JP2023059592A - Method for manufacturing hub unit bearing - Google Patents

Method for manufacturing hub unit bearing Download PDF

Info

Publication number
JP2023059592A
JP2023059592A JP2021169688A JP2021169688A JP2023059592A JP 2023059592 A JP2023059592 A JP 2023059592A JP 2021169688 A JP2021169688 A JP 2021169688A JP 2021169688 A JP2021169688 A JP 2021169688A JP 2023059592 A JP2023059592 A JP 2023059592A
Authority
JP
Japan
Prior art keywords
fitting
hub
curved surface
concave curved
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021169688A
Other languages
Japanese (ja)
Inventor
森 山縣
Mori Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2021169688A priority Critical patent/JP2023059592A/en
Publication of JP2023059592A publication Critical patent/JP2023059592A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for manufacturing a hub unit bearing that can grind a fitting surface to which an inner ring is fitted and a cylindrical surface of a shaft end part with a diameter smaller than the fitting surface at one time while suppressing generation of a small end height due to drop out of abrasive grains.SOLUTION: A hub ring has a shaft end part that includes: a cylindrical surface with a diameter smaller than a fitting surface; and a concave surface formed between the fitting surface and the cylindrical surface, at the outer peripheral surface thereof. The concave surface has a curvature radius that is 30 or more times larger than a difference between respective radii of the fitting surface and the cylindrical surface. The fitting surface, the concave surface and the cylindrical surface are ground together with at least a seal slide contact surface that is formed axially inward of a wheel fitting flange of the hub ring.SELECTED DRAWING: Figure 2

Description

本発明は、ハブユニット軸受の製造方法に関する。 The present invention relates to a method of manufacturing a hub unit bearing.

従来のハブユニット軸受としては、ハブ輪に内輪を外嵌した状態で、ハブ輪の軸方向内方に延出する軸端部を径方向外方に折り曲げて加締め部を形成し、内輪をハブ輪に軸方向に固定して、ハブを構成しているものがある。 In a conventional hub unit bearing, the inner ring is fitted on the hub ring, and the axial end portion of the hub ring extending inward in the axial direction is bent radially outward to form a caulking portion. Some are fixed to the hub wheel in the axial direction to form a hub.

例えば、特許文献1では、図5に示すように、被加締め部となるハブ輪100の軸端部101に、外径寸法が、内輪110を嵌合する内輪嵌合面102よりも、半径において0.2~1.0mm程度小径の小径面103を設けることで、加締めによって内輪110の変形を極力少なくすることが記載されている。また、特許文献2においても、ハブ輪の軸端部に形成された円筒部の外周面と小径段部の外周面との境界部に、断面形状が凹円弧状である段差部を形成して、この段差部を加締めの際の変形の基点とすることが記載されている。 For example, in Patent Document 1, as shown in FIG. describes that deformation of the inner ring 110 due to crimping is minimized by providing a small diameter surface 103 having a small diameter of about 0.2 to 1.0 mm. Also in Patent Document 2, a stepped portion having a concave arcuate cross-sectional shape is formed at the boundary between the outer peripheral surface of the cylindrical portion formed at the shaft end of the hub wheel and the outer peripheral surface of the small diameter stepped portion. , that this stepped portion is used as a base point for deformation during crimping.

このような、軸端部の外周面を内輪嵌合面よりも小径にする構造は、内輪をハブ輪に圧入する際にも、圧入距離が短くなり、生産性の向上が図られ、また、応力集中源となる、軸端部の外周面の圧入疵の発生を防止でき、加締め部の疲労強度の向上にもつながる。 Such a structure in which the outer peripheral surface of the shaft end is smaller in diameter than the inner ring fitting surface shortens the press-fitting distance when press-fitting the inner ring into the hub ring, thereby improving productivity. It is possible to prevent the occurrence of press-fitting flaws on the outer peripheral surface of the shaft end, which is a source of stress concentration, and lead to an improvement in the fatigue strength of the crimped portion.

一般に、ハブ輪の加工は、車輪取付フランジ根元部のシール摺接面から内輪嵌合面までを、ダイヤモンドホイールを用いて成形された総型砥石を用いて一度に研削することで、各表面の同芯度を高め、軸受組立品のフランジ振れを抑えている(特許文献3参照)。 In general, hub wheels are processed by grinding from the seal sliding contact surface at the base of the wheel mounting flange to the inner ring fitting surface at once using a formed grindstone formed using a diamond wheel. The degree of concentricity is increased to suppress flange deflection of the bearing assembly (see Patent Document 3).

特開2005-249047号公報JP-A-2005-249047 特開2003-74571号公報JP-A-2003-74571 特開2004-092830号公報Japanese Patent Application Laid-Open No. 2004-092830

ところで、総型砥石を用いて、図5に示す角部104を持つ形状のハブ輪100を研削する場合、角部104の周側加工面には、砥粒の脱落によって小端高と呼ばれる凸部が発生しやすく、また、クーラントの供給がしにくく、角部104の段部側加工面には研削焼けや割れが発生しやすい。このため、図5に示すようなハブ輪100の外周面は、通常、内輪嵌合面(嵌合面)102より小径の小径面(円筒面)103までを一度に研削せず、小径面103は別途旋削や研削などの加工がされていた。 By the way, when grinding the hub wheel 100 having the corner portion 104 shown in FIG. In addition, it is difficult to supply coolant, and grinding burns and cracks are likely to occur on the machined surface of the stepped portion of the corner portion 104 . For this reason, the outer peripheral surface of the hub wheel 100 as shown in FIG. was separately processed such as turning and grinding.

そのため、内輪嵌合面102と被加締め部となる小径面103に若干の芯ずれが生じると、加締め加工時の被加締め部の曲がり方が一様でなくなる為、周方向における加締め加工力にばらつきが生じ、加工条件の制御が難しくなると共に、加締め後の加締め部も周方向における強度のばらつきが生じる可能性がある。 Therefore, if there is a slight misalignment between the inner ring fitting surface 102 and the small diameter surface 103 that is the portion to be crimped, the bending of the portion to be crimped will not be uniform during crimping. There is a possibility that the machining force will vary, making it difficult to control the machining conditions, and that the strength of the crimped portion after crimping will also vary in the circumferential direction.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、砥粒の脱落による小端高の発生を抑制しつつ、内輪が嵌合する嵌合面と該嵌合面より小径の軸端部の円筒面とを一度に研削することができるハブユニット軸受の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its object is to suppress the occurrence of small end height due to falling off of abrasive grains, and to provide a fitting surface where an inner ring is fitted and a smaller diameter than the fitting surface. To provide a method for manufacturing a hub unit bearing capable of grinding the cylindrical surface of the shaft end of the shaft at one time.

本発明の上記目的は、下記の構成により達成される。
(1) 内周面に複列の外輪軌道を有する外輪と、
軸方向外方に車輪取付フランジを有し、軸方向内方に円筒状の嵌合面が形成されたハブ輪、及び前記ハブ輪の嵌合面に外嵌される少なくとも一つの内輪を備え、外周面に前記複列の外輪軌道に対向する複列の内輪軌道が形成されたハブと、
前記複列の外輪軌道と前記複列の内輪軌道との間に転動自在に配置された複数の転動体と、を備え、
前記ハブ輪は、前記少なくとも一つの内輪を前記嵌合面に外嵌した状態で、前記嵌合面よりも軸方向内方に延出する軸端部を径方向外方に折り曲げることで加締め部を形成し、前記少なくとも一つの内輪を前記ハブ輪に軸方向に固定する、ハブユニット軸受の製造方法であって、
前記ハブ輪の軸方向内方側の軸端部は、外周面に、前記嵌合面より小径の円筒面と、前記嵌合面と該円筒面との間に形成された凹曲面とを備え、
前記凹曲面の曲率半径は、前記嵌合面と前記円筒面の各半径の差の30倍以上であり、
前記嵌合面、前記凹曲面、及び前記円筒面は、少なくとも前記ハブ輪の前記車輪取付フランジの軸方向内方に形成されたシール摺接面とともに研削される、
ハブユニット軸受の製造方法。
(2) 前記複列の内輪軌道は、前記ハブ輪と前記内輪にそれぞれ形成され、
前記嵌合面、前記凹曲面、及び前記円筒面は、前記内輪軌道及び前記シール摺接面とともに研削される、
(1)に記載のハブユニット軸受の製造方法。
(3) 前記凹曲面は、前記嵌合面と前記円筒面とを繋ぐように形成され、
前記凹曲面と前記嵌合面との稜部において、前記軸方向に対する前記凹曲面の接線の角度は、15°以下である、
(1)又は(2)に記載のハブユニット軸受の製造方法。
(4) 前記ハブ輪の軸端部は、前記嵌合面と前記凹曲面との間に形成される凸曲面をさらに備え、
前記凸曲面と前記凹曲面は、前記嵌合面と前記円筒面とを繋ぐように形成され、
前記凸曲面の曲率半径は、前記嵌合面と前記円筒面の各半径の差の30倍以上である、
(1)又は(2)に記載のハブユニット軸受の製造方法。
The above objects of the present invention are achieved by the following configurations.
(1) an outer ring having a double-row outer ring raceway on its inner peripheral surface;
A hub wheel having a wheel mounting flange axially outwardly and a cylindrical fitting surface formed axially inwardly, and at least one inner ring externally fitted to the fitting surface of the hub wheel, a hub having, on its outer peripheral surface, a double-row inner ring raceway facing the double-row outer ring raceway;
a plurality of rolling elements arranged to be free to roll between the double-row outer ring raceway and the double-row inner ring raceway,
The hub wheel is caulked by bending a shaft end extending axially inwardly from the fitting surface in a state where the at least one inner ring is fitted onto the fitting surface. A method of manufacturing a hub unit bearing, forming a portion to axially secure the at least one inner ring to the hub ring, the method comprising:
The outer peripheral surface of the axially inner shaft end portion of the hub wheel has a cylindrical surface having a diameter smaller than that of the fitting surface and a concave curved surface formed between the fitting surface and the cylindrical surface. ,
the radius of curvature of the concave curved surface is 30 times or more the difference between the radii of the fitting surface and the cylindrical surface;
The fitting surface, the concave curved surface, and the cylindrical surface are ground at least together with a seal sliding contact surface formed axially inward of the wheel mounting flange of the hub wheel,
A method for manufacturing a hub unit bearing.
(2) the double-row inner ring raceway is formed on each of the hub ring and the inner ring;
The fitting surface, the concave curved surface, and the cylindrical surface are ground together with the inner ring raceway and the seal sliding contact surface,
(1) A method for manufacturing a hub unit bearing.
(3) the concave curved surface is formed to connect the fitting surface and the cylindrical surface;
At the ridge between the concave curved surface and the fitting surface, the angle of the tangent line of the concave curved surface with respect to the axial direction is 15° or less.
A method for manufacturing a hub unit bearing according to (1) or (2).
(4) the axial end portion of the hub wheel further includes a convex curved surface formed between the fitting surface and the concave curved surface;
The convex curved surface and the concave curved surface are formed so as to connect the fitting surface and the cylindrical surface,
The radius of curvature of the convex curved surface is 30 times or more the difference between the radii of the fitting surface and the cylindrical surface.
A method for manufacturing a hub unit bearing according to (1) or (2).

本発明のハブユニット軸受の製造方法によれば、砥粒の脱落による小端高の発生を抑制しつつ、内輪が嵌合する嵌合面と該嵌合面より小径の軸端部の円筒面とを一度に研削することができる。これにより、嵌合面と円筒面に芯ずれが生じることがなく、加締め部も周方向に均一な強度で加締めることができる。 According to the method for manufacturing a hub unit bearing of the present invention, the fitting surface where the inner ring is fitted and the cylindrical surface of the shaft end portion having a smaller diameter than the fitting surface while suppressing the occurrence of small end height due to falling off of abrasive grains. and can be ground at once. As a result, misalignment between the fitting surface and the cylindrical surface does not occur, and the crimped portion can be crimped with uniform strength in the circumferential direction.

本発明の一実施形態に係るハブユニット軸受の断面図である。1 is a cross-sectional view of a hub unit bearing according to one embodiment of the present invention; FIG. 内輪を加締め固定する前のハブ輪を示す断面図である。FIG. 4 is a cross-sectional view showing the hub wheel before the inner ring is crimped and fixed; 図2のIII部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of part III of FIG. 2 ; 本発明の変形例に係るハブユニット軸受のハブ輪を示す、図3に対応する拡大断面図である。4 is an enlarged cross-sectional view corresponding to FIG. 3, showing a hub ring of a hub unit bearing according to a modification of the invention; FIG. 従来のハブユニット軸受において、内輪を加締め固定前のハブ輪を示す断面図である。FIG. 5 is a cross-sectional view showing a hub ring before the inner ring is caulked and fixed in a conventional hub unit bearing.

以下、本発明の一実施形態に係るハブユニット軸受の製造方法を図面に基づいて詳細に説明する。 A method of manufacturing a hub unit bearing according to one embodiment of the present invention will be described in detail below with reference to the drawings.

図1に示すように、本実施形態の従動輪用のハブユニット軸受10は、従動輪である車輪をナックル等の懸架装置に対して回転自在に支持するもので、静止輪である外輪20の内径側には、複数個の転動体13を介して回転輪であるハブ30が回転自在に支持されている。 As shown in FIG. 1, a driven wheel hub unit bearing 10 of the present embodiment supports a wheel, which is a driven wheel, rotatably with respect to a suspension device such as a knuckle. A hub 30 which is a rotating wheel is rotatably supported on the inner diameter side via a plurality of rolling elements 13 .

外輪20は、外周面に懸架装置を構成する図示しないナックルに結合固定される取付フランジ22を有し、内周面に複列の外輪軌道21a、21bを有している。取付フランジ22には、外輪20をナックルに結合するための雌ねじ穴23が設けられている。 The outer ring 20 has a mounting flange 22 coupled and fixed to a knuckle (not shown) constituting a suspension system on its outer peripheral surface, and has double-row outer ring raceways 21a and 21b on its inner peripheral surface. The mounting flange 22 is provided with a female threaded hole 23 for coupling the outer ring 20 to the knuckle.

ハブ30は、ハブ輪31の小径段部34よりも軸方向内方に形成された円筒状の嵌合面37に内輪32を外嵌し、加締め部33により内輪32を結合固定して成る。また、ハブ30は、ハブ輪31の外周面及び内輪32の外周面に、複列の外輪軌道21a、21bと対向する複列の内輪軌道35a、35bを有している。ハブ輪31の軸方向外方で、外輪20の軸方向外方の端部開口よりも軸方向外方に突出した部分には、車輪を構成するホイール及びブレーキロータを取り付けるための車輪取付フランジ36が設けられている。
そして、各外輪軌道21a、21bと、各内輪軌道35a、35bとの間に、それぞれ複数個ずつ転動体13が転動自在に配置されている。また、各列の転動体13は、保持器14によって、円周方向に等間隔に保持されている。
The hub 30 is formed by fitting an inner ring 32 onto a cylindrical fitting surface 37 formed axially inwardly of a small-diameter stepped portion 34 of a hub wheel 31 , and connecting and fixing the inner ring 32 with a crimp portion 33 . . Further, the hub 30 has double-row inner ring raceways 35a and 35b on the outer peripheral surface of the hub wheel 31 and the outer peripheral surface of the inner ring 32 facing the double-row outer ring raceways 21a and 21b. A wheel mounting flange 36 for mounting a wheel and a brake rotor constituting a wheel is provided at a portion axially outward of the hub wheel 31 and protruding axially outward beyond the axially outward end opening of the outer ring 20 . is provided.
A plurality of rolling elements 13 are rotatably arranged between each of the outer ring raceways 21a and 21b and each of the inner ring raceways 35a and 35b. Also, the rolling elements 13 in each row are held by a retainer 14 at regular intervals in the circumferential direction.

なお、ここで言う軸方向外方とは、ハブユニット軸受の軸方向に関し、ハブユニット軸受10を車両に組み付け状態で車体の幅方向外側となるアウトボード側であり、軸方向内方とは、車体の幅方向内側となるインボード側である。 The term "outward in the axial direction" as used herein relates to the axial direction of the hub unit bearing, and is the outboard side that is the outer side in the width direction of the vehicle body when the hub unit bearing 10 is assembled to the vehicle. This is the inboard side, which is the inner side in the width direction of the vehicle body.

外輪20の内周面とハブ30の外周面との間で各転動体13を設置した軸受空間15は、軸方向外方側の端部開口においてシールリング16によって塞がれており、軸方向内方側の端部開口においてエンドキャップ17により塞がれている。 A bearing space 15 in which each rolling element 13 is installed between the inner peripheral surface of the outer ring 20 and the outer peripheral surface of the hub 30 is closed by a seal ring 16 at the end opening on the axially outward side. The end opening on the inner side is closed by an end cap 17 .

また、内輪32の肩部外周面には、エンコーダ18が固定されたスリンガ19が外嵌固定されている。 A slinger 19 to which an encoder 18 is fixed is fitted and fixed to the outer peripheral surface of the shoulder portion of the inner ring 32 .

図2は、内輪を加締め固定する前のハブ輪を示す断面図である。即ち、ハブ輪31には、上述したように、軸方向外方から軸方向内方に向かって順に、車輪取付フランジ36、シール摺接面38、外輪軌道35a、小径段部34、円筒状の嵌合面37、及び被加締め部である軸端部39が形成される。 FIG. 2 is a cross-sectional view showing the hub wheel before the inner ring is caulked and fixed. That is, as described above, the hub wheel 31 includes the wheel mounting flange 36, the seal sliding contact surface 38, the outer ring raceway 35a, the small diameter stepped portion 34, and the cylindrical portion in order from the axially outward to the axially inward direction. A fitting surface 37 and a shaft end portion 39 which is a crimped portion are formed.

シール摺接面38は、車輪取付フランジ36の軸方向内側面から連続して形成され、シールリング16のシールリップが摺接する。円筒状の嵌合面37は、小径段部34から軸方向内方に形成され、内輪32が嵌合する。 The seal sliding contact surface 38 is formed continuously from the axially inner side surface of the wheel mounting flange 36, and the seal lip of the seal ring 16 is in sliding contact therewith. A cylindrical fitting surface 37 is formed axially inward from the small-diameter stepped portion 34, and the inner ring 32 is fitted thereon.

軸端部39は、円筒状の嵌合面37よりも軸方向内方に延出する円筒状部分であり、外周面に、嵌合面37より小径の円筒面40と、嵌合面37と円筒面40との間を繋ぐように形成された凹曲面41とを備える。 The shaft end portion 39 is a cylindrical portion extending axially inward from the cylindrical fitting surface 37 , and has a cylindrical surface 40 having a smaller diameter than the fitting surface 37 and the fitting surface 37 on the outer peripheral surface. and a concave curved surface 41 formed so as to connect with the cylindrical surface 40 .

したがって、ハブ輪31は、内輪32を嵌合面37に外嵌し、小径段部34に突き当てた状態で、軸端部39を径方向外方に折り曲げることで、加締め部33を形成し、内輪32をハブ輪31に軸方向に固定する。 Therefore, in the hub wheel 31, the inner ring 32 is fitted onto the fitting surface 37 and abutted against the small-diameter stepped portion 34, and the axial end portion 39 is bent radially outward to form the caulked portion 33. Then, the inner ring 32 is fixed to the hub ring 31 in the axial direction.

ここで、図3にも拡大して示すように、加締め前のハブ輪31において、凹曲面41は断面凹円弧状であり、円筒面40との境界部41aから軸方向外方に向かって徐々に大径となるように形成されている。凹曲面41の曲率半径Rは、嵌合面37と円筒面40の各半径d1,d2の差d(=d1-d2)の30倍以上(本実施形態では、約35倍)である。また、凹曲面41と嵌合面37との稜部42において、ハブ輪31の軸方向(嵌合面37)に対する凹曲面41の接線Sの角度αは、15°以下(本実施形態では、14°弱)となっている。 Here, as shown enlarged in FIG. 3, in the hub wheel 31 before caulking, the concave curved surface 41 has a concave arcuate cross section, and extends axially outward from the boundary portion 41a with the cylindrical surface 40. It is formed so as to gradually increase in diameter. The curvature radius R of the concave curved surface 41 is 30 times or more (approximately 35 times in this embodiment) the difference d (=d1-d2) between the radii d1 and d2 of the fitting surface 37 and the cylindrical surface 40 . At the ridge 42 between the concave curved surface 41 and the fitting surface 37, the angle α of the tangent line S of the concave curved surface 41 with respect to the axial direction of the hub wheel 31 (fitting surface 37) is 15° or less (in this embodiment, less than 14°).

また、加締め前のハブ輪31は、嵌合面37、凹曲面41、及び円筒面40は、内輪軌道35a、小径段部34及びシール摺接面38とともに同時に研削される。 In the hub wheel 31 before caulking, the fitting surface 37, the concave curved surface 41, and the cylindrical surface 40 are ground at the same time as the inner ring raceway 35a, the small-diameter stepped portion 34, and the seal sliding contact surface 38.

なお、シール摺接面38、外輪軌道35a、小径段部34、円筒状の嵌合面37には、熱間鍛造後に高周波焼入れなどの熱処理を行うことで、硬化層T(図2中、クロスハッチ部分)が形成されている。 The seal sliding contact surface 38, the outer ring raceway 35a, the small diameter stepped portion 34, and the cylindrical fitting surface 37 are subjected to heat treatment such as induction hardening after hot forging to form a hardened layer T (see cross in FIG. 2). hatched portion) is formed.

これにより、凹曲面41と円筒面40との境界部41aには、応力が集中する隅部がなく、加締め加工により、軸端部39を滑らかに拡径しつつ曲げることができる。 As a result, the boundary 41a between the concave curved surface 41 and the cylindrical surface 40 does not have a corner where stress is concentrated, and the shaft end 39 can be bent while smoothly expanding in diameter by caulking.

また、凹曲面41の曲率半径Rを、嵌合面37と円筒面40の各半径d1,d2の差d(=d1-d2)の30倍以上とすることで、嵌合面37と凹曲面41との稜部42において、軸方向に対する凹曲面41の接線Sの角度αを小さくすることができる。これにより、嵌合面37、凹曲面41、及び円筒面40を同時に研削しても、嵌合面37の凹曲面41側近傍に総型砥石の砥粒の脱落による小端高が発生しにくく、また、凹曲面41へのクーラントの供給もしやすいので、加工面の研削焼けや割れの発生も抑えられる。 Further, by setting the curvature radius R of the concave curved surface 41 to be 30 times or more the difference d (=d1-d2) between the radii d1 and d2 of the fitting surface 37 and the cylindrical surface 40, the fitting surface 37 and the concave curved surface The angle α of the tangent line S of the concave curved surface 41 with respect to the axial direction can be made small at the ridge 42 with 41 . As a result, even if the fitting surface 37, the concave curved surface 41, and the cylindrical surface 40 are ground at the same time, it is difficult for small end height to occur near the concave curved surface 41 side of the fitting surface 37 due to falling off of abrasive grains of the formed grindstone. In addition, since it is easy to supply coolant to the concave curved surface 41, the occurrence of grinding burns and cracks on the machined surface can be suppressed.

小端高は、砥石とワークの接触部分(研削は法線力が高い加工の為、砥石とワークの接触部分には弾性変形が発生する)にエッジロードが発生し、エッジロード部分の砥粒の結合剤が破壊され、砥粒が脱落した結果、ワークが盛り上がる(削り残される)現象である。このため、砥石の軸方向の締め代変化を少なくすると、小幅高の発生を防ぐことができる。 Edge load occurs at the contact part between the grinding wheel and the work (grinding is a process with high normal force, so elastic deformation occurs at the contact part between the grinding wheel and the work), and the abrasive grains at the edge load part This is a phenomenon in which the workpiece swells (becomes left uncut) as a result of the destruction of the binder and the falling off of the abrasive grains. Therefore, by reducing the change in interference in the axial direction of the grindstone, it is possible to prevent the occurrence of a small width.

また、研削焼けや割れは、クーラントの供給不足により、ワークの温度が急上昇して起こる。ワークの角部は熱容量が小さく、また、ワークの角部を削る砥石表面は隅部になる。砥石は回転気流を伴って高速回転しているので、砥石の隅部はクーラントが到達しにくい状態となっており、これが、研削焼けや割れの原因になる。この場合も、砥石の軸方向の締め代変化を少なくすると、研削焼けや割れを防ぐことができる。 Grinding burns and cracks also occur when the workpiece temperature rises sharply due to insufficient supply of coolant. The corner of the work has a small heat capacity, and the surface of the grindstone for grinding the corner of the work is the corner. Since the grindstone rotates at high speed accompanied by rotating air currents, it is difficult for the coolant to reach the corners of the grindstone, which causes grinding burns and cracks. Also in this case, grinding burn and cracks can be prevented by reducing the change in interference in the axial direction of the grindstone.

また、本実施形態では、嵌合面37と凹曲面41との稜部42において、軸方向に対する凹曲面41の接線Sの角度αは、15°以下と小さいので、嵌合面37、凹曲面41、及び円筒面40を同時に研削しても、上記砥粒の脱落による小端高がさらに発生しにくく、上記クーラントの供給もさらにしやすいので、加工面の研削焼けや割れの発生もさらに抑えられる。 Further, in the present embodiment, since the angle α of the tangent line S of the concave curved surface 41 with respect to the axial direction is as small as 15° or less at the ridge 42 between the fitting surface 37 and the concave curved surface 41, the fitting surface 37 and the concave curved surface Even if the 41 and the cylindrical surface 40 are ground at the same time, the height of the small end due to the falling off of the abrasive grains is less likely to occur, and the supply of the above coolant is even easier, so the occurrence of grinding burns and cracks on the machined surface is further suppressed. be done.

したがって、嵌合面37、凹曲面41、及び円筒面40は、内輪軌道35a及びシール摺接面38とともに研削することができ、嵌合面37と円筒面40に芯ずれが生じることがなく、加締め部33も周方向に均一な強度で加締めることができる。 Therefore, the fitting surface 37, the concave curved surface 41, and the cylindrical surface 40 can be ground together with the inner ring raceway 35a and the seal sliding contact surface 38, so that misalignment between the fitting surface 37 and the cylindrical surface 40 does not occur. The crimped portion 33 can also be crimped with uniform strength in the circumferential direction.

また、被加締め部である軸端部39において研削加工が施されることで、表面粗さの向上による表面強度の向上効果も得られ、加締め後の加締め部33の強度向上が図られ、疲労破壊を防止できる。 In addition, since the axial end portion 39, which is the portion to be crimped, is ground, the effect of improving the surface strength is obtained by improving the surface roughness, and the strength of the crimped portion 33 after crimping is improved. and prevent fatigue fracture.

図4は、本発明の変形例に係るハブユニット軸受のハブ輪を示す、図3に対応する拡大断面図である。
この変形例では、ハブ輪31の軸端部39は、円筒状の嵌合面37と凹曲面41との間に形成される凸曲面43をさらに備える。したがって、凸曲面43と凹曲面41によって、嵌合面37と円筒面40とは断面S字状の曲線で繋がれる。凸曲面43は、断面凸円弧状で、凸曲面43の曲率半径R1は、嵌合面37と円筒面40の各半径d1,d2の差dの30倍以上である。
FIG. 4 is an enlarged cross-sectional view corresponding to FIG. 3, showing a hub wheel of a hub unit bearing according to a modification of the invention.
In this modification, the axial end portion 39 of the hub wheel 31 further includes a convex curved surface 43 formed between the cylindrical fitting surface 37 and the concave curved surface 41 . Therefore, the convex curved surface 43 and the concave curved surface 41 connect the fitting surface 37 and the cylindrical surface 40 with a curve having an S-shaped cross section. The convex curved surface 43 has a convex circular cross section, and the curvature radius R1 of the convex curved surface 43 is 30 times or more the difference d between the radii d1 and d2 of the fitting surface 37 and the cylindrical surface 40. FIG.

これにより、凹曲面41と円筒面40との境界部41a、及び凸曲面43と嵌合面37との境界部43aの両側で、稜部が形成されずに滑らかに連続し、また、凸曲面43と凹曲面41とも滑らかに連続しているので、嵌合面37、凸曲面43、凹曲面41、及び円筒面40を同時に研削しても、砥粒の脱落による小端高の発生がなくなり、クーラントの供給もしやすく、加工面の研削焼けや割れの発生も抑えられる。 As a result, on both sides of the boundary 41a between the concave curved surface 41 and the cylindrical surface 40 and the boundary 43a between the convex curved surface 43 and the fitting surface 37, ridges are not formed, and the convex curved surfaces are formed. 43 and the concave curved surface 41 are smoothly continuous, so even if the fitting surface 37, the convex curved surface 43, the concave curved surface 41, and the cylindrical surface 40 are ground at the same time, the occurrence of small end height due to falling off of abrasive grains is eliminated. It is easy to supply coolant, and the occurrence of grinding burns and cracks on the machined surface is suppressed.

したがって、変形例においても、嵌合面37、凸曲面43、凹曲面41、及び円筒面40は、内輪軌道35a及びシール摺接面37とともに研削することができ、嵌合面37と軸端部39の外周面に芯ずれが生じることがなく、加締め部33も周方向に均一な強度で加締めることができる。 Therefore, even in the modified example, the fitting surface 37, the convex curved surface 43, the concave curved surface 41, and the cylindrical surface 40 can be ground together with the inner ring raceway 35a and the seal sliding contact surface 37. The crimping portion 33 can also be crimped with a uniform strength in the circumferential direction without causing misalignment on the outer peripheral surface of the crimping portion 39 .

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、上記実施形態では、ハブは、内輪とハブ輪がそれぞれ内輪軌道を有する構成としているが、これに限らず、内輪軌道を有する一対の内輪をハブ輪の小径段部に嵌合して加締め固定してもよい。この場合、ハブ輪において、嵌合面、凹曲面、及び円筒面は、少なくともハブ輪の車輪取付フランジの軸方向内方に形成されたシール摺接面とともに研削される。
また、上記実施形態では、転動体として、玉が使用されているが、円錐ころなど他の転動体であってもよい。
さらに、上記実施形態では、従動輪側のハブユニット軸受について説明しているが、本発明は駆動輪側のハブユニット軸受にも適用できる。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate.
For example, in the above embodiment, the hub has an inner ring and a hub ring each having an inner ring raceway. It can be tightened. In this case, the fitting surface, concave curved surface, and cylindrical surface of the hub wheel are ground together with at least the seal sliding contact surface formed axially inwardly of the wheel mounting flange of the hub wheel.
Also, in the above embodiments, balls are used as the rolling elements, but other rolling elements such as tapered rollers may be used.
Furthermore, in the above embodiment, the hub unit bearing on the side of the driven wheel has been described, but the present invention can also be applied to the hub unit bearing on the side of the driving wheel.

10 ハブユニット軸受
13 転動体
20 外輪
21a,21b 外輪軌道
30 ハブ
31 ハブ輪
32 内輪
33 加締め部
34 小径段部
35a,35b 内輪軌道
37 円筒状の嵌合面
39 軸端部
40 円筒面
41 凹曲面
42 稜部
43 凸曲面
10 Hub unit bearing 13 Rolling element 20 Outer ring 21a, 21b Outer ring raceway 30 Hub 31 Hub ring 32 Inner ring 33 Crimping portion 34 Small diameter stepped portion 35a, 35b Inner ring raceway 37 Cylindrical fitting surface 39 Shaft end 40 Cylindrical surface 41 Concave Curved surface 42 Ridge 43 Convex curved surface

Claims (4)

内周面に複列の外輪軌道を有する外輪と、
軸方向外方に車輪取付フランジを有し、軸方向内方に円筒状の嵌合面が形成されたハブ輪、及び前記ハブ輪の嵌合面に外嵌される少なくとも一つの内輪を備え、外周面に前記複列の外輪軌道に対向する複列の内輪軌道が形成されたハブと、
前記複列の外輪軌道と前記複列の内輪軌道との間に転動自在に配置された複数の転動体と、を備え、
前記ハブ輪は、前記少なくとも一つの内輪を前記嵌合面に外嵌した状態で、前記嵌合面よりも軸方向内方に延出する軸端部を径方向外方に折り曲げることで加締め部を形成し、前記少なくとも一つの内輪を前記ハブ輪に軸方向に固定する、ハブユニット軸受の製造方法であって、
前記ハブ輪の軸方向内方側の軸端部は、外周面に、前記嵌合面より小径の円筒面と、前記嵌合面と該円筒面との間に形成された凹曲面とを備え、
前記凹曲面の曲率半径は、前記嵌合面と前記円筒面の各半径の差の30倍以上であり、
前記嵌合面、前記凹曲面、及び前記円筒面は、少なくとも前記ハブ輪の前記車輪取付フランジの軸方向内方に形成されたシール摺接面とともに研削される、
ハブユニット軸受の製造方法。
an outer ring having a double-row outer ring raceway on its inner peripheral surface;
A hub wheel having a wheel mounting flange axially outwardly and a cylindrical fitting surface formed axially inwardly, and at least one inner ring externally fitted to the fitting surface of the hub wheel, a hub having, on its outer peripheral surface, a double-row inner ring raceway facing the double-row outer ring raceway;
a plurality of rolling elements arranged to be free to roll between the double-row outer ring raceway and the double-row inner ring raceway,
The hub wheel is caulked by bending a shaft end extending axially inwardly from the fitting surface in a state where the at least one inner ring is fitted onto the fitting surface. A method of manufacturing a hub unit bearing, forming a portion to axially secure the at least one inner ring to the hub ring, the method comprising:
The outer peripheral surface of the axially inner shaft end portion of the hub wheel has a cylindrical surface having a diameter smaller than that of the fitting surface and a concave curved surface formed between the fitting surface and the cylindrical surface. ,
the radius of curvature of the concave curved surface is 30 times or more the difference between the radii of the fitting surface and the cylindrical surface;
The fitting surface, the concave curved surface, and the cylindrical surface are ground at least together with a seal sliding contact surface formed axially inward of the wheel mounting flange of the hub wheel,
A method for manufacturing a hub unit bearing.
前記複列の内輪軌道は、前記ハブ輪と前記内輪にそれぞれ形成され、
前記嵌合面、前記凹曲面、及び前記円筒面は、前記内輪軌道及び前記シール摺接面とともに研削される、
請求項1に記載のハブユニット軸受の製造方法。
The double-row inner ring raceway is formed on each of the hub ring and the inner ring,
The fitting surface, the concave curved surface, and the cylindrical surface are ground together with the inner ring raceway and the seal sliding contact surface,
2. A method of manufacturing a hub unit bearing according to claim 1.
前記凹曲面は、前記嵌合面と前記円筒面とを繋ぐように形成され、
前記凹曲面と前記嵌合面との稜部において、前記軸方向に対する前記凹曲面の接線の角度は、15°以下である、
請求項1又は2に記載のハブユニット軸受の製造方法。
The concave curved surface is formed to connect the fitting surface and the cylindrical surface,
At the ridge between the concave curved surface and the fitting surface, the angle of the tangent line of the concave curved surface with respect to the axial direction is 15° or less.
3. A method of manufacturing a hub unit bearing according to claim 1 or 2.
前記ハブ輪の軸端部は、前記嵌合面と前記凹曲面との間に形成される凸曲面をさらに備え、
前記凸曲面と前記凹曲面は、前記嵌合面と前記円筒面とを繋ぐように形成され、
前記凸曲面の曲率半径は、前記嵌合面と前記円筒面の各半径の差の30倍以上である、
請求項1又は2に記載のハブユニット軸受の製造方法。
the axial end portion of the hub wheel further includes a convex curved surface formed between the fitting surface and the concave curved surface;
The convex curved surface and the concave curved surface are formed to connect the fitting surface and the cylindrical surface,
The radius of curvature of the convex curved surface is 30 times or more the difference between the radii of the fitting surface and the cylindrical surface.
3. A method of manufacturing a hub unit bearing according to claim 1 or 2.
JP2021169688A 2021-10-15 2021-10-15 Method for manufacturing hub unit bearing Pending JP2023059592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021169688A JP2023059592A (en) 2021-10-15 2021-10-15 Method for manufacturing hub unit bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021169688A JP2023059592A (en) 2021-10-15 2021-10-15 Method for manufacturing hub unit bearing

Publications (1)

Publication Number Publication Date
JP2023059592A true JP2023059592A (en) 2023-04-27

Family

ID=86096603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021169688A Pending JP2023059592A (en) 2021-10-15 2021-10-15 Method for manufacturing hub unit bearing

Country Status (1)

Country Link
JP (1) JP2023059592A (en)

Similar Documents

Publication Publication Date Title
US6796714B2 (en) Rolling-bearing unit for wheel support
JP4019548B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
US6908231B2 (en) Rolling bearing unit for a drive wheel and a wheel driving unit
JP2007290681A (en) Hub unit for supporting drive wheel and its manufacturing method
US20120148181A1 (en) Wheel Bearing
JP2010144923A (en) Inner ring of rolling bearing, and bearing device for wheel equipped with the same
JP5030082B2 (en) Wheel bearing device
CN110892165B (en) Hub unit bearing, method for manufacturing hub unit bearing, automobile, and method for manufacturing automobile
JP2002283804A (en) Bearing device for drive axle
JP2008173995A (en) Bearing device for wheel
JP2023059592A (en) Method for manufacturing hub unit bearing
JP2015028372A (en) Rolling bearing unit for supporting wheel
JP7367379B2 (en) Manufacturing method of inner ring for hub unit bearing
JP3601537B2 (en) Rolling bearing unit for wheel support
EP1902861B1 (en) Wheel rolling bearing apparatus
JP2004132552A (en) Rolling bearing unit for supporting wheel
JP2009156450A (en) Bearing device for wheel
JP2007147079A (en) Method of manufacturing hub ring and outward member of wheel bearing device
JP7047388B2 (en) Wheel bearing device and its manufacturing method
JP7047389B2 (en) Wheel bearing device and its manufacturing method
JP4986512B2 (en) Wheel bearing device
JP6996305B2 (en) Wheel bearing device and its manufacturing method
JP4259358B2 (en) Method for manufacturing rolling bearing unit for driving wheel
JP2023127823A (en) Hub unit bearing and manufacturing method thereof
JP2023134883A (en) Method for manufacturing inner ring