US3893896A - Gold plating bath and process - Google Patents

Gold plating bath and process Download PDF

Info

Publication number
US3893896A
US3893896A US375616A US37561673A US3893896A US 3893896 A US3893896 A US 3893896A US 375616 A US375616 A US 375616A US 37561673 A US37561673 A US 37561673A US 3893896 A US3893896 A US 3893896A
Authority
US
United States
Prior art keywords
acid
per liter
amount ranging
grams per
electrolytic bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US375616A
Inventor
Alexander Korbelak
John King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Handy and Harman
Original Assignee
Handy and Harman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Handy and Harman filed Critical Handy and Harman
Priority to US375616A priority Critical patent/US3893896A/en
Application granted granted Critical
Publication of US3893896A publication Critical patent/US3893896A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold

Definitions

  • a solution is formed from (1) an alkali gold cyanide, (2) a weak or soft Lewis acid, (3) a weak poly-functional water-soluble aliphatic acid, (4) a non-depositing metallic compound, (5) a metallic hardener, and (6) water.
  • This solution is employed as an electrolyte for plating a hard, bright gold electrodeposit whose hardener content is much more uniform even when the deposit is produced under a wider range of operating conditions.
  • the uniformity of metal distribution i.e., throwing power, is greatly improved, allowing for the deposition of less gold to obtain minimum thicknesses over irregularly shaped cathodes.
  • the first component in the plating solution is a soluble, alkali gold cyanide in an amount ranging from about 0.1 to 50 grams per liter, preferably about 5 to grams per liter.
  • the following compounds, among others, are suitable: potassium gold cyanide, sodium gold cyanide, ammonium gold cyanide and mixtures thereof.
  • the preferred compound is potassium gold cyanide.
  • the second component is a weak or soft Lewis acid which acts not as a proton donor but as an acceptor of OH ions.
  • the weak or soft Lewis acids are different from the strong or hard Lewis acids since the acceptor atom of the former has the following properties: low or zero positive charge, large size, and several easily excited outer electrons.
  • a hard acid is distinguished by small size, high positive oxidation state and the absence of any outer electrons which are easily excited to higher states.
  • the weak Lewis acid is monobasic.
  • an effective buffering system is formed having a pH between about 3.7 and 4.8, preferably between about 4.0 and
  • suitable weak Lewis acids a quinone such as quinaldic acid and 8- quinolinboronic acid; boric acid; phthalic acid; potassium acid phthalate and mixtures thereof.
  • the amount of the weak Lewis acid ranges from about 5 to 250 grams per liter, preferably about 5 to 40 grams per liter.
  • Other suitable weak Lewis acids are described in Theoretical Inorganic Chemistry, M. D. Day, Jr. and J. Selbin, 2nd Edition, p. 370, Van Nostrand-Reinhold (1969), which is incorporated herein by reference.
  • a third component in the plating solution is at least one polyfunctional, water-soluble, weak, stable aliphatic acid containing one or more carboxylic acid or hydroxy groups.
  • the preferred compounds have 2 to 8 carbons.
  • Suitable acids are as follows: itaconic, citraconic, gluconic, glutaric, glycolic, citric, kojic, malic, succinic, lactic, tartaric and mixtures thereof. This component is used in amounts ranging from about 5 to 500 grams per liter, preferably about 40 to 150 grams per liter.
  • the plating solution has a fourth component which is a compound of a reactive, non-depositing metal.
  • This compound must be soluble in the acid solution.
  • the preferred metals have an electrode potential above +1.5 volts and are capable of forming chelates with the weak organic acid.
  • the metal among others, may be aluminum, barium, beryllium, magnesium, rubidium, lithium, strontium and mixtures thereof.
  • the compound among others, may be an oxide, a carbonate, an acetate, a citrate, a borate, a sulfate and mixtures thereof. This component is used in the range of about 5.0 to 250 grams per liter, preferably about 15 to grams per liter.
  • a fifth component is a hardener which is a water soluble, transition metal salt.
  • the following metals are applicable: cobalt, nickel, cadmium, silver, copper, iron, platinum, palladium, indium, manganese, osmium, ruthenium, antimony, lead, zinc and mixtures thereof.
  • the salt may be one of the following, among others: sulfates, sulfamates, chlorides, formates, acetates, citrates, glycolates, tartrates, fluoborates, borates, phosphates, itaconates, malates, gluconates, oxalates, and mixtures thereof. All of the aforementioned metals form at least one component from the aforementioned salts.
  • the amount of hardener in the plating solution is usually about 0.01 to 15 grams per liter of metal ion, preferably about 0.02 to 0.10 grams per liter.
  • the sixth component is water in an amount sufficient to produce an electrolyte of one liter with ingredient concentration ranges described above.
  • the bath of this invention can also have certain optional ingredients varying over wide ranges. This includes the following, among others: glycine in an amount from about 5 to 20 grams per liter, to produce lower karat deposits; hexasodium salt of triethylene tetramine hexaacetic acid in an amount from about 0.25 to 20 grams per liter is used to solubilize otherwise insoluble metal compounds; and sodium alpha glucoheptonate dihydrate in an amount from about 0.25 to 30 grams per liter is used for the prevention of the codeposition of undesirable metallic impurities, such as tin, lead and iron, which are common contaminants in gold baths especially those used for soldered components.
  • undesirable metallic impurities such as tin, lead and iron
  • the aforementioned six components and any optional components may be combined in any suitable manner to form a plating solution.
  • Each component may be added separately or several components may be pre-mi'xed before they are included in the plating solution.
  • the components can be replenished during plating to maintain the proper concentrations.
  • the electrolytic deposition can be conducted with insoluble anodes, such as platinum, gold, stainless steel or carbon.
  • the cathode is the article (ware) which is being plated and it may be copper, brass and other copper alloys, nickel, steel, Kovar, or any other properly prepared material.
  • the ratio of the anode surface area to cathode surface area is from about 4.1 to 10.1.
  • the electric tension between the anodes and the ware is frequently held within the range of about 3 to 9 volts.
  • the pH of the bath ranges generally from about 3.7 to 4.8.
  • the temperature of the bath during the electrodeposition is usually between about 90 to 120F.
  • Mechanical agitation of the bath such as with a stirrer, may be used to improve the operation.
  • the current of the bath can vary from about 0.5 to amperes per square foot of cathode.
  • the plating rates can be about 30 to 90 milligrams per ampere minute (123 mg/amp. minute 100% cathode efficiency).
  • a gold deposit is effected in a range from about 24 to 18 karats.
  • the color of the deposit is yellow to pink to white, but preferably is yellow.
  • the thickness of the gold deposit can be between 0.1 and 100 microns.
  • the gold is plated from the bath with excellent throwing power and with excellent hardener stability; accordingly, there is less variation in thickness, in gold deposited on pieces with complex geometries thus permitting plating economies, i.e., by avoiding excess plate incidental to depositing the minimum on shielded parts.
  • the throwing power is above 55% when the cathode deposition rate is at least 30 mgs./amp. minute. This is determined by the Blum and Haring'Formula.
  • K is the primary current distribution ratio (in all cases discussed here K 4) and M is the weight distribution ratio. Maximum throwing power under this formula is 75%.
  • the hardener stability is measured by the maximum variance in the hardener content in the deposit as operating conditions are varied.
  • the maximum variance is calculated as follows:
  • This invention provides an average maximum variance of 0.06 (usually 0.07 to 0.05%) when the temperature is varied from 80 to 120F, whereas previous baths have an average maximum variance of 0.18% (usually 0.27% to 0.13%) when this temperature is varied from 80 to 120F.
  • This invention also provides for an average maximum variance of 0.07 (usually 0.08 to 0.04%) when the cathode current density is varied from 5 to 20 A.S.F'., while common commercial baths have an average maximum variance of 0.22% (usually 0.15 to 0.31%) when the cathode current density is varied from 5 to 20 ASE.
  • the anode was platinum and the cathode was brass.
  • the pH of the solution was 4.0, and it was stirred during the plating.
  • the current at the cathode was 10 amperes per square foot with a plating rate of 50 milligrams per ampere minute.
  • the gold deposited on each sample was 24 karats, and the color of each was yellow.
  • the thickness of each gold deposit was 5 microns. Further results are indicated in Table I.
  • This example shows that the plating solutions of the invention have codeposited hardener stability and high throwing power at acceptable plating rates.
  • An acidic electrolytic bath comprising:
  • an alkali gold cyanide in an amount ranging from 0.1 to 50 grams per liter;
  • a weak lewis acid in an amount ranging from 5 to 250 grams per liter and selected from the group consisting of a quinone, boric acid, phthalic acid, potassium acid phthalate and mixtures thereof;
  • a weak polyfunctional water-soluble aliphatic carboxylic acid in an amount ranging from 5 to 500 grams per liter;
  • a metallic hardener in an amount ranging from 0.01 to 15 grams of metal ion per liter
  • alkali gold cyanide is selected from the group consisting of potassium gold cyanide, sodiuin gold cyanide and ammonium gold cyanide.
  • the electrolytic bath according to claim 1 in which the weak polyfunctional water-soluble aliphatic carboxylic acid is selected from the group consisting of itaconic acid, citraconic acid, gluconic acid, glutaric acid, glycolic acid, citric acid, kojic acid, malic acid, succinic acid, lactic acid, tartaric acid and mixtures thereof.
  • non-depositing metallic compound is selected from the group consisting of an oxide, a carbonate, an acetate, a citrate, a borate, a sulfate, and mixtures thereof; said metal being selected from the group consisting of aluminum, barium, beryllium, magnesium, rubidium, lithium, strontium, and mixtures thereof.
  • the metallic hardener is selected from the group consisting of a sulfate, a sulfamate, a chloride, a formate, an acetate, a citrate, a glycolate, a lactate, a tartrate, a fluoborate, a borate, a phosophate, an itaconate, a malate, a gluconate, an oxalate and mixtures thereof; said metal being selected from the group consisting of cobalt, nickel, cadmium, silver, copper, iron, platinum, palladium, indium, manganese, osmium, ruthenium, antimony, lead, zinc and mixtures thereof.
  • the electrolytic bath according to claim 1 which further contains glycine in an amount ranging from about 5 to 20 grams per liter.
  • the electrolytic bath according to claim 1 which further contains hexasodium salt of triethylene tetramine hexaacetic acid in an amount ranging from about 0.25 to 20 grams per liter.
  • the electrolytic bath according to claim 1 which further contains sodium alpha glucoheptonate dihy drate in an amount ranging from about 0.25 to 30 grams per liter.
  • a process for electrodeposition of gold on the surface of a conductive article which comprises:
  • a weak Lewis acid in an amount ranging from 5 to 250 grams per liter and selected from the group consisting of a quinone, boric acid, phthalic acid, potassium acid phthalate and mixtures thereof,

Abstract

The specification relates to an improved electrolyte. The specification relates also to the use of this electrolyte to deposit gold on a surface. The electrolyte has an alkali gold cyanide, a weak Lewis acid, a weak polyfunctional water-soluble aliphatic acid, a non-depositing metallic compound, a metallic hardener, and water.

Description

United States Patent K0rbe1ak et a1.
GOLD PLATING BATH'AND PROCESS Inventors: Alexander Korbelak, Southbury;
John King, Trumbull, both of Conn.
Assignee: Handy Harman, New York, NY. Filed: July 2, 1973 Appl. No.: 375,616
US. Cl. 204/44; 204/43 G; 204/46 G Int. Cl. C23b 5/42; C23b 5/46 Field of Search 204/43 G, 46 G, 44;
References Cited UNITED STATES PATENTS 9/1959 Rinker et a1. 204/43 G l/l961 Ostrow et al. 204/43 G 9/1964 Parker et a1. 204/46 G [451 July 8,1975
3,367,853 2/1968 Schumpelt 204/46 OTHER PUBLICATIONS The Condensed Chemical Dictionary, p. 12, (1968).
Primary Examiner-G. L. Kaplan Attorney, Agent, or FirmBrumbaugh, Graves, Donohue & Raymond [5 7 ABSTRACT 9 Claims, N0 Drawings GOLD PLATING BATH AND PROCESS BACKGROUND OF INVENTION 1t is known to employ electrolytes for the deposition of gold electrodeposits, US. Pat. Nos. 2,967,135, 2,905,601, 3,149,057, 3,303,112 and 3,598,706, which are incorporated herein by reference. Frequently, hardeners such as cobalt, nickel, silver and copper are codeposited with the gold.
There have been several disadvantages with the plating solutions used in the past. Firstly, the content of the codeposited hardener is erratic. This means that the plated surfaces have different abrasion and wear characteristics from batch to batch. Secondly, the previously used electrolytes have poor throwing power when there is an acceptable cathode deposition rate, i.e., 3O mg/amp. min. or more. This results in more gold being used than the theoretical amount required to obtain a minimum thickness of gold on the most shielded part of the cathodic surface.
SUMMARY OF THE INVENTION It has now been discovered that the aforementioned disadvantages can be alleviated by using a new plating solution. Thus, in accordance with this invention, a solution is formed from (1) an alkali gold cyanide, (2) a weak or soft Lewis acid, (3) a weak poly-functional water-soluble aliphatic acid, (4) a non-depositing metallic compound, (5) a metallic hardener, and (6) water. This solution is employed as an electrolyte for plating a hard, bright gold electrodeposit whose hardener content is much more uniform even when the deposit is produced under a wider range of operating conditions. Additionally, the uniformity of metal distribution, i.e., throwing power, is greatly improved, allowing for the deposition of less gold to obtain minimum thicknesses over irregularly shaped cathodes.
DESCRIPTION OF THE INVENTION The first component in the plating solution is a soluble, alkali gold cyanide in an amount ranging from about 0.1 to 50 grams per liter, preferably about 5 to grams per liter. The following compounds, among others, are suitable: potassium gold cyanide, sodium gold cyanide, ammonium gold cyanide and mixtures thereof. The preferred compound is potassium gold cyanide.
The second component is a weak or soft Lewis acid which acts not as a proton donor but as an acceptor of OH ions. The weak or soft Lewis acids are different from the strong or hard Lewis acids since the acceptor atom of the former has the following properties: low or zero positive charge, large size, and several easily excited outer electrons. A hard acid is distinguished by small size, high positive oxidation state and the absence of any outer electrons which are easily excited to higher states.
Advantageously, the weak Lewis acid is monobasic. When it is combined with other components, an effective buffering system is formed having a pH between about 3.7 and 4.8, preferably between about 4.0 and The following, among others, are suitable weak Lewis acids: a quinone such as quinaldic acid and 8- quinolinboronic acid; boric acid; phthalic acid; potassium acid phthalate and mixtures thereof. The amount of the weak Lewis acid ranges from about 5 to 250 grams per liter, preferably about 5 to 40 grams per liter. Other suitable weak Lewis acids are described in Theoretical Inorganic Chemistry, M. D. Day, Jr. and J. Selbin, 2nd Edition, p. 370, Van Nostrand-Reinhold (1969), which is incorporated herein by reference.
A third component in the plating solution is at least one polyfunctional, water-soluble, weak, stable aliphatic acid containing one or more carboxylic acid or hydroxy groups. The preferred compounds have 2 to 8 carbons. Suitable acids, among others, are as follows: itaconic, citraconic, gluconic, glutaric, glycolic, citric, kojic, malic, succinic, lactic, tartaric and mixtures thereof. This component is used in amounts ranging from about 5 to 500 grams per liter, preferably about 40 to 150 grams per liter.
The plating solution has a fourth component which is a compound of a reactive, non-depositing metal. This compound must be soluble in the acid solution. The preferred metals have an electrode potential above +1.5 volts and are capable of forming chelates with the weak organic acid. The metal, among others, may be aluminum, barium, beryllium, magnesium, rubidium, lithium, strontium and mixtures thereof. The compound, among others, may be an oxide, a carbonate, an acetate, a citrate, a borate, a sulfate and mixtures thereof. This component is used in the range of about 5.0 to 250 grams per liter, preferably about 15 to grams per liter.
A fifth component is a hardener which is a water soluble, transition metal salt. The following metals, among others, are applicable: cobalt, nickel, cadmium, silver, copper, iron, platinum, palladium, indium, manganese, osmium, ruthenium, antimony, lead, zinc and mixtures thereof. The salt may be one of the following, among others: sulfates, sulfamates, chlorides, formates, acetates, citrates, glycolates, tartrates, fluoborates, borates, phosphates, itaconates, malates, gluconates, oxalates, and mixtures thereof. All of the aforementioned metals form at least one component from the aforementioned salts. The amount of hardener in the plating solution is usually about 0.01 to 15 grams per liter of metal ion, preferably about 0.02 to 0.10 grams per liter.
The sixth component is water in an amount sufficient to produce an electrolyte of one liter with ingredient concentration ranges described above.
The bath of this invention can also have certain optional ingredients varying over wide ranges. This includes the following, among others: glycine in an amount from about 5 to 20 grams per liter, to produce lower karat deposits; hexasodium salt of triethylene tetramine hexaacetic acid in an amount from about 0.25 to 20 grams per liter is used to solubilize otherwise insoluble metal compounds; and sodium alpha glucoheptonate dihydrate in an amount from about 0.25 to 30 grams per liter is used for the prevention of the codeposition of undesirable metallic impurities, such as tin, lead and iron, which are common contaminants in gold baths especially those used for soldered components.
The following mixture produces a yellow gold deposit that is 99.85% gold and 0.15% nickel:
Potassium gold cyanide Boric acid 1 Magnesium oxide 1 Citric acid 9 pH Nickel citrate When g/l glycine are added to the solution a white gold deposit, 79.37% gold and 20.15% nickel, is produced.
The aforementioned six components and any optional components may be combined in any suitable manner to form a plating solution. Each component may be added separately or several components may be pre-mi'xed before they are included in the plating solution. The components can be replenished during plating to maintain the proper concentrations.
The electrolytic deposition can be conducted with insoluble anodes, such as platinum, gold, stainless steel or carbon. The cathode is the article (ware) which is being plated and it may be copper, brass and other copper alloys, nickel, steel, Kovar, or any other properly prepared material. The ratio of the anode surface area to cathode surface area is from about 4.1 to 10.1.
The electric tension between the anodes and the ware is frequently held within the range of about 3 to 9 volts. The pH of the bath ranges generally from about 3.7 to 4.8. The temperature of the bath during the electrodeposition is usually between about 90 to 120F. Mechanical agitation of the bath, such as with a stirrer, may be used to improve the operation. The current of the bath can vary from about 0.5 to amperes per square foot of cathode. the plating rates can be about 30 to 90 milligrams per ampere minute (123 mg/amp. minute 100% cathode efficiency). Thus, in accordance with the invention, a gold deposit is effected in a range from about 24 to 18 karats. The color of the deposit is yellow to pink to white, but preferably is yellow. The thickness of the gold deposit can be between 0.1 and 100 microns. Moreover, the gold is plated from the bath with excellent throwing power and with excellent hardener stability; accordingly, there is less variation in thickness, in gold deposited on pieces with complex geometries thus permitting plating economies, i.e., by avoiding excess plate incidental to depositing the minimum on shielded parts. There also is a more uniform hardener content in the deposit, permitting more uniform deposit characteristics, i.e., electrical resistivities, wear and abrasion resistivities.
1n the present invention, the throwing power is above 55% when the cathode deposition rate is at least 30 mgs./amp. minute. This is determined by the Blum and Haring'Formula.
100 X (K-M) wherein K is the primary current distribution ratio (in all cases discussed here K 4) and M is the weight distribution ratio. Maximum throwing power under this formula is 75%.
the hardener stability is measured by the maximum variance in the hardener content in the deposit as operating conditions are varied. The maximum variance is calculated as follows:
Maximum Variance Largest content smallest content This invention provides an average maximum variance of 0.06 (usually 0.07 to 0.05%) when the temperature is varied from 80 to 120F, whereas previous baths have an average maximum variance of 0.18% (usually 0.27% to 0.13%) when this temperature is varied from 80 to 120F. This invention also provides for an average maximum variance of 0.07 (usually 0.08 to 0.04%) when the cathode current density is varied from 5 to 20 A.S.F'., while common commercial baths have an average maximum variance of 0.22% (usually 0.15 to 0.31%) when the cathode current density is varied from 5 to 20 ASE.
The following examples are submitted to illustrate, but not limit this invention. Unless otherwise indicated, all parts and percentages in the specification and claims are based upon weight.
EXAMPLE I Plating solutions A, B, C and D were prepared from the compounds listed in Table I.
"To make one liter.
"When cathode deposition rate is 30 mgs./amp.-min. "Measured by maximum variance.
Each compound was added separately to the vessel which was glass. The anode was platinum and the cathode was brass. The pH of the solution was 4.0, and it was stirred during the plating. The current at the cathode was 10 amperes per square foot with a plating rate of 50 milligrams per ampere minute.
The gold deposited on each sample was 24 karats, and the color of each was yellow. The thickness of each gold deposit was 5 microns. Further results are indicated in Table I.
This example shows that the plating solutions of the invention have codeposited hardener stability and high throwing power at acceptable plating rates.
EXAMPLE II By repeating the procedure of Example I, it is consid ered that suitable plating solutions can be prepared by mixing compounds as indicated herebelow:
Water to make one liter Solution F Compounds Grams per liter Potassium Gold Cyanide 12 Glycolic Acid Boric Acid 18 Barium Sulfate 24 Nickel Sulfamate 0.2
Water to make one liter Solution G Compounds Grams per liter Potassium Gold Cyanide l2 Boric Acid 24 Succinic Acid 90 Beryllium Oxide 40 Palladium Chloride 0.7
Water to make one liter Solution H Compounds Grams per liter Potassium Gold Cyanide 12 Lactic Acid 90 Magnesium Citrate 30 Boric Acid 24 Copper Fluoborate 0.6 Water to make one liter Solution 1 Compounds Grams per liter Potassium Gold Cyanide l2 Phthalic Acid 12 Rubidium Citrate 2O Indium Chloride 0.9 Water to make one liter Citric Acid 90 Solution J Compounds Grams per liter Potassium Gold Cyanide 12 Boric Acid 90 Lithium Carbonate 50 ltaconic Acid 90 Ferric Sulfate 1.] Water to make one liter Solution K Compounds Grams per liter Potassium Gold Cyanide l2 Boric Acid 30 Magnesium Oxide 18 Glycine 20 Nickel Glycolate 1.2 Water to make one liter Kojic Acid 90 Solution L Compounds Grams per liter Potassium Gold Cyanide 8 Boric Acid 18 Magnesium Citrate l8 Kojic Acid 90 Nickel Tartrate 0.5 Water to make one liter Solution M Compounds Grams per liter Potassium Gold Cyanide 8 Boric Acid 18 Strontium Carbonate l8 Kojic Acid 90 Rhodium Phosphate 0.5
Water to make one liter Having set forth the general nature and specific embodiments of the present invention, the true scope is now particularly pointed out in the appended claims.
We claim:
1. An acidic electrolytic bath comprising:
a. an alkali gold cyanide in an amount ranging from 0.1 to 50 grams per liter;
b. a weak lewis acid in an amount ranging from 5 to 250 grams per liter and selected from the group consisting of a quinone, boric acid, phthalic acid, potassium acid phthalate and mixtures thereof;
c. a weak polyfunctional water-soluble aliphatic carboxylic acid in an amount ranging from 5 to 500 grams per liter;
d. a non-depositing metallic compound in an amount ranging from 5 to 250 grams per liter;
e. a metallic hardener in an amount ranging from 0.01 to 15 grams of metal ion per liter; and
f. water.
2. The electrolytic bath according to claim 1 in which the alkali gold cyanide is selected from the group consisting of potassium gold cyanide, sodiuin gold cyanide and ammonium gold cyanide.
3. The electrolytic bath according to claim 1 in which the weak polyfunctional water-soluble aliphatic carboxylic acid is selected from the group consisting of itaconic acid, citraconic acid, gluconic acid, glutaric acid, glycolic acid, citric acid, kojic acid, malic acid, succinic acid, lactic acid, tartaric acid and mixtures thereof.
4. The electrolytic bath according to claim 1 in which the non-depositing metallic compound is selected from the group consisting of an oxide, a carbonate, an acetate, a citrate, a borate, a sulfate, and mixtures thereof; said metal being selected from the group consisting of aluminum, barium, beryllium, magnesium, rubidium, lithium, strontium, and mixtures thereof.
5. The electrolytic bath according to claim 1 in which the metallic hardener is selected from the group consisting of a sulfate, a sulfamate, a chloride, a formate, an acetate, a citrate, a glycolate, a lactate, a tartrate, a fluoborate, a borate, a phosophate, an itaconate, a malate, a gluconate, an oxalate and mixtures thereof; said metal being selected from the group consisting of cobalt, nickel, cadmium, silver, copper, iron, platinum, palladium, indium, manganese, osmium, ruthenium, antimony, lead, zinc and mixtures thereof.
6. The electrolytic bath according to claim 1 which further contains glycine in an amount ranging from about 5 to 20 grams per liter.
7. The electrolytic bath according to claim 1 which further contains hexasodium salt of triethylene tetramine hexaacetic acid in an amount ranging from about 0.25 to 20 grams per liter.
8. The electrolytic bath according to claim 1 which further contains sodium alpha glucoheptonate dihy drate in an amount ranging from about 0.25 to 30 grams per liter.
9. A process for electrodeposition of gold on the surface of a conductive article which comprises:
a. immersing the article in an acidic electrolytic bath containing 1. an alkali gold cyanide in an amount ranging from 0.1 to 50 grams per liter,
2. a weak Lewis acid in an amount ranging from 5 to 250 grams per liter and selected from the group consisting of a quinone, boric acid, phthalic acid, potassium acid phthalate and mixtures thereof,
3. a weak polyfunctional water-soluble aliphatic carboxylic acid in an amount ranging from 5 to 500 grams per liter,
4. a non-depositing metallic compound in an amount ranging from 5 to 250 grams per liter,
5. a metallic hardener in an amount ranging from 0.01 to 15 grams of metal ion per liter, and
6. water; and
b. passing an electric current between an anode and said conductive article as a cathode.

Claims (14)

1. AN ACID ELECTROLYTIC BATH COMPRISING: A. AN ALKALI GOLD CYANIDE IN AN AMOUNT RANGING FROM 0.1 TO 50 GRAMS PER LITER, B. A WEAK LEWIS ACID IN AN AMOUNT RANGING FROM 5 TO250 GRAMS PER LITER AND SELECTED FROM THE GROUP CONSISTING OF A QUINONE, BORIC ACID, PHTHALIC ACID, POTASSIUM ACID PHTHALATE AND MIXTURES THEREOF, C. A WEAK POLYFUNCTIONAL WATER-SOLUBLE ALIPHATIC CARBOXYLIC ACID IN AN AMOUNT RANGING FROM 5 TO 500 GRAMS PER LITER, D. A NON-DPOSITING METALLIC COMPOUND IN AN AMOUNT RANGING FROM 5 TO 250 GRAMS GRAMS PER LITER, E. A METALLIC HARDENER IN AN AMOUNT RANGING FROM 0.01 TO 15 GRAMS OF METAL ION PER LITER, AND F. WATER.
2. The electrolytic bath according to claim 1 in which the alkali gold cyanide is selected from the group consisting of potassium gold cyanide, sodium gold cyanide and ammonium gold cyanide.
2. a weak Lewis acid in an amount ranging from 5 to 250 grams per liter and selected from the group consisting of a quinone, boric acid, phthalic acid, potassium acid phthalate and mixtures thereof,
3. The electrolytic bath according to claim 1 in which the weak polyfunctional water-soluble aliphatic carboxylic acid is selected from the group consisting of itaconic acid, citraconic acid, gluconic acid, glutaric acid, glycolic acid, citric acid, kojic acid, malic acid, succinic acid, lactic acid, tartaric acid and mixtures thereof.
3. a weak polyfunctional water-soluble aliphatic carboxylic acid in an amount ranging from 5 to 500 grams per liter,
4. a non-depositing metallic compound in an amount ranging from 5 to 250 grams per liter,
4. The electrolytic bath according to claim 1 in which the non-depositing metallic compound is selected from the group consisting of an oxide, a carbonate, an acetate, a citrate, a borate, a sulfate, and mixtures thereof; said metal being selected from the group consisting of aluminum, barium, beryllium, magnesium, rubidium, lithium, strontium, and mixtures thereof.
5. The electrolytic bath according to claim 1 in which the metallic hardener is selected from the group consisting of a sulfate, a sulfamate, a chloride, a formate, an acetate, a citrate, a glycolate, a lactate, a tartrate, a fluoborate, a borate, a phosophate, an itaconate, a malate, a gluconate, an oxalate and mixtures thereof; said metal being selected from the group consisting of cobalt, nickel, cadmium, silver, copper, iron, platinum, palladium, indium, manganese, osmium, ruthenium, antimony, lead, zinc and mixtures thereof.
5. a metallic hardener in an amount ranging from 0.01 to 15 grams of metal ion per liter, and
6. water; and b. passing an electric current between an anode and said conductive article as a cathode.
6. The electrolytic bath according to claim 1 which further contains glycine in an amount ranging from about 5 to 20 grams per liter.
7. The electrolytic bath according to claim 1 which further contains hexasodium salt of triethylene tetramine hexaacetic acid in an amount ranging from about 0.25 to 20 grams per liter.
8. The electrolytic bath according to claim 1 which further contains sodium alpha glucoheptonate dihydrate in an amount ranging from about 0.25 to 30 grams per liter.
9. A process for electrodeposition of gold on the surface of a conductive article which comprises: a. immersing the article in an acidic electrolytic bath containing
US375616A 1973-07-02 1973-07-02 Gold plating bath and process Expired - Lifetime US3893896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US375616A US3893896A (en) 1973-07-02 1973-07-02 Gold plating bath and process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US375616A US3893896A (en) 1973-07-02 1973-07-02 Gold plating bath and process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US59342375A Continuation-In-Part 1975-07-07 1975-07-07

Publications (1)

Publication Number Publication Date
US3893896A true US3893896A (en) 1975-07-08

Family

ID=23481595

Family Applications (1)

Application Number Title Priority Date Filing Date
US375616A Expired - Lifetime US3893896A (en) 1973-07-02 1973-07-02 Gold plating bath and process

Country Status (1)

Country Link
US (1) US3893896A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207149A (en) * 1974-12-04 1980-06-10 Engelhard Minerals & Chemicals Corporation Gold electroplating solutions and processes
US4212708A (en) * 1979-06-05 1980-07-15 Belikin Alexandr V Gold-plating electrolyte
DE2948999A1 (en) * 1979-04-05 1980-10-09 American Chem & Refining Co GALVANIC BATH TO DEPEND GOLD
DE2923747A1 (en) * 1979-06-12 1980-12-18 Smagunova Geb Vysockaja Stable gold electroplating soln. - contg. potassium EDTA gold sulphate complex, alkali metal EDTA salt, potassium sulphate and potassium hydrogen phosphate
US4358350A (en) * 1980-06-10 1982-11-09 Degussa Ag Strongly acid gold alloy bath
US4465564A (en) * 1983-06-27 1984-08-14 American Chemical & Refining Company, Inc. Gold plating bath containing tartrate and carbonate salts
DE3341233A1 (en) * 1983-11-15 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart Acidic electroplating bath for depositing fine soft-gold patterns and process for depositing such patterns
US4670107A (en) * 1986-03-05 1987-06-02 Vanguard Research Associates, Inc. Electrolyte solution and process for high speed gold plating
US4744871A (en) * 1986-09-25 1988-05-17 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
US4755264A (en) * 1987-05-29 1988-07-05 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
DE4026710A1 (en) * 1990-08-24 1992-02-27 Ant Nachrichtentech Thickening gold layer - on titanium-tungsten bond layer of ceramic circuit, by electroplating, with reduced blister formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905601A (en) * 1957-08-13 1959-09-22 Sel Rex Corp Electroplating bright gold
US2967135A (en) * 1960-06-08 1961-01-03 Barnet D Ostrow Electroplating baths for hard bright gold deposits
US3149058A (en) * 1959-12-31 1964-09-15 Technic Bright gold plating process
US3367853A (en) * 1965-08-26 1968-02-06 Sel Rex Corp Acid-gold electroplating bath

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905601A (en) * 1957-08-13 1959-09-22 Sel Rex Corp Electroplating bright gold
US3149058A (en) * 1959-12-31 1964-09-15 Technic Bright gold plating process
US2967135A (en) * 1960-06-08 1961-01-03 Barnet D Ostrow Electroplating baths for hard bright gold deposits
US3367853A (en) * 1965-08-26 1968-02-06 Sel Rex Corp Acid-gold electroplating bath

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207149A (en) * 1974-12-04 1980-06-10 Engelhard Minerals & Chemicals Corporation Gold electroplating solutions and processes
DE2948999A1 (en) * 1979-04-05 1980-10-09 American Chem & Refining Co GALVANIC BATH TO DEPEND GOLD
US4212708A (en) * 1979-06-05 1980-07-15 Belikin Alexandr V Gold-plating electrolyte
DE2923747A1 (en) * 1979-06-12 1980-12-18 Smagunova Geb Vysockaja Stable gold electroplating soln. - contg. potassium EDTA gold sulphate complex, alkali metal EDTA salt, potassium sulphate and potassium hydrogen phosphate
US4358350A (en) * 1980-06-10 1982-11-09 Degussa Ag Strongly acid gold alloy bath
GB2142344A (en) * 1983-06-27 1985-01-16 American Chem & Refining Co Gold plating baths containing tartrate and carbonate salts
US4465564A (en) * 1983-06-27 1984-08-14 American Chemical & Refining Company, Inc. Gold plating bath containing tartrate and carbonate salts
DE3341233A1 (en) * 1983-11-15 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart Acidic electroplating bath for depositing fine soft-gold patterns and process for depositing such patterns
US4670107A (en) * 1986-03-05 1987-06-02 Vanguard Research Associates, Inc. Electrolyte solution and process for high speed gold plating
US4744871A (en) * 1986-09-25 1988-05-17 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
US4755264A (en) * 1987-05-29 1988-07-05 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
WO1988009401A1 (en) * 1987-05-29 1988-12-01 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
WO1988009834A1 (en) * 1987-06-01 1988-12-15 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
DE4026710A1 (en) * 1990-08-24 1992-02-27 Ant Nachrichtentech Thickening gold layer - on titanium-tungsten bond layer of ceramic circuit, by electroplating, with reduced blister formation

Similar Documents

Publication Publication Date Title
US3917517A (en) Chromium plating electrolyte and method
US4075065A (en) Gold plating bath and process
US20030159938A1 (en) Electroplating solution containing organic acid complexing agent
US2436316A (en) Bright alloy plating
US3893896A (en) Gold plating bath and process
JPS6254397B2 (en)
US2250556A (en) Electrodeposition of copper and bath therefor
US3149058A (en) Bright gold plating process
US4076598A (en) Method, electrolyte and additive for electroplating a cobalt brightened gold alloy
US3637474A (en) Electrodeposition of palladium
US2437865A (en) Method of electrodepositing copper and baths and compositions therefor
US3149057A (en) Acid gold plating
JP2003530486A (en) Electrolytic bath for electrochemically depositing palladium or its alloys
US3764489A (en) Electrodeposition of gold alloys
US3380898A (en) Electrolyte and method for electrodepositing a pink gold alloy
US4069113A (en) Electroplating gold alloys and electrolytes therefor
Shreir et al. Effects of addition agents on the cathode polarization potential during the electrodeposition of copper
GB2046794A (en) Silver and gold/silver alloy plating bath and method
US4297178A (en) Ruthenium electroplating and baths and compositions therefor
US3440151A (en) Electrodeposition of copper-tin alloys
US4159926A (en) Nickel plating
US2435967A (en) Bright alloy plating
US2793990A (en) Electrodeposition of alloys containing copper and tin
US3285839A (en) Method and bath for electroplating rhenium
GB2133040A (en) Copper plating bath process and anode therefore