JP2023071349A - 無線通信装置及び歪み補償方法 - Google Patents

無線通信装置及び歪み補償方法 Download PDF

Info

Publication number
JP2023071349A
JP2023071349A JP2021184064A JP2021184064A JP2023071349A JP 2023071349 A JP2023071349 A JP 2023071349A JP 2021184064 A JP2021184064 A JP 2021184064A JP 2021184064 A JP2021184064 A JP 2021184064A JP 2023071349 A JP2023071349 A JP 2023071349A
Authority
JP
Japan
Prior art keywords
feedback
signal
coefficient
path
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184064A
Other languages
English (en)
Inventor
智也 大田
Tomoya Ota
広吉 石川
Hiroyoshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2021184064A priority Critical patent/JP2023071349A/ja
Priority to US17/877,441 priority patent/US20230142029A1/en
Publication of JP2023071349A publication Critical patent/JP2023071349A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

Figure 2023071349000001
【課題】消費電力の増大を抑制しつつ、歪み補償性能の低下を防止すること。
【解決手段】無線通信装置は、複数のアンテナ素子と、前記複数のアンテナ素子に設けられる複数の電力増幅器と、前記複数の電力増幅器へ送信信号を出力するプロセッサと、前記複数の電力増幅器から前記プロセッサへフィードバック信号をフィードバックさせる複数のフィードバック経路とを有し、前記プロセッサは、前記複数のフィードバック経路におけるアナログ特性のばらつきを一括して補正し、補正されて得られる送信信号及びフィードバック信号を用いて、前記複数の電力増幅器において発生する非線形歪みを補償するための歪み補償係数を更新する処理を実行する。
【選択図】図2

Description

本発明は、無線通信装置及び歪み補償方法に関する。
近年、送信装置の小型化、運用コストの削減及び環境問題などの観点から、高効率で動作する電力増幅器のニーズが高くなっている。電力増幅器を高効率で動作させる場合、入力電力が比較的大きい領域では、入力電力が線形増幅されずに非線形歪みが発生する。そこで、電力増幅器で発生する非線形歪みの逆特性の歪みをあらかじめ送信信号に付与するデジタルプリディストーションを併用した増幅方法が用いられることがある。デジタルプリディストーションにおいてあらかじめ送信信号に付与される歪みは、歪み補償係数とも呼ばれ、ルックアップテーブルから読み出されたり、多項式を用いて算出されたりする。そして、歪み補償係数は、例えば温度などの環境に応じて変動する非線形歪みを十分に補償するように、適切に更新される。
一方、送信信号の宛先以外への干渉を低減して通信システム容量を向上するために、指向性ビームを形成するビームフォーミングが行われることがある。ビームフォーミングが行われる場合には、アレーアンテナを構成する複数のアンテナ素子から送信される信号に位相差が設定される。複数のアンテナ素子には、それぞれ例えばフェーズシフタが設けられて信号の位相が制御され、位相が制御された信号は、それぞれのアンテナ素子に対応する電力増幅器によって増幅される。
このように、複数のアンテナ素子それぞれに電力増幅器が設けられる場合でも、送信信号に対して一括してデジタルプリディストーションを施すことが提案されている。すなわち、歪み補償係数によって送信信号を歪み補償した後、この送信信号を分波してアンテナ素子ごとの電力増幅器によって増幅し、各アンテナ素子から送信することが検討されている。
特開2019-154024号公報 特開2019-220816号公報 特開2018-195955号公報
ところで、複数の電力増幅器に関して一括してデジタルプリディストーションを施す場合、それぞれの電力増幅器からフィードバックされるフィードバック信号を用いて歪み補償係数が更新される。このとき、各電力増幅器からのフィードバック信号は、複数のアンテナ素子に対応したそれぞれ異なるフィードバック経路を経由してフィードバックされる。
しかしながら、複数のアンテナ素子に対応する各フィードバック経路は、互いに異なるアナログ特性を有するため、アナログ特性のばらつきによって各フィードバック経路のフィードバック信号に誤差が生じ、歪み補償性能が低下するという問題がある。
具体的には、各電力増幅器からのフィードバック経路には、例えばゲイン、位相、遅延及び周波数特性などのアナログ特性のばらつきがあり、これらのアナログ特性によってフィードバック信号に誤差が発生する。そして、このフィードバック信号と送信信号から歪み補償係数が更新されるため、歪み補償係数の精度が低下し、歪み補償性能が低下してしまう。
このようなフィードバック経路のアナログ特性のばらつきを補正するためには、例えばそれぞれのフィードバック経路におけるゲイン、位相、遅延及び周波数特性を個別に推定し、フィードバック経路ごとのアナログ特性を補正することが考えられる。しかし、それぞれのフィードバック経路に関して、ゲイン、位相、遅延及び周波数特性を補正すると、補正のための乗算器が多くなり、消費電力が増大してしまう。特に、最近のアレーアンテナは多数のアンテナ素子を備えるため、フィードバック経路の数も多くなり、それぞれのフィードバック経路に対応する乗算器を稼働させるのは、現実的ではない。
開示の技術は、かかる点に鑑みてなされたものであって、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができる無線通信装置及び歪み補償方法を提供することを目的とする。
本願が開示する無線通信装置は、1つの態様において、複数のアンテナ素子と、前記複数のアンテナ素子に設けられる複数の電力増幅器と、前記複数の電力増幅器へ送信信号を出力するプロセッサと、前記複数の電力増幅器から前記プロセッサへフィードバック信号をフィードバックさせる複数のフィードバック経路とを有し、前記プロセッサは、前記複数のフィードバック経路におけるアナログ特性のばらつきを一括して補正し、補正されて得られる送信信号及びフィードバック信号を用いて、前記複数の電力増幅器において発生する非線形歪みを補償するための歪み補償係数を更新する処理を実行する。
本願が開示する無線通信装置及び歪み補償方法の1つの態様によれば、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができるという効果を奏する。
図1は、実施の形態1に係る通信システムの一例を示す図である。 図2は、実施の形態1に係るRUの構成を示すブロック図である。 図3は、実施の形態1に係る歪み補償方法を示すフロー図である。 図4は、アナログ特性推定処理を示すフロー図である。 図5は、経路別フィルタ係数の算出を説明する図である。 図6は、一括フィルタ係数の算出を説明する図である。 図7は、実施の形態2に係るプロセッサの構成を示すブロック図である。 図8は、実施の形態2に係る歪み補償方法を示すフロー図である。 図9は、実施の形態3に係るRUの構成を示すブロック図である。 図10は、実施の形態4に係るRUの構成を示すブロック図である。 図11は、経路別係数算出部の構成例を示す図である。 図12は、実施の形態4に係る歪み補償方法を示すフロー図である。 図13は、実施の形態5に係るプロセッサの構成を示すブロック図である。 図14は、実施の形態5に係る歪み補償方法を示すフロー図である。 図15は、実施の形態6に係るプロセッサの構成を示すブロック図である。 図16は、実施の形態6に係る歪み補償方法を示すフロー図である。
以下、本願が開示する無線通信装置及び歪み補償方法の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
(実施の形態1)
図1は、実施の形態1に係る通信システムの一例を示す図である。図1に示す通信システムにおいては、CU/DU(Central Unit/Distributed Unit)10に複数のRU(Radio Unit)100が接続されており、RU100とUE(User Equipment)20とが無線通信する。なお、CU/DU10は、必ずしも一体的な装置として構成されなくても良く、CU及びDUが分離した装置として構成されても良い。
CU/DU10は、信号に対するベースバンド処理を実行する装置であり、例えば情報を符号化して送信ベースバンド信号を生成しRU100へ送信したり、RU100から受信した受信ベースバンド信号を復号したりする。
RU100は、CU/DU10と有線接続され、CU/DU10が生成した送信ベースバンド信号に無線送信処理を施したり、UE20からの受信信号に無線受信処理を施して受信ベースバンド信号を生成しCU/DU10へ送信したりする。また、RU100は、複数のアンテナ素子を有する無線通信装置であり、UE20との無線通信に際しては、複数のアンテナ素子それぞれにアンテナウェイトを付与し、ビームフォーミングを行う。さらに、RU100は、アンテナ素子ごとに設けられた電力増幅器において発生する非線形歪みを補償するデジタルプリディストーションを実行する。デジタルプリディストーションにおいては、送信信号に歪み補償係数が乗算されるが、歪み補償係数の更新は、各アンテナ素子からのフィードバック信号が通過するフィードバック経路のアナログ特性のばらつきを補正した上で実行される。RU100の構成及び動作については、後に詳述する。
UE20は、例えば携帯電話機やスマートフォンなどのユーザ端末装置であり、RU100との間で無線通信する。
図2は、実施の形態1に係るRU100の構成を示すブロック図である。図2に示すRU100は、通信インタフェース部(以下「通信I/F部」と略記する)110、プロセッサ120、メモリ130、D/A(Digital/Analog)変換部140、フェーズシフタ150、電力増幅器160、フェーズシフタ170、合成部180及びA/D(Analog/Digital)変換部190を有する。なお、図2においては、UE20へ信号を送信する処理に関連する処理部を図示しており、UE20から信号を受信する処理に関連する処理部の図示を省略している。
通信I/F部110は、CU/DU10と有線接続されるインタフェースであり、CU/DU10との間でベースバンド信号を送受信する。具体的には、通信I/F部110は、CU/DU10から送信された送信ベースバンド信号を受信し、受信ベースバンド信号をCU/DU10へ送信する。
プロセッサ120は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、RU100の全体を統括制御する。具体的には、プロセッサ120は、通信I/F部110によって受信された送信ベースバンド信号に歪み補償係数を乗算する歪み補償を実行し、歪み補償係数の更新を実行する。このとき、プロセッサ120は、複数のアンテナ素子からのフィードバック経路におけるアナログ特性のばらつきを一括して補正した上で、送信信号及びフィードバック信号から歪み補償係数を更新する。プロセッサ120の内部構成については、後述する。
メモリ130は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ120によって処理が実行される際に、種々の情報を記憶する。
D/A変換部140は、プロセッサ120によって歪み補償された送信信号をD/A変換する。D/A変換により得られたアナログの送信信号は、アップコンバータによってアップコンバートされ、無線周波数の送信信号となる。
フェーズシフタ150は、複数のアンテナ素子それぞれに対応して設けられ、各アンテナ素子の信号にアンテナウェイトを付与する。すなわち、フェーズシフタ150は、アンテナ素子ごとの信号に位相差を設定し、指向性ビームの方向を制御するビームフォーミングを実行する。
電力増幅器160は、複数のアンテナ素子それぞれに対応して設けられ、各アンテナ素子の信号を増幅する。すなわち、電力増幅器160は、それぞれアンテナウェイトが付与された信号を増幅し、アンテナ素子から送信する。電力増幅器160による増幅の際には信号に非線形歪みが発生するが、本実施の形態においては、プロセッサ120によって歪み補償が実行されているため、各アンテナ素子から送信された信号が無線空間で合成されると、この合成された信号に含まれる非線形歪み成分は低減される。
フェーズシフタ170は、複数のアンテナ素子それぞれに対応して設けられ、各アンテナ素子の電力増幅器160から出力される信号をフィードバックさせ、フィードバック信号(以下「FB信号」と略記する)に逆ウェイトを付与する。すなわち、フェーズシフタ170は、フェーズシフタ150によって各アンテナ素子に付与されたアンテナウェイトを打ち消す逆ウェイトをFB信号に付与する。
合成部180は、複数のアンテナ素子それぞれからのFB信号を合成する。すなわち、合成部180は、各アンテナ素子の電力増幅器160から出力され逆ウェイトが付与されたFB信号を合成する。合成部180が合成するFB信号は、それぞれ異なるフィードバック経路を経由するため、フィードバック経路のアナログ特性のばらつきの影響を受ける。
A/D変換部190は、合成部180によって合成されたFB信号をA/D変換する。そして、A/D変換部190は、A/D変換されたFB信号をプロセッサ120へ出力する。
次に、プロセッサ120の内部構成について説明する。図2に示すように、プロセッサ120は、歪み補償部121、係数更新部122、ばらつき補正部123、アナログ特性推定部124及びフィルタ係数算出部125を有する。
歪み補償部121は、送信ベースバンド信号に歪み補償係数を適用し、歪み補償を実行する。すなわち、歪み補償部121は、例えばルックアップテーブル又は多項式を用いて、電力増幅器160において発生する非線形歪みを補償する歪み補償を実行する。歪み補償部121は、歪み補償された送信信号をD/A変換部140へ出力する。
係数更新部122は、歪み補償前の送信信号とFB信号とを比較することにより、歪み補償係数の更新処理を実行する。具体的には、係数更新部122は、例えば最小平均二乗(LMS:Least Mean Square)アルゴリズムを用いて、送信信号とFB信号の誤差を最小にする歪み補償係数を算出する。そして、係数更新部122は、算出した歪み補償係数を歪み補償部121へ通知する。係数更新部122へ入力される送信信号には電力増幅器160において発生する非線形歪み成分が含まれないため、送信信号とFB信号の誤差を最小にするように更新処理を実行することにより、非線形歪み成分を補償する歪み補償係数を算出することができる。
ばらつき補正部123は、複数のアンテナ素子からのフィードバック経路におけるアナログ特性のばらつきを補正する。具体的には、ばらつき補正部123は、例えばFIR(Finite Impulse Response)フィルタを有し、複数のフィードバック経路のアナログ特性のばらつきを一括して補正するフィルタ係数(以下「一括フィルタ係数」という)をFIRフィルタに設定し、送信信号にこのFIRフィルタを通過させる。ばらつき補正部123が有するFIRフィルタは、複数のフィードバック経路のアナログ特性に相当する特性を送信信号に付与する。このため、係数更新部122へ入力される送信信号には、フィードバック経路を経由するFB信号と同様に、複数のフィードバック経路のアナログ特性相当の特性が付与され、アナログ特性のばらつきを補正することができる。また、ばらつき補正部123は、1つのFIRフィルタを用いて一括してアナログ特性のばらつきを補正するため、補正に用いられる乗算器の数を最小にすることができ、消費電力の増大を抑制することができる。
アナログ特性推定部124は、歪み補償前の送信信号とFB信号とから、フィードバック経路ごとのアナログ特性を推定する。具体的には、アナログ特性推定部124は、複数のアンテナ素子それぞれに関するフィードバック経路について、ゲイン、位相、遅延及び周波数特性を推定する。このとき、アナログ特性推定部124は、フィードバック経路ごとのFB信号を取得し、歪み補償前の送信信号とフィードバック経路ごとのFB信号とを用いて、それぞれのフィードバック経路のゲイン、位相、遅延及び周波数特性を推定する。フィードバック経路ごとのFB信号を取得する場合には、1つのフィードバック経路のフェーズシフタ170のゲインを0dBに設定し、他のフィードバック経路のフェーズシフタ170のゲインを-∞dBに設定することにより、ゲインが0dBに設定されたフィードバック経路のFB信号のみがアナログ特性推定部124へ入力されるようにすれば良い。
フィルタ係数算出部125は、フィードバック経路ごとのアナログ特性に基づいて、ばらつき補正部123に設定する一括フィルタ係数を算出する。具体的には、フィルタ係数算出部125は、フィードバック経路ごとのゲイン、位相、遅延及び周波数特性から、フィードバック経路ごとのアナログ特性に対応する経路別フィルタ係数を算出する。すなわち、フィルタ係数算出部125は、フィードバック経路ごとに1つの経路別フィルタ係数を算出する。そして、フィルタ係数算出部125は、フィードバック経路ごとの経路別フィルタ係数の和を求めることで、一括フィルタ係数を算出する。フィルタ係数算出部125は、算出した一括フィルタ係数をばらつき補正部123へ通知する。
次いで、上記のように構成されたRU100による歪み補償方法について、図3に示すフロー図を参照しながら説明する。
RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、ばらつき補正部123に一括フィルタ係数を設定する処理が実行される。この期間にCU/DU10から送信された送信ベースバンド信号は、通信I/F部110によって受信され、プロセッサ120へ入力される。そして、送信信号は、ばらつき補正部123を通過してアナログ特性推定部124へ入力される。
また、送信信号は、歪み補償部121によって歪み補償され、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。このとき、電力増幅器160によって増幅された後の信号は、フェーズシフタ170へフィードバックされ、ダウンコンバート及びA/D変換された後、FB信号としてアナログ特性推定部124へ入力される。
送信信号及びFB信号が入力されたアナログ特性推定部124においては、送信信号とFB信号が用いられてフィードバック経路のアナログ特性を推定する処理が実行される(ステップS101)。具体的には、複数のアンテナ素子に対応するフィードバック経路それぞれのゲイン、位相、遅延及び周波数特性が推定される。すなわち、フェーズシフタ170のゲインが調整されることにより、1つのフィードバック経路のFB信号がアナログ特性推定部124へ入力され、このフィードバック経路に関して、ゲイン、位相、遅延及び周波数特性が推定される。このようなフィードバック経路ごとのアナログ特性の推定が繰り返されることにより、すべてのフィードバック経路のアナログ特性がそれぞれ推定される。アナログ特性推定部124によるアナログ特性推定処理については、後に詳述する。
フィードバック経路ごとのアナログ特性が推定されると、フィルタ係数算出部125によって、フィードバック経路ごとのアナログ特性に対応する経路別フィルタ係数が算出される(ステップS102)。すなわち、フィードバック経路ごとのゲイン、位相、遅延及び周波数特性を1つのFIRフィルタによって表現する経路別フィルタ係数が算出される。したがって、フィードバック経路と同数の経路別フィルタ係数がフィルタ係数算出部125によって算出される。
そして、フィルタ係数算出部125によって、経路別フィルタ係数の和が求められることにより、一括フィルタ係数が算出される(ステップS103)。一括フィルタ係数は、複数のフィードバック経路のアナログ特性を1つのFIRフィルタによって表現するフィルタ係数である。
一括フィルタ係数は、ばらつき補正部123へ通知され、ばらつき補正部123が有するFIRフィルタに設定される(ステップS104)。これにより、RU100の起動時やフィルタ係数更新時などの所定期間における設定処理が完了する。ばらつき補正部123に一括フィルタ係数が設定されると、以降は通常の信号送信処理が実行される。すなわち、送信信号は、歪み補償部121によって歪み補償され(ステップS105)、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。
また、各アンテナ素子の電力増幅器160によって増幅された信号は、それぞれフィードバック経路を経由してフィードバックされ、フェーズシフタ170によって逆ウェイトが付与された後に合成される。合成されたFB信号は、係数更新部122へ入力される。一方、歪み補償前の送信信号には、ばらつき補正部123によって一括してフィードバック経路のアナログ特性と同様の特性が付与され、補正された送信信号が係数更新部122へ入力される。そして、係数更新部122によって、送信信号とFB信号が用いられることにより、歪み補償部121によって用いられる歪み補償係数が更新される。
歪み補償係数の更新においては、それぞれ異なるフィードバック経路を通過する信号を合成したFB信号と送信信号が用いられるが、送信信号にはフィードバック経路のアナログ特性と同様の特性が付与されているため、アナログ特性のばらつきの影響を低減することができる。結果として、歪み補償係数の精度を向上することができ、歪み補償性能の低下を防止することができる。さらに、フィードバック経路のアナログ特性と同様の特性を送信信号に付与する際には、ばらつき補正部123が有する1つのFIRフィルタを稼働させれば良いため、消費電力の増大を抑制することができる。
次に、フィードバック経路のアナログ特性を推定するアナログ特性推定処理について、図4に示すフロー図を参照しながら具体的に説明する。以下に説明するアナログ特性推定処理は、主にアナログ特性推定部124によって実行される。ここでは、RU100がL本(Lは2以上の整数)のアンテナ素子を有しており、フィードバック経路もL個あるものとする。
まず、処理済みのフィードバック経路をカウントするための変数iが1に初期設定され(ステップS201)、i番目のフィードバック経路の信号のみがフィードバックされるようにフェーズシフタ170のゲインが設定される(ステップS202)。すなわち、i番目のフィードバック経路のフェーズシフタ170のゲインが0dBに設定され、他のフィードバック経路のフェーズシフタ170のゲインが-∞dBに設定される。これにより、アナログ特性推定部124には、i番目のフィードバック経路のFB信号のみが入力される。
そして、i番目のフィードバック経路のゲインが推定される(ステップS203)。具体的には、送信信号の時間積分電力PT及びFB信号の時間積分電力PFBがそれぞれ下記の式(1)、(2)によって算出される。
Figure 2023071349000002
Figure 2023071349000003
そして、下記の式(3)によって、フィードバック経路のゲインgが算出される。
Figure 2023071349000004
次に、i番目のフィードバック経路の遅延が推定される(ステップS204)。具体的には、遅延FIRフィルタに所定の係数セットを設定して送信信号に係数セットに応じた遅延が付与される。ここでは、例えば係数セット番号1の係数セットが遅延FIRフィルタに設定され、この係数セットに応じた遅延が送信信号x(n)に付与されることにより、下記の式(4)で示す信号u(n)が得られる。
Figure 2023071349000005
式(4)において、Kは遅延FIRフィルタのタップ数であり、w(k)は設定中の係数セットの係数である。そして、信号u(n)とFB信号y(n)との相関値の実部Re[Corr]及び虚部Im[Corr]がそれぞれ下記の式(5)、(6)によって算出される。ただし、式(5)、(6)において、Re[x]はxの実部を示し、Im[x]はxの虚部を示す。
Figure 2023071349000006
Figure 2023071349000007
これらの相関値の実部及び虚部から相関値の電力が計算され、上述した遅延FIRフィルタの係数セット番号1に対応する相関値電力が算出される。以後、遅延FIRフィルタの係数セットごとに相関値電力の算出が繰り返され、相関値電力が最大になる遅延FIRフィルタの係数セットが特定される。特定された遅延FIRフィルタの係数セットが、i番目のフィードバック経路の遅延に対応する。なお、ここでは、クロック未満の遅延が推定されるものとしたが、クロック単位の遅延が別途推定されるようにしても良い。
次に、i番目のフィードバック経路の位相が推定される(ステップS205)。具体的には、送信信号とFB信号との相関値の実部及び虚部が上式(5)、(6)と同様にしてそれぞれ算出される。すなわち、上式(5)、(6)において、信号u(n)の代わりに送信信号x(n)が用いられて、送信信号x(n)とFB信号y(n)との相関値の実部Re[Corr]及び虚部Im[Corr]が算出される。
そして、下記の式(7)によって、フィードバック経路の位相θが算出される。
Figure 2023071349000008
次に、i番目のフィードバック経路の周波数特性が推定される(ステップS206)。具体的には、周波数特性FIRフィルタに所定の係数セットを設定して送信信号に係数セットに応じた周波数特性が付与される。ここでは、例えば係数セット番号1の係数セットが周波数特性FIRフィルタに設定され、この係数セットに応じた周波数特性が送信信号x(n)に付与されることにより、上式(4)と同様の信号u(n)が得られる。ただし、周波数特性の推定においては、上式(4)のKは周波数特性FIRフィルタのタップ数である。
そして、信号u(n)とFB信号y(n)との相関値の実部Re[Corr]及び虚部Im[Corr]がそれぞれ上式(5)、(6)と同様に算出される。これらの相関値の実部及び虚部から相関値の電力が計算され、上述した周波数特性FIRフィルタの係数セット番号1に対応する相関値電力が算出される。以後、周波数特性FIRフィルタの係数セットごとに相関値電力の算出が繰り返され、相関値電力が最大になる周波数特性FIRフィルタの係数セットが特定される。特定された周波数特性FIRフィルタの係数セットが、i番目のフィードバック経路の周波数特性に対応する。なお、周波数特性の推定には、遅延に関する補正が施された送信信号を用いるのが望ましい。また、周波数特性FIRフィルタの係数は複素数であっても良い。
以上の処理により、i番目のフィードバック経路のアナログ特性が推定される。そして、変数iがフィードバック経路の数L以上となったか否かが判定され(ステップS207)、変数iがL以上である場合には(ステップS207Yes)、すべてのフィードバック経路についてアナログ特性が推定されたことになるため、アナログ特性推定処理が終了する。一方、変数iがL未満である場合には(ステップS207No)、まだアナログ特性が推定されていないフィードバック経路があるため、変数iがインクリメントされ(ステップS208)、上述したi番目のフィードバック経路に関するアナログ特性推定処理が繰り返される。これにより、すべてのフィードバック経路のゲイン、遅延、位相及び周波数特性がそれぞれ推定される。
次いで、経路別フィルタ係数の算出の具体例について説明する。経路別フィルタ係数は、フィードバック経路ごとのアナログ特性が推定されると、フィルタ係数算出部125によって算出される。
図5に示すように、経路別フィルタ係数は、経路0から経路(L-1)までのL個のフィードバック経路それぞれに対応するFIRフィルタのフィルタ係数であり、各フィードバック経路におけるゲイン、位相、遅延及び周波数特性に相当する。ここでは、送信信号x(n)から各フィードバック経路のアナログ特性が付与された信号u(n)が得られるようにする経路別フィルタ係数を算出する場合について考える。
図5左図に示すように、経路iのゲイン補正出力をui,1(n)とすると、ui,1(n)は、経路iの実数の振幅ゲインgiを用いて下記の式(8)のように表すことができる。
Figure 2023071349000009
また、経路iの位相補正出力をui,2(n)とすると、ui,2(n)は、経路iの実数の位相θiを用いて下記の式(9)のように表すことができる。
Figure 2023071349000010
そして、経路iの遅延補正出力をui,3(n)とすると、ui,3(n)は、経路iの遅延FIRフィルタの係数セットwi,1(k1)及び遅延FIRフィルタのタップ数K1を用いて下記の式(10)のように表すことができる。
Figure 2023071349000011
同様に、経路iの周波数特性補正出力をui(n)とすると、ui(n)は、経路iの周波数特性FIRフィルタの係数セットwi,2(k2)及び周波数特性FIRフィルタのタップ数K2を用いて下記の式(11)のように表すことができる。
Figure 2023071349000012
式(11)から、図5右図に示すフィードバック経路ごとのFIRフィルタのフィルタ係数をwi(k)、タップ数をK-1とし、K=K1+K2、k=k1+k2とおくと、フィードバック経路ごとのFIRフィルタは、下記の式(12)のように表すことができる。
Figure 2023071349000013
フィルタ係数wi(k)は、式(11)におけるフィルタ係数の積wi,1(k1)wi,2(k2)のうち、k=k1+k2を満たすものの和である。すなわち、例えばフィルタ係数wi(0)~wi(K-2)は、下記のように求めることができる。
Figure 2023071349000014
このようにして、フィードバック経路ごとのゲイン、位相、遅延及び周波数特性に対応する、フィードバック経路ごとに1つの経路別フィルタ係数を算出することができる。そこで、次に、フィードバック経路ごとの経路別フィルタ係数から一括フィルタ係数を算出する具体例について説明する。一括フィルタ係数は、経路別フィルタ係数が算出されると、フィルタ係数算出部125によって算出される。
図6に示すように、一括フィルタ係数は、経路0から経路(L-1)までのL個のフィードバック経路のFIRフィルタを統合した一括FIRフィルタのフィルタ係数である。ここでは、送信信号x(n)がフィードバック経路ごとのFIRフィルタを通過して合成された信号と同等の信号u(n)が得られるようにする一括フィルタ係数を算出する場合について考える。
図6左図に示すように、経路別フィルタ係数が設定されたFIRフィルタは、送信信号x(n)からフィードバック経路ごとのアナログ特性が付与された信号ui(n)を生成する。経路iのFIRフィルタの経路別フィルタ係数をwi(k)、FIRフィルタのタップ数をKとすると、経路iのFIRフィルタの出力信号ui(n)は、下記の式(13)のように表すことができる。
Figure 2023071349000015
図6右図に示す一括FIRフィルタは、各フィードバック経路のFIRフィルタを統合したものであるため、一括FIRフィルタの出力信号u(n)は、下記の式(14)のように表すことができる。
Figure 2023071349000016
式(14)において、一括FIRフィルタのフィルタ係数w(k)は、フィードバック経路ごとのFIRフィルタのフィルタ係数wi(k)の和であり、下記の式(15)によって表される。
Figure 2023071349000017
この一括FIRフィルタのフィルタ係数w(k)が、送信信号x(n)から信号u(n)を生成するための一括フィルタ係数である。このように算出された一括フィルタ係数は、フィルタ係数算出部125からばらつき補正部123へ通知され、ばらつき補正部123が有するFIRフィルタに設定される。これにより、ばらつき補正部123に送信信号が入力されると、複数のフィードバック経路のアナログ特性と同様の特性を送信信号に付与することができ、FB信号に付与されたアナログ特性のばらつきの影響を相殺することが可能となる。
以上のように、本実施の形態によれば、複数のフィードバック経路のアナログ特性を推定して、これらのアナログ特性を補正する一括フィルタ係数を算出し、1つのフィルタによって一括してフィードバック経路のアナログ特性のばらつきを補正する。このため、フィルタ1つ分の乗算器を稼働させてアナログ特性のばらつきを補正し、歪み補償係数を精度良く更新することができる。結果として、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができる。
(実施の形態2)
実施の形態2の特徴は、複数のフィードバック経路のアナログ特性の平均分についてはFB信号に対して補正を施し、残りのアナログ特性のばらつきについては送信信号に対して補正を施す点である。
実施の形態2に係る通信システムの構成は、実施の形態1(図1)と同様であるため、その説明を省略する。実施の形態2においては、RU100のプロセッサ120の構成が実施の形態1(図2)とは異なる。
図7は、実施の形態2に係るプロセッサ120の構成を示すブロック図である。図7において、図2と同じ部分には同じ符号を付し、その説明を省略する。図7に示すプロセッサ120は、図2に示すプロセッサ120のばらつき補正部123及びフィルタ係数算出部125に代えて、ばらつき補正部201、フィルタ係数算出部202及び平均補正部203を有する。
ばらつき補正部201は、複数のアンテナ素子からのフィードバック経路におけるアナログ特性のばらつきを補正する。具体的には、ばらつき補正部201は、例えばFIRフィルタを有し、一括フィルタ係数をFIRフィルタに設定し、送信信号にこのFIRフィルタを通過させる。ばらつき補正部201が有するFIRフィルタは、複数のフィードバック経路のアナログ特性の平均分を除くばらつき分に相当する特性を送信信号に付与する。このため、係数更新部122へ入力される送信信号には、異なるフィードバック経路を経由するFB信号に付与されたアナログ特性のばらつき分が付与され、アナログ特性のばらつきを補正することができる。また、ばらつき補正部201は、1つのFIRフィルタを用いて一括してアナログ特性のばらつきを補正するため、補正に用いられる乗算器の数を最小にすることができ、消費電力の増大を抑制することができる。
フィルタ係数算出部202は、フィードバック経路ごとのアナログ特性に基づいて、ばらつき補正部201に設定する一括フィルタ係数と、平均補正部203に設定するフィルタ係数とを算出する。具体的には、フィルタ係数算出部202は、フィードバック経路ごとのゲイン、位相、遅延及び周波数特性から、複数のフィードバック経路のアナログ特性の平均分と、平均分を除いた残りのばらつき分とを算出する。すなわち、フィルタ係数算出部202は、FB信号に対して補正を施すための平均分に対応する補正値と、送信信号に対して補正を施すためのばらつき分に対応する経路別フィルタ係数とを算出する。そして、フィルタ係数算出部202は、平均分に対応する補正値を平均補正部203へ通知するとともに、経路別フィルタ係数から算出される一括フィルタ係数をばらつき補正部201へ通知する。
平均補正部203は、複数のフィードバック経路のアナログ特性の平均分をFB信号から除去する。すなわち、平均補正部203は、複数のフィードバック経路のゲイン、位相、遅延及び周波数特性の平均分に対応する補正値をフィルタ係数算出部202から取得し、FB信号に対して平均分に関する補正を施す。
次いで、上記のように構成されたRU100による歪み補償方法について、図8に示すフロー図を参照しながら説明する。図8において、図3と同じ部分には同じ符号を付し、その詳しい説明を省略する。
RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、ばらつき補正部201に一括フィルタ係数を設定し、平均補正部203に補正値を設定する処理が実行される。この期間にCU/DU10から送信された送信ベースバンド信号は、通信I/F部110によって受信され、プロセッサ120へ入力される。そして、送信信号は、ばらつき補正部201を通過してアナログ特性推定部124へ入力される。
また、送信信号は、歪み補償部121によって歪み補償され、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。このとき、電力増幅器160によって増幅された後の信号は、フェーズシフタ170へフィードバックされ、ダウンコンバート及びA/D変換された後、FB信号としてアナログ特性推定部124へ入力される。
送信信号及びFB信号が入力されたアナログ特性推定部124においては、送信信号とFB信号が用いられてフィードバック経路のアナログ特性を推定する処理が実行される(ステップS101)。
フィードバック経路ごとのアナログ特性が推定されると、フィルタ係数算出部202によって、フィードバック経路ごとのアナログ特性の平均分の補正値(以下「平均補正値」という)と、平均分を除く残りのばらつき分とが算出される(ステップS301)。
具体的には、まず、フィードバック経路ごとに推定された振幅ゲインをgiとすると、全経路の平均振幅ゲインgaveは、下記の式(16)によって表される。
Figure 2023071349000018
ゲインに関する平均補正値は、この平均振幅ゲインgaveの逆数であるため、ゲインに関する平均補正値g’は、下記の式(17)のようになる。
Figure 2023071349000019
また、ゲインに関する平均分を除く残りのばらつき分g’iは、下記の式(18)のようになる。
Figure 2023071349000020
なお、式(17)、(18)において、平均補正値及びばらつき分を1/L倍しているのは、L個のフィードバック経路のFB信号が合成される際に、振幅がL倍になる分を正規化するためである。
次に、フィードバック経路ごとに推定された遅延FIRフィルタの係数セットをpiとすると、全経路の平均遅延paveは、下記の式(19)によって表される。
Figure 2023071349000021
遅延FIRフィルタの係数セットの総数をS1とすると、遅延に関する平均補正値p’は、下記の式(20)のようになる。
Figure 2023071349000022
また、遅延に関する平均分を除く残りのばらつき分p’iは、下記の式(21)のようになる。
Figure 2023071349000023
次に、フィードバック経路ごとに推定された位相をθiとすると、全経路の平均位相θaveは、下記の式(22)によって表される。
Figure 2023071349000024
位相に関する平均補正値は、この平均位相θaveに(-1)を乗算したものであるため、位相に関する平均補正値θ’は、下記の式(23)のようになる。
Figure 2023071349000025
また、位相に関する平均分を除く残りのばらつき分θ’iは、下記の式(24)のようになる。
Figure 2023071349000026
次に、フィードバック経路ごとに推定された周波数特性FIRフィルタの係数セットをqiとすると、全経路の平均周波数特性qaveは、下記の式(25)によって表される。
Figure 2023071349000027
周波数特性FIRフィルタの係数セットの総数をS2とすると、周波数特性に関する平均補正値q’は、下記の式(26)のようになる。
Figure 2023071349000028
また、周波数特性に関する平均分を除く残りのばらつき分q’iは、下記の式(27)のようになる。
Figure 2023071349000029
このようにして算出されたゲイン、遅延、位相及び周波数特性の平均補正値は、平均補正部203に設定される(ステップS302)。これにより、平均補正部203によってFB信号に対する補正を施して、複数のフィードバック経路のアナログ特性の平均分を補正することが可能となる。
一方、ゲイン、遅延、位相及び周波数特性のばらつき分は、実施の形態1と同様に、経路別フィルタ係数の算出に用いられる。すなわち、フィルタ係数算出部202によって、フィードバック経路ごとのアナログ特性のばらつき分に対応する経路別フィルタ係数が算出される(ステップS102)。そして、フィルタ係数算出部202によって、経路別フィルタ係数の和が求められることにより、一括フィルタ係数が算出される(ステップS103)。
一括フィルタ係数は、ばらつき補正部201へ通知され、ばらつき補正部201が有するFIRフィルタに設定される(ステップS104)。これにより、RU100の起動時やフィルタ係数更新時などの所定期間における設定処理が完了する。ばらつき補正部201に一括フィルタ係数が設定されると、以降は通常の信号送信処理が実行される。すなわち、送信信号は、歪み補償部121によって歪み補償され(ステップS105)、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。
また、各アンテナ素子の電力増幅器160によって増幅された信号は、それぞれフィードバック経路を経由してフィードバックされ、フェーズシフタ170によって逆ウェイトが付与された後に合成される。合成されたFB信号は、平均補正部203によって平均補正値を用いた補正が施された後に、係数更新部122へ入力される。一方、歪み補償前の送信信号には、ばらつき補正部201によって一括してフィードバック経路のアナログ特性のばらつき分と同様の特性が付与され、補正された送信信号が係数更新部122へ入力される。そして、係数更新部122によって、送信信号とFB信号が用いられることにより、歪み補償部121によって用いられる歪み補償係数が更新される。
歪み補償係数の更新においては、それぞれ異なるフィードバック経路を通過する信号を合成したFB信号と送信信号が用いられるが、送信信号及びFB信号に対する補正が施されているため、アナログ特性のばらつきの影響を低減することができる。結果として、歪み補償係数の精度を向上することができ、歪み補償性能の低下を防止することができる。さらに、フィードバック経路のアナログ特性のばらつき分と同様の特性を送信信号に付与する際には、ばらつき補正部201が有する1つのFIRフィルタを稼働させれば良いため、消費電力の増大を抑制することができる。
以上のように、本実施の形態によれば、複数のフィードバック経路のアナログ特性を推定して、アナログ特性の平均分の補正値とばらつき分とを算出し、平均分についてはFB信号を補正し、ばらつき分については1つのフィルタによって一括して送信信号を補正する。このため、フィルタ1つ分の乗算器を稼働させてアナログ特性のばらつきを補正し、歪み補償係数を精度良く更新することができる。結果として、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができる。
(実施の形態3)
実施の形態3の特徴は、送信経路及びフィードバック経路のフェーズシフタをキャリブレーションする点である。
実施の形態3に係る通信システムの構成は、実施の形態1(図1)と同様であるため、その説明を省略する。実施の形態3においては、RU100の構成が実施の形態1(図2)とは異なる。
図9は、実施の形態3に係るRU100の構成を示すブロック図である。図9において、図2と同じ部分には同じ符号を付し、その説明を省略する。図9に示すRU100は、図2に示すRU100に送信フェーズシフタ(Phase Shifter:PS)制御部301及びフィードバック(Feedback:FB)フェーズシフタ(Phase Shifter:PS)制御部302を追加した構成を採る。
送信PS制御部301は、送信経路に設けられるフェーズシフタ150をキャリブレーションする。すなわち、送信PS制御部301は、フェーズシフタ150のゲイン及び位相を制御する。具体的には、送信PS制御部301は、L個の送信経路のうち1経路ずつフェーズシフタ150を経由する送信をオンにし、所定のUE20によって受信される信号のパワーが等しくなるようにフェーズシフタ150のゲインを制御する。そして、送信PS制御部301は、L個の送信経路のうち2経路ずつフェーズシフタ150を経由する送信をオンにし、所定のUE20によって受信される信号のパワーが最大となるようにフェーズシフタ150の位相を制御する。
送信PS制御部301は、上記のゲイン及び位相の制御をすべての送信経路について繰り返す。なお、送信PS制御部301は、位相を制御した後に、再度L個の送信経路のうち1経路ずつフェーズシフタ150を経由する送信をオンにしたときに所定のUE20によって受信される信号のパワーが等しくなるようにフェーズシフタ150のゲインを調整しても良い。
FBPS制御部302は、フィードバック経路に設けられるフェーズシフタ170をキャリブレーションする。すなわち、FBPS制御部302は、フェーズシフタ170のゲイン及び位相を制御する。具体的には、FBPS制御部302は、L個のフィードバック経路のうち1経路ずつフェーズシフタ170を経由するフィードバックをオンにし、FB信号のパワーが等しくなるようにフェーズシフタ170のゲインを制御する。そして、FBPS制御部302は、L個のフィードバック経路のうち2経路ずつフェーズシフタ170を経由するフィードバックをオンにし、FB信号のパワーが最大となるようにフェーズシフタ170の位相を制御する。
FBPS制御部302は、上記のゲイン及び位相の制御をすべてのフィードバック経路について繰り返す。なお、FBPS制御部302は、位相を制御した後に、再度L個のフィードバック経路のうち1経路ずつフェーズシフタ170を経由するフィードバックをオンにしたときにFB信号のパワーが等しくなるようにフェーズシフタ170のゲインを調整しても良い。
本実施の形態においては、RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、フェーズシフタ150及びフェーズシフタ170のキャリブレーションが実行された後、複数のフィードバック経路のアナログ特性が推定される。そして、推定されたアナログ特性に基づいて、実施の形態1と同様に、経路別フィルタ係数及び一括フィルタ係数が算出される。このため、複数のフィードバック経路のアナログ特性を一定程度揃えた上で、さらにアナログ特性のばらつきを補正することができ、歪み補償係数の更新に用いられる送信信号及びFB信号の精度を向上することができる。
以上のように、本実施の形態によれば、送信経路及びフィードバック経路に設けられるフェーズシフタをキャリブレーションした上で、複数のフィードバック経路のアナログ特性のばらつきを補正する。このため、歪み補償係数をさらに精度良く更新することができ、歪み補償性能の低下を防止することができる。
(実施の形態4)
実施の形態4の特徴は、収束アルゴリズムを用いて複数のフィードバック経路それぞれに対応する経路別フィルタ係数を導出する点である。
実施の形態4に係る通信システムの構成は、実施の形態1(図1)と同様であるため、その説明を省略する。実施の形態4においては、RU100の構成が実施の形態1(図2)とは異なる。
図10は、実施の形態4に係るRU100の構成を示すブロック図である。図10において、図2と同じ部分には同じ符号を付し、その説明を省略する。図10に示すRU100は、図2に示すRU100のアナログ特性推定部124及びフィルタ係数算出部125に代えて、経路別係数算出部401及び一括係数算出部402を有する。
経路別係数算出部401は、例えばLMSアルゴリズムなどの収束アルゴリズムを用いて、複数のフィードバック経路それぞれのアナログ特性に対応する経路別フィルタ係数を算出する。具体的には、経路別係数算出部401は、例えば図11に示す構成を有する。図11に示すように、経路別係数算出部401は、可変FIR411及び誤差算出部412を有する。
可変FIR411は、フィルタ係数が可変のFIRフィルタであり、送信信号をフィルタリングして誤差算出部412へ出力する。このとき、可変FIR411は、誤差算出部412によって算出される誤差が小さくなるようにフィルタ係数を変化させながら、送信信号をフィルタリングする。そして、可変FIR411は、誤差が最小となる場合のフィルタ係数を経路別フィルタ係数として一括係数算出部402へ出力する。
誤差算出部412は、可変FIR411から出力される送信信号とFB信号との誤差を算出する。フィードバック経路においてFB信号に付与されるアナログ特性と同等の特性が可変FIR411によるフィルタリングによって送信信号に付与されていれば、誤差算出部412が算出する誤差は0に近くなる。
この構成により、経路別係数算出部401は、フィードバック経路ごとに、送信信号とFB信号の誤差を最小にする経路別フィルタ係数を一括係数算出部402へ出力する。
図10に戻って、一括係数算出部402は、フィードバック経路ごとの経路別フィルタ係数の和を求めることで、一括フィルタ係数を算出する。一括係数算出部402は、算出した一括フィルタ係数をばらつき補正部123へ通知する。
次いで、上記のように構成されたRU100による歪み補償方法について、図12に示すフロー図を参照しながら説明する。図12において、図3と同じ部分には同じ符号を付し、その詳しい説明を省略する。
RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、ばらつき補正部201に一括フィルタ係数を設定する処理が実行される。この期間にCU/DU10から送信された送信ベースバンド信号は、通信I/F部110によって受信され、プロセッサ120へ入力される。そして、送信信号は、ばらつき補正部123を通過して経路別係数算出部401へ入力される。
また、送信信号は、歪み補償部121によって歪み補償され、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。このとき、電力増幅器160によって増幅された後の信号は、フェーズシフタ170へフィードバックされ、ダウンコンバート及びA/D変換された後、FB信号として経路別係数算出部401へ入力される。
送信信号及びFB信号が入力された経路別係数算出部401においては、送信信号とFB信号が用いられてフィードバック経路ごとの経路別フィルタ係数が算出される(ステップS401)。具体的には、フェーズシフタ170のゲインが調整されることにより、フィードバック経路1つずつのFB信号が経路別係数算出部401へ入力され、可変FIR411を通過した送信信号とFB信号の誤差が誤差算出部412によって算出される。
ここで、可変FIR411へ入力された送信信号x(n)が可変FIR411によってフィルタリングされて得られる送信信号y’(n)は、下記の式(28)によって表される。
Figure 2023071349000030
式(28)において、w(k)は可変FIR411のフィルタ係数であり、Kは可変FIR411のタップ数である。このような送信信号y’(n)が可変FIR411から出力されるため、誤差算出部412によって、送信信号y’(n)とFB信号y(n)との誤差e(n)が下記の式(29)のように算出される。
Figure 2023071349000031
算出された誤差e(n)は、可変FIR411へフィードバックされ、誤差e(n)が小さくなるように可変FIR411のフィルタ係数w(k)が更新される。すなわち、下記の式(30)によって、フィルタ係数w(k)が更新される。
Figure 2023071349000032
ただし、式(30)において、μはステップサイズパラメータであり、x*はxの複素共役を示す。このように、誤差が小さくなるように可変FIR411のフィルタ係数を更新することが繰り返され、最小の誤差に対応するフィルタ係数が経路別フィルタ係数として特定される。経路別フィルタ係数の算出は、すべてのフィードバック経路について繰り返し実行され、各フィードバック経路に関する経路別フィルタ係数が一括係数算出部402へ出力される。
そして、一括係数算出部402によって、経路別フィルタ係数の和が求められることにより、一括フィルタ係数が算出される(ステップS103)。一括フィルタ係数は、ばらつき補正部123へ通知され、ばらつき補正部123が有するFIRフィルタに設定される(ステップS104)。これにより、RU100の起動時やフィルタ係数更新時などの所定期間における設定処理が完了する。ばらつき補正部123に一括フィルタ係数が設定されると、以降は通常の信号送信処理が実行される。すなわち、送信信号は、歪み補償部121によって歪み補償され(ステップS105)、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。
また、各アンテナ素子の電力増幅器160によって増幅された信号は、それぞれフィードバック経路を経由してフィードバックされ、フェーズシフタ170によって逆ウェイトが付与された後に合成される。合成されたFB信号は、係数更新部122へ入力される。一方、歪み補償前の送信信号には、ばらつき補正部123によって一括してフィードバック経路のアナログ特性と同様の特性が付与され、補正された送信信号が係数更新部122へ入力される。そして、係数更新部122によって、送信信号とFB信号が用いられることにより、歪み補償部121によって用いられる歪み補償係数が更新される。
歪み補償係数の更新においては、それぞれ異なるフィードバック経路を通過する信号を合成したFB信号と送信信号が用いられるが、送信信号にはフィードバック経路のアナログ特性と同様の特性が付与されているため、アナログ特性のばらつきの影響を低減することができる。結果として、歪み補償係数の精度を向上することができ、歪み補償性能の低下を防止することができる。さらに、フィードバック経路のアナログ特性と同様の特性を送信信号に付与する際には、ばらつき補正部123が有する1つのFIRフィルタを稼働させれば良いため、消費電力の増大を抑制することができる。
以上のように、本実施の形態によれば、収束アルゴリズムによって複数のフィードバック経路に対応する経路別フィルタ係数を算出し、経路別フィルタ係数から一括フィルタ係数を算出し、1つのフィルタによって一括してフィードバック経路のアナログ特性のばらつきを補正する。このため、フィルタ1つ分の乗算器を稼働させてアナログ特性のばらつきを補正し、歪み補償係数を精度良く更新することができる。結果として、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができる。
(実施の形態5)
実施の形態5の特徴は、FB信号に対してフィードバック経路のアナログ特性のばらつきの補正を施す点である。
実施の形態5に係る通信システムの構成は、実施の形態1(図1)と同様であるため、その説明を省略する。実施の形態5においては、RU100のプロセッサ120の構成が実施の形態1(図2)とは異なる。
図13は、実施の形態5に係るプロセッサ120の構成を示すブロック図である。図13において、図2と同じ部分には同じ符号を付し、その説明を省略する。図13に示すプロセッサ120は、図2に示すプロセッサ120のばらつき補正部123に代えて、逆特性変換部501及びばらつき補正部502を有する。
逆特性変換部501は、フィルタ係数算出部125によって算出された一括フィルタ係数を逆特性に変換する。そして、逆特性変換部501は、逆特性に変換された一括フィルタ係数をばらつき補正部502へ通知する。
ばらつき補正部502は、複数のアンテナ素子からのフィードバック経路におけるアナログ特性のばらつきを補正する。具体的には、ばらつき補正部502は、例えばFIRフィルタを有し、逆特性変換部501から通知される一括フィルタ係数をFIRフィルタに設定し、FB信号にこのFIRフィルタを通過させる。ばらつき補正部502が有するFIRフィルタは、複数のフィードバック経路のアナログ特性の逆特性をFB信号に付与する。このため、係数更新部122へ入力されるFB信号においては、フィードバック経路のアナログ特性が除去され、アナログ特性のばらつきを補正することができる。また、ばらつき補正部502は、1つのFIRフィルタを用いて一括してアナログ特性のばらつきを補正するため、補正に用いられる乗算器の数を最小にすることができ、消費電力の増大を抑制することができる。
次いで、上記のように構成されたRU100による歪み補償方法について、図14に示すフロー図を参照しながら説明する。図14において、図3と同じ部分には同じ符号を付し、その詳しい説明を省略する。
RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、ばらつき補正部502に一括フィルタ係数を設定する処理が実行される。この期間にCU/DU10から送信された送信ベースバンド信号は、通信I/F部110によって受信され、プロセッサ120へ入力される。そして、送信信号は、アナログ特性推定部124へ入力される。
また、送信信号は、歪み補償部121によって歪み補償され、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。このとき、電力増幅器160によって増幅された後の信号は、フェーズシフタ170へフィードバックされ、ダウンコンバート及びA/D変換された後、FB信号としてばらつき補正部502を通過し、アナログ特性推定部124へ入力される。
送信信号及びFB信号が入力されたアナログ特性推定部124においては、送信信号とFB信号が用いられてフィードバック経路のアナログ特性を推定する処理が実行される(ステップS101)。フィードバック経路ごとのアナログ特性が推定されると、フィルタ係数算出部125によって、フィードバック経路ごとのアナログ特性に対応する経路別フィルタ係数が算出される(ステップS102)。そして、フィルタ係数算出部125によって、経路別フィルタ係数の和が求められることにより、一括フィルタ係数が算出される(ステップS103)。
一括フィルタ係数は、逆特性変換部501へ出力され、逆特性変換部501によって、一括フィルタ係数が逆特性に変換される(ステップS501)。すなわち、複数のフィードバック経路においてFB信号に付与されるアナログ特性を一括して打ち消す一括フィルタ係数が導出される。逆特性の一括フィルタ係数は、ばらつき補正部502へ通知され、ばらつき補正部502が有するFIRフィルタに設定される(ステップS502)。これにより、RU100の起動時やフィルタ係数更新時などの所定期間における設定処理が完了する。ばらつき補正部502に逆特性の一括フィルタ係数が設定されると、以降は通常の信号送信処理が実行される。すなわち、送信信号は、歪み補償部121によって歪み補償され(ステップS105)、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。
また、各アンテナ素子の電力増幅器160によって増幅された信号は、それぞれフィードバック経路を経由してフィードバックされ、フェーズシフタ170によって逆ウェイトが付与された後に合成される。合成されたFB信号には、ばらつき補正部502によって一括してフィードバック経路のアナログ特性の逆特性が付与され、補正されたFB信号が係数更新部122へ入力される。一方、歪み補償前の送信信号も係数更新部122へ入力され、係数更新部122によって、送信信号とFB信号が用いられることにより、歪み補償部121によって用いられる歪み補償係数が更新される。
歪み補償係数の更新においては、それぞれ異なるフィードバック経路を通過する信号を合成したFB信号が用いられるが、このFB信号にはフィードバック経路のアナログ特性の逆特性が付与されているため、アナログ特性のばらつきの影響を低減することができる。結果として、歪み補償係数の精度を向上することができ、歪み補償性能の低下を防止することができる。さらに、フィードバック経路のアナログ特性の逆特性をFB信号に付与する際には、ばらつき補正部502が有する1つのFIRフィルタを稼働させれば良いため、消費電力の増大を抑制することができる。
以上のように、本実施の形態によれば、複数のフィードバック経路のアナログ特性を補正する一括フィルタ係数を逆特性に変換し、逆特性の一括フィルタ係数を用いて一括してFB信号に補正を施す。このため、フィルタ1つ分の乗算器を稼働させてアナログ特性のばらつきを補正し、歪み補償係数を精度良く更新することができる。結果として、消費電力の増大を抑制しつつ、歪み補償性能の低下を防止することができる。
(実施の形態6)
実施の形態6の特徴は、ビーム方向ごとに一括フィルタ係数を算出し、ビーム方向に対応する一括フィルタ係数を用いてフィードバック経路のアナログ特性のばらつきを補正する点である。
実施の形態6に係る通信システムの構成は、実施の形態1(図1)と同様であるため、その説明を省略する。実施の形態6においては、RU100のプロセッサ120の構成が実施の形態1(図2)とは異なる。
図15は、実施の形態6に係るプロセッサ120の構成を示すブロック図である。図15において、図2と同じ部分には同じ符号を付し、その説明を省略する。図15に示すプロセッサ120は、図2に示すプロセッサ120にフィルタ係数記憶部601を追加した構成を採る。
フィルタ係数記憶部601は、フィルタ係数算出部125によって算出される一括フィルタ係数をビーム方向に対応付けて記憶する。すなわち、フィルタ係数記憶部601は、RU100の起動時や所定周期のフィルタ係数更新時などの所定期間に、フェーズシフタ150によって形成される送信ビームの方向に対応付けて一括フィルタ係数を記憶しておく。そして、フィルタ係数記憶部601は、通常の信号送信処理時には、送信ビームの方向の情報を取得し、ビーム方向に対応する一括フィルタ係数をばらつき補正部123へ通知する。
次いで、上記のように構成されたRU100による歪み補償方法について、図16に示すフロー図を参照しながら説明する。図16において、図3と同じ部分には同じ符号を付し、その詳しい説明を省略する。
RU100の起動時や所定周期のフィルタ係数更新時などの所定期間には、フィルタ係数記憶部601に一括フィルタ係数を記憶する処理が実行される。この期間にCU/DU10から送信された送信ベースバンド信号は、通信I/F部110によって受信され、プロセッサ120へ入力される。そして、送信信号は、ばらつき補正部123を通過してアナログ特性推定部124へ入力される。
また、ビーム方向の識別番号mが1に初期化され(ステップS601)、m番目のビーム方向に対応するアンテナウェイトがフェーズシフタ150に設定される(ステップS602)。これにより、RU100は、m番目のビーム方向を向く送信ビームを形成することになる。
送信信号は、歪み補償部121によって歪み補償され、D/A変換及びアップコンバートされた後、フェーズシフタ150によってm番目のビーム方向に対応するアンテナウェイトが付与され、電力増幅器160によって増幅された後、m番目のビーム方向へ送信される。このとき、電力増幅器160によって増幅された後の信号は、フェーズシフタ170へフィードバックされ、ダウンコンバート及びA/D変換された後、アナログ特性推定部124へ入力される。
送信信号及びFB信号が入力されたアナログ特性推定部124においては、送信信号とFB信号が用いられてフィードバック経路のアナログ特性を推定する処理が実行される(ステップS101)。フィードバック経路ごとのアナログ特性が推定されると、フィルタ係数算出部125によって、フィードバック経路ごとのアナログ特性に対応する経路別フィルタ係数が算出される(ステップS102)。そして、フィルタ係数算出部125によって、経路別フィルタ係数の和が求められることにより、一括フィルタ係数が算出される(ステップS103)。
算出された一括フィルタ係数は、フィルタ係数記憶部601によって、m番目のビーム方向に対応付けて記憶される(ステップS603)。そして、識別番号mがビーム方向の総数M以上であるか否かが判定され(ステップS604)、識別番号mがM未満である場合には(ステップS604No)、識別番号mがインクリメントされる(ステップS605)。そして、上記と同様に、m番目のビーム方向を向く送信ビームが形成される場合の一括フィルタ係数が算出され、フィルタ係数記憶部601によって記憶される。
そして、識別番号mがM以上となり(ステップS604Yes)、すべてのビーム方向に対応付けて一括フィルタ係数が記憶されると、以降は通常の信号送信処理が実行される。このとき、ビームフォーミングのためのアンテナウェイトがフェーズシフタ150に設定されると、送信ビームの方向に対応する一括フィルタ係数がフィルタ係数記憶部601からばらつき補正部123へ通知され、ばらつき補正部123が有するFIRフィルタに設定される(ステップS606)。
そして、送信信号は、歪み補償部121によって歪み補償され(ステップS105)、D/A変換及びアップコンバートされた後、フェーズシフタ150によってビームフォーミングのためのアンテナウェイトが付与され、電力増幅器160によって増幅された後、無線空間へ送信される。
また、各アンテナ素子の電力増幅器160によって増幅された信号は、それぞれフィードバック経路を経由してフィードバックされ、フェーズシフタ170によって逆ウェイトが付与された後に合成される。合成されたFB信号は、係数更新部122へ入力される。一方、歪み補償前の送信信号には、ばらつき補正部123によってビーム方向に応じた一括フィルタ係数による補正が施され、補正された送信信号が係数更新部122へ入力される。そして、係数更新部122によって、送信信号とFB信号が用いられることにより、歪み補償部121によって用いられる歪み補償係数が更新される。
歪み補償係数の更新においては、それぞれ異なるフィードバック経路を通過する信号を合成したFB信号と送信信号が用いられるが、送信信号にはフィードバック経路のアナログ特性と同様の特性が付与されているため、アナログ特性のばらつきの影響を低減することができる。結果として、歪み補償係数の精度を向上することができ、歪み補償性能の低下を防止することができる。さらに、フィードバック経路のアナログ特性と同様の特性を送信信号に付与する際には、ばらつき補正部123が有する1つのFIRフィルタを稼働させれば良いため、消費電力の増大を抑制することができる。また、ビーム方向に応じてばらつきの補正が行われるため、フェーズシフタ150、170におけるウェイトの変更に対応した適切な補正を実現することができる。
以上のように、本実施の形態によれば、複数のフィードバック経路のアナログ特性を補正する一括フィルタ係数をビーム方向に対応付けて記憶しておき、送信ビームに応じた一括フィルタ係数を用いてフィードバック経路のアナログ特性のばらつきを補正する。このため、ビーム方向に対応して適切にアナログ特性のばらつきを補正することができる。
なお、上記各実施の形態においては、複数のフィードバック経路すべてについて経路別フィルタ係数を算出し、これらの経路別フィルタ係数から一括フィルタ係数を算出するものとした。しかし、経路別フィルタ係数は、必ずしもすべてのフィードバック経路について算出する必要はなく、一部のフィードバック経路に関して経路別フィルタ係数を算出し、これらの経路別フィルタ係数から一括フィルタ係数が算出されるようにしても良い。
また、フィードバック経路のアナログ特性を推定する処理においては、必ずしもフィードバック経路1つずつのゲイン、遅延、位相及び周波数特性を推定しなくても良い。すなわち、例えば2個以上のフィードバック経路のFB信号をまとめてフィードバックさせ、このFB信号に対応するフィードバック回路のアナログ特性をまとめて推定するようにしても良い。
上記実施の形態1~6は、適宜組み合わせて実施することが可能である。例えば、実施の形態2、3を組み合わせて、FB信号及び送信信号それぞれに対して補正を施す場合に、フェーズシフタのキャリブレーションを実施しても良い。また、例えば実施の形態4、6を組み合わせて、収束アルゴリズムを用いて経路別フィルタ係数を導出した後、ビーム方向ごとの一括フィルタ係数を算出し、送信ビームに応じた一括フィルタ係数を用いてアナログ特性のばらつきを補正しても良い。
110 通信I/F部
120 プロセッサ
121 歪み補償部
122 係数更新部
123、201、502 ばらつき補正部
124 アナログ特性推定部
125、202 フィルタ係数算出部
130 メモリ
140 D/A変換部
150、170 フェーズシフタ
160 電力増幅器
180 合成部
190 A/D変換部
203 平均補正部
301 送信PS制御部
302 FBPS制御部
401 経路別係数算出部
402 一括係数算出部
411 可変FIR
412 誤差算出部
501 逆特性変換部
601 フィルタ係数記憶部

Claims (10)

  1. 複数のアンテナ素子と、
    前記複数のアンテナ素子に設けられる複数の電力増幅器と、
    前記複数の電力増幅器へ送信信号を出力するプロセッサと、
    前記複数の電力増幅器から前記プロセッサへフィードバック信号をフィードバックさせる複数のフィードバック経路とを有し、
    前記プロセッサは、
    前記複数のフィードバック経路におけるアナログ特性のばらつきを一括して補正し、
    補正されて得られる送信信号及びフィードバック信号を用いて、前記複数の電力増幅器において発生する非線形歪みを補償するための歪み補償係数を更新する
    処理を実行することを特徴とする無線通信装置。
  2. 前記補正する処理は、
    前記複数のフィードバック経路におけるゲイン、遅延、位相及び周波数特性の少なくともいずれか1つに関するばらつきを一括して補正する
    ことを特徴とする請求項1記載の無線通信装置。
  3. 前記プロセッサは、
    前記複数のフィードバック経路におけるアナログ特性を推定し、
    推定されたアナログ特性を一括して補正するフィルタ係数を算出する
    処理をさらに実行することを特徴とする請求項1記載の無線通信装置。
  4. 前記算出する処理は、
    前記複数のフィードバック経路それぞれのアナログ特性に対応する経路別フィルタ係数を算出し、
    前記経路別フィルタ係数の和を求めることにより一括フィルタ係数を算出する
    ことを特徴とする請求項3記載の無線通信装置。
  5. 前記補正する処理は、
    前記複数のフィードバック経路におけるアナログ特性と同等の特性を前記送信信号に付与する
    ことを特徴とする請求項1記載の無線通信装置。
  6. 前記補正する処理は、
    前記複数のフィードバック経路におけるアナログ特性の逆特性を前記フィードバック信号に付与する
    ことを特徴とする請求項1記載の無線通信装置。
  7. 前記補正する処理は、
    前記複数のフィードバック経路におけるアナログ特性の平均分については前記フィードバック信号に対して補正を施し、当該平均分を除くばらつき分については前記送信信号に対して補正を施す
    ことを特徴とする請求項1記載の無線通信装置。
  8. 前記プロセッサは、
    前記送信信号と前記複数のフィードバック経路それぞれのフィードバック信号とから収束アルゴリズムを用いて、前記複数のフィードバック経路それぞれのアナログ特性に対応する経路別フィルタ係数を算出し、
    前記経路別フィルタ係数の和を求めることにより一括フィルタ係数を算出する
    処理をさらに実行することを特徴とする請求項1記載の無線通信装置。
  9. 前記プロセッサは、
    前記複数のフィードバック経路におけるアナログ特性を一括して補正するフィルタ係数を送信ビームの方向ごとに算出し、
    算出したフィルタ係数を送信ビームの方向に対応付けて記憶する
    処理をさらに実行することを特徴とする請求項1記載の無線通信装置。
  10. 複数のアンテナ素子と、前記複数のアンテナ素子に設けられる複数の電力増幅器と、前記複数の電力増幅器へ送信信号を出力するプロセッサと、前記複数の電力増幅器から前記プロセッサへフィードバック信号をフィードバックさせる複数のフィードバック経路とを有する無線通信装置によって実行される歪み補償方法であって、
    前記複数のフィードバック経路におけるアナログ特性のばらつきを一括して補正し、
    補正されて得られる送信信号及びフィードバック信号を用いて、前記複数の電力増幅器において発生する非線形歪みを補償するための歪み補償係数を更新する
    処理を有することを特徴とする歪み補償方法。
JP2021184064A 2021-11-11 2021-11-11 無線通信装置及び歪み補償方法 Pending JP2023071349A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021184064A JP2023071349A (ja) 2021-11-11 2021-11-11 無線通信装置及び歪み補償方法
US17/877,441 US20230142029A1 (en) 2021-11-11 2022-07-29 Wireless communication apparatus and distortion compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184064A JP2023071349A (ja) 2021-11-11 2021-11-11 無線通信装置及び歪み補償方法

Publications (1)

Publication Number Publication Date
JP2023071349A true JP2023071349A (ja) 2023-05-23

Family

ID=86230335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184064A Pending JP2023071349A (ja) 2021-11-11 2021-11-11 無線通信装置及び歪み補償方法

Country Status (2)

Country Link
US (1) US20230142029A1 (ja)
JP (1) JP2023071349A (ja)

Also Published As

Publication number Publication date
US20230142029A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US10812166B2 (en) Beam steering digital predistortion
US8558616B2 (en) Amplifying apparatus
US8369447B2 (en) Predistortion with sectioned basis functions
WO2005029875A2 (en) Digital convertible radio snr optimization
JP5420887B2 (ja) 歪補償装置
JP2004135263A (ja) アレイアンテナ装置
KR20050077781A (ko) 멱급수형 디지털 프리디스토터
JP2009177668A (ja) 歪補償装置及びこれを備えた電力増幅装置
US20200186103A1 (en) Polyphase digital signal predistortion in radio transmitter
JP2006514479A (ja) 非線形フィルタ
JP2016032127A (ja) 無線通信システム、歪補償装置、及び歪補償方法
US10659124B2 (en) Multiantenna communication device and coefficient update method
US20110095820A1 (en) Method for pre-distorting a power amplifier and the circuit thereof
JP2017212594A (ja) 無線通信装置及びキャリブレーション方法
US10476536B1 (en) Distortion compensation device and distortion compensation method
JP7238407B2 (ja) マルチアンテナ通信装置及び係数更新方法
JP6207806B2 (ja) 歪補償装置及び歪補償方法
JP7087991B2 (ja) マルチアンテナ通信装置及び歪み補償方法
JP2023071349A (ja) 無線通信装置及び歪み補償方法
US8395445B2 (en) Power amplifier, non-linear distortion correcting method of power amplifier and radio communication device
US20230318640A1 (en) Wireless communication apparatus and distortion compensation method
WO2022137891A1 (ja) 信号処理装置、信号処理方法及び非一時的なコンピュータ可読媒体
KR100762218B1 (ko) 배열 안테나 시스템에 있어서의 송신기 교정장치 및 수신기교정장치
JP6235899B2 (ja) 送信装置及び歪み補償方法
US11689229B2 (en) Wireless communication device and distortion compensation method