JP2023056187A - PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM - Google Patents

PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM Download PDF

Info

Publication number
JP2023056187A
JP2023056187A JP2021165368A JP2021165368A JP2023056187A JP 2023056187 A JP2023056187 A JP 2023056187A JP 2021165368 A JP2021165368 A JP 2021165368A JP 2021165368 A JP2021165368 A JP 2021165368A JP 2023056187 A JP2023056187 A JP 2023056187A
Authority
JP
Japan
Prior art keywords
plating solution
ptru alloy
concentration
ptru
alloy plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021165368A
Other languages
Japanese (ja)
Inventor
宏冶 片倉
Koji Katakura
量平 菊池
Ryohei Kikuchi
理▲か▼ 張
Like Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
EEJA Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EEJA Ltd filed Critical EEJA Ltd
Priority to JP2021165368A priority Critical patent/JP2023056187A/en
Priority to TW111135733A priority patent/TWI820921B/en
Priority to KR1020220123973A priority patent/KR20230050238A/en
Priority to CN202211231454.0A priority patent/CN115948779A/en
Publication of JP2023056187A publication Critical patent/JP2023056187A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a PtRu alloy plating solution by which a high-quality PtRu alloy film can be obtained, in which deposition efficiency is excellent and occurrence of crack etc. are suppressed.SOLUTION: The present invention relates to a PtRu alloy plating solution. The PtRu alloy plating solution includes a divalent Pt salt, either Ru sulfate or Ru nitrate, and sulfuric acid and sulfamic acid. The PtRu alloy plating solution has a chloride concentration of between 0.1 mg/L and 300 mg/L. The composition of the PtRu alloy plating solution preferably includes a Pt concentration of between 1 g/L and 15 g/L, a Ru concentration of between 0.1 g/L and 10 g/L, a total sulfuric acid concentration of between 10 g/L and 200 g/L, and a sulfamic acid concentration of between 0.1 g/L and 20 g/L.SELECTED DRAWING: None

Description

本発明は、PtRu合金からなる合金めっき膜を形成するためのPtRu合金めっき液に関する。詳しくは、析出効率に優れると共に、割れのないPtRu合金膜を製造するのに好適なPtRu合金めっき液に関する。また、本発明は、該めっき液によるPtRu合金膜のめっき方法に関する。 The present invention relates to a PtRu alloy plating solution for forming an alloy plating film made of a PtRu alloy. More particularly, it relates to a PtRu alloy plating solution which is excellent in deposition efficiency and suitable for producing crack-free PtRu alloy films. The present invention also relates to a method of plating a PtRu alloy film using the plating solution.

Ptめっきを始めとする貴金属めっきは、装飾品・宝飾品等の他、電子・電気機器の電極材料や導電性被覆材料等の広範な分野で用いられている。多くの貴金属は、電気伝導性、化学的安定性、硬度等の機械的性質に優れることから、貴金属めっきは、貴金属の希少性や外観に着目した分野から、機能性を重視とする分野へも利用範囲が拡大している。 Noble metal plating such as Pt plating is used in a wide range of fields such as electrode materials and conductive coating materials for electronic and electrical equipment, as well as ornaments and jewelry. Many precious metals are excellent in mechanical properties such as electrical conductivity, chemical stability, and hardness. The scope of use is expanding.

このような背景の下、スマートフォンやタブレット端末等の電子機器の端子やコネクタ(プラグ、レセプタクル)へ適用される貴金属めっきについて、高硬度で遮断性に優れたものの要求が増加している。こうした各種電子機器のコネクタ類では、Cu合金等の導電性の基材にNi等の下地めっきを施した後に貴金属めっき膜が形成されている。そして、挿抜を繰り返しつつ使用されることが前提となるコネクタ類において、外表面のめっき膜が容易に削れて剥離すると、外観が害されることに加えて、下地層の露出や酸化による接触抵抗の増大といった電子機器にとって極めて好ましくない状態となる。そのため、コネクタ類の貴金属めっき膜として高硬度で耐摩耗性に優れたものが求められている。 Against this background, there is an increasing demand for precious metal plating with high hardness and excellent blocking properties for terminals and connectors (plugs, receptacles) of electronic devices such as smartphones and tablet terminals. In such connectors of various electronic devices, a noble metal plating film is formed after a base plating such as Ni is applied to a conductive base material such as a Cu alloy. In connectors that are supposed to be used while being repeatedly inserted and removed, if the plating film on the outer surface is easily scraped off and peeled off, the external appearance will be damaged, and the contact resistance will be reduced due to the exposure and oxidation of the base layer. It becomes an extremely unfavorable state for electronic equipment such as increase. Therefore, there is a demand for a noble metal plating film for connectors having high hardness and excellent wear resistance.

コネクタ類の貴金属めっきとしては、これまでAuやPt等が用いられてきた。AuめっきやPtめっきに関しては、これまで多くの知見もあり、好適なめっき液やめっき条件が知られている。例えば、Ptめっき液としては、ジニトロジアンミンPt、ジニトロ硫化Pt等のPt塩(Pt錯体)を金属源とするPtめっき液が多数知られている。しかし、上記のとおり、より硬度の高い貴金属めっき膜が求められる中、新たな構成の貴金属めっき膜の開発が要請されている。 As precious metal plating for connectors, Au, Pt, etc. have been used so far. With regard to Au plating and Pt plating, there is a lot of knowledge so far, and suitable plating solutions and plating conditions are known. For example, as a Pt plating solution, many Pt plating solutions using Pt salts (Pt complexes) such as dinitrodiammine Pt and dinitrosulfide Pt as a metal source are known. However, as described above, there is a demand for the development of a noble metal plated film with a new composition, while a noble metal plated film with higher hardness is required.

AuやPt等の貴金属めっき膜より高硬度のめっき膜の候補としては、合金化された貴金属合金からなるものが挙げられる。ここで本発明者等は、適度に高硬度でありコスト面でも有用な貴金属合金めっき膜として、PtRu合金膜にその可能性を見出している。Ruも貴金属の一種であるが、Ptに対して高硬度の金属であることから、Ptへの合金化による被膜の高硬度化が期待される。また、RuもPtと同様に化学的にも安定であるので、PtRu合金膜は耐食性にも優れる。そして、Ruめっきも貴金属めっきの一態様として知られているので、その知見も利用できると考えられる。Ruのめっき液としては、硫酸塩、塩化物等のRu塩を含むめっき液が知られている(特許文献2)。 Candidates for plated films having higher hardness than noble metal plated films such as Au and Pt include those made of alloyed noble metal alloys. Here, the present inventors have discovered the possibility of a PtRu alloy film as a precious metal alloy plated film that has moderately high hardness and is useful in terms of cost. Ru is also a kind of noble metal, but since it is a metal with high hardness relative to Pt, it is expected to increase the hardness of the coating by alloying with Pt. Moreover, since Ru is also chemically stable like Pt, the PtRu alloy film is also excellent in corrosion resistance. Since Ru plating is also known as one aspect of noble metal plating, it is thought that this knowledge can also be utilized. As a Ru plating solution, a plating solution containing Ru salts such as sulfates and chlorides is known (Patent Document 2).

米国特許第1779457号明細書U.S. Pat. No. 1,779,457 特開2001-49485号公報JP-A-2001-49485

但し、PtRu合金膜の製造に好適な合金めっき液については、これまで実用的な先行技術がほとんどないのが現状である。この点、合金めっき液は、合金化する金属の金属塩と適宜の導電塩とを混合することで得られることが通常である。上記のとおり、Ptめっき液及びRuめっき液に用いられる金属塩は公知であるので、PtRu合金めっき液についてもそれらの知見が利用可能である。しかしながら、本発明者等によると、これまで適用されているPt塩及びRu塩によるめっき液について検討したところ、めっき液としての特性上、必ずしも最適なものとはならないことが確認されている。 However, the current situation is that there is almost no practical prior art for an alloy plating solution suitable for producing a PtRu alloy film. In this regard, the alloy plating solution is usually obtained by mixing a metal salt of a metal to be alloyed with an appropriate conductive salt. As described above, the metal salts used in the Pt plating solution and the Ru plating solution are publicly known, so that knowledge can also be used for the PtRu alloy plating solution. However, according to the inventors of the present invention, the Pt salt and Ru salt plating solutions that have been applied so far have been investigated, and it has been confirmed that they are not necessarily optimal in terms of the characteristics of the plating solution.

合金めっき液においては、目的組成の合金膜を形成することができることが求められるが、その析出効率も重要である。また、基材に対する保護や耐食性確保の機能を考慮すると、所望厚さの合金膜を形成するまでクラックの発生は抑制されるべきである。本発明者等によれば、従来技術の知見のみでは、これら特性において実用的なPtRu合金めっき液を得ることができない。 An alloy plating solution is required to be capable of forming an alloy film having a desired composition, and its deposition efficiency is also important. In addition, considering the functions of protecting the base material and ensuring corrosion resistance, the occurrence of cracks should be suppressed until an alloy film having a desired thickness is formed. According to the inventors of the present invention, it is impossible to obtain a PtRu alloy plating solution that is practical in terms of these characteristics only with the knowledge of the prior art.

そこで、本発明は、PtRu合金膜を形成するためのめっき液について、析出効率に優れると共にクラック発生等が抑制された高品位のPtRu合金膜を得ることができるPtRu合金めっき液を提供することを目的とする。そして、このPtRu合金めっき液を用い、高硬度で耐食性に優れるPtRu合金膜を製造するためのめっき方法について明らかにする。 Therefore, the present invention provides a plating solution for forming a PtRu alloy film, which is excellent in deposition efficiency and capable of obtaining a high-quality PtRu alloy film in which crack generation is suppressed. aim. Then, using this PtRu alloy plating solution, a plating method for producing a PtRu alloy film with high hardness and excellent corrosion resistance will be clarified.

本発明者等は上記課題解決のため、Ptめっき液にいくつかのRu塩を混合した合金めっき液について予備的な確認を行い。好適なRu塩の選定とめっき液組成について検討した。ここでRuめっき液のRu塩としては、上記のとおり塩化Ruと硫酸Ruが良く知られている。 In order to solve the above problems, the present inventors performed preliminary confirmation of an alloy plating solution in which several Ru salts were mixed with a Pt plating solution. The selection of a suitable Ru salt and the composition of the plating solution were examined. As described above, Ru chloride and Ru sulfate are well known as Ru salts for the Ru plating solution.

そして、この検討の結果として、本発明者等は、塩化Ruと硫酸RuのいずれのRu塩を用いてもPtRu合金膜の形成は可能であるが、単にそれらのいずれかをPtめっき液に混合するだけでは好適ではないことを確認した。即ち、硫酸RuをRu塩とする合金めっき液の場合、析出効率において劣る点があり、PtRu合金膜の厚さ確保に時間を要する。一方、塩化RuをRu塩とする合金めっき液は、析出効率は満足できるものであったが、めっき時間の経過と共にPtの未析が生じ、めっき液が不安定となり長時間の使用に支障をきたすことが確認された。そのため、塩化RuによるPtRu合金めっき液では、めっき液の安定性維持のため、析出効率を犠牲にしてでもめっき温度を比較的低温(45℃以下)に設定せざるを得なかった。そして、このよう安定性に配慮しても、塩化Ruを含むめっき液では皮膜の厚さ増大に伴いクラックが発生する場合があることが確認された。 As a result of this study, the inventors of the present invention found that it is possible to form a PtRu alloy film by using either Ru salt, Ru chloride or Ru sulfate, but simply mixing either of them into the Pt plating solution. I confirmed that it is not suitable just to do. That is, in the case of an alloy plating solution using Ru sulfate as a Ru salt, the deposition efficiency is inferior, and it takes time to secure the thickness of the PtRu alloy film. On the other hand, the alloy plating solution containing Ru chloride as a Ru salt had a satisfactory deposition efficiency, but undeposited Pt occurred with the lapse of plating time, making the plating solution unstable and hindering long-term use. It was confirmed that Therefore, in the PtRu alloy plating solution using Ru chloride, the plating temperature had to be set to a relatively low temperature (45° C. or less) in order to maintain the stability of the plating solution, even if the deposition efficiency was sacrificed. It was also confirmed that, even with such consideration of stability, cracks may occur in the plating solution containing Ru chloride as the thickness of the film increases.

本発明者等は、上記のPt塩と塩化Ruとを含むPtRu合金めっき液におけるPt未析の要因として、液中の塩素がPtを過剰に安定化させていると考察した。そして、めっき液中に過剰の塩素を供給し得る塩化Ruは使用すべきではないが、他のRu塩を適用しつつPt析出を阻害しない範囲で塩素含有量を制御することで安定性等の問題を排除できると考察した。本発明者等は、この考察に基き鋭意検討した結果、Ru塩として硫酸Ru又は硝酸Ruを適用すると共に、塩素含有量を好適範囲に制御するPtRu合金めっき液に想到した。 The present inventors considered that chlorine in the solution excessively stabilizes Pt as a factor of unprecipitated Pt in the PtRu alloy plating solution containing Pt salt and Ru chloride. Ru chloride, which can supply excess chlorine to the plating solution, should not be used. I thought the problem could be ruled out. As a result of intensive studies based on this consideration, the inventors of the present invention applied Ru sulfate or Ru nitrate as the Ru salt and conceived of a PtRu alloy plating solution in which the chlorine content is controlled within a suitable range.

即ち、本発明は、2価のPt塩と、Ru硫酸塩又はRu硝酸塩のいずれかと、硫酸及びスルファミン酸を含むPtRu合金めっき液であって、塩素濃度が0.1mg/L以上300mg/L以下であるPtRu合金めっき液である。以下、本発明に係るPtRu合金めっき液の構成につき説明すると共に、このPtRu合金めっき液によるPtRu合金膜の製造方法について説明する。 That is, the present invention provides a PtRu alloy plating solution containing a divalent Pt salt, either Ru sulfate or Ru nitrate, sulfuric acid and sulfamic acid, wherein the chlorine concentration is 0.1 mg/L or more and 300 mg/L or less. It is a PtRu alloy plating solution. Hereinafter, the composition of the PtRu alloy plating solution according to the present invention will be described, and the method for producing a PtRu alloy film using this PtRu alloy plating solution will also be described.

(A)本発明に係るPtRu合金めっき液の構成
本発明に係るPtRu合金めっき液は、必須の構成として金属源である2価Pt塩及びRu塩と、硫酸及びスルファミン酸を必須の構成成分として含む。
(A) Structure of the PtRu alloy plating solution according to the present invention The PtRu alloy plating solution according to the present invention comprises divalent Pt salt and Ru salt as metal sources, sulfuric acid and sulfamic acid as essential constituents. include.

2価Pt塩としては、硫酸基(SO)又はスルホ基(SO)、ニトロ基(NO)、硝酸基(NO)、アミン(NH)、アコ基(HO)、水酸基(OH)の少なくともいずれかを含む無機酸塩が好適に用いられる。具体例としては、硫酸Pt(PtSO)、ジニトロ硫化Pt(Pt(SO)(NO)、硝酸Pt(Pt(NO)、ジニトロジアンミンPt(Pt(NH(NO)、ジアミンジクロロPt(Pt(NHCl)、トリクロロアミンPt酸(HPtCl(NH))又はその塩、テトラニトロPt酸(HPtCl)又はその塩、テトラスルホPt酸(HPt(SO)又はその塩、テトラアンミンPtリン酸(HPt(NH)又はその塩等が挙げられる。これらの中で、特に好ましいPt塩としては、硫酸Pt、ジニトロ硫化Pt、ジニトロジアンミンPtである。 Divalent Pt salts include sulfate group (SO 4 ) or sulfo group (SO 3 ), nitro group (NO 2 ), nitrate group (NO 3 ), amine (NH 3 ), aco group (H 2 O), hydroxyl group An inorganic acid salt containing at least one of (OH) is preferably used. Specific examples include Pt sulfate (PtSO 4 ), Pt dinitrosulfide (Pt(SO 4 )(NO 3 ) 2 ), Pt nitrate (Pt(NO 3 ) 2 ), Pt dinitrodiammine (Pt(NH 3 ) 2 ( NO 3 ) 2 ), diaminedichloro Pt (Pt(NH 3 ) 2 Cl 2 ), trichloramine Pt acid (HPtCl 3 (NH 3 )) or its salts, tetranitro Pt acid (H 2 PtCl 4 ) or its salts, tetrasulfo Pt acid (H 6 Pt(SO 3 ) 4 ) or its salt, tetraammine Pt phosphate (H 2 Pt(NH 3 ) 4 ) or its salt, and the like. Among these, particularly preferred Pt salts are Pt sulfate, Pt dinitrosulfide, and Pt dinitrodiammine.

一方でRu塩については、硫酸Ru(RuSO)又は硝酸Ru(Ru(NO)が適用される。上記のとおり、塩化RuはRuめっきには適用できるが、PtRu合金めっきへ適用する場合、めっき液中の塩素を過剰にしてPtの未析等の要因となる。未析を抑制しつつ、めっき膜の外観も良好なものとするため、Ru塩は硫酸Ru又は硝酸Ruのいずれかのみに限定される。そして、特に好ましいのは硫酸Ruである。 For Ru salts, on the other hand, Ru sulfate (RuSO 4 ) or Ru nitrate (Ru(NO 3 ) 2 ) is applied. As described above, Ru chloride can be applied to Ru plating, but when it is applied to PtRu alloy plating, excessive chlorine in the plating solution causes undeposited Pt. The Ru salt is limited to either Ru sulfate or Ru nitrate in order to suppress non-precipitation and improve the appearance of the plating film. Ru sulfate is particularly preferred.

また、本発明に係るPtRu合金めっき液は、上記Pt塩及びRu塩と硫酸及びスルファミン酸に溶解した水溶液である。めっき液中で遊離する硫酸及びスルファミン酸は、上記のPt塩及びRu塩からも生じることがある。硫酸及びスルファミン酸は、めっき液における伝導塩として作用する必須の構成となる。また、スルファミン酸はめっき膜の外観を均一にする作用も有する。 Also, the PtRu alloy plating solution according to the present invention is an aqueous solution in which the above Pt salt and Ru salt are dissolved in sulfuric acid and sulfamic acid. Sulfuric acid and sulfamic acid liberated in the plating solution may also be generated from the above Pt and Ru salts. Sulfuric acid and sulfamic acid are essential constituents that act as conductive salts in the plating solution. Sulfamic acid also has the effect of making the appearance of the plating film uniform.

そして、本発明に係るPtRu合金めっき液は、塩素濃度を0.1mg/L以上300mg/L以下の範囲で調整される。塩素濃度が0.1mg/L未満のめっき液は、塩素フリーに等しい状態にあり、Pt及びRuの析出効率が低くなり効率的なめっき作業ができなくなる。そして、塩素濃度が300mg/Lを超えると、塩素によるPtの安定化によりPtの未析の要因となる。また、過剰の塩素濃度は、1μm以上の成膜において合金膜のクラック発生の要因となる。塩素濃度は、0.1mg/L以上200mg/L以下が好ましく、0.1mg/L以上100mg/L以下がより好ましい。尚、本発明のPtRu合金めっき液において、所定範囲の塩素を含むことで、析出効率が向上する理由は明らかではない。塩素が塩素イオンとして何らかの錯体を形成する、或いは、塩素が塩素原子としてPt及び/又はRuに作用する、といった機構も推定されるが定かではない。 In the PtRu alloy plating solution according to the present invention, the chlorine concentration is adjusted within the range of 0.1 mg/L or more and 300 mg/L or less. A plating solution with a chlorine concentration of less than 0.1 mg/L is in a chlorine-free state, and the deposition efficiency of Pt and Ru becomes low, making efficient plating impossible. When the chlorine concentration exceeds 300 mg/L, the stabilization of Pt by chlorine causes undeposited Pt. Also, an excessive chlorine concentration causes cracks in the alloy film in a film having a thickness of 1 μm or more. The chlorine concentration is preferably 0.1 mg/L or more and 200 mg/L or less, more preferably 0.1 mg/L or more and 100 mg/L or less. The reason why the PtRu alloy plating solution of the present invention improves the deposition efficiency by containing chlorine in a predetermined range is not clear. It is also presumed that chlorine forms some kind of complex as chlorine ions, or chlorine acts on Pt and/or Ru as chlorine atoms, but the mechanism is not clear.

本発明に係るPtRu合金めっき液の塩素濃度の制御は、原料となるPt塩及びRu塩中の塩素濃度を低減させた原料を用いつつ、めっき液に塩化物を添加することで可能である。このとき添加する塩化物としては、塩化アンモニウム、塩化Pt、塩化Ru等が挙げられる。また、後述するアルカリ金属塩又はアルカリ土類金属塩の添加を兼ねて、塩化ナトリウム、塩化マグネシウム等のアルカリ金属又はアルカリ土類金属の塩化物を添加しても良い。 The chlorine concentration of the PtRu alloy plating solution according to the present invention can be controlled by adding a chloride to the plating solution while using raw materials in which the chlorine concentration in the raw material Pt salt and Ru salt is reduced. Chlorides added at this time include ammonium chloride, Pt chloride, Ru chloride, and the like. Further, an alkali metal or alkaline earth metal chloride such as sodium chloride or magnesium chloride may be added in addition to the alkali metal salt or alkaline earth metal salt to be described later.

本発明に係るPtRu合金めっき液における各構成の含有量は、 Pt濃度1g/L以上15g/L以下とし、Ru濃度0.1g/L以上10g/L以下とし、トータル硫酸濃度を10g/L以上200g/L以下、スルファミン酸濃度を0.1g/L以上20g/L以下とすることが好ましい。Pt濃度及びRu濃度が下限値未満であると、成膜が進行しない問題がある。一方、Pt濃度及びRu濃度が上限値を超えると、厚みのあるめっき膜を成膜する際、クラックの発生を抑制することが困難となる。 The content of each component in the PtRu alloy plating solution according to the present invention is such that the Pt concentration is 1 g/L or more and 15 g/L or less, the Ru concentration is 0.1 g/L or more and 10 g/L or less, and the total sulfuric acid concentration is 10 g/L or more. 200 g/L or less, and the sulfamic acid concentration is preferably 0.1 g/L or more and 20 g/L or less. If the Pt concentration and Ru concentration are less than the lower limit values, there is a problem that film formation does not proceed. On the other hand, if the Pt concentration and the Ru concentration exceed the upper limits, it becomes difficult to suppress the occurrence of cracks when forming a thick plating film.

また、本発明に係るPtRu合金めっき液により成膜されるPtRu合金膜の組成は、合金めっき液のPt濃度とRu濃度との比率により調整可能である。本発明者等の検討によれば、好適に高い硬度のPtRu合金膜を得るためには、Pt濃度とRu濃度との比(Ru濃度(g/L)/Pt濃度(g/L))を0.1以上0.8以下とすることが好ましい。この濃度比率で成膜されるPtRu合金膜の組成は、Ru濃度2質量%~20質量%のPtRu合金である。上記比率が低い場合にはRu濃度が過度に低いPtRu合金膜となり、Ptと同程度の硬度となる。また、PtRu合金膜の硬度は、Ru濃度20%を超えてもさほど上昇しないので、上記比率は0.8を超える必要はない。また、めっき液中のRu濃度が高すぎると、析出効率低下の問題もある。上記比率のより好ましい範囲は0.1以上0.5以下である。 Also, the composition of the PtRu alloy film formed by the PtRu alloy plating solution according to the present invention can be adjusted by the ratio of the Pt concentration and the Ru concentration in the alloy plating solution. According to studies by the present inventors, in order to obtain a PtRu alloy film with a suitably high hardness, the ratio of the Pt concentration and the Ru concentration (Ru concentration (g/L)/Pt concentration (g/L)) It is preferable to make it 0.1 or more and 0.8 or less. The composition of the PtRu alloy film formed at this concentration ratio is a PtRu alloy with a Ru concentration of 2 mass % to 20 mass %. When the above ratio is low, the PtRu alloy film has an excessively low Ru concentration, and the hardness is approximately the same as that of Pt. Moreover, since the hardness of the PtRu alloy film does not increase much even if the Ru concentration exceeds 20%, the ratio does not need to exceed 0.8. Also, if the Ru concentration in the plating solution is too high, there is also the problem of a decrease in deposition efficiency. A more preferable range of the ratio is 0.1 or more and 0.5 or less.

本発明に係るPtRu合金めっき液は、以上説明した必須構成であるPt塩、Ru塩、硫酸及び/又はスルファミン酸の他、陰イオン界面活性剤を含むものが好ましい。陰イオン界面活性剤は、Pt及びRuの未析を抑制すると共にそれらの均質な析出を促進する作用を有する。陰イオン界面活性剤は、ステアリン酸塩、スルホン酸塩の他、硫酸塩やスルファミン酸塩であって界面活性作用を有するものが使用できる。好ましくは、アルキル硫酸塩、アルキルベンゼンスルホン酸塩が挙げられる。具体的な塩として好ましいものとして、アルカリ硫酸であるラウリル硫酸塩がある。 The PtRu alloy plating solution according to the present invention preferably contains an anionic surfactant in addition to the Pt salt, Ru salt, sulfuric acid and/or sulfamic acid, which are the essential components described above. The anionic surfactant has the effect of suppressing non-precipitation of Pt and Ru and promoting their uniform precipitation. Anionic surfactants that can be used include stearates, sulfonates, sulfates and sulfamates that have surface activity. Alkyl sulfates and alkylbenzenesulfonates are preferred. A preferred specific salt is the alkaline sulfuric acid lauryl sulfate.

陰イオン界面活性剤を添加する場合、その濃度は10mg/L以上500mg/L以下とすることが好ましい。下限値未満では効果がない。また、上限値を超えるとPt及びRuの析出を阻害するようになるからである。 When an anionic surfactant is added, its concentration is preferably 10 mg/L or more and 500 mg/L or less. Below the lower limit, there is no effect. Also, if the upper limit is exceeded, the precipitation of Pt and Ru is inhibited.

更に、本発明に係るPtRu合金めっき液は、アルカリ金属又はアルカリ土類金属を含むものが好ましい。アルカリ金属又はアルカリ土類金属は、めっき液中で還元剤として作用してPt及びRuの析出を促進しつつ耐食性良好なめっき膜を形成する作用を有する。アルカリ金属又はアルカリ土類金属は、陰イオン界面活性剤と併存することができるが、アルカリ金属又はアルカリ土類金属の添加により陰イオン界面活性剤の添加量を抑制することができる。アルカリ金属又はアルカリ土類金属として特に好ましいのは、Mgである。尚、アルカリ金属又はアルカリ土類金属は、イオン化傾向の関係からめっき膜中に析出することはない。 Furthermore, the PtRu alloy plating solution according to the present invention preferably contains an alkali metal or an alkaline earth metal. Alkali metals or alkaline earth metals act as reducing agents in the plating solution to promote deposition of Pt and Ru while forming a plating film with good corrosion resistance. An alkali metal or alkaline earth metal can coexist with the anionic surfactant, but the addition of the alkali metal or alkaline earth metal can suppress the amount of the anionic surfactant added. Particularly preferred as alkali metal or alkaline earth metal is Mg. Alkali metals or alkaline earth metals do not precipitate in the plating film due to their ionization tendency.

PtRu合金めっき液へのアルカリ金属又はアルカリ土類金属を添加は、これらの塩を添加することが好ましく、硫酸塩、亜硫酸塩、硝酸塩、酸化物、水酸化物等が好ましい。好ましいアルカリ土類金属としてMgを挙げており、好ましいMg塩として、硫酸Mg、亜硫酸Mg、硝酸Mg、酸化Mg、水酸化Mg、酢酸Mg、クエン酸Mg、乳酸Mg、ステアリン酸Mg等をめっき液の建浴の際に添加するのが好ましい。 When adding alkali metals or alkaline earth metals to the PtRu alloy plating solution, it is preferable to add salts thereof, and preferred are sulfates, sulfites, nitrates, oxides and hydroxides. Preferred alkaline earth metals include Mg, and preferred Mg salts include Mg sulfate, Mg sulfite, Mg nitrate, Mg oxide, Mg hydroxide, Mg acetate, Mg citrate, Mg lactate, Mg stearate, and the like. It is preferable to add when making the bath.

PtRu合金めっき液中のアルカリ金属又はアルカリ土類金属の濃度は、1g/L以上20g/L以下とすることが好ましい。1g/L未満では効果がない。また、20g/L超えると析出効率が低下することとなる。 The concentration of the alkali metal or alkaline earth metal in the PtRu alloy plating solution is preferably 1 g/L or more and 20 g/L or less. Less than 1 g/L is ineffective. Moreover, if it exceeds 20 g/L, the deposition efficiency will be lowered.

また、本発明に係るPtRu合金めっき液は、以上説明した金属塩、硫酸及びはスルファミン酸、陰イオン界面活性剤、アルカリ金属又はアルカリ土類金属以外に、めっき液に用いられる公知の添加剤を含むことができる。例えば、pH緩衝剤、錯化剤、安定剤等を含むことが許容される。 In addition, the PtRu alloy plating solution according to the present invention contains known additives used in plating solutions in addition to the metal salts, sulfuric acid, sulfamic acid, anionic surfactants, alkali metals, and alkaline earth metals described above. can contain. For example, it is acceptable to include pH buffers, complexing agents, stabilizers, and the like.

尚、PtRu合金めっき液について、Pt濃度、Ru濃度、硫酸濃度、スルファミン酸濃度、塩素濃度を測定する場合には、めっき液の状態で誘導結合プラズマ発光分光分析(ICP)、イオンクロマトグラフ(IC)で分析・測定できる。また、高速液体クロマトグラフィー(HPLC)、高速液体クロマトグラム質量分析計(LC-MS、LC-MS/MS)、フーリエ変換赤外分光法(FT-IR)、核磁気共鳴装置(NMR)等の分析機器も適宜に選択・使用可能である。また、塩素濃度に関しては、上記の分析方法の他、液中の塩素(残留塩素)の測定法として知られている、DPD(ジエチル-p-フェニレンジアミン)法(比色法や吸光光度法)、ヨウ素法、電流法(ポーラログラフ法)による測定も可能であり、これら測定法で使用されるテスター、機器、測定キットでの測定もできる。尚、成膜されたPtRu合金めっき膜についてのPt、Ruの存在及びめっき膜の組成は、電子線マイクロプローブ分析(EPMA)、エネルギー分散型X線分光分析(EDX)、蛍光X線分析(XRF)等を行うことで測定できる。 In addition, when measuring the Pt concentration, Ru concentration, sulfuric acid concentration, sulfamic acid concentration, and chlorine concentration of the PtRu alloy plating solution, inductively coupled plasma atomic emission spectrometry (ICP), ion chromatography (IC ) can be analyzed and measured. In addition, high-performance liquid chromatography (HPLC), high-performance liquid chromatogram mass spectrometer (LC-MS, LC-MS/MS), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance equipment (NMR), etc. Analytical instruments can also be selected and used appropriately. Regarding the chlorine concentration, in addition to the above analysis method, the DPD (diethyl-p-phenylenediamine) method (colorimetric method and absorptiometric method), which is known as a method for measuring chlorine (residual chlorine) in liquid, , iodine method, and current method (polarographic method), and can also be measured with testers, equipment, and measurement kits used in these measurement methods. The presence of Pt and Ru in the deposited PtRu alloy plating film and the composition of the plating film were determined by electron beam microprobe analysis (EPMA), energy dispersive X-ray spectroscopy (EDX), and X-ray fluorescence analysis (XRF). ), etc.

本発明に係るPtRu合金めっき液は、上記のPt塩とRu塩を硫酸及びスルファミン酸にて溶解したものを原液とし、これを適宜に希釈することで製造可能である。また、まずPt塩を硫酸で溶解し、ここにRu塩を溶解して原液として希釈しても良い。塩素濃度の調整や陰イオン界面活性剤等の添加は、前記の希釈段階で行うのが好ましい。また、前記の原液について塩素濃度調整等してPtRu合金めっき液としても良い。 The PtRu alloy plating solution according to the present invention can be produced by dissolving the above Pt salt and Ru salt in sulfuric acid and sulfamic acid as a stock solution and diluting it appropriately. Alternatively, the Pt salt may be first dissolved in sulfuric acid, and then the Ru salt may be dissolved and diluted as a stock solution. The adjustment of the chlorine concentration and the addition of an anionic surfactant, etc., are preferably carried out in the above dilution stage. Further, the above undiluted solution may be prepared as a PtRu alloy plating solution by adjusting the chlorine concentration or the like.

めっき液の製造に際して使用される金属塩は上記のとおりであるが、この金属塩は塩素フリーであっても良いし、めっき液の塩素濃度が上限を超えない範囲であれば塩素を含んでいても良い。特に、Ru塩である硫酸Ru又は硝酸Ruについては、高純度の硫酸Ru又は硝酸Ruを使用しても良いが、塩素を含有する硫酸Ru又は硝酸Ruを使用しても良い。例えば、塩化Ruの塩素を硫酸に置換した硫酸Ruを使用することもできる。塩化Ruの置換は、塩化Ruを一旦中和して水酸化物とし、水酸化物を硫酸・硝酸で溶解・回収・洗浄することで塩素を微量含む硫酸Ru又は硝酸Ruを得ることができる。一方、2価Pt塩については、塩素を構成元素として含むPt塩(ジアミンジクロロPt等)を使用することもできるが、その場合でもめっき液の塩素濃度を本発明の範囲内とすることを要する。 The metal salt used in the production of the plating solution is as described above, but this metal salt may be chlorine-free, or it may contain chlorine as long as the chlorine concentration of the plating solution does not exceed the upper limit. Also good. In particular, for the Ru salt, Ru sulfate or Ru nitrate, high-purity Ru sulfate or Ru nitrate may be used, but Ru sulfate or Ru nitrate containing chlorine may also be used. For example, Ru sulfate obtained by substituting sulfuric acid for chlorine in Ru chloride can also be used. Substitution of Ru chloride can be performed by neutralizing Ru chloride once to form a hydroxide, dissolving, recovering, and washing the hydroxide with sulfuric acid/nitric acid to obtain Ru sulfate or Ru nitrate containing trace amounts of chlorine. On the other hand, as for the divalent Pt salt, a Pt salt containing chlorine as a constituent element (such as diamine dichloro Pt) can be used, but even in that case the chlorine concentration of the plating solution must be within the scope of the present invention. .

(B)本発明に係るPtRu合金膜のめっき方法
次に、本発明に係るPtRu合金めっき液を用いたPtRu合金膜の製造方法について説明する。本発明に係るPtRu合金めっき液は、酸性、好ましくは、pH1以下のものが好ましい。pH1を超えるとめっき皮膜にクラックが生じ耐食性が低下となる。pHの下限値は0.1が好ましい。
(B) Plating method for PtRu alloy film according to the present invention Next, a method for producing a PtRu alloy film using the PtRu alloy plating solution according to the present invention will be described. The PtRu alloy plating solution according to the present invention is acidic, preferably pH 1 or less. If the pH exceeds 1, cracks will occur in the plating film and the corrosion resistance will deteriorate. The lower limit of pH is preferably 0.1.

また、めっき液の温度は、45℃以上65℃以下とするのが好ましい。液温は析出効率に関連することから45℃未満では析出効率に乏しくなる。一方、65℃を超える高温での操業は、冶具の劣化等の問題がある。この点、PtRu合金めっき液のRu塩に塩化Ruを適用する場合は、めっき液の長期安定性の観点から45℃以上の温度でのめっきができない。本発明に係るPtRu合金めっき液においては、45℃以上の温度でもめっき可能であり、50℃以上とすることが好ましい。 Also, the temperature of the plating solution is preferably 45° C. or higher and 65° C. or lower. Since the liquid temperature is related to the deposition efficiency, if the temperature is less than 45°C, the deposition efficiency becomes poor. On the other hand, operation at high temperatures exceeding 65° C. poses problems such as deterioration of jigs. In this regard, when Ru chloride is used as the Ru salt of the PtRu alloy plating solution, plating cannot be performed at a temperature of 45° C. or higher from the viewpoint of long-term stability of the plating solution. In the PtRu alloy plating solution according to the present invention, plating can be performed at a temperature of 45° C. or higher, and the temperature is preferably 50° C. or higher.

成膜時の電流密度は、2.0A/dm以上10A/dm以下が好ましい。2.0A/dm未満では必要厚のめっき膜を成膜するのに非効率であり、10A/dmを超えるとめっき膜にヤケが発生するおそれがある。 The current density during film formation is preferably 2.0 A/dm 2 or more and 10 A/dm 2 or less. If it is less than 2.0 A/dm 2 , it is inefficient to form a plating film with a required thickness, and if it exceeds 10 A/dm 2 , the plating film may burn.

以上説明したように、本発明に係るPtRu合金めっき液は、Pt塩と共にRu塩として硫酸Ruを適用し、更に塩素濃度を制限することで、めっき工程の際のPt未析等のめっき液の長期安定性の阻害要因を抑制する。本発明に係るPtRu合金めっき液は、塩素のない硫酸Ruを利用するめっき液に対して析出効率も良好でありつつ、安定性にも優れ液温の温度管理にもメリットがある。 As described above, the PtRu alloy plating solution according to the present invention uses Ru sulfate as a Ru salt together with the Pt salt, and further limits the chlorine concentration so that Pt undeposited in the plating process is reduced. Suppress factors that inhibit long-term stability. The PtRu alloy plating solution according to the present invention has a favorable deposition efficiency as compared with a plating solution using Ru sulfate containing no chlorine, and is also excellent in stability and advantageous in temperature control of the solution temperature.

そして、本発明は好適組成のPtRu合金からなるめっき膜の成膜に有用である。このPtRu合金膜は、Pt等に対して高硬度のPtRu合金で構成される。また、PtRu合金膜は、クラックの発生も抑制されており、耐食性も良好であり基材に対する環境遮断性にも優れる。このPtRu合金膜は、均一な金属光沢を有し、外観上も良好である。これらの利点から、本発明に係るPtRu合金めっき液は、スマートフォン等のコネクタ、端子の保護めっき層に有用であり繰り返される挿抜にも耐久性を有する。また、宝飾品等のめっき膜としても有用である。 The present invention is useful for forming a plated film made of a PtRu alloy with a suitable composition. This PtRu alloy film is composed of a PtRu alloy having a higher hardness than Pt or the like. In addition, the PtRu alloy film suppresses the occurrence of cracks, has good corrosion resistance, and is excellent in shielding the substrate from the environment. This PtRu alloy film has a uniform metallic luster and a good appearance. Due to these advantages, the PtRu alloy plating solution according to the present invention is useful for protective plating layers of connectors and terminals of smartphones and the like, and has durability against repeated insertion and extraction. It is also useful as a plating film for jewelry and the like.

以下、本発明の実施形態について説明する。本実施形態では、Pt塩であるジニトロ硫化Pt(Pt(SO)(NO)とRu塩である硫酸Ruを原料としてPtRu合金めっき液を製造した。そして、塩素濃度を調整して複数のPtRu合金めっき液を調整して、それらよりPtRu合金膜を成膜した。 Embodiments of the present invention will be described below. In this embodiment, a PtRu alloy plating solution was produced using Pt dinitrosulfide Pt (Pt(SO 4 )(NO 3 ) 2 ), which is a Pt salt, and Ru sulfate, which is a Ru salt, as raw materials. Then, a plurality of PtRu alloy plating solutions were prepared by adjusting the chlorine concentration, and PtRu alloy films were formed from them.

めっき液の製造では、まず、ジニトロ硫化Pt(Pt(SO)(NO)と硫酸Ru(RuSO)を硫酸及びスルファミン酸を等量ずつ添加して、Pt濃度10g/L、Ru濃度1g/L、トータル硫酸濃度80g/L、スルファミン酸濃度5g/Lの基本浴とした。そして、陰イオン界面活性剤としてラウリル硫酸ナトリウム(花王株式会社製エマール(登録商標))を100mg/Lと、アルカリ土類金属塩として硫酸MgをMg濃度で4g/L加えた。更に、塩素濃度を調整するため、めっき液中の塩素濃度が0.1mg/L~500mg/LとなるようにNaClを添加した。最後に、pH0.4に調整してPtRu合金めっき液を製造した。 In the production of the plating solution, first, dinitrosulfide Pt (Pt(SO 4 )(NO 3 ) 2 ) and Ru sulfate (RuSO 4 ) were added in equal amounts to sulfuric acid and sulfamic acid to obtain a Pt concentration of 10 g/L and Ru A base bath with a concentration of 1 g/L, a total sulfuric acid concentration of 80 g/L, and a sulfamic acid concentration of 5 g/L was used. Then, 100 mg/L of sodium lauryl sulfate (EMAL (registered trademark) manufactured by Kao Corporation) as an anionic surfactant and 4 g/L of Mg sulfate as an alkaline earth metal salt were added. Furthermore, in order to adjust the chlorine concentration, NaCl was added so that the chlorine concentration in the plating solution was 0.1 mg/L to 500 mg/L. Finally, the pH was adjusted to 0.4 to produce a PtRu alloy plating solution.

また、本実施形態では、比較のため、Ru塩として塩化Ru(RuCl)を適用したPtRu合金めっき液についても検討した。このPtRu合金めっき液は、Pt濃度及びRu濃度が上記と同じ様になるように、Pt塩と塩化Ruを硫酸とスルファミン酸に溶解させた原液を用意し、本実施形態と同様に希釈しつつ添加剤を添加してPtRu合金めっき液とした。 In the present embodiment, for comparison, a PtRu alloy plating solution using Ru chloride (RuCl 3 ) as the Ru salt was also examined. This PtRu alloy plating solution is prepared by dissolving Pt salt and Ru chloride in sulfuric acid and sulfamic acid so that the Pt concentration and Ru concentration are the same as above, and is diluted in the same manner as in the present embodiment. Additives were added to prepare a PtRu alloy plating solution.

上記で製造した塩素濃度の異なる9種のめっき液によりPtRu合金膜を成膜した。めっき条件は、基板サンプルとしてCu板(20mm×40mm×0.1mm)を使用し、浴温60℃とし、電流密度4.0A/dmとした。めっき時間は、膜厚5μmを目安に30分~60分に調整した。 A PtRu alloy film was formed using the nine kinds of plating solutions having different chlorine concentrations produced above. The plating conditions were such that a Cu plate (20 mm×40 mm×0.1 mm) was used as a substrate sample, bath temperature was 60° C., and current density was 4.0 A/dm 2 . The plating time was adjusted to 30 to 60 minutes with a film thickness of 5 μm as a guideline.

めっき処理後、基板を取り出し平均膜厚を測定した後、外観観察を行いクラックの有無、未析の有無を評価した。また、めっき前後の基板サンプルの質量差に基づき析出効率を算出した。更に、PtRu合金膜の耐食性を確認すべく、成膜後のサンプルについて電解サイクル試験を行った。電解サイクル試験の条件は、各サンプルを5質量%塩化ナトリウム溶液中(温度:室温)で5Vの電圧を30秒で印加し、これを1サイクルとして繰り返した。そして、下地であるCuが露出するまでのサイクル数で耐食性を評価し、最大200サイクルまでカウントした。これらの評価結果を表1に示す。 After the plating treatment, the substrate was taken out and the average film thickness was measured. Also, the deposition efficiency was calculated based on the difference in mass between the substrate samples before and after plating. Furthermore, in order to confirm the corrosion resistance of the PtRu alloy film, an electrolytic cycle test was performed on the sample after film formation. The condition of the electrolytic cycle test was that each sample was placed in a 5% by mass sodium chloride solution (temperature: room temperature) and a voltage of 5 V was applied for 30 seconds, which was repeated as one cycle. Corrosion resistance was evaluated by the number of cycles until the underlying Cu was exposed, and a maximum of 200 cycles was counted. These evaluation results are shown in Table 1.

Figure 2023056187000001
Figure 2023056187000001

表1から、塩素を含まないめっき液(塩素濃度0mg/L)、即ち、Ru塩として硫酸Ruを適用するめっき液(No.1)においては、析出効率が低く、実用的なものではないことが確認される。そして、めっき液が0.1mg/Lの塩素を含むめっき液(No.2)より塩素濃度が増大することで析出効率が改善されることが分かる。但し、塩素濃度が500mg/LではPtRu合金膜にクラックが生じることが確認された(No.8)。また、Ru塩として塩化Ruを適用しためっき液(No.9)の場合、PtRu合金膜のクラック発生に加えて、基板上に未析部分があることが確認された。表1からわかるように、これらのPtRu合金膜にクラックが発生したサンプルは耐食性にも劣ることとなる。これに対して、塩素濃度を適切に制御したPtRu合金めっき液により成膜したPtRu合金膜は耐食性にも優れることが確認できた(No.2~No.7)。 From Table 1, it can be seen that the plating solution containing no chlorine (chlorine concentration 0 mg/L), that is, the plating solution (No. 1) in which Ru sulfate is applied as the Ru salt, has a low deposition efficiency and is not practical. is confirmed. Further, it can be seen that the deposition efficiency is improved by increasing the chlorine concentration as compared with the plating solution containing 0.1 mg/L of chlorine (No. 2). However, it was confirmed that cracks occurred in the PtRu alloy film at a chlorine concentration of 500 mg/L (No. 8). Further, in the case of the plating solution (No. 9) using Ru chloride as the Ru salt, it was confirmed that in addition to cracks occurring in the PtRu alloy film, there were undeposited portions on the substrate. As can be seen from Table 1, these samples in which cracks occurred in the PtRu alloy film are also inferior in corrosion resistance. On the other hand, it was confirmed that the PtRu alloy films formed using the PtRu alloy plating solution with the chlorine concentration appropriately controlled were also excellent in corrosion resistance (No. 2 to No. 7).

第2実施形態:上記第1実施形態の結果から、Ru塩として硫酸Ruを適用しつつ塩素濃度を適切に調整することで、効率的に且つ高品質のPtRu合金膜を形成可能であることが確認された。本実施形態では、Ru濃度を変更したPtRu合金めっき液を製造し、それらから成膜されるPtRu合金膜の構成・特性を評価した。 Second Embodiment : From the results of the first embodiment, it is possible to efficiently form a high-quality PtRu alloy film by appropriately adjusting the chlorine concentration while applying Ru sulfate as the Ru salt. confirmed. In this embodiment, PtRu alloy plating solutions with different Ru concentrations were produced, and the configuration and properties of PtRu alloy films formed therefrom were evaluated.

第1実施形態と同様、ジニトロ硫化Ptと硫酸Ruを硫酸に溶解した原液を希釈し、ラウリル硫酸ナトリウムMg塩を添加してPtRu合金めっき液を建浴した。ここでは、原液作製の際の硫酸Ruの溶解量を調整してRu濃度が1g/L、2g/L、3g/L、4g/L、5g/LのPtRu合金めっき液を製造した。これらのめっき液はRu濃度とトータル硫酸濃度の2条件のみが相違しておりその他は同じであり。いずれもPt濃度は10g/Lであり、Mg濃度は4g/L、pH0.4とした。また、塩素濃度は0.5mg/Lで共通とした。 As in the first embodiment, a stock solution obtained by dissolving Pt dinitrosulfide and Ru sulfate in sulfuric acid was diluted, and sodium lauryl sulfate Mg salt was added to prepare a PtRu alloy plating solution. Here, PtRu alloy plating solutions having Ru concentrations of 1 g/L, 2 g/L, 3 g/L, 4 g/L, and 5 g/L were produced by adjusting the amount of Ru sulfate dissolved during preparation of the stock solution. These plating solutions differ only in two conditions, the Ru concentration and the total sulfuric acid concentration, and are otherwise the same. In both cases, the Pt concentration was 10 g/L, the Mg concentration was 4 g/L, and the pH was 0.4. Also, the chlorine concentration was set to 0.5 mg/L in common.

そして、第1実施形態と同様のCu基板にNi(厚さ5μm)/Au(厚さ0.1μm)をめっきした複層基板(Cu/Ni/Au)について、各PtRu合金めっき液によりPtRu合金膜をめっき処理した。各PtRu合金膜は、析出効率の算出及びEDXによる組成分析(Ru濃度測定)を行った後、硬度を測定した。硬度測定は、ビッカース硬度計により荷重10gでビッカース硬度(Hv)を測定した。また、第1実施形態と同様に電解サイクル試験にて耐食性を評価した。これらの結果を表2に示す。 Then, a multilayer substrate (Cu/Ni/Au) obtained by plating Ni (5 μm thick)/Au (0.1 μm thick) on a Cu substrate similar to that of the first embodiment was coated with each PtRu alloy plating solution to form a PtRu alloy. The membrane was plated. For each PtRu alloy film, the hardness was measured after calculating the deposition efficiency and conducting composition analysis (Ru concentration measurement) by EDX. Vickers hardness (Hv) was measured with a Vickers hardness tester under a load of 10 g. Also, the corrosion resistance was evaluated by the electrolytic cycle test in the same manner as in the first embodiment. These results are shown in Table 2.

Figure 2023056187000002
Figure 2023056187000002

表2から、本実施形態で成膜したPtRu合金膜のRu比率は、めっき液のRu濃度の増加と共に上昇し、3質量%~12.3質量%のPtRu合金で構成されていることが確認された。PtRu合金膜の硬度は、Ru塩添加のないめっき液によるPt膜よりも高硬度となることが分かる。このRuのPtへの合金化による硬度上昇の効果は、Ru1%の合金めっき膜であっても明確に現れている。 From Table 2, it is confirmed that the Ru ratio of the PtRu alloy film formed in this embodiment increases with an increase in the Ru concentration of the plating solution, and is composed of 3% by mass to 12.3% by mass of the PtRu alloy. was done. It can be seen that the hardness of the PtRu alloy film is higher than that of the Pt film formed by the plating solution containing no Ru salt. The effect of increasing the hardness by alloying Ru with Pt is clearly shown even in the 1% Ru alloy plating film.

そして、いずれのPtRu合金膜においても、クラックの発生はなく耐食性は良好であった。更に、均一な金属光沢を呈しており外観においても良好であった。 In any of the PtRu alloy films, cracks did not occur and the corrosion resistance was good. Furthermore, it had a uniform metallic luster and was good in appearance.

以上説明したように、本発明に係るPtRu合金めっき液は、Pt塩と共存するRu塩の好適化すると共に、塩素濃度を規定することで、析出効率と液の長期安定性とに優れた特性を有する。また、成膜されるPtRu合金膜のクラック発生も抑制される。本発明により成膜されるPtRu合金膜は、高硬度のPtRu合金で構成され、耐食性も良好である。本発明は、スマートフォンやタブレット端末等のコネクタ、端子といった電子機器の保護めっき層の他、宝飾品等へのめっき膜の形成に有用である。
As described above, the PtRu alloy plating solution according to the present invention has excellent properties in deposition efficiency and long-term stability of the solution by optimizing the Ru salt coexisting with the Pt salt and by specifying the chlorine concentration. have In addition, the occurrence of cracks in the deposited PtRu alloy film is suppressed. The PtRu alloy film formed by the present invention is composed of a PtRu alloy with high hardness and has good corrosion resistance. INDUSTRIAL APPLICABILITY The present invention is useful for forming protective plating layers for electronic devices such as connectors and terminals of smartphones and tablet terminals, as well as for forming plating films on jewelry and the like.

Claims (7)

2価のPt塩と、
Ru硫酸塩又はRu硝酸塩のいずれかと、
硫酸及びスルファミン酸と、を含むPtRu合金めっき液であって、
塩素濃度が0.1mg/L以上300mg/L以下であるPtRu合金めっき液。
a divalent Pt salt;
with either Ru sulfate or Ru nitrate;
A PtRu alloy plating solution containing sulfuric acid and sulfamic acid,
A PtRu alloy plating solution having a chlorine concentration of 0.1 mg/L or more and 300 mg/L or less.
2価のPt塩は、硫酸基(SO)又はスルホ基(SO)、ニトロ基(NO)、硝酸基(NO)、アミン(NH)、アコ基(HO)、水酸基(OH)の少なくともいずれかを含む無機酸塩である請求項1記載のPtRu合金めっき液。 Divalent Pt salts include sulfate group (SO 4 ) or sulfo group (SO 3 ), nitro group (NO 2 ), nitrate group (NO 3 ), amine (NH 3 ), aco group (H 2 O), hydroxyl group. 2. The PtRu alloy plating solution according to claim 1, which is an inorganic acid salt containing at least one of (OH). Pt濃度1g/L以上15g/L以下、Ru濃度0.1g/L以上10g/L以下、トータル硫酸濃度10g/L以上200g/L以下、スルファミン酸濃度0.1g/L以上20g/L以下である請求項1又は請求項2記載のPtRu合金めっき液。 Pt concentration 1 g/L to 15 g/L, Ru concentration 0.1 g/L to 10 g/L, total sulfuric acid concentration 10 g/L to 200 g/L, sulfamic acid concentration 0.1 g/L to 20 g/L The PtRu alloy plating solution according to claim 1 or claim 2. Pt濃度とRu濃度との比(Ru濃度(g/L)/Pt濃度(g/L))が、0.1以上0.8である請求項1~請求項3のいずれかに記載のPtRu合金めっき液。 The PtRu according to any one of claims 1 to 3, wherein the ratio of the Pt concentration to the Ru concentration (Ru concentration (g/L)/Pt concentration (g/L)) is 0.1 or more and 0.8. alloy plating solution. 陰イオン界面活性剤を含む請求項1~請求項4のいずれかに記載のPtRu合金めっき液。 The PtRu alloy plating solution according to any one of claims 1 to 4, which contains an anionic surfactant. 更に、アルカリ金属又はアルカリ土類金属を含む請求項1~請求項5のいずれかに記載のPtRu合金めっき液。 6. The PtRu alloy plating solution according to any one of claims 1 to 5, further comprising an alkali metal or an alkaline earth metal. 請求項1~請求項6のいずれかに記載のPtRu合金めっき液を用いるPtRu合金膜のめっき方法であって、
前記PtRu合金めっき液のpHを1以下とし、
温度45℃以上65℃以下、
電流密度2.0A/dm以上10A/dm以下でめっき処理を行うPtRu合金膜のめっき方法。
A method for plating a PtRu alloy film using the PtRu alloy plating solution according to any one of claims 1 to 6,
The pH of the PtRu alloy plating solution is set to 1 or less,
Temperature 45°C or higher and 65°C or lower,
A plating method for a PtRu alloy film in which plating is performed at a current density of 2.0 A/dm 2 or more and 10 A/dm 2 or less.
JP2021165368A 2021-10-07 2021-10-07 PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM Pending JP2023056187A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021165368A JP2023056187A (en) 2021-10-07 2021-10-07 PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM
TW111135733A TWI820921B (en) 2021-10-07 2022-09-21 Ptru alloy plating solution and method for plating ptru alloy film
KR1020220123973A KR20230050238A (en) 2021-10-07 2022-09-29 PtRu ALLOY PLATING SOLUTION AND METHOD FOR PLATING PtRu ALLOY FILM
CN202211231454.0A CN115948779A (en) 2021-10-07 2022-10-08 PtRu alloy plating solution and method for plating PtRu alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021165368A JP2023056187A (en) 2021-10-07 2021-10-07 PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM

Publications (1)

Publication Number Publication Date
JP2023056187A true JP2023056187A (en) 2023-04-19

Family

ID=85896403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021165368A Pending JP2023056187A (en) 2021-10-07 2021-10-07 PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM

Country Status (4)

Country Link
JP (1) JP2023056187A (en)
KR (1) KR20230050238A (en)
CN (1) CN115948779A (en)
TW (1) TWI820921B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1779457A (en) 1927-10-07 1930-10-28 Baker & Co Inc Electrodeposition of platinum metals
JP3302949B2 (en) 1999-08-03 2002-07-15 株式会社日鉱マテリアルズ Black ruthenium plating solution
CN101332425B (en) * 2008-08-04 2010-12-01 山东大学 Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof
DE102008050135B4 (en) * 2008-10-04 2010-08-05 Umicore Galvanotechnik Gmbh Process for depositing platinum rhodium layers with improved brightness
JP5086485B1 (en) * 2011-09-20 2012-11-28 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
US8980460B2 (en) * 2012-02-07 2015-03-17 Battelle Memorial Institute Methods and electrolytes for electrodeposition of smooth films
CN103628102A (en) * 2013-12-09 2014-03-12 深圳市嘉达高科产业发展有限公司 Electroplating solution, Pt-Ru catalyst membrane as well as preparation method thereof and membrane fuel cell

Also Published As

Publication number Publication date
CN115948779A (en) 2023-04-11
KR20230050238A (en) 2023-04-14
TWI820921B (en) 2023-11-01
TW202319591A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
TW201840912A (en) A method for electrolytically passivating an outermost chromium or outermost chromium alloy layer to increase corrosion resistance thereof
KR102575117B1 (en) Platinum electrolytic plating bath and platinum plated product
JP4790191B2 (en) Electrolytic bath for electrochemical deposition of palladium or its alloys
JP2019214747A (en) Non-cyanide gold plating electrolytic solution
EP3431633B1 (en) Environmentally friendly nickel electroplating compositions and methods
US3893896A (en) Gold plating bath and process
JP2022107487A (en) Platinum electrolytic plating bath ant platinum-plated product
Nakano et al. Electrodeposition behavior of Zn–Co alloys from an alkaline zincate solution containing triethanolamine
US20050123784A1 (en) Terminal having surface layer formed of Sn-Ag-Cu ternary alloy formed thereon, and part and product having the same
JP2023056187A (en) PtRu ALLOY PLATING SOLUTION, AND PLATING METHOD OF PtRu ALLOY FILM
JP2008285732A (en) Nickel plating solution, electroplating method using the same, and chip component with nickel-plated film formed by the electroplating method
US20190093252A1 (en) Electroplating apparatus
JP5318375B2 (en) Palladium-cobalt alloy plating solution, method for forming palladium-cobalt alloy coating, and method for producing palladium-cobalt alloy hard coating
JP2023155087A (en) Layered structure with platinum-ruthenium alloy thin film
JP6501280B2 (en) Chromium plating solution, electroplating method and manufacturing method of chromium plating solution
JPH05222568A (en) Plating solution composition
TWI824731B (en) Ptru alloy plating film and laminated structure including the ptru alloy plating film
US11851780B2 (en) Method for electrolytically passivating a surface of silver, silver alloy, gold, or gold alloy
WO2024116940A1 (en) Production method for silver coating material, silver coating material, and energizing component
Jung et al. Effects of sodium citrate concentration on electroless Ni-Fe bath stability and deposition
US20120114870A1 (en) Manufacturing method of noble metal plating layer
JP5830795B1 (en) Nickel-free plating solution, plating film forming method, and electronic component manufacturing method
TW201309853A (en) Zirconium alloy electroplating solution composition and plated product using the same
CN117642528A (en) White trivalent chromium plating bath and method for plating object to be plated using the same
JP2013177654A (en) Electrolytic hard gold plating liquid, plating method, and manufacturing method of gold-iron alloy film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240416