性接合部10bを設置することにより、上部構造11の耐震性能を考慮しつつ、構造物体全体の柔構造化を図ることが容易となるので、構造物全体の耐震性能をより向上することができる。しかも、施工性やコストの縮減に有利である。
FIG. 6 shows a bridge D according to a fourth embodiment of the present invention, and is a conceptual diagram illustrating a case where the bridge D is used as a bridge pier 10 that supports the upper structure 11. In this embodiment, the pier 10 is constructed in a circular cross section by cast-in-place reinforced concrete or precast concrete block 10a by the PC well method.
Here, when the block 10a is assembled, between the adjacent blocks 10a and 10a, a plurality of elastic joint portions 10b having the same structure as the elastic joint portions of the first to third embodiments described above are provided in the horizontal direction. It is installed. In this case, the elastic joint portion 10b is installed not only in the ground but also in the water or on the ground. Further, prestress is introduced by inserting unbonded tension members 10c in the vertical direction at predetermined intervals in the circumferential direction of the pier 10.
By installing the elastic joint portion 10b as described above, it becomes easy to achieve a flexible structure of the entire structural object while considering the earthquake resistance performance of the upper structure 11, so that the earthquake resistance performance of the entire structure is further improved. Can be improved. Moreover, it is advantageous for reducing workability and cost.

図7は、本発明の第5実施例に係る地下構造物Eを示すもので、シールドトンネル等の発進及び到達の立坑12として使用する場合を例示する概念図である。ここで、立坑12は、前記地下構造物Eの一部をなす構造部材であり、一種のシェルである。
前記立坑12は、セグメント12a(ブロック)を地上で組立、円周方向及び垂直方向にPC鋼より線等の緊張材12b、12cを挿入し、プレトレスを導入することにより一体化しつつ、圧入しながら内部の土を掘削し、所定の深さまで沈設して構築される。この場合、前記セグメント12aの組立てにおいては、円周方向及び垂直方向に隣接するセグメント12aの間には、弾性接合部12d、12eを設置する。なお、この弾性接合部12d、12eとしては、第1〜第4実施例における弾性接合部と同一の構造を採用すればよい。なお、前記立坑12の開口部13近傍には、前記弾性接合部を設置しても良い。
FIG. 7 shows an underground structure E according to a fifth embodiment of the present invention, and is a conceptual diagram illustrating a case where the underground structure E is used as a starting and reaching shaft 12 such as a shield tunnel. Here, the shaft 12 is a structural member that forms part of the underground structure E, and is a kind of shell.
The shaft 12 is assembled by press-fitting the segment 12a (block) on the ground, inserting tension members 12b and 12c such as stranded wires of PC steel in the circumferential direction and the vertical direction, and introducing pretres. It is constructed by excavating the soil inside and sinking it to a predetermined depth. In this case, in assembling the segment 12a, elastic joint portions 12d and 12e are installed between the segments 12a adjacent in the circumferential direction and the vertical direction. In addition, what is necessary is just to employ | adopt the same structure as the elastic junction part in 1st-4th Example as these elastic junction parts 12d and 12e. In addition, you may install the said elastic junction part in the opening part 13 vicinity of the said shaft 12. FIG.

以上のようにして弾性接合部12d、12eを設置することにより、立坑12が地震時の周辺地盤の水平方向変形のみならず、垂直方向変形にも追随しやすくなるので、構造物全体の減震化や免震化をより効果的に図ることができる。しかも、従来の工法で施工ができるので、安全性及び経済性に有利である。
なお、本発明は、上記の実施例に係る構造物に限ることなく、他の構造形式、例えば、杭、ケーソン等の基礎構造物、タンク等のシェル状構造物にも適用できる。また、上記実施例において示した弾性接合部の配置、数や構造等は一例であって、設計要求等に基づき種々変更可能である。
By installing the elastic joints 12d and 12e as described above, the shaft 12 can easily follow not only the horizontal deformation of the surrounding ground at the time of the earthquake but also the vertical deformation. And seismic isolation can be achieved more effectively. And since it can construct with the conventional construction method, it is advantageous to safety and economical efficiency.
The present invention is not limited to the structure according to the above-described embodiment, but can be applied to other structure types, for example, a foundation structure such as a pile or a caisson, or a shell-like structure such as a tank. In addition, the arrangement, number, structure, and the like of the elastic joints shown in the above embodiments are merely examples, and various changes can be made based on design requirements and the like.

本発明の第1実施例に係るプレキャストボックスカルバートの全体を示す概略斜視図であるIt is a schematic perspective view which shows the whole precast box culvert concerning 1st Example of this invention. 図1の弾性接合部を示す拡大図である。It is an enlarged view which shows the elastic junction part of FIG. 地中構造物の減震・免震効果を示す説明図である。It is explanatory drawing which shows the seismic reduction and seismic isolation effect of an underground structure. 本発明の第2実施例に係るアーチトンネル覆工体を示す概略横断面図である。It is a schematic cross-sectional view which shows the arch tunnel lining body which concerns on 2nd Example of this invention. 本発明の第3実施例に係る3連アーチトンネル覆工体を示す概略横断面図である。It is a schematic cross-sectional view which shows the triple arch tunnel lining body which concerns on 3rd Example of this invention. 本発明の第4実施例に係る橋脚を示す概略横断面図である。It is a schematic cross-sectional view which shows the pier which concerns on 4th Example of this invention. 本発明の第5実施例に係る立坑を示す概略斜視図である。It is a schematic perspective view which shows the shaft which concerns on 5th Example of this invention.

符号の説明Explanation of symbols

1 頂版
2 底版
3 側壁
31 ブロック
4 中壁
41 ブロック
5 弾性接合部
6 緊張材
1 Top plate 2 Bottom plate 3 Side wall 31 Block 4 Middle wall 41 Block 5 Elastic joint 6 Tension material

Claims (4)

構造物の一部をなす構成部材を連続する複数のブロックにより構成し、前記連続する各ブロックを緊張材により各ブロックが連続する方向である軸方向に緊張し、隣り合うブロックの間にゴム状の弾性材又は低摩擦の摺動材を介在させて前記ブロックの間を相対移動可能に接合して、前記隣り合うブロックを前記構成部材のせん断変形が軸変位及び曲げ変形よりも卓越するように相対移動可能に接合し、
前記隣り合うブロック間の複数箇所の接合部を、地中または水中に配置したことを特徴とする構造物。
The components forming part of the structure constituted by a plurality of blocks of continuous, rubber between the respective consecutive blocks tense in the axial direction in which the blocks are continuous with the tendon, adjacent block The elastic deformation member or the low friction sliding member is interposed so as to be relatively movable between the blocks so that the shear deformation of the constituent members of the adjacent blocks is superior to the axial displacement and bending deformation. To be relatively movable,
The structure characterized by arrange | positioning the junction part of the several places between the said adjacent blocks in the ground or water.
前記構成部材は、柱、梁、壁、版、アーチ及びシェルのうちの少なくとも一つである請求項1に記載の構造物。   The structure according to claim 1, wherein the component member is at least one of a column, a beam, a wall, a plate, an arch, and a shell. 前記隣り合うブロックの対向面を予測される前記せん断方向に平行に形成すると共に、これを前記ブロックの相対移動の案内面とした請求項1に記載の構造物。 2. The structure according to claim 1, wherein opposing surfaces of the adjacent blocks are formed in parallel to the predicted shear direction and are used as guide surfaces for relative movement of the blocks . 前記隣り合うブロックの間に、前記相対移動量が所定値内になるように規制するストッパを形成した請求項1又は請求項3に記載の構造物。 The structure according to claim 1 or 3 , wherein a stopper is formed between the adjacent blocks to restrict the relative movement amount to be within a predetermined value .
JP2004287767A 2004-09-30 2004-09-30 Structure Active JP4652009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287767A JP4652009B2 (en) 2004-09-30 2004-09-30 Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287767A JP4652009B2 (en) 2004-09-30 2004-09-30 Structure

Publications (2)

Publication Number Publication Date
JP2006097429A JP2006097429A (en) 2006-04-13
JP4652009B2 true JP4652009B2 (en) 2011-03-16

Family

ID=36237504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287767A Active JP4652009B2 (en) 2004-09-30 2004-09-30 Structure

Country Status (1)

Country Link
JP (1) JP4652009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528549A (en) * 2019-07-30 2019-12-03 中交第二航务工程局有限公司 A kind of tension splits UHPC concrete open caisson structure and its construction method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673069B1 (en) * 2015-02-12 2016-11-04 주식회사 홍지 Construction method of partition wall of tunnel using pretension type precast concrete partition wall
JP6370729B2 (en) * 2015-03-03 2018-08-08 株式会社ピーエス三菱 Road bridge protective fence installation method
CN105839666A (en) * 2016-06-03 2016-08-10 长沙远大住宅工业集团股份有限公司 Total-prefabricated superimposed assembly type underground pipe gallery and connecting node thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193604A (en) * 1981-05-23 1982-11-29 Oiles Industry Co Ltd Bridge leg having adjusted rigidity
JPS6014140U (en) * 1983-07-04 1985-01-30
JPS62174416A (en) * 1986-01-24 1987-07-31 Mitani Sekisan Kk Flexible concrete pile
JPS62174408A (en) * 1986-01-25 1987-07-31 Asahi Concrete Kogyo Kk Connecting block and its connection
JPH02140329A (en) * 1989-10-07 1990-05-30 Nasu Denki Tekko Kk Prefabricated underground structure
JP2000054781A (en) * 1998-08-06 2000-02-22 Railway Technical Res Inst Structure of tunnel and its construction method
JP2002021041A (en) * 2000-07-05 2002-01-23 Fumio Yamada Movable retaining wall and movable revetment method
JP2003193574A (en) * 1997-06-27 2003-07-09 Kaieitechno Co Ltd Connector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193604A (en) * 1981-05-23 1982-11-29 Oiles Industry Co Ltd Bridge leg having adjusted rigidity
JPS6014140U (en) * 1983-07-04 1985-01-30
JPS62174416A (en) * 1986-01-24 1987-07-31 Mitani Sekisan Kk Flexible concrete pile
JPS62174408A (en) * 1986-01-25 1987-07-31 Asahi Concrete Kogyo Kk Connecting block and its connection
JPH02140329A (en) * 1989-10-07 1990-05-30 Nasu Denki Tekko Kk Prefabricated underground structure
JP2003193574A (en) * 1997-06-27 2003-07-09 Kaieitechno Co Ltd Connector
JP2000054781A (en) * 1998-08-06 2000-02-22 Railway Technical Res Inst Structure of tunnel and its construction method
JP2002021041A (en) * 2000-07-05 2002-01-23 Fumio Yamada Movable retaining wall and movable revetment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528549A (en) * 2019-07-30 2019-12-03 中交第二航务工程局有限公司 A kind of tension splits UHPC concrete open caisson structure and its construction method
CN110528549B (en) * 2019-07-30 2021-06-04 中交第二航务工程局有限公司 Tensile crack resistant UHPC concrete open caisson structure and construction method thereof

Also Published As

Publication number Publication date
JP2006097429A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP3747198B2 (en) Steel pipe sheet pile foundation
KR101896403B1 (en) Integral bridge structure and construction method thereof
JP4652009B2 (en) Structure
JP3759301B2 (en) Structural foundation reinforcement structure
JP4647544B2 (en) Underpass construction method and underpass
JP2006316495A (en) Foundation structure of bridge pier and its construction method
CN104895122A (en) Continuous beam type anti-floating structure of shield tunnel
JP4765965B2 (en) Revetment integrated ramen bridge and its construction method
JP4590300B2 (en) Base structure of base-isolated building
JP3051321B2 (en) Double sheet pile structure
JP2008303583A (en) Structure of artificial ground
JP2016199861A (en) Pile foundation structure
JP4958064B2 (en) Seismic reinforcement structure of quay
JP5853415B2 (en) Reinforcement structure and construction method for floating structures, reinforcement structure for bridges
JP2006063534A (en) Bridge
KR101585652B1 (en) Integral Abutment Bridge without Soil-Structure Interaction
JP6292028B2 (en) Embankment reinforcement structure
KR20050073774A (en) Assembly pile for method of ground improvement, and pile for settlement of anchor
JP4616125B2 (en) Precast beam for tunnel construction and tunnel construction method
JP3805129B2 (en) Foundation structure
JP3735813B2 (en) Seismic pile group structure
JP3140297U (en) Bridge
JP7017541B2 (en) Improvement structure and improvement method of existing sheet pile type quay
JP2018003308A (en) Seismic reinforcement structure of pile foundation and construction method thereof
JP4598746B2 (en) Tunnel structure and construction method at branch and junction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4652009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250