JP2023055600A - Feed additive for promoting growth, and preventing and/or treating respiratory diseases, and method for preparing the same - Google Patents

Feed additive for promoting growth, and preventing and/or treating respiratory diseases, and method for preparing the same Download PDF

Info

Publication number
JP2023055600A
JP2023055600A JP2021195626A JP2021195626A JP2023055600A JP 2023055600 A JP2023055600 A JP 2023055600A JP 2021195626 A JP2021195626 A JP 2021195626A JP 2021195626 A JP2021195626 A JP 2021195626A JP 2023055600 A JP2023055600 A JP 2023055600A
Authority
JP
Japan
Prior art keywords
feed additive
fermentation substrate
weight
fermentation
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021195626A
Other languages
Japanese (ja)
Other versions
JP7290244B2 (en
Inventor
瑜君 張
Yu-Chun Chang
家甄 畢
Chia-Chen Pi
俊任 陳
Chun-Jen Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King's Ground Biotech Co Ltd
National Taiwan University NTU
Original Assignee
King's Ground Biotech Co Ltd
National Taiwan University NTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King's Ground Biotech Co Ltd, National Taiwan University NTU filed Critical King's Ground Biotech Co Ltd
Publication of JP2023055600A publication Critical patent/JP2023055600A/en
Application granted granted Critical
Publication of JP7290244B2 publication Critical patent/JP7290244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Fodder In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

To provide a feed additive that can be added to an animal feed, and exerts beneficial effects of promoting growth, and preventing respiratory diseases.SOLUTION: A method for adding a feed additive includes: (a) process of preparing a fermentation substrate including coffee powder and an auxiliary material; and (b) process of fermenting a fermentation substrate with Aspergillus oryzae to obtain a feed additive. In the fermentation substrate, the content of coffee powder is 45 wt.% to 80 wt.% relative to the overall weight, a carbon-nitrogen ratio of the fermentation substrate is 35 to 65, an auxiliary material includes corn grains, rice husks, flour of soybeans with husks, crushed rice or a combination thereof. The feed additive includes high specific activity digestive enzyme, and has selective bacteriostatic action and a resistive effect to respiratory pathogens.SELECTED DRAWING: Figure 1

Description

本発明は、飼料添加物およびその調製方法に関し、より詳細には、成長を促進し、呼吸器疾患を予防および/または治療するための飼料添加物およびその調製方法に関する。 The present invention relates to a feed additive and its preparation method, and more particularly to a feed additive for promoting growth and preventing and/or treating respiratory diseases and its preparation method.

コーヒー豆は、カフェインおよびポリフェノールなどの異なる種類の化学物質を含む。これらのうち、カフェインは、代謝および血液循環を促進し、中枢神経系を刺激する効果を有し、ポリフェノールは、良好な健康に寄与する抗酸化および抗炎症の有益な効果を有する。また、コーヒー豆を焙煎した後のコーヒー飲料は独特の風味と香りを有している。そのため、近年、コーヒーは広く人々に愛される主流の飲料の一つとなっている。 Coffee beans contain different types of chemicals such as caffeine and polyphenols. Among these, caffeine promotes metabolism and blood circulation, has a stimulating effect on the central nervous system, and polyphenols have antioxidant and anti-inflammatory beneficial effects that contribute to good health. In addition, the coffee beverage after roasting the coffee beans has a unique flavor and aroma. Therefore, in recent years, coffee has become one of the mainstream beverages that are widely loved by people.

しかしながら、コーヒー豆は、通常、コーヒー飲料を製造するために、調理及び抽出のようなプロセスを必要とする。コーヒー飲料が製造された後に残ったコーヒー粉は、高い機能的栄養素を含んでおらず、さらに利用されることはほとんどない。現在、毎年約9万トンのコーヒー粉が国内で生成されている。これらのコーヒー粉を適切に処分し、安全に定置することができない場合、環境保護および廃棄物処分の深刻な問題が生じる。 However, coffee beans typically require processes such as cooking and brewing to produce coffee beverages. Coffee grounds left over after coffee beverages have been manufactured do not contain high levels of functional nutrients and are rarely utilized further. Currently, about 90,000 tons of ground coffee are produced domestically each year. Serious environmental protection and waste disposal problems arise if these coffee grounds cannot be properly disposed of and safely emplaced.

一方、現在、動物飼料産業における動物飼料の主な栄養源として魚粉や大豆粉が一般的に用いられている。魚粉は、蛋白質の含有量が多いことから、動物の成長を促進する源と一般的に考えられている。しかしながら、魚粉は高価であるためコストを増大させ、動物飼料に広く使用することが困難になっている。大豆粉は安価であるが、その栄養は魚粉とは比較にならず、動物飼料として動物の成長を効果的に促進することはできない。 On the other hand, currently, fish meal and soybean meal are commonly used as the main nutritional sources for animal feed in the animal feed industry. Fishmeal is generally considered a growth-enhancing source for animals due to its high protein content. However, fishmeal is expensive, increasing costs and making it difficult to use widely in animal feed. Although soybean meal is inexpensive, its nutritional value is incomparable to that of fishmeal and cannot be used as animal feed to effectively promote animal growth.

台湾特許公開201722285号公報Taiwan Patent Publication No. 201722285

以上のことから、コーヒー粉によって引き起こされる環境保護および廃棄物処理の問題を解決するために、動物飼料にコーヒー粉を適用するための技術的手段を開発すること、同時に、動物飼料のコストを低減し、且つ動物の成長を促進するという目的を達成することが、必要になっている。 From the above, in order to solve the environmental protection and waste disposal problems caused by coffee grounds, develop technical means for applying coffee grounds to animal feed, and at the same time reduce the cost of animal feed. It has become necessary to achieve the goal of improving and promoting animal growth.

従来技術の欠点を克服するために、本発明の目的は、より高い比活性を有する消化酵素を含み、動物飼料に適用でき、動物の成長を促進する効果を発揮できる飼料添加物を調製する方法、および、その飼料添加物を提供することである。 In order to overcome the shortcomings of the prior art, the object of the present invention is a method for preparing a feed additive that contains digestive enzymes with higher specific activity, can be applied to animal feed, and can exert the effect of promoting animal growth. , and to provide feed additives thereof.

本発明の別の目的は、呼吸器病原体に対し選択的な静菌および抵抗性の効果を有する飼料添加物を調製する方法、及び、その飼料添加物を提供することである。
本発明のさらに別の目的は、コーヒー粉を処分し、再定着させる問題を解決することができ、動物飼料を調製するコストを低減することができる飼料添加物の調製する方法を提供することである。
Another object of the present invention is to provide a method for preparing a feed additive with selective bacteriostatic and resistant effects against respiratory pathogens and the feed additive.
Yet another object of the present invention is to provide a method of preparing a feed additive that can solve the problem of coffee grounds disposal and re-establishment and reduce the cost of preparing animal feed. be.

上記の目的を達成するために、本発明は、以下の工程を含む飼料添加物を調製する方法を提供する。工程(a): コーヒー粉および補助材料を含む発酵基質であって、コーヒー粉の含有量が発酵基質の総重量に対し、45重量パーセント(重量%)以上80重量%以下、発酵基質の炭素-窒素比が35以上65以下、補助材料がトウモロコシ粒、米殻、殻付き大豆粉、破砕米またはそれらの組み合わせを含む発酵基質を用意する工程、および工程(b):発酵基質をアスペルギルス・オリザエ(Aspergillus oryzae)で発酵させて飼料添加物を得る工程。 To achieve the above objectives, the present invention provides a method of preparing a feed additive comprising the steps of: Step (a): A fermentation substrate containing coffee grounds and auxiliary materials, wherein the content of coffee grounds is 45% by weight or more and 80% by weight or less based on the total weight of the fermentation substrate, and the fermentation substrate is carbon- A step of providing a fermentation substrate having a nitrogen ratio of 35 to 65 and a supplementary material comprising corn grains, rice husks, soybean flour with husks, broken rice, or a combination thereof, and step (b): the fermentation substrate comprising Aspergillus oryzae ( Aspergillus oryzae) to obtain a feed additive.

発酵基質に特定の含有量範囲のコーヒー粉および特定の範囲の炭素-窒素比を含有させること、および発酵基質を発酵させるためにAspergillus oryzaeを採用することによって、この方法によって調製される飼料添加物は、比較的高い比活性を持ち、呼吸器病原体に対し選択的な静菌性および抵抗性を持つ消化酵素を含むという効果を有する。したがって、この飼料添加物は、動物飼料に適用することができ、動物の成長を促進し、そのコストを低減し、呼吸器疾患による動物感染の危険性を低減することができる。さらに、コーヒー粉を再使用することができ、それによって環境保護および廃棄物処理の問題を回避することができる。 A feed additive prepared by this method by making the fermentation substrate contain coffee grounds in a specific content range and a carbon-nitrogen ratio in a specific range, and employing Aspergillus oryzae to ferment the fermentation substrate. has the advantage of containing digestive enzymes with relatively high specific activity, selective bacteriostasis and resistance to respiratory pathogens. Therefore, this feed additive can be applied to animal feed to promote animal growth, reduce its cost and reduce the risk of animal infection with respiratory diseases. Moreover, the coffee grounds can be reused, thereby avoiding environmental protection and waste disposal problems.

本発明において、炭素-窒素比(C/N比)は、有機材料中の全窒素含有量に対する全炭素含有量の比を示す。例えば、炭素-窒素比が20である場合、有機材料において、炭素元素の含有量が窒素元素の含有量の20倍であることを意味する。 In the present invention, the carbon-nitrogen ratio (C/N ratio) indicates the ratio of the total carbon content to the total nitrogen content in the organic material. For example, when the carbon-nitrogen ratio is 20, it means that the content of carbon element is 20 times the content of nitrogen element in the organic material.

本発明によれば、発酵基質を発酵前に滅菌してもよい。一実施形態では、発酵基質は、120℃以上130℃以下の温度、1バール以上1.5バール以下の圧力下で、30分間~90分間滅菌することができる。ただし、これに限定されない。 According to the invention, the fermentation substrate may be sterilized prior to fermentation. In one embodiment, the fermentation substrate can be sterilized at a temperature between 120° C. and 130° C. and under a pressure between 1 bar and 1.5 bar for 30 minutes to 90 minutes. However, it is not limited to this.

好ましくは、発酵基質の炭素-窒素比は35以上60以下である。より好ましくは、発酵基質の炭素-窒素比は、37以上60以下である。
好ましくは、補助材料の含有量は、発酵基質の総重量に基づいて、20重量%以上55重量%以下である。
Preferably, the carbon-nitrogen ratio of the fermentation substrate is 35-60. More preferably, the carbon-nitrogen ratio of the fermentation substrate is 37-60.
Preferably, the content of the auxiliary material is ≧20% and ≦55% by weight, based on the total weight of the fermentation substrate.

好ましくは、発酵基質の炭素-窒素比は、46以上53以下であり、補助材料は、米殻を含む。米殻の含有量は、発酵基質の総重量に基づいて、7重量%以上10重量%以下である。発酵基質に特定の含有量範囲の米殻を含ませることにより、飼料添加物のプロテアーゼおよびアミラーゼの比活性をさらに高めることができる。 Preferably, the carbon-to-nitrogen ratio of the fermentation substrate is between 46 and 53, and the auxiliary material comprises rice husks. The content of rice husk is 7% or more and 10% or less by weight, based on the total weight of the fermentation substrate. The specific activity of protease and amylase in the feed additive can be further increased by including rice husks in a specific content range in the fermentation substrate.

いくつかの実施形態では、補助材料はトウモロコシ粗粒であり、発酵基質の総重量に基づいて、トウモロコシ粗粒の含有量は25重量%以上40重量%以下である。他の実施形態では、補助材料はトウモロコシ粗粒および米殻であり、発酵基質の総重量に基づいて、トウモロコシ粗粒の含有量は25重量%以上38重量%以下であり、米殻の含有量は7重量%以上15重量%以下である。さらに別の実施形態では、補助材料はトウモロコシ粗粒、米殻および殻付き大豆粉であり、発酵基質の総重量に基づいて、トウモロコシ粗粒の含有量は14重量%以上20重量%以下であり、米殻の含有量は8重量%以上12重量%以下であり、殻付き大豆粉の含有量は1重量%以上5重量%以下である。 In some embodiments, the supplemental material is corn grits, and the corn grits content is 25% or more and 40% or less by weight, based on the total weight of the fermentation substrate. In another embodiment, the auxiliary material is corn grits and rice husks, and based on the total weight of the fermentation substrate, the corn grits content is 25 wt% or more and 38 wt% or less, and the rice husk content is is 7% by weight or more and 15% by weight or less. In yet another embodiment, the auxiliary material is corn grits, rice hulls and hulled soy flour, and the corn grits content is 14% or more and 20% or less by weight, based on the total weight of the fermentation substrate. , the content of rice husk is 8% or more and 12% or less by weight, and the content of soybean flour with husk is 1% or more and 5% or less by weight.

好ましくは、Aspergillus oryzaeの含有量は、発酵基質の総重量に基づいて、0.02重量%以上0.2重量%以下である。具体的には、Aspergillus oryzaeは6.5×107胞子/g以上である。 Preferably, the content of Aspergillus oryzae is 0.02 wt% or more and 0.2 wt% or less, based on the total weight of the fermentation substrate. Specifically, Aspergillus oryzae is 6.5×10 7 spores/g or more.

好ましくは、発酵基質の含水率は、50重量%以上75重量%以下である。より好ましくは、発酵基質の含水率は、60重量%以上75重量%以下である。さらにより好ましくは、発酵基質の含水率は、65重量%である。 Preferably, the fermentation substrate has a moisture content of 50% by weight or more and 75% by weight or less. More preferably, the fermentation substrate has a water content of 60% by weight or more and 75% by weight or less. Even more preferably, the moisture content of the fermentation substrate is 65% by weight.

いくつかの実施形態では、工程(a)において、発酵基質に細胞壁を破壊する処理(壁破壊処理)を施すことができ、壁破壊処理は、発酵基質を、4bar以上5bar以下の圧力、130℃以上150℃以下の温度、および230rpm以上250rpm以下の回転速度の条件下に2分間~5分間放置する工程を含む。発酵基質を予め壁破壊処理することにより、細胞内の物質が放出され、アスペルギルス・オリザエ(Aspergillus oryzae)による発酵工程に寄与し、発酵におけるプロテアーゼの含量を上昇させる。 In some embodiments, in step (a), the fermentation substrate can be subjected to a cell wall-breaking treatment (wall-breaking treatment). It includes a step of leaving for 2 to 5 minutes at a temperature of 150° C. or higher and a rotation speed of 230 rpm or higher and 250 rpm or lower. By pre-wall-disrupting the fermentation substrate, intracellular substances are released and contribute to the fermentation process by Aspergillus oryzae, increasing the content of proteases in the fermentation.

好ましくは、工程(b)において、発酵基質をAspergillus oryzaeで発酵させる温度は25℃以上40℃以下であり、発酵時間は2日以上12日以下である。より好ましくは、発酵基質をAspergillus oryzaeで発酵させる温度は25℃以上30℃以下であり、発酵時間は4日以上6日以下である。 Preferably, in step (b), the temperature for fermenting the fermentation substrate with Aspergillus oryzae is 25°C or higher and 40°C or lower, and the fermentation time is 2 days or longer and 12 days or shorter. More preferably, the temperature for fermenting the fermentation substrate with Aspergillus oryzae is 25° C. or higher and 30° C. or lower, and the fermentation time is 4 days or longer and 6 days or shorter.

好ましくは、工程(b)において、発酵基質をAspergillus oryzaeで発酵させた後、乾燥工程を行って飼料添加物を得てもよい。乾燥工程は、45℃以上60℃以下の温度で8時間以上行うことができる。より好ましくは、乾燥工程は、50℃の温度で12時間~14時間行うことができる。 Preferably, in step (b), the fermentation substrate may be fermented with Aspergillus oryzae followed by a drying step to obtain the feed additive. The drying step can be performed at a temperature of 45° C. or higher and 60° C. or lower for 8 hours or longer. More preferably, the drying step can be performed at a temperature of 50° C. for 12 to 14 hours.

さらに、本発明は、前述の方法によって調製された飼料添加物を提供する。飼料添加物は、より高い比活性、呼吸器病原菌に対する選択的静菌性および抵抗性を有する消化酵素を含むという効果があり、動物飼料への応用が可能であり、動物の成長を促進し、動物の呼吸器疾患感染リスクを低減する効果を発揮する。 Furthermore, the present invention provides a feed additive prepared by the aforementioned method. The feed additive has the effect of containing digestive enzymes with higher specific activity, selective bacteriostasis and resistance to respiratory pathogens, is applicable to animal feed, promotes animal growth, It is effective in reducing the risk of animal respiratory disease infection.

本発明によれば、消化酵素は、特定の物質を分解することができるタンパク質を示す。好ましくは、消化酵素は、プロテアーゼ、アミラーゼ、セルラーゼおよびキシラナーゼを含む。 According to the invention, digestive enzymes refer to proteins capable of degrading certain substances. Preferably, digestive enzymes include proteases, amylases, cellulases and xylanases.

好ましくは、飼料添加物のプロテアーゼの比活性は、355.80単位/g(Unit/g)以上である。より好ましくは、飼料添加物のプロテアーゼの比活性は、463.86単位/g以上である。さらにより好ましくは、飼料添加物のプロテアーゼの比活性は、854.74単位/g以上である。 Preferably, the feed additive has a protease specific activity of 355.80 Unit/g or more. More preferably, the feed additive has a protease specific activity of 463.86 units/g or more. Even more preferably, the feed additive has a protease specific activity of 854.74 units/g or more.

また、本発明は、上述の方法により飼料添加物を調製された、動物の成長を促進するための飼料添加物を提供する。動物の成長を促進する効果は、正常な成長動物にも成長遅延動物にも適していることが実証されている。 The present invention also provides a feed additive for promoting the growth of animals prepared by the method described above. The effect of promoting animal growth has been demonstrated to be suitable for both normal growing animals and growth retarded animals.

好適には、動物は家禽または家畜を含む。 Suitably the animal comprises poultry or livestock.

好適には、動物の成長を促進する効果は、正常な成長動物に適している。 Preferably, the effect of promoting animal growth is suitable for normal growing animals.

さらに、本発明は、上述の方法によって調製される、呼吸器疾患を予防および/または治療するための飼料添加物を提供する。好適には、呼吸器疾患は、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeの感染によって引き起こされる疾患を示す。 Furthermore, the present invention provides a feed additive for preventing and/or treating respiratory diseases, prepared by the method described above. Suitably, the respiratory disease refers to a disease caused by infection with Mycoplasma hyopneumoniae or Mycoplasma pneumoniae.

さらに、本発明は、上述の方法によって調製され、Streptococcus suis、Escherichia coli、Salmonella spp.、Riemerella anatipestifer、Gallibacterium anatis、Staphylococcus spp.、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeを含む病原体の増殖を阻害するための飼料添加物を提供する。 Further, the present invention provides a feed additive for inhibiting the growth of pathogens prepared by the method described above and comprising Streptococcus suis, Escherichia coli, Salmonella spp., Riemerella anatipestifer, Gallibacterium anatis, Staphylococcus spp., Mycoplasma hyopneumoniae or Mycoplasma pneumoniae. offer things.

さらに、本発明は、上述の方法によって調製され、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeを含む病原体の感染を阻害するための飼料添加物を提供する。 Further, the present invention provides a feed additive for inhibiting infection with pathogens, including Mycoplasma hyopneumoniae or Mycoplasma pneumoniae, prepared by the method described above.

さらに、本発明は、上述の方法によって調製され、炎症を抑制するための飼料添加物を提供する。好適には、炎症は肺炎であり、より好適には、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeによって誘発される肺炎である。 Further, the present invention provides a feed additive for suppressing inflammation prepared by the method described above. Preferably, the inflammation is pneumonia, more preferably pneumonia induced by Mycoplasma hyopneumoniae or Mycoplasma pneumoniae.

本明細書において、「下限値から上限値まで」で表される範囲は、特に指定されない場合、下限値以上、上限値以下であることを示す。例えば、「30~90分」は、「30分以上90分以下」であることを示す。 In the present specification, the range represented by "from the lower limit to the upper limit" means from the lower limit to the upper limit, unless otherwise specified. For example, "30 to 90 minutes" indicates "30 minutes or more and 90 minutes or less".

本発明の他の目的、利点、および新規な特徴は、添付の図面と併せて以下の詳細な説明からより明らかになるであろう。 Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.

本発明の飼料添加物を調製する方法のフローチャートである。1 is a flow chart of a method of preparing a feed additive of the present invention; 実施例10~14の発酵プロセス中の異なる発酵時間におけるプロテアーゼの比活性の結果を示す。Figure 2 shows results of specific protease activity at different fermentation times during the fermentation process of Examples 10-14. 実施例10~14の発酵プロセス中の異なる発酵時間におけるアミラーゼの比活性の結果を示す。Fig. 2 shows amylase specific activity results at different fermentation times during the fermentation process of Examples 10-14. Escherichia coliについての実施例1および比較例1の静菌の結果を示す。The bacteriostatic results of Example 1 and Comparative Example 1 for Escherichia coli are shown. Streptococcus suisについての実施例1および比較例1の静菌の結果を示す。The results of bacteriostasis of Example 1 and Comparative Example 1 for Streptococcus suis are shown. Salmonella choleraesuisについての実施例1および比較例1の静菌の結果を示す。Shown are the bacteriostatic results of Example 1 and Comparative Example 1 for Salmonella choleraesuis. ラクトバチルス・カゼイ(Lactobacillus casei)についての実施例1および比較例1の静菌の結果を示す。1 shows the bacteriostatic results of Example 1 and Comparative Example 1 for Lactobacillus casei. Mycoplasma hyopneumoniaeの増殖を、異なるME濃度の処置下で阻害した結果を示す。Figure 2 shows the results of inhibiting the growth of Mycoplasma hyopneumoniae under treatment with different concentrations of ME. Mycoplasma pneumoniaの増殖を、異なるME濃度の処置下で阻害した結果を示す。The results of inhibiting the growth of Mycoplasma pneumonia under treatment with different concentrations of ME are shown. Mycoplasma hyopneumoniaeの感染を、ME濃度800μg/mlの処置下で阻害した結果を示す。The results of inhibiting Mycoplasma hyopneumoniae infection under treatment with an ME concentration of 800 µg/ml are shown. 異なるME濃度の処置下でのPK-15細胞株の細胞生存率の結果を示す。Shown are the cell viability results of the PK-15 cell line under treatment with different ME concentrations. ME濃度1600μg/mlの処置下でマイコプラズマ肺炎の感染を阻害した結果を示す。Fig. 3 shows the results of inhibition of Mycoplasma pneumoniae infection under treatment with an ME concentration of 1600 µg/ml. 異なるME濃度の処置下でのA549細胞株の細胞生存率の結果を示す。Figure 2 shows cell viability results of A549 cell line under treatment with different ME concentrations. MH-S細胞を異なるME濃度で処置した場合の、TNF-αの放出量の結果を示す。TNF-α release results when MH-S cells were treated with different concentrations of ME. MH-S細胞を異なるME濃度で処置した場合の、IL-6の放出量の結果を示す。Figure 2 shows IL-6 release results when MH-S cells were treated with different concentrations of ME. 異なるME濃度の処理下でのMH-S細胞の細胞生存率の結果を示す。Figure 2 shows cell viability results of MH-S cells under treatment with different ME concentrations. フローサイトメトリーで分析した全細胞の細胞数の結果を示す。The results of total cell counts analyzed by flow cytometry are shown. フローサイトメトリーで分析した好中球の細胞数の結果を示す。Fig. 2 shows the results of neutrophil cell counts analyzed by flow cytometry. フローサイトメトリーで分析した単球の細胞数の結果を示す。The results of monocyte cell counts analyzed by flow cytometry are shown.

本発明の実施を例示するために、いくつかの実施例を以下に示す。当業者であれば、本明細書の内容に従って、本発明の効果を容易に実現することができる。本発明の主旨および範囲から逸脱することなく、本発明を実用化し、または適用するために、様々な修正および変形を行うことができる。 Several examples are provided below to illustrate the practice of the invention. A person skilled in the art can easily achieve the effects of the present invention according to the contents of this specification. Various modifications and variations may be made in implementing or applying the present invention without departing from the spirit and scope of the present invention.

<実施例1:飼料添加物> <Example 1: feed additive>

コーヒー粉600g、トウモロコシ粗粒300g、米殻100gを秤量し、混合した後、水を加えて水分を調整し、水分65%の混合物を得た。その後、温度121℃、圧力1.2barの条件下に3kgの混合物を置き、90分間滅菌した。滅菌した混合物を室温まで冷却した後、発酵基質を得た。 600 g of coffee powder, 300 g of corn coarse grains and 100 g of rice husks were weighed and mixed, and then water was added to adjust the water content to obtain a mixture with a water content of 65%. After that, 3 kg of the mixture was placed under conditions of a temperature of 121° C. and a pressure of 1.2 bar and sterilized for 90 minutes. After cooling the sterilized mixture to room temperature, the fermentation substrate was obtained.

次に、発酵基質に6.5×107胞子/g以上のAspergillus oryzae粉末1.5g~3gを加え、30℃で4日間発酵させ、粗生成物を得た。粗生成物を50℃で12時間~14時間乾燥させて水分含量を7.5%未満にした後、粗生成物が約830マイクロメートル(μm)の孔径を有する篩を通過するまで粉砕して、実施例1の飼料添加物を得た。 Next, 1.5 g to 3 g of Aspergillus oryzae powder of 6.5×10 7 spores/g or more was added to the fermentation substrate and fermented at 30° C. for 4 days to obtain a crude product. After drying the crude product at 50° C. for 12 to 14 hours to a moisture content of less than 7.5%, the crude product is ground until it passes through a sieve with a pore size of about 830 micrometers (μm), The feed additive of Example 1 was obtained.

実施例1の各成分の割合(発酵基質の総重量に基づく)および発酵基質の炭素-窒素比(C/N比)を以下の表1に列挙した。なお、表1において、発酵基質のC/N比は、各成分のC/N比に各成分の割合を乗じたものを加えて求めた。ここで、コーヒー粉のC/N比は約20であり、トウモロコシ粗粒のC/N比は約97.3であり、殻付き大豆粉のC/N比は約4.7であり、米殻のC/N比は約90であった。例えば、実施例1の発酵基質は、60重量%のコーヒー粉(C/N比: 20)、30重量%のトウモロコシ粗粒(C/N比: 97.3)、および10重量%の米殻(C/N比: 90)を含み、したがって、実施例1の発酵基質のC/N比は約50.2であった。 The proportion of each component of Example 1 (based on the total weight of the fermentation substrate) and the carbon-to-nitrogen ratio (C/N ratio) of the fermentation substrate are listed in Table 1 below. In Table 1, the C/N ratio of the fermentation substrate was obtained by adding the C/N ratio of each component multiplied by the ratio of each component. Here, the C/N ratio of coffee grounds is about 20, the C/N ratio of corn coarse grains is about 97.3, the C/N ratio of soybean flour with husks is about 4.7, and the C/N ratio of rice husks is about 4.7. The N ratio was about 90. For example, the fermentation substrate of Example 1 contains 60% by weight coffee grounds (C/N ratio: 20), 30% by weight corn grits (C/N ratio: 97.3), and 10% by weight rice husks (C/N ratio: 97.3). /N ratio: 90), thus the C/N ratio of the fermentation substrate of Example 1 was about 50.2.

<実施例2~9:飼料添加物> <Examples 2 to 9: feed additives>

実施例2~9の調製方法は、実施例1と同様であるが、主な違いは、採用した発酵基質の成分割合とC/N比であった。実施例2~9の各成分の割合(発酵基質の総重量に基づく)および発酵基質のC/N比もまた、以下の表1に列挙した。 The preparation methods of Examples 2 to 9 were the same as in Example 1, but the main differences were the component ratios and C/N ratios of the fermentation substrates employed. The proportion of each component in Examples 2-9 (based on the total weight of the fermentation substrate) and the C/N ratio of the fermentation substrate are also listed in Table 1 below.

<実施例10~14:飼料添加物> <Examples 10 to 14: feed additives>

実施例10~14の調製方法は、実施例1と同様であるが、主な違いは、採用した発酵基質の成分の割合とC/N比であり、実施例10~14の発酵時間は7日とした。実施例10~14の各成分の割合(発酵基質の総重量に基づく)および発酵基質のC/N比もまた、以下の表1に列挙した。 The preparation method of Examples 10-14 is the same as that of Example 1, but the main differences are the ratio of the components of the fermentation substrate and the C/N ratio used, and the fermentation time of Examples 10-14 is 7. days. The proportion of each component in Examples 10-14 (based on the total weight of the fermentation substrate) and the C/N ratio of the fermentation substrate are also listed in Table 1 below.

Figure 2023055600000002
Figure 2023055600000002

<比較例1:未発酵コーヒー粉> <Comparative Example 1: Unfermented coffee powder>

比較例1は、実施例1と同じコーヒー粉、すなわち未発酵コーヒー粉を用いた。 Comparative Example 1 used the same coffee powder as in Example 1, that is, unfermented coffee powder.

<試験例1:消化酵素の比活性の評価> <Test Example 1: Evaluation of Specific Activity of Digestive Enzymes>

試験例1では、実施例1~9および比較例1について、プロテアーゼ、アミラーゼ、セルラーゼおよびキシラナーゼの比活性を用いて、異なる群の消化酵素の比活性を評価した。 In Test Example 1, for Examples 1-9 and Comparative Example 1, the specific activities of protease, amylase, cellulase and xylanase were used to evaluate the specific activity of different groups of digestive enzymes.

(1) プロテアーゼの比活性の評価
プロテアーゼの比活性の評価は、pH値4.7、温度50℃の条件下で、蛋白質分解のためにプロテアーゼとヘモグロビンを30分間混合することによって蛋白質分解ヘモグロビンを生成し、生成した蛋白質分解ヘモグロビンの量を、ヘモグロビンが蛋白質分解した後に放出されたチロシンの量を分析することによって、行った。ここで、プロテアーゼの活性単位(U)は、チロシンのヘモグロビン単位(HUT)で表した。1 HUTは、0.006規定度(N)の塩酸溶液中で、毎分1.10マイクログラム/ミリリットル(μg/ml)のチロシンがヘモグロビンから放出されることを示す。
(1) Evaluation of protease specific activity Evaluation of protease specific activity was performed by mixing protease and hemoglobin for 30 minutes at a pH of 4.7 and a temperature of 50°C to generate proteolytic hemoglobin. , the amount of proteolyzed hemoglobin produced was determined by analyzing the amount of tyrosine released after hemoglobin was proteolyzed. Here, the protease activity unit (U) was expressed as the hemoglobin unit (HUT) of tyrosine. One HUT indicates that 1.10 micrograms per milliliter (μg/ml) of tyrosine is released from hemoglobin per minute in a 0.006 normality (N) hydrochloric acid solution.

具体的には、濃度25μg/ml、50μg/ml、75μg/mlおよび100μg/mlのチロシン標準溶液を予め調製した。そして、これらの標準溶液の275nmにおける吸光度を酵素免疫測定装置(BioTek Instruments, Inc.から購入;モデル: MQX200)で分析した後、濃度1.10μg/mlのチロシン溶液の275nmにおける吸光度を得た。その後、蒸留水100mlにヘモグロビン4gを加え、0.3N塩酸溶液を用いてpH値を1.7に調整した。10分後、0.5モル濃度(M)の酢酸ナトリウム溶液を用いてpH値を4.7に調整し、総容量が200mlになるまで蒸留水を加えてヘモグロビン溶液を得た。一方、5gの実施例1~9の飼料添加物(実施例1~9)及び未発酵コーヒー粉(比較例1)をそれぞれ蒸留水45mlに添加し、温度30℃、回転速度130rpmの条件で2時間高速旋回した後、12000rpmで5分間遠心分離した。上清を実施例1~9および比較例1の試料として回収した。 Specifically, tyrosine standard solutions with concentrations of 25 μg/ml, 50 μg/ml, 75 μg/ml and 100 μg/ml were prepared in advance. Then, after analyzing the absorbance at 275 nm of these standard solutions with an enzyme immunoassay device (purchased from BioTek Instruments, Inc.; model: MQX200), the absorbance at 275 nm of a tyrosine solution with a concentration of 1.10 μg/ml was obtained. After that, 4 g of hemoglobin was added to 100 ml of distilled water, and the pH value was adjusted to 1.7 using 0.3N hydrochloric acid solution. After 10 minutes, 0.5 molar (M) sodium acetate solution was used to adjust the pH value to 4.7, and distilled water was added to a total volume of 200 ml to obtain a hemoglobin solution. On the other hand, 5 g of the feed additives of Examples 1 to 9 (Examples 1 to 9) and unfermented coffee powder (Comparative Example 1) were added to 45 ml of distilled water, respectively, and the temperature was 30 ° C. and the rotation speed was 130 rpm. After spinning at high speed for an hour, it was centrifuged at 12000 rpm for 5 minutes. Supernatants were collected as samples for Examples 1-9 and Comparative Example 1.

次に、実施例1~9および比較例1の試料を蒸留水で5倍に希釈した。その後、実施例1~9及び比較例1の希釈試料100マイクロリットル(μl)を、500μlのヘモグロビン溶液(既に40℃の水浴中に5分間置かれていたもの)に加えて、40℃の水浴中で30分間反応させた後、トリクロロ酢酸500μlを加えて反応を停止させた。室温に30分間置いた後、反応液を12000rpmで5分間遠心分離し、各群の上清を回収し、酵素免疫測定法アナライザーで分析し、各群の275nmにおける吸光度を得た。ここで、各試料の色が異なるため、トリクロロ酢酸を添加した後に各試料をヘモグロビン溶液にそれぞれ添加することによって調製したブランク群を群毎に用意し、これにより、吸光度を分析する際のバックグラウンド値を表すことができるようにした。 The samples of Examples 1-9 and Comparative Example 1 were then diluted 5-fold with distilled water. 100 microliters (μl) of the diluted samples of Examples 1-9 and Comparative Example 1 were then added to 500 μl of hemoglobin solution (which had already been placed in a 40° C. water bath for 5 minutes) and placed in a 40° C. water bath. After reacting for 30 minutes in the medium, 500 μl of trichloroacetic acid was added to stop the reaction. After 30 minutes at room temperature, the reaction mixture was centrifuged at 12000 rpm for 5 minutes, the supernatant of each group was collected and analyzed with an enzyme immunoassay analyzer to obtain the absorbance at 275 nm for each group. Here, since the color of each sample is different, a blank group prepared by adding each sample to the hemoglobin solution after adding trichloroacetic acid is prepared for each group, thereby providing a background when analyzing the absorbance. to be able to represent values.

プロテアーゼの比活性は、以下の説明するように求めた。実施例1~9および比較例1の吸光度から対応するブランク群のバックグラウンド値を差し引いた後、チロシン溶液の濃度1.10μg/mlの吸光度、反応溶液の総体積および反応時間で除し、実施例1~9および比較例1の単位体積中のプロテアーゼの活性を得た。単位はHUT/mlである。また、プロテアーゼ活性の結果を各群の希釈率にさらに乗じて各試料の濃度で除した後、実施例1~9および比較例1のプロテアーゼの比活性を得た。単位はHUT/gであり、実施例1~9および比較例1の試料では、タンパク質の単位重量当たりのプロテアーゼ活性を示している。実施例1~9および比較例1のプロテアーゼの比活性の結果を下記表2に示し、HUT/gを単位/gで表した。 Protease specific activity was determined as described below. After subtracting the background value of the corresponding blank group from the absorbance of Examples 1 to 9 and Comparative Example 1, the absorbance of the tyrosine solution at a concentration of 1.10 μg/ml was divided by the total volume of the reaction solution and the reaction time. 1 to 9 and Comparative Example 1 protease activities per unit volume were obtained. The unit is HUT/ml. Further, after multiplying the result of protease activity by the dilution rate of each group and dividing by the concentration of each sample, the specific activity of proteases of Examples 1 to 9 and Comparative Example 1 was obtained. The unit is HUT/g, and the samples of Examples 1 to 9 and Comparative Example 1 show the protease activity per unit weight of protein. The specific activity results of the proteases of Examples 1 to 9 and Comparative Example 1 are shown in Table 2 below, and HUT/g is expressed in units/g.

(2) アミラーゼの比活性の評価
アミラーゼの比活性の評価では、実施例1~9および比較例1の試料をデンプンと反応させ、次いでヨウ素溶液を添加することで示される色から600nmでの吸光度を分析した。対照群と比較したときの試料の吸光度の減少は、試料中のアミラーゼの割合を示しており、これにより、各群のアミラーゼの比活性を得ることができた。
(2) Evaluation of amylase specific activity In the evaluation of amylase specific activity, the samples of Examples 1 to 9 and Comparative Example 1 were reacted with starch, and then the absorbance at 600 nm from the color indicated by adding an iodine solution. was analyzed. The decrease in absorbance of the samples compared to the control group indicated the percentage of amylase in the sample, which allowed to obtain the specific activity of amylase for each group.

具体的には、デンプン0.04gを秤量し、リン酸緩衝液に全量100ml溶解し、デンプン溶液を得た。また、ヨウ化カリウム0.277gを秤量し、濃度0.1Nのヨウ素酸カリウム溶液4.6ml、塩酸溶液0.93ml、超純水100mlと混合して着色液を得た。また、5gの実施例1~9の飼料添加物及び比較例1の未発酵コーヒー粉をそれぞれ蒸留水45mlに添加し、温度25℃、回転速度130rpmの条件で2時間高速攪拌した後、12000rpmで5分間遠心分離した。上清を実施例1~9および比較例1の試料として回収した。 Specifically, 0.04 g of starch was weighed and dissolved in 100 ml of phosphate buffer to obtain a starch solution. Further, 0.277 g of potassium iodide was weighed and mixed with 4.6 ml of 0.1N potassium iodate solution, 0.93 ml of hydrochloric acid solution and 100 ml of ultrapure water to obtain a colored liquid. In addition, 5 g of the feed additives of Examples 1 to 9 and the unfermented coffee powder of Comparative Example 1 were each added to 45 ml of distilled water, stirred at high speed for 2 hours at a temperature of 25 ° C. and a rotation speed of 130 rpm, and then stirred at 12000 rpm. Centrifuged for 5 minutes. Supernatants were collected as samples for Examples 1-9 and Comparative Example 1.

次に、実施例1~9および比較例1の試料を蒸留水で5倍に希釈した。その後、実施例1~9および比較例1の希釈試料10μlを、デンプン溶液(既に37℃の水浴中に2分間予熱しておいた)500μlにそれぞれ添加し、37℃の水浴中で8分間反応させた。次いで、反応液に着色液500μlを加えた後、超純水4000μlを加え5分間反応させ、8000rpmで5分間遠心分離した。各群の上清を回収し、再び8000rpmで5分間遠心分離した。次いで、上清を回収し、酵素免疫測定装置で分析し、各群の660nmにおける吸光度を得た。ここで、ブランク群は、アミラーゼを含む試料を添加しなかった群とした。 The samples of Examples 1-9 and Comparative Example 1 were then diluted 5-fold with distilled water. After that, 10 μl of the diluted samples of Examples 1-9 and Comparative Example 1 were added to 500 μl of starch solution (already preheated in a 37° C. water bath for 2 minutes), respectively, and reacted in a 37° C. water bath for 8 minutes. let me Next, after adding 500 µl of a coloring solution to the reaction solution, 4000 µl of ultrapure water was added, reacted for 5 minutes, and centrifuged at 8000 rpm for 5 minutes. The supernatant of each group was collected and centrifuged again at 8000 rpm for 5 minutes. The supernatant was then collected and analyzed with an enzyme immunoassay to obtain the absorbance at 660 nm for each group. Here, the blank group was a group to which no amylase-containing sample was added.

アミラーゼの比活性は、次のように求めた。ブランク群の吸光度から実施例1~9および比較例1の吸光度を差し引いた後、その結果をブランク群の吸光度で割り、800を乗じ、実施例1~9および比較例1の単位体積中のアミラーゼの活性を得た。単位は単位/dlである。また、アミラーゼの活性の結果に対し、各群の希釈率にさらに乗じて100で割り、実施例1~9および比較例1のアミラーゼの比活性を得た。単位は単位/gである。実施例1~9および比較例1のアミラーゼの比活性の結果を以下の表2に示す。 The amylase specific activity was determined as follows. After subtracting the absorbance of Examples 1-9 and Comparative Example 1 from the absorbance of the blank group, the result is divided by the absorbance of the blank group, multiplied by 800, and amylase per unit volume of Examples 1-9 and Comparative Example 1 activity was obtained. Units are units/dl. Further, the amylase activity results were multiplied by the dilution rate of each group and divided by 100 to obtain the amylase specific activities of Examples 1 to 9 and Comparative Example 1. The unit is unit/g. The amylase specific activity results of Examples 1-9 and Comparative Example 1 are shown in Table 2 below.

3) セルラーゼの比活性の評価
セルラーゼの活性は、pH値5.0、温度37℃の条件下で、セルロースから放出されるグルコースの1マイクロモル(μmole)を1単位と定義した。この実験は、Sigma-Aldrich Corporationの「Enzymatic Assay of Cellulase」(セルラーゼの酵素分析)に記載された手順に従って行い、実施例1~9および比較例1のアミラーゼの比活性の結果を得た。結果を表2に示す。
3) Evaluation of Cellulase Specific Activity One unit of cellulase activity was defined as 1 μmole of glucose released from cellulose under the conditions of pH 5.0 and temperature 37°C. This experiment was performed according to the procedure described in "Enzymatic Assay of Cellulase" by Sigma-Aldrich Corporation and gave amylase specific activity results for Examples 1-9 and Comparative Example 1. Table 2 shows the results.

(4) キシラナーゼの比活性の評価
キシラナーゼの活性は、pH値4.5、温度30℃の条件下で、キシランから放出されるキシラノースの1μmolを1単位と定義した。この実験は、Sigma-Aldrich Corporationの「Enzymatic Assay of XYLANASE (EC 3.2.1.8)」(キシラナーゼの酵素分析)に示される手順に従って行われ、実施例1~9および比較例1のキシラナーゼの比活性の結果を得た。結果を表2に示す。
(4) Evaluation of Specific Activity of Xylanase One unit of xylanase activity was defined as 1 μmol of xylanose released from xylan under conditions of pH 4.5 and temperature 30°C. This experiment was performed according to the procedure set forth in Sigma-Aldrich Corporation's "Enzymatic Assay of XYLANASE (EC 3.2.1.8)" (enzymatic assay of xylanases) and determined the specific activity of the xylanases of Examples 1-9 and Comparative Example 1. got the result. Table 2 shows the results.

Figure 2023055600000003
Figure 2023055600000003

上記表2の結果からわかるように、プロテアーゼ、アミラーゼ、セルラーゼ、キシラナーゼの比活性を評価した試験では、比較例1の各消化酵素の比活性は検出されなかった。つまり、比較例1の未発酵コーヒー粉では、これらの消化酵素の比活性が測定可能なレベルまでないことが明らかになった。実施例1~9の結果では、これらの群のプロテアーゼ、アミラーゼ、セルラーゼ、キシラナーゼの比活性が全て検出された。これらの群では、プロテアーゼの比活性が高かった(355.80単位/g~973.77単位/g)。従って、実施例1~9の飼料添加物は、実際に、比較例1の未発酵コーヒー粉と比較して高い比活性の消化酵素を有していた。 As can be seen from the results in Table 2 above, in the test evaluating the specific activities of protease, amylase, cellulase and xylanase, no specific activity of each digestive enzyme of Comparative Example 1 was detected. In other words, it was revealed that the unfermented coffee powder of Comparative Example 1 did not have a measurable level of specific activity of these digestive enzymes. In the results of Examples 1 to 9, specific activities of proteases, amylases, cellulases and xylanases of these groups were all detected. These groups had high protease specific activities (355.80 Units/g to 973.77 Units/g). Thus, the feed additives of Examples 1-9 actually had higher specific activities of digestive enzymes compared to the unfermented coffee grounds of Comparative Example 1.

さらに、上記の表1に列挙された成分の割合および発酵基質のC/N比を参照すると、実施例1および実施例5は、それぞれ50.2および50.9と同様の発酵基質のC/N比を有しているが、実施例1の発酵基質は、さらに10重量%の米殻を含んでおり、これにより、実施例1のプロテアーゼおよびアミラーゼの比活性は、実施例5と比較してさらに上昇した。つまり、特定の含有量範囲の米殻を発酵基質に添加することで、実際に、プロテアーゼおよびアミラーゼの比活性をさらに上昇させることができた。 Further, referring to the component proportions and fermentation substrate C/N ratios listed in Table 1 above, Examples 1 and 5 have fermentation substrate C/N ratios similar to 50.2 and 50.9, respectively. However, the fermentation substrate of Example 1 contained an additional 10% by weight of rice husks, which further increased the protease and amylase specific activities of Example 1 compared to Example 5. . Thus, adding a specific content range of rice husks to the fermentation substrate could actually further increase the specific activities of proteases and amylases.

<試験例2:発酵時間が消化酵素の比活性に及ぼす影響>
試験例2では、実施例10~14を用いた。具体的には、実施例10~14の調製工程において、滅菌した発酵基質3kgに6.5×107胞子/g以上のAspergillus oryzae 1.5g~3gを添加し、30℃で7日間発酵させた後、それぞれ発酵時間を3日、4日、5日、6日、7日に変えて発酵基質試料を採取した。試料を50℃で12時間~14時間乾燥させ、水分含量を7.5%未満にした後、試験例1と同じ方法に従い、異なる発酵時間毎に、実施例10~14の飼料添加物のプロテアーゼおよびアミラーゼの比活性を得た。その結果をそれぞれ表3および表4に示す。
<Test Example 2: Effect of fermentation time on specific activity of digestive enzyme>
In Test Example 2, Examples 10 to 14 were used. Specifically, in the preparation steps of Examples 10 to 14, 1.5 g to 3 g of Aspergillus oryzae at 6.5×10 7 spores/g or more was added to 3 kg of sterilized fermentation substrate, and fermented at 30° C. for 7 days. Fermentation substrate samples were collected at different fermentation times of 3 days, 4 days, 5 days, 6 days and 7 days. After drying the sample at 50°C for 12-14 hours to a moisture content of less than 7.5%, the proteases and amylases of the feed additives of Examples 10-14 were tested according to the same method as in Test Example 1 for different fermentation times. of specific activity was obtained. The results are shown in Tables 3 and 4, respectively.

Figure 2023055600000004
Figure 2023055600000004

表3の結果によれば、実施例10~14の飼料添加物のプロテアーゼの比活性は、3日間に亘る発酵により、すべて340単位/gより高く、実施例13および実施例14では、3日間の発酵後に、それぞれ、697.6単位/gおよび825.88単位/gの高いプロテアーゼの比活性であった。また、実施例10~14のプロテアーゼの比活性は、発酵時間が長くなるにつれて上昇する傾向を示した。 According to the results in Table 3, the protease specific activities of the feed additives of Examples 10-14 were all higher than 340 units/g by fermentation over 3 days, After fermentation, the protease specific activities were as high as 697.6 units/g and 825.88 units/g, respectively. In addition, the protease specific activities of Examples 10 to 14 tended to increase as the fermentation time lengthened.

プロテアーゼの比活性と発酵時間との関係を明確に示すために、表3の結果も図2Aに示す。図2Aによれば、プロテアーゼの比活性は、発酵時間が増加するにつれて実際に上昇し、発酵時間の4~6日後に明らかな上昇があった。 To clearly show the relationship between protease specific activity and fermentation time, the results of Table 3 are also shown in FIG. 2A. According to FIG. 2A, the protease specific activity actually increased with increasing fermentation time, with a clear increase after 4-6 days of fermentation time.

Figure 2023055600000005
Figure 2023055600000005

表4の結果によれば、実施例10~14の飼料添加物のアミラーゼの比活性は、3日間の発酵に亘って、すべて89単位/gより高く、実施例10および実施例11では、3日間の発酵後に、それぞれ167.89単位/gおよび165.02単位/gの高いアミラーゼ比活性を示した。また、実施例10~14のアミラーゼの比活性も、発酵時間が長くなるにつれて上昇する傾向を示した。
アミラーゼの比活性と発酵時間との関係を明確に示すために、表4の結果も図2Bに示す。図2Bに示すように、アミラーゼの比活性は、発酵時間が増加するにつれて実際に上昇し、発酵時間の4~6日後に明らかな上昇があった。
According to the results in Table 4, the amylase specific activities of the feed additives of Examples 10-14 were all higher than 89 units/g over 3 days of fermentation, and in Examples 10 and 11, 3 After fermenting for days, they exhibited high amylase specific activities of 167.89 units/g and 165.02 units/g, respectively. The amylase specific activities of Examples 10 to 14 also tended to increase as the fermentation time lengthened.
To clearly show the relationship between amylase specific activity and fermentation time, the results of Table 4 are also shown in FIG. 2B. As shown in Figure 2B, the amylase specific activity actually increased with increasing fermentation time, with a clear increase after 4-6 days of fermentation time.

<試験例3:動物の成長促進効果の評価>
試験例3では、実施例1の飼料添加物を用いた。具体的には、離乳子豚120頭(雄子豚60頭、雌子豚60頭、平均体重7.15kg)を、各群が40頭(雄子豚20頭、雌子豚20頭)となるようにランダムに3群に分け、それらを低用量群、高用量群、対照群に設定した。基本飼料の各トン当たり実施例1の飼料添加物0.5kgを含有するものを低用量群、基本飼料の各トン当たり実施例1の飼料添加物1kgを含有するものを高用量群、複合酵素およびコリスチンを含まない基本飼料のみを対照群、とした。
<Test Example 3: Evaluation of growth promoting effect on animals>
In Test Example 3, the feed additive of Example 1 was used. Specifically, 120 weaned piglets (60 male piglets, 60 female piglets, average weight 7.15 kg), with 40 piglets in each group (20 male piglets, 20 female piglets). They were randomly divided into 3 groups, and they were set as a low dose group, a high dose group, and a control group. A low dose group containing 0.5 kg of the feed additive of Example 1 per ton of basal feed, a high dose group containing 1 kg of the feed additive of Example 1 per ton of basal feed, complex enzymes and A control group consisted of only the basal diet containing no colistin.

実験方法は、離乳子豚が離乳した後、離乳子豚に前述の異なる群の飼料を毎日6ヶ月間与えたものであった。子豚の成長を評価するために、1日の体重および飼料摂取量を記録して、ある期間にわたって増加した体重、1日当たりの平均増加量(ADG)および飼料転換率(FCR:Feed conversion ratio)を得た。ADGが高く、FCRの値が低いほど、飼料の成長を促進する効果は良好であった。上記の異なる群の飼料を4週間給餌した子豚の結果を以下の表5に列挙し、上記の異なる群の飼料を6週間給餌した子豚の結果を以下の表6に列挙した。 The experimental method was that after the weaned piglets were weaned, the weaned piglets were fed the different groups of diets mentioned above daily for 6 months. To assess piglet growth, daily body weight and feed intake were recorded and body weight gained over time, average daily gain (ADG) and feed conversion ratio (FCR). got The higher the ADG and the lower the FCR value, the better the growth-promoting effect of the diet. The results of the piglets fed the different groups of diets described above for 4 weeks are listed in Table 5 below, and the results of the piglets fed the different groups of diets described above for 6 weeks are listed in Table 6 below.

Figure 2023055600000006
Figure 2023055600000006

Figure 2023055600000007
Figure 2023055600000007

表5の結果によれば、給餌開始から2週目までの体重増加は、低用量群、高用量群および対照群で同等であった。4週目まで子豚に連続給餌した場合、2週目から4週目までの体重増加は、低用量群および高用量群では対照群よりも明らかに高く、それぞれ約33%および37.5%増加した。4週目の体重、2週目から4週目までのADG、2週目から4週目までのFCRの結果については、対照群と比較して、低用量群と高用量群の両方が良好な結果を示し、4週目では比較的高い体重、2週目から4週目までは比較的高いADG、2週目から4週目までは比較的低いFCRを示した。 According to the results in Table 5, the weight gain from the start of feeding to the second week was similar among the low-dose group, high-dose group and control group. When the piglets were continuously fed up to the 4th week, the weight gain from the 2nd to the 4th week was significantly higher in the low- and high-dose groups than in the control group, increasing by approximately 33% and 37.5%, respectively. . Body weight at week 4, ADG from weeks 2 to 4, and FCR from weeks 2 to 4 were better in both the low-dose and high-dose groups compared to the control group relatively high body weight at 4 weeks, relatively high ADG from 2 to 4 weeks, and relatively low FCR from 2 to 4 weeks.

一方、表6の結果では、6週目まで子豚に連続給餌した場合、6週目の体重は、依然として、低用量群と高用量群ともに対照群よりも高かった。同様に、給与開始から6週目までに増えた体重、給与開始から6週目までのADGおよび給与開始から6週目までのFCRにかかわらず、低用量群、高用量群ともに対照群より良好な結果が得られ、給与開始から6週目までに、より多くの体重増加、より高いADGおよび、より低いFCRを示していた。したがって、本発明の方法から調製された飼料添加物を基本動物飼料に添加することで、実際に動物の成長を促進する効果を発揮することができた。 On the other hand, according to the results in Table 6, when the piglets were continuously fed until the 6th week, the body weight at the 6th week was still higher than the control group in both the low dose group and the high dose group. Similarly, regardless of body weight gain by week 6, ADG by week 6, and FCR by week 6, both low-dose and high-dose groups were superior to controls. showed greater weight gain, higher ADG and lower FCR by week 6 of feeding. Therefore, by adding the feed additive prepared by the method of the present invention to the basic animal feed, it was possible to actually exert the effect of promoting the growth of the animal.

<試験例4:静菌作用の評価>
本試験例では、実施例1の飼料添加物および比較例1の未発酵コーヒー粉を用いて、異なる種類の病原体に対する静菌作用を試験し、これらの群の静菌効果を評価した。
<Test Example 4: Evaluation of bacteriostatic action>
In this test example, the feed additive of Example 1 and the unfermented coffee powder of Comparative Example 1 were used to test the bacteriostatic action against different types of pathogens, and the bacteriostatic effects of these groups were evaluated.

(1) Escherichia coli、Streptococcus suisおよびSalmonella choleraesuisに対する静菌の効果 (1) Bacteriostatic effect on Escherichia coli, Streptococcus suis and Salmonella choleraesuis

5gの実施例1の飼料添加物および比較例1の未発酵コーヒー粉を秤量し、それぞれ25mlの蒸留水に添加し、続いて30分間高速攪拌し、次いで10000rpmで10分間遠心分離した。上清を集め、孔径0.45μmのPES膜で濾過した後、凍結乾燥して粗生成物を得た。次いで、粗生成物200mgを蒸留水1mlに溶解し、実施例1及び比較例1の試験液を調製した。 5 g of the feed additive of Example 1 and the unfermented coffee powder of Comparative Example 1 were weighed and added to 25 ml of distilled water, respectively, followed by high speed stirring for 30 minutes and then centrifuging at 10000 rpm for 10 minutes. The supernatant was collected, filtered through a PES membrane with a pore size of 0.45 μm, and then lyophilized to obtain a crude product. Next, 200 mg of the crude product was dissolved in 1 ml of distilled water to prepare test solutions for Example 1 and Comparative Example 1.

次に、Escherichia coli、Streptococcus suisおよびSalmonella choleraesuisのコロニーを滅菌綿棒により採取し、それぞれに応じた適切な固体培地に付着させた。ここでは、Escherichia coliおよびSalmonella choleraesuisについて国際標準試験法のMueller Hinton寒天(MH寒天)を採用し、37℃で16時間~18時間培養し、Streptococcus suisについては5%ヒツジ血液を含む血液寒天を採用し、37℃で16時間~18時間培養した。 Colonies of Escherichia coli, Streptococcus suis and Salmonella choleraesuis were then picked with sterile cotton swabs and attached to appropriate solid media. Here, for Escherichia coli and Salmonella choleraesuis, the international standard test method Mueller Hinton agar (MH agar) is adopted, cultured at 37°C for 16 to 18 hours, and for Streptococcus suis, blood agar containing 5% sheep blood is adopted. and incubated at 37°C for 16-18 hours.

その後、固形培地の異なる地点(スポット)を除去して直径8mmの孔を作り、固形培地の異なる孔に、実施例1および比較例1の試験溶液100μlを入れた。さらに、陽性の対照群として、1000ppmのコリシチンおよび100ppmのゲンタマイシンをそれぞれ固体培地の別の孔に入れた。これらの固形培地を、個々の病原体の特性に応じた適切な条件で24時間培養した後、固形培地上に現れる阻害ゾーンの直径を測定した。結果を表7に示す。単位はmmである。 After that, different points (spots) of the solid medium were removed to make holes with a diameter of 8 mm, and 100 μl of the test solutions of Example 1 and Comparative Example 1 were put into the different holes of the solid medium. In addition, 1000 ppm of colicitin and 100 ppm of gentamicin were placed in separate wells of the solid medium as positive controls. After culturing these solid media for 24 hours under appropriate conditions according to the characteristics of individual pathogens, the diameter of the zone of inhibition appearing on the solid media was measured. Table 7 shows the results. The unit is mm.

Figure 2023055600000008
Figure 2023055600000008

表7の結果に示すように、比較例1の、Escherichia coli、Streptococcus suisおよびSalmonella choleraesuisの固体培地は、直径を測定できるような阻害ゾーンがなく、これは、比較例1が、上記の各病原体についての静菌作用を有さないことを示している。実施例1については、Escherichia coliおよびStreptococcus suisの固体培地上の阻害ゾーンの直径を測定した結果は、それぞれ12mmおよび14mmであり、ゲンタマイシンと同じ結果が得られた。また、実施例1のSalmonella choleraesuisの固体培地上の阻害ゾーンの直径を測定した結果は12mmであり、これはコリスチンと同様の結果であった。 As shown in the results in Table 7, the Escherichia coli, Streptococcus suis and Salmonella choleraesuis solid media of Comparative Example 1 did not have a zone of inhibition whose diameter could be measured. It shows that it does not have a bacteriostatic effect on For Example 1, the measured diameters of the zones of inhibition on solid media of Escherichia coli and Streptococcus suis were 12 mm and 14 mm, respectively, the same result as gentamicin. In addition, the diameter of the inhibition zone on the solid medium of Salmonella choleraesuis in Example 1 was measured to be 12 mm, which was similar to colistin.

また、固形培地上に阻害ゾーンが出現するか否かを明確に示すために、Escherichia coli、Streptococcus suis、Salmonella choleraesuisについての上記群の静菌の結果をそれぞれ図3A~図3Cに示した。 In addition, in order to clearly show whether or not zones of inhibition appear on the solid medium, the bacteriostatic results of the above groups for Escherichia coli, Streptococcus suis and Salmonella choleraesuis are shown in FIGS. 3A to 3C, respectively.

Escherichia coliの静菌作用の結果を示す図3Aでは、比較例1、実施例1、ゲンタマイシンの結果をそれぞれ左から右に、A1、A2、A3として示した。図3Aでは、A3群の孔の周りに明らかな阻害ゾーンが現れ、これは、結果が実験操作によって影響されなかったことを示している。A1群とA2群の結果では、A2群の孔の周りにも明らかな阻害ゾーンが現れ、A3群の結果と同様であったが、A1群の孔の周りには明らかな阻害ゾーンは観察されなかった。 In FIG. 3A showing the results of bacteriostatic action on Escherichia coli, the results for Comparative Example 1, Example 1, and gentamicin are shown from left to right as A1, A2, and A3, respectively. In FIG. 3A, a clear zone of inhibition appeared around the pores of group A3, indicating that the results were not affected by the experimental manipulation. In the results of groups A1 and A2, a clear zone of inhibition also appeared around the pores of group A2, similar to the results of group A3, but no clear zone of inhibition was observed around the pores of group A1. I didn't.

Streptococcus suisの静菌の結果を示す図3Bでは、比較例1、実施例1、ゲンタマイシンの結果をそれぞれ左から右に、B1、B2、B3として示した。図3Bでは、B3群の孔の周りに明らかな阻害ゾーンが現れ、これは、結果が実験操作によって影響されなかったことを示した。B1群とB2群の結果では、B2群の孔周辺にも明らかな阻害ゾーンが出現し、B3群の結果と同様であったが、B1群の孔周辺には明らかな阻害ゾーンは認められなかった。 In FIG. 3B, which shows the results of bacteriostasis of Streptococcus suis, the results of Comparative Example 1, Example 1, and gentamicin are indicated from left to right as B1, B2, and B3, respectively. In FIG. 3B, a clear zone of inhibition appeared around the pores of the B3 group, indicating that the results were not affected by the experimental manipulation. In the results of groups B1 and B2, a clear zone of inhibition also appeared around the hole in group B2, which was similar to the result of group B3, but no clear zone of inhibition was observed around the hole in group B1. rice field.

Salmonella choleraesuisの静菌の結果を示す図3Cにおいて、比較例1、実施例1、コリスチンの結果をそれぞれ左から右に、C1、C2、C3として示した。図3Cでは、明らかな阻害ゾーンがC3群の孔の周りに現れ、これは、結果が実験操作によって影響されなかったことを示した。C1群とC2群の結果については、C2群の孔周辺には明らかな阻害ゾーンが出現し、C3群の結果と同様であったが、C1群の孔周辺には明らかな阻害ゾーンは認められなかった。 In FIG. 3C showing the results of bacteriostasis of Salmonella choleraesuis, the results of Comparative Example 1, Example 1 and Colistin are indicated from left to right as C1, C2 and C3, respectively. In FIG. 3C, a clear zone of inhibition appeared around the pores in group C3, indicating that the results were not affected by the experimental manipulation. Regarding the results of groups C1 and C2, a clear zone of inhibition appeared around the hole in group C2, similar to the results of group C3, but no clear zone of inhibition was observed around the hole in group C1. I didn't.

上記表7および図3A~図3Cの結果によれば、比較例1の未発酵コーヒー粉に、本発明の方法の処理を施して、実施例1の飼料添加物を調製すると、その飼料添加物は、実際にEscherichia coli、Streptococcus suisおよびSalmonella choleraesuisに対する静菌効果を有しており、抗生物質と同等であった。 According to the results in Table 7 and FIGS. 3A to 3C, the unfermented coffee powder of Comparative Example 1 was treated by the method of the present invention to prepare the feed additive of Example 1. actually had bacteriostatic effects against Escherichia coli, Streptococcus suis and Salmonella choleraesuis, comparable to antibiotics.

(2) Lactobacillus caseiに対する静菌作用
実施例1および比較例1の試験溶液を、前述の(1) Streptococcus suis、Escherichia coliおよびSalmonella choleraesuisに対する静菌作用に示した方法に従って調製し、食用に安全なプロバイオティクスの一種であるLactobacillus caseiに対する静菌効果を評価した。具体的には、de Man、Rogosa、Sharpe寒天(MRS寒天)をLactobacillus caseiに用い、固体培地を嫌気性インキュベーターに入れ、37℃で24時間嫌気的に培養した。次いで、固形培地の異なる地点をスポット的に除去して直径8mmの孔を得、実施例1および比較例1の濃度200mg/mlの試験溶液100μl、ペニシリン100 U/mlおよびストレプトマイシン100ppmの試験溶液を、固形培地の異なる孔に入れた。次に、固体培地を嫌気性インキュベーターに入れ、37℃で72時間嫌気的に培養した後、固体培地上に現れる阻害ゾーンの直径を測定した。単位はmmとした。
(2) Bacteriostatic action against Lactobacillus casei The test solutions of Example 1 and Comparative Example 1 were prepared according to the method shown in (1) Bacteriostatic action against Streptococcus suis, Escherichia coli and Salmonella choleraesuis described above, and were found to be safe for human consumption. The bacteriostatic effect on Lactobacillus casei, a kind of probiotics, was evaluated. Specifically, de Man, Rogosa, Sharpe agar (MRS agar) was used for Lactobacillus casei, the solid medium was placed in an anaerobic incubator, and anaerobically cultured at 37°C for 24 hours. Then, different points of the solid medium were spotted to obtain holes with a diameter of 8 mm, and 100 μl of the test solution of Example 1 and Comparative Example 1 with a concentration of 200 mg/ml, penicillin of 100 U/ml and streptomycin of 100 ppm. , placed in different holes of the solid medium. Next, the solid medium was placed in an anaerobic incubator and anaerobically cultured at 37° C. for 72 hours, after which the diameter of the inhibition zone appearing on the solid medium was measured. The unit is mm.

Lactobacillus caseiの静菌の結果を図4に示す。図中、比較例1、実施例1およびペニシリンおよびストレプトマイシンの抗生物質の結果をそれぞれ左から右に、A1、A2およびA3と標識して示した。図4に示す結果では、A3群の孔の周囲に明らかな阻害ゾーンが現れ、阻害ゾーンは28mmと測定され、このことは、結果が実験操作によって影響されないことを示した。A1群およびA2群の結果では、これらの群においては明らかな阻害ゾーンは観察されなかった。すなわち、比較例1および実施例1はいずれも、Lactobacillus caseiの増殖を抑制する効果を有していなかった。したがって、比較例1の未発酵コーヒー粉に本発明の方法の処理を施して、実施例1の飼料添加物を調製した場合に、その飼料添加物は、Lactobacillus caseiなどのプロバイオティクスの増殖に影響を及ぼさなかった。 FIG. 4 shows the results of bacteriostasis of Lactobacillus casei. In the figure, the results for Comparative Example 1, Example 1 and penicillin and streptomycin antibiotics are shown from left to right labeled A1, A2 and A3, respectively. In the results shown in Figure 4, a clear zone of inhibition appeared around the pores of group A3, and the zone of inhibition measured 28 mm, indicating that the results were not affected by the experimental manipulation. The results for groups A1 and A2 showed no obvious zone of inhibition observed in these groups. That is, neither Comparative Example 1 nor Example 1 had the effect of suppressing the growth of Lactobacillus casei. Therefore, when the unfermented coffee powder of Comparative Example 1 was treated by the method of the present invention to prepare the feed additive of Example 1, the feed additive was found to be effective in the growth of probiotics such as Lactobacillus casei. had no effect.

(3) 最小発育阻止濃度(MIC)および最小殺菌濃度(MBC)の評価
実施例1の試験溶液を、前述の(1)静菌作用の実験で示した方法に従って調製した。この実験は、MICおよびMBCを評価するために、Clinical and Laboratory Standards Institute (CLSI)によって規定されたブロス微量希釈試験に従って行った。病原体として、一般的な家禽病原体および家畜病原体を用いた。家禽病原体はRiemerella anatipestifer、Gallibacterium anatis、Escherichia coli、Salmonella spp.およびStaphylococcus spp.を含み、家畜病原体はStaphylococcus hyicus、Streptococcus suis、Escherichia coliおよびSalmonella choleraesuisを含むものとした。
(3) Evaluation of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) The test solution of Example 1 was prepared according to the method shown in (1) Bacteriostatic action experiment above. This experiment was performed according to the broth microdilution test specified by the Clinical and Laboratory Standards Institute (CLSI) to assess MIC and MBC. Common poultry and livestock pathogens were used as pathogens. Poultry pathogens included Riemerella anatipestifer, Gallibacterium anatis, Escherichia coli, Salmonella spp. and Staphylococcus spp., and livestock pathogens included Staphylococcus hyicus, Streptococcus suis, Escherichia coli and Salmonella choleraesuis.

具体的には、上述した様々な種類の病原体をトリプトン大豆ブロス(TSB)中で培養し、その濃度を、光学濁度計の試験管の濁度値(病原体を含まないTSBの値を差し引いた後)に基づいて、0.5 McFarland、すなわち1.5×108 コロニー/ミリリットル(cfu/ml)に調整した。次に、実施例1の試験溶液をTSBで2倍連続希釈した後、希釈した試験溶液200μlを滅菌した96ウェルプレートに入れた。前述の病原体を含む溶液10μlも滅菌した96ウェルプレートに入れ、試験溶液と均一に混合し、病原体の最終濃度を約5×105 cfu/ml~106 cfu/mlとした。その後、96ウェルプレートを適切な条件下で18時間~24時間培養した後、観察のために取り出した。 Specifically, the various types of pathogens described above were cultured in tryptone soy broth (TSB) and their concentrations were calculated by subtracting the turbidity value of the optical turbidity test tube (pathogen-free TSB). post), adjusted to 0.5 McFarland, or 1.5×10 8 colonies/milliliter (cfu/ml). The test solution of Example 1 was then serially diluted 2-fold in TSB and 200 μl of the diluted test solution was placed in a sterile 96-well plate. 10 μl of the pathogen-containing solution described above was also placed in a sterile 96-well plate and mixed evenly with the test solution to give a final pathogen concentration of approximately 5×10 5 cfu/ml to 10 6 cfu/ml. The 96-well plates were then cultured under appropriate conditions for 18-24 hours before being removed for observation.

試験溶液が静菌作用を有するならば、病原体の増殖を阻害するので、ブロスは澄明で透明である。ブロスを澄明かつ透明に保つことができる試験溶液の最小濃度をMICとした。また別に、ブロスを固体培地で24時間培養した後に、固体培地上に観察可能なコロニーが形成されない最小濃度をMBCとした。実施例1の各病原体のMICおよびMBCを以下の表8に示す。各病原体は、5以上の株数で試験した。 If the test solution has a bacteriostatic action, it inhibits the growth of pathogens, so the broth is clear and transparent. The MIC was the lowest concentration of test solution that allowed the broth to remain clear and transparent. Alternatively, MBC was taken as the minimum concentration at which observable colonies did not form on solid medium after 24 hours incubation of the broth on solid medium. The MIC and MBC for each pathogen in Example 1 are shown in Table 8 below. Each pathogen was tested in 5 or more strains.

Figure 2023055600000009
Figure 2023055600000009

表8の結果によれば、実施例1の飼料添加物は、異なる種類の家禽病原体について、MICおよびMBCがともに50mg/ml以下であった。実施例1の飼料添加物は、Riemerella anatipestiferおよびGallibacterium anatisに対して特に良好な静菌性を有し、MICはそれぞれ1.56~6.25mg/mlおよび6.12~12.5mg/mlであり、MBCはそれぞれ3.13~12.25mg/mlおよび12.5mg/mlであった。異なる種類の家畜病原体については、実施例1の飼料添加物のMICおよびMBCはともに、50mg/ml以下であった。 According to the results in Table 8, the feed additive of Example 1 had both MIC and MBC below 50 mg/ml for different types of poultry pathogens. The feed additive of Example 1 has particularly good bacteriostasis against Riemerella anatipestifer and Gallibacterium anatis, with MICs of 1.56-6.25 mg/ml and 6.12-12.5 mg/ml respectively, and an MBC of 3.13 respectively. ~12.25 mg/ml and 12.5 mg/ml. For different types of livestock pathogens, both the MIC and MBC of the feed additive of Example 1 were below 50 mg/ml.

試験例4の結果によれば、本発明の方法によって調製された飼料添加物は、実際に、多くの種類の病原体の増殖を阻害したが、同時にLactobacillus caseiの増殖に影響を及ぼすことはない、という効果を有していた。したがって、この飼料添加物は、プロバイオティクスに影響を及ぼすことなく、病原体に対する選択的な静菌効果を有した。 According to the results of Test Example 4, the feed additive prepared by the method of the present invention actually inhibited the growth of many kinds of pathogens, but did not affect the growth of Lactobacillus casei at the same time. had the effect of Therefore, this feed additive had a selective bacteriostatic effect against pathogens without affecting probiotics.

<試験例5:呼吸器疾患に対する効果の評価>
試験例5では、実施例1の飼料添加物と、呼吸器疾患の病原体としてMycoplasma hyopneumoniaeおよびMycoplasma pneumoniaを用いて、以下の実験を行った。Mycoplasma hyopneumoniaeおよびMycoplasma pneumoniaのATCC数は、それぞれATCC 25934およびATCC 39342であった。以下の実験では、実施例1の試料添加物2gを秤量し、70%アルコール4mlを加えて溶液を得た。その後、室温で1時間超音波抽出した後、12000rpmで10分間遠心分離し、上清を回収した。その後、上澄み液の溶媒を真空濃縮により除去し、実施例1の飼料添加物の抽出物を得た。抽出物を、以下の実験の試験試料とした。以下では、この抽出物試料をMEと略記する。
<Test Example 5: Evaluation of effect on respiratory diseases>
In Test Example 5, the following experiment was performed using the feed additive of Example 1 and Mycoplasma hyopneumoniae and Mycoplasma pneumonia as pathogens of respiratory diseases. The ATCC numbers for Mycoplasma hyopneumoniae and Mycoplasma pneumonia were ATCC 25934 and ATCC 39342, respectively. In the following experiments, 2 g of the sample additive of Example 1 was weighed and 4 ml of 70% alcohol was added to obtain a solution. After that, ultrasonic extraction was performed at room temperature for 1 hour, followed by centrifugation at 12000 rpm for 10 minutes to collect the supernatant. Thereafter, the solvent of the supernatant was removed by vacuum concentration to obtain an extract of the feed additive of Example 1. The extract served as the test sample for the following experiments. In the following, this extract sample is abbreviated as ME.

(1) 病原体増殖抑制効果の評価
MEを超音波処理により50%アルコールに溶解し、濃度40mg/mlのME原液を得た。次に、ME原液を孔径0.22μmのろ過膜でろ過した後、濃度104 cfu/mlのMycoplasma hyopneumoniaeを含む培地と、濃度106 cfu/mlのMycoplasma pneumoniaを含む培地にそれぞれ添加し、両病原体の濃度を200μg/ml ME、400μg/ml ME、800μg/ml MEに異ならせた群を得た。Mycoplasma hyopneumoniaeの培地はATCC 1699培地であり、Mycoplasma pneumoniaの培地はATCC 2611培地であった。
(1) Evaluation of pathogen growth inhibitory effect
The ME was dissolved in 50% alcohol by sonication to obtain an ME stock solution with a concentration of 40 mg/ml. Next, after the ME stock solution was filtered through a filtration membrane with a pore size of 0.22 μm, it was added to a medium containing Mycoplasma hyopneumoniae at a concentration of 10 4 cfu/ml and a medium containing Mycoplasma pneumonia at a concentration of 10 6 cfu/ml. A group with different concentrations of 200 μg/ml ME, 400 μg/ml ME, and 800 μg/ml ME was obtained. The medium for Mycoplasma hyopneumoniae was ATCC 1699 medium and the medium for Mycoplasma pneumonia was ATCC 2611 medium.

次に、培養液1mlを培養時間0時間後、12時間後、24時間後、36時間後および48時間後に採取し、採取した培養液を遠心分離して病原体ペレットを得た。病原体ペレットをDNA抽出に供し、得られたDNAをqPCRによって定量して、異なる培養時間毎に病原体量を分析した。Mycoplasma hyopneumoniaeおよびMycoplasma pneumonia のqPCRの結果をそれぞれ図5Aおよび図5Bに示す。培地にMEを添加しない群を対照群とした。 Next, 1 ml of culture was harvested after 0, 12, 24, 36 and 48 hours of culture time, and the harvested culture was centrifuged to obtain a pathogen pellet. Pathogen pellets were subjected to DNA extraction and the resulting DNA was quantified by qPCR to analyze pathogen load at different incubation times. Results of qPCR for Mycoplasma hyopneumoniae and Mycoplasma pneumonia are shown in Figures 5A and 5B, respectively. A group in which ME was not added to the medium was used as a control group.

図5Aにおいて、Mycoplasma hyopneumoniaeについては、800μg/ml ME群の病原体量は、全て、各培養時間で対照群よりも低かった。特に培養時間が48時間目では、対照群と比較して、800μg/ml ME群の病原体量は明らかに低く、0.01未満のp値で統計的に有意であった。図5Bにおいて、Mycoplasma pneumonia(マイコプラズマ肺炎)については、800μg/ml ME群の病原体量は、培養時間が24時間目の対照群よりも低く、400μg/ml ME群および800μg/ml ME群の病原体量は、ともに培養時間36時間目に対照群よりも低く、培養時間48時間目では、200μg/ml ME群、400μg/ml ME群および800μg/ml ME群のすべての病原体量は、対照群よりも低かった。また、対照群と比較して、200μg/ml ME群および400μg/ml ME群は、p値が0.05未満で統計的に有意であり、800μg/ml ME群も、p値が0.01未満で統計的に有意であった。 In FIG. 5A, for Mycoplasma hyopneumoniae, the pathogen load in the 800 μg/ml ME group was all lower than the control group at each incubation time. Compared to the control group, the pathogen load was clearly lower in the 800 μg/ml ME group, especially at 48 hours of culture time, and was statistically significant with a p-value of less than 0.01. In FIG. 5B, for Mycoplasma pneumonia, the amount of pathogens in the 800 μg/ml ME group was lower than that in the control group after 24 hours of culture, and the amount of pathogens in the 400 μg/ml ME group and the 800 μg/ml ME group were lower than the control group at 36 hours of culture, and at 48 hours of culture, all pathogen levels in the 200 μg/ml ME group, 400 μg/ml ME group and 800 μg/ml ME group were higher than the control group. was low. In addition, compared with the control group, the 200 and 400 μg/ml ME groups were statistically significant with p-values less than 0.05, and the 800 μg/ml ME group was also statistically significant with p-values less than 0.01. was significant.

従って、実施例1の飼料添加物は、Mycoplasma hyopneumoniaeおよびMycoplasma pneumoniaの増殖を実際に阻害する効果を有し、800μg/mlのME群が阻害の最良の効果を有していた。 Thus, the feed additive of Example 1 had the effect of actually inhibiting the growth of Mycoplasma hyopneumoniae and Mycoplasma pneumonia, with the 800 μg/ml ME group having the best effect of inhibition.

(2) 病原体感染抑制効果の評価
Mycoplasma hyopneumoniaeおよびMycoplasma pneumoniaにそれぞれ感染した細胞として、PK-15細胞株およびA549細胞株を用い、ゲンタマイシン防御アッセイにより、MEの病原体感染抑制効果を評価した。
(2) Evaluation of pathogen infection suppression effect
Using PK-15 cell line and A549 cell line as cells infected with Mycoplasma hyopneumoniae and Mycoplasma pneumonia, respectively, the inhibitory effect of ME on pathogen infection was evaluated by gentamicin protection assay.

最初に、PK-15細胞株およびA549細胞株の増殖に対する種々の濃度のMEの影響を評価するために細胞生存率の実験を行った。具体的には、10%ウシ胎仔血清(FBS)を含むDMEMを培地として用い、前述の細胞株を96ウェルプレートで一晩培養した。次いで、培養培地を、異なる濃度のMEを含有する培養培地に置き換えて、20時間処理した。次に、MTT試薬(0.5mg/ml)を4時間反応させた後、DMSOを添加して2時間処理した後、570nmの吸光度を測定して細胞生存率を評価した。PK-15細胞株およびA549細胞株の細胞生存率の結果を、それぞれ図6Bおよび図6Dに示す。培地にMEを添加しない群を対照群とした。 Cell viability experiments were first performed to assess the effect of various concentrations of ME on the proliferation of PK-15 and A549 cell lines. Specifically, DMEM containing 10% fetal bovine serum (FBS) was used as a medium, and the aforementioned cell line was cultured overnight in a 96-well plate. The culture medium was then replaced with culture medium containing different concentrations of ME and treated for 20 hours. Next, after reacting with MTT reagent (0.5 mg/ml) for 4 hours, DMSO was added and treated for 2 hours, and the absorbance at 570 nm was measured to evaluate the cell viability. Cell viability results for the PK-15 and A549 cell lines are shown in Figures 6B and 6D, respectively. A group in which ME was not added to the medium was used as a control group.

細胞生存率に影響を与えないMEの濃度を確認した後、病原体感染を阻害する実験を行った。具体的には、PK-15細胞株およびA549細胞株を、10%のFBSを含有するDMEM中で一晩培養した。次いで、培養培地をMEを含有する培養培地に置き換え、2時間処理を行った。ここで、PK-15細胞株の処理には800μg/mlのMEを採用し、A549細胞株の処理には1600μg/mlのMEを採用した。次に、感染させるために、PK-15細胞株の培養液にMycoplasma hyopneumoniaeを添加し、A549細胞株の培養液にMycoplasma pneumoniaを添加したところ、両群とも感染多重度(MOI)は100であった。24時間の感染後、PBSを用いて、細胞を付着しなかった病原体を洗い流した。次いで、400μg/mlゲンタマイシンを含有する培養培地を添加して4時間の処理し、細胞に付着したがうまく浸透しなかった病原体を除去した。次に、DNA抽出のために細胞を回収し、続いてqPCRを行い、感染および細胞への浸透の成功に起因する病原体量を測定した。ここで、異なる病原体量を有する病原体のDNAを抽出し、qPCRにより測定した標準曲線を得た。Mycoplasma hyopneumoniaeおよびMycoplasma pneumoniaに対するMEの病原体感染抑制効果の結果をそれぞれ図6Aおよび図6Cに示した。培地にMEを添加しない群を対照群とした。 After confirming the concentration of ME that does not affect cell viability, experiments were performed to inhibit pathogen infection. Specifically, PK-15 and A549 cell lines were cultured overnight in DMEM containing 10% FBS. The culture medium was then replaced with a culture medium containing ME and treated for 2 hours. Here, 800 μg/ml ME was employed for the treatment of the PK-15 cell line and 1600 μg/ml ME for the treatment of the A549 cell line. Next, for infection, Mycoplasma hyopneumoniae was added to the culture medium of the PK-15 cell line, and Mycoplasma pneumoniae was added to the culture medium of the A549 cell line. rice field. After 24 hours of infection, PBS was used to wash away pathogens that did not adhere to the cells. Culture medium containing 400 μg/ml gentamicin was then added and treated for 4 hours to remove pathogens that adhered to the cells but did not penetrate well. Cells were then harvested for DNA extraction followed by qPCR to measure pathogen load due to successful infection and cell penetration. Here, DNA of pathogens with different pathogen load was extracted and a standard curve measured by qPCR was obtained. FIG. 6A and FIG. 6C show the effect of ME on pathogen infection suppression against Mycoplasma hyopneumoniae and Mycoplasma pneumonia, respectively. A group in which ME was not added to the medium was used as a control group.

図6Aおよび図6Bによれば、図6Bにおいて、細胞生存率が80%より高いことを、細胞増殖に対し有意な影響はないことの標準とした場合、800μg/mlのMEを含有する培養培地は、全くPK-15細胞株の増殖に影響しなかったと言える。さらに図6Aを参照すると、対照群と比較して、800μg/mlのMEで処置した群は、病原体量は明らかに低く、0.05未満のp値であり統計的に有意な減少であった。したがって、PK-15細胞株を800μg/mlのMEで処理した後、感染によって細胞内に侵入した病原体の量は、有意に減少した。 According to FIGS. 6A and 6B, in FIG. 6B, culture medium containing 800 μg/ml ME, where >80% cell viability was taken as the standard of no significant effect on cell proliferation. did not affect the proliferation of the PK-15 cell line at all. Still referring to FIG. 6A, compared to the control group, the group treated with 800 μg/ml ME had a significantly lower pathogen load, a statistically significant reduction with a p-value of less than 0.05. Therefore, after treatment of the PK-15 cell line with 800 μg/ml ME, the amount of pathogens entering the cells by infection was significantly reduced.

図6Cおよび図6Dによれば、図6Dにおいて、細胞生存率が80%より高いことを、細胞増殖に対し有意な影響がないことの標準とした場合、1600μg/mlのMEを含有する培養培地は、全く、A549細胞株の増殖に影響しなかったと言える。さらに図6Cを参照すると、対照群と比較して、1600μg/mlのMEで処置した群は、明らかに病原体量が低く、0.01未満のp値であり統計的に有意な減少であった。従って、A549細胞株を1600μg/mlのMEで処理した後、感染によって細胞に浸透した病原体の量は、有意に減少した。 6C and 6D, in FIG. 6D, culture medium containing 1600 μg/ml ME, where >80% cell viability was taken as the standard of no significant effect on cell proliferation. did not affect the growth of the A549 cell line at all. Still referring to FIG. 6C, compared to the control group, the group treated with 1600 μg/ml ME had a significantly lower pathogen load, a statistically significant reduction with a p-value of less than 0.01. Therefore, after treating the A549 cell line with 1600 μg/ml ME, the amount of pathogens that penetrated the cells by infection was significantly reduced.

以上のように、実施例1の飼料添加物は、PF-15細胞株およびA549細胞株の増殖に影響を及ぼすことなく、感染によって細胞内に侵入したMycoplasma hyopneumoniaeおよびMycoplasma pneumoniaの病原体量を明らかに減少させることができた。従って、実施例1の飼料添加物は、実際に病原体感染を効果的に抑制する効果を有していた。 As described above, the feed additive of Example 1 does not affect the growth of the PF-15 cell line and the A549 cell line, and reveals the amount of pathogens of Mycoplasma hyopneumoniae and Mycoplasma pneumonia that have entered cells by infection. could be reduced. Therefore, the feed additive of Example 1 actually had the effect of effectively suppressing pathogen infection.

(3) 病原体による炎症抑制効果の評価(細胞実験)
MH‐S細胞とMycoplasma pneumoniaを用いて、腫よう壊死因子α(TNF‐α)とインターロイキン6(IL‐6)の含量を測定することにより、炎症の程度を評価した。
(3) Evaluation of anti-inflammatory effects of pathogens (cell experiments)
Using MH-S cells and Mycoplasma pneumonia, the degree of inflammation was evaluated by measuring the contents of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).

最初に、MH-S細胞の増殖に対する異なるME濃度の影響を評価するために細胞生存率の実験を行った。具体的な実験手順は、前述の実験(2)「病原体感染を阻害する効果の評価」において示したものと同じとした。MH-S細胞の細胞生存率の結果を図7Cに示す。培地にMEを添加しない群を対照群とした。 First, cell viability experiments were performed to assess the effect of different ME concentrations on the proliferation of MH-S cells. The specific experimental procedure was the same as that shown in Experiment (2) “Evaluation of effect of inhibiting pathogen infection”. Cell viability results for MH-S cells are shown in FIG. 7C. A group in which ME was not added to the medium was used as a control group.

細胞生存率に影響を与えないMEの濃度を確認した後、病原体により誘発される炎症を抑制する実験を行った。具体的には、MH-S細胞を24ウェルプレート中で一晩培養した。培養培地は10%のFBSを含有するRPMIとした。次いで、培養培地を、200μg/mlのME、400μg/mlのMEおよび800μg/mlのMEを含有する培養培地に交換し、20時間処理した。 After confirming concentrations of ME that do not affect cell viability, experiments were performed to suppress pathogen-induced inflammation. Specifically, MH-S cells were cultured overnight in 24-well plates. The culture medium was RPMI containing 10% FBS. The culture medium was then changed to culture medium containing 200 μg/ml ME, 400 μg/ml ME and 800 μg/ml ME and treated for 20 hours.

次に、感染させるために、培地にMycoplasma pneumoniaを添加した。MOIを100とした。2時間感染後、培養培地を回収し、酵素免疫測定法(ELISA)により分析して、培養培地中のTNF-αおよびIL-6の含有量を測定した。その結果をそれぞれ図7Aおよび図7Bに示した。対照群は培養培地のみ、ME 800μg/ml (w/o Mp)は800μg/ml MEのみを含有する培養培地、MpはMH-S細胞のみであり、Mp+ME 200μg/ml、Mp+ME 400μg/mlおよびMp+ME 800μg/mlは、異なる濃度のMEで処理されたMH-S細胞である。 Mycoplasma pneumonia was then added to the medium for infection. MOI was set to 100. Two hours post-infection, the culture medium was collected and analyzed by enzyme-linked immunosorbent assay (ELISA) to determine the content of TNF-α and IL-6 in the culture medium. The results are shown in FIGS. 7A and 7B, respectively. Control group is culture medium only, ME 800 μg/ml (w/o Mp) is culture medium containing 800 μg/ml ME only, Mp is MH-S cells only, Mp+ME 200 μg/ml, Mp+ME 400 μg /ml and Mp+ME 800 μg/ml are MH-S cells treated with different concentrations of ME.

図7Cによれば、細胞生存率が80%より高いことを、細胞増殖に対する有意な影響がないという標準とした場合、800μg/mlのMEを含有する培養培地は、全く、MH-S細胞の増殖に影響を及ぼさないと言える。さらに図7Aを参照すると、TNF-αの測定結果については、MEで処置しなかったMp群と比較して、異なる濃度のMEで処置した群において、MEの濃度が増加するにつれて、TNF-α含量が減少する傾向が観察された。さらに、200μg/ml ME、400μg/ml MEおよび800μg/ml MEの群におけるTNF-α含量の低下の効果は、それぞれ0.05、0.01および0.001未満のp値であり、いずれも統計的に有意であった。このように、培養培地中のTNF-αの含有量は、MH-S細胞を異なる濃度のMEで処理した後に、効果的に減少していた。 According to FIG. 7C, the culture medium containing 800 μg/ml ME did not produce any MH-S cells, with a cell viability greater than 80% as the standard for no significant effect on cell proliferation. It can be said that it does not affect proliferation. Further referring to FIG. 7A, for the measurement results of TNF-α, as the concentration of ME increased, TNF-α A trend toward decreasing content was observed. Furthermore, the effect of lowering TNF-α content in the 200 μg/ml ME, 400 μg/ml ME and 800 μg/ml ME groups was statistically significant with p-values less than 0.05, 0.01 and 0.001, respectively. rice field. Thus, the content of TNF-α in the culture medium was effectively reduced after treating MH-S cells with different concentrations of ME.

さらに図7Bを参照すると、IL-6の測定結果についてもTNF-αと同様に、MEで処置しなかったMp群と比較して異なる濃度のMEで処置した群において、MEの濃度が増加するにつれてIL-6含有量が減少する傾向が観察された。さらに、200μg/ml ME、400μg/ml MEおよび800μg/ml MEの群におけるIL-6含量の低下の効果は、それぞれ0.05、0.01および0.001未満のp値であり、いずれも統計的に有意であった。このように、培養培地中のIL-6の含有量は、MH-S細胞を異なるME濃度で処理した後にも効果的に減少した。 Further, referring to FIG. 7B, as with TNF-α, the measurement of IL-6 increases the concentration of ME in the group treated with different concentrations of ME compared to the Mp group not treated with ME. A tendency for IL-6 content to decrease with increasing age was observed. Furthermore, the effect of lowering IL-6 content in the 200 μg/ml ME, 400 μg/ml ME and 800 μg/ml ME groups was statistically significant with p-values less than 0.05, 0.01 and 0.001, respectively. rice field. Thus, the content of IL-6 in the culture medium was effectively reduced after treating MH-S cells with different concentrations of ME.

以上のように、細胞から放出されたTNF-αおよびIL-6の含有量は、MH-S細胞を実施例1の飼料添加物で処理した後に明らかに減少した。従って、実施例1の飼料添加物は、実際に、呼吸器病原体によって誘発される炎症を効果的に阻害する効果を有していた。 As mentioned above, the contents of TNF-α and IL-6 released from the cells were obviously decreased after the MH-S cells were treated with the feed additive of Example 1. Thus, the feed additive of Example 1 indeed had the effect of effectively inhibiting inflammation induced by respiratory pathogens.

(4) 病原体による炎症抑制効果の評価(動物実験)
BALB/cマウスにMycoplasma pneumoniaを感染させて炎症を惹起させ、肺胞に浸潤した好中球及び単球の細胞数を測定し、炎症の程度を評価した。具体的には、1000mg/kgの投与量の条件下でMEを1日1回7日間給餌した後、BALB/cマウスにMycoplasma pneumoniaを感染させ、MEを継続的に給餌した。3日間の感染後、BALB/cマウスに気管支肺胞洗浄を行い、試験試料を得た。次に、フローサイトメトリーにより検体を分析し、総細胞数、好中球細胞数、単球細胞数をそれぞれ測定した。結果を図8A、8B、8Cに示した。対照群は、PBSを与えたBALB/cマウスであり、実験群のBALB/cマウスはMEを給餌したマウスである。
(4) Evaluation of anti-inflammatory effects of pathogens (animal experiments)
BALB/c mice were infected with Mycoplasma pneumonia to induce inflammation, and the number of neutrophils and monocytes infiltrating the alveoli was measured to evaluate the degree of inflammation. Specifically, ME was fed once a day for 7 days at a dosage of 1000 mg/kg, and then BALB/c mice were infected with Mycoplasma pneumonia and continuously fed with ME. After 3 days of infection, BALB/c mice underwent bronchoalveolar lavage to obtain test samples. The samples were then analyzed by flow cytometry to measure total cell counts, neutrophil cell counts, and monocyte cell counts. The results are shown in Figures 8A, 8B and 8C. The control group is PBS-fed BALB/c mice, and the experimental group BALB/c mice are ME-fed mice.

図8Aによれば、対照群およびME処置群の試験試料の総細胞数は同様であり、統計的に有意な差はなく、これらの群が比較のための同じ基準にあることを示していた。さらに図8Bを参照すると、対照群と比較して、ME処置群の好中球の細胞数は明らかに減少し、0.01未満のp値であり統計的に有意な減少であった。図8Cについては、対照群と比較して、ME処置群の単球の細胞数はわずかに減少した。 According to FIG. 8A, the total cell counts of the test samples in the control and ME-treated groups were similar, with no statistically significant difference, indicating that these groups are on the same basis for comparison. . Further referring to FIG. 8B, compared with the control group, the cell number of neutrophils in the ME-treated group was clearly decreased, a statistically significant decrease with a p-value of less than 0.01. Regarding FIG. 8C, the number of monocytes in the ME-treated group was slightly decreased compared to the control group.

したがって、呼吸器病原体に感染した結果、肺胞に浸潤した細胞数が、実施例1の飼料添加物をマウスに投与することにより、実際に減少し、その後の炎症の程度を改善することができた。 Therefore, administration of the feed additive of Example 1 to mice actually reduced the number of cells infiltrating the alveoli as a result of infection with respiratory pathogens, and the subsequent degree of inflammation could be improved. rice field.

試験例5の結果によれば、本発明の方法によって調製された飼料添加物は、実際に、呼吸器病原体の増殖および感染を効果的に阻害する効果を有し、また、呼吸器病原体によって誘発される炎症を改善および/または阻害することができた。 According to the results of Test Example 5, the feed additive prepared by the method of the present invention actually has the effect of effectively inhibiting the growth and infection of respiratory pathogens, and also has the effect of inhibiting the growth and infection of respiratory pathogens. were able to ameliorate and/or inhibit the inflammation caused by

結論として、発酵基質として、特定の含有量範囲のコーヒー粉を用い、発酵基質のC/N比を特定の範囲内に制御し、且つ発酵にAspergillus oryzaeを用いることによって調製した飼料添加物は、比較的高い比活性、選択的静菌性および呼吸器病原体に対する抵抗性を有する消化酵素を含有するという効果を有する。したがって、飼料添加物は、動物飼料に適用することができ、動物の成長を促進し、呼吸器疾患を予防および/または治療する効果を発揮することができ、コーヒー粉の廃棄の問題を適切に解決する。また、動物の成長を促進することができる動物飼料の低コスト代替物を提供し、動物における呼吸器疾患の感染のリスクも低減する。これらにより本発明の商業的価値をさらに高めることができる。 In conclusion, a feed additive prepared by using coffee powder with a specific content range as a fermentation substrate, controlling the C/N ratio of the fermentation substrate within a specific range, and using Aspergillus oryzae for fermentation, It has the advantage of containing digestive enzymes with relatively high specific activity, selective bacteriostasis and resistance to respiratory pathogens. Therefore, the feed additive can be applied to animal feed, can promote the growth of animals, can exert the effect of preventing and/or treating respiratory diseases, and can properly solve the problem of coffee grounds disposal. solve. It also provides a low cost alternative to animal feed that can promote animal growth and also reduces the risk of respiratory disease transmission in animals. These can further enhance the commercial value of the present invention.

以上の説明において、本発明の構造および特徴の詳細とともに、本発明の多くの特徴および利点を記載してきたが、ここに開示された内容は例示的なものにすぎない。細かい事項、特に、サイズの事項について、本発明の原理から特許請求の範囲に規定される用語の広い一般的な意味で示される全範囲内で、変更がなされてもよい。 Although many features and advantages of the present invention have been set forth in the foregoing description, along with details of the structure and characteristics of the present invention, what is disclosed herein is merely exemplary. Changes may be made in details, particularly matters of size, within the full scope of the broad general meaning of the terms defined in the claims from the principles of the invention.

以上のことから、使用済コーヒー粉(以下、単にコーヒー粉という)によって引き起こされる環境保護および廃棄物処理の問題を解決するために、動物飼料にコーヒー粉を適用するための技術的手段を開発すること、同時に、動物飼料のコストを低減し、且つ動物の成長を促進するという目的を達成することが、必要になっている。 In view of the above, in order to solve the environmental protection and waste disposal problems caused by used coffee grounds (hereinafter simply referred to as coffee grounds) , we develop technical means for applying coffee grounds to animal feed. It has become necessary, at the same time, to achieve the objectives of reducing animal feed costs and promoting animal growth.

Claims (15)

飼料添加物を調製する方法であって、
工程(a):コーヒー粉および補助材料を含む発酵基質であって、コーヒー粉の含有量が、発酵基質の全重量に対し45重量%以上80重量%以下であり、発酵基質の炭素-窒素比が35以上65以下であり、補助材料がトウモロコシ砂、米殻、殻付き大豆粉、砕米またはそれらの組み合わせである発酵基材を用意する工程、及び、
工程(b):発酵基質をAspergillus oryzaeで発酵させる工程、
を含む飼料添加物を調整する方法。
A method for preparing a feed additive, comprising:
Step (a): A fermentation substrate containing coffee grounds and auxiliary materials, the content of coffee grounds is 45% by weight or more and 80% by weight or less based on the total weight of the fermentation substrate, and the carbon-nitrogen ratio of the fermentation substrate is 35 or more and 65 or less, and the auxiliary material is corn sand, rice husks, soy flour with husks, broken rice or a combination thereof;
step (b): fermenting the fermentation substrate with Aspergillus oryzae;
A method of adjusting a feed additive containing.
前記発酵基質の炭素-窒素比が35以上60以下である、請求項1に記載の方法。 2. The method according to claim 1, wherein the fermentation substrate has a carbon-nitrogen ratio of 35 or more and 60 or less. 前記補助材料の含有量が、前記発酵基質の前記重量に基づいて20重量%以上55重量%以下である、請求項1または2に記載の方法。 3. The method according to claim 1 or 2, wherein the content of said auxiliary material is ≧20% and ≦55% by weight based on said weight of said fermentation substrate. 前記発酵基質の炭素-窒素比が46以上53以下であり、前記補助材料が米殻を含み、前記米殻の含有量が前記発酵基質の全重量に基づいて7重量%以上10重量%以下である、請求項1~3のいずれかに1項に記載の方法。 The carbon-nitrogen ratio of the fermentation substrate is 46 or more and 53 or less, the auxiliary material contains rice husk, and the content of the rice husk is 7% or more and 10% or less by weight based on the total weight of the fermentation substrate. The method according to any one of claims 1 to 3, wherein the method is アスペルギルス・オリザエ(Aspergillus oryzae)の含有量が前記発酵基質の全重量に基づいて0.02重量%以上0.2重量%以下である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the content of Aspergillus oryzae is 0.02 wt% or more and 0.2 wt% or less based on the total weight of the fermentation substrate. 前記発酵基質の水分含量が50重量%以上75重量%以下である、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the fermentation substrate has a water content of 50% to 75% by weight. 前記工程(b)において、前記発酵基質をAspergillus oryzaeで発酵させる温度が25℃以上40℃以下であり、発酵時間が2日以上12日以下である請求項1~6のいずれかに1項に記載の方法。 7. The method according to any one of claims 1 to 6, wherein in the step (b), the temperature for fermenting the fermentation substrate with Aspergillus oryzae is 25°C or higher and 40°C or lower, and the fermentation time is 2 days or longer and 12 days or shorter. described method. 請求項1~7のいずれか1項に記載の方法によって調製される、動物の成長を促進するための飼料添加物。 A feed additive for promoting the growth of animals prepared by the method according to any one of claims 1-7. 前記飼料添加物が、呼吸器疾患の予防および/または治療に有効である、請求項8に記載の飼料添加物。 9. The feed additive according to claim 8, wherein said feed additive is effective in preventing and/or treating respiratory diseases. 請求項1~7のいずれか1項に記載の方法によって調製される、呼吸器疾患を予防および/または治療するための飼料添加物。 A feed additive for preventing and/or treating respiratory diseases, prepared by the method according to any one of claims 1-7. 請求項1~7のいずれか1項に記載の方法によって調製される、病原体増殖を阻害するための飼料添加物であって、前記病原体が、Streptococcus suis、Escherichia coli、Salmonella spp.、Riemerella anatipestifer、Gallibacterium anatis、Staphylococcus spp.、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeを含む飼料添加物。 A feed additive for inhibiting pathogen growth, prepared by the method of any one of claims 1 to 7, wherein said pathogens are Streptococcus suis, Escherichia coli, Salmonella spp., Riemerella anatipestifer, A feed additive containing Gallibacterium anatis, Staphylococcus spp., Mycoplasma hyopneumoniae or Mycoplasma pneumoniae. 請求項1~7のいずれか1項に記載の方法によって調製される、病原体感染を阻害するための飼料添加物であって、前記病原体が、Mycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeを含む飼料添加物。 A feed additive for inhibiting pathogen infection, prepared by the method according to any one of claims 1 to 7, wherein said pathogen comprises Mycoplasma hyopneumoniae or Mycoplasma pneumoniae. 請求項1~7のいずれか1項に記載の方法によって調製される、炎症を抑制するための飼料添加剤。 A feed additive for suppressing inflammation prepared by the method according to any one of claims 1 to 7. 炎症が肺炎である、請求項13に記載の飼料添加物。 14. The feed additive according to claim 13, wherein the inflammation is pneumonia. 肺炎がMycoplasma hyopneumoniaeまたはMycoplasma pneumoniaeによって誘発されるものである、請求項14に記載の飼料添加物。 15. The feed additive according to claim 14, wherein pneumonia is induced by Mycoplasma hyopneumoniae or Mycoplasma pneumoniae.
JP2021195626A 2021-10-06 2021-12-01 Feed additives for promoting growth and preventing and/or treating respiratory diseases and methods for their preparation Active JP7290244B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110137112A TWI818323B (en) 2021-10-06 2021-10-06 Method of preparing feed additive and use of the same for manufacturing composition for promoting growth, preventing and/or curing respiratory disease, inhibiting pathogen growth, inhibiting pathogen infection, or inhibiting inflammation
TW110137112 2021-10-06

Publications (2)

Publication Number Publication Date
JP2023055600A true JP2023055600A (en) 2023-04-18
JP7290244B2 JP7290244B2 (en) 2023-06-13

Family

ID=86004081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021195626A Active JP7290244B2 (en) 2021-10-06 2021-12-01 Feed additives for promoting growth and preventing and/or treating respiratory diseases and methods for their preparation

Country Status (2)

Country Link
JP (1) JP7290244B2 (en)
TW (1) TWI818323B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319789A (en) * 1998-03-13 1999-11-24 Denichiro Katayama Device and method for fermenting and drying/ preliminarily carbonizing/burning vegetable organic substance, thermophilic fermentative bacteria, and fermented dried material
JP2002142688A (en) * 2000-07-18 2002-05-21 Masahiro Yamamoto Koji-admixed livestock feed and method for producing the same
JP2009201473A (en) * 2008-02-29 2009-09-10 Yamaguchi Univ Process for production of quinic acid and/or caffeic acid
JP2016116514A (en) * 2011-05-25 2016-06-30 霧島高原ビール株式会社 Method for producing dried product derived from material to be treated
KR101865185B1 (en) * 2016-12-07 2018-06-07 (주)한국아그로 Method for preparing fermented coffee ground probiotics
JP2019180291A (en) * 2018-04-10 2019-10-24 ダートコーヒー株式会社 Production method of aromatic coffee beans, aromatic coffee beans and coffee extract

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319789A (en) * 1998-03-13 1999-11-24 Denichiro Katayama Device and method for fermenting and drying/ preliminarily carbonizing/burning vegetable organic substance, thermophilic fermentative bacteria, and fermented dried material
JP2002142688A (en) * 2000-07-18 2002-05-21 Masahiro Yamamoto Koji-admixed livestock feed and method for producing the same
JP2009201473A (en) * 2008-02-29 2009-09-10 Yamaguchi Univ Process for production of quinic acid and/or caffeic acid
JP2016116514A (en) * 2011-05-25 2016-06-30 霧島高原ビール株式会社 Method for producing dried product derived from material to be treated
KR101865185B1 (en) * 2016-12-07 2018-06-07 (주)한국아그로 Method for preparing fermented coffee ground probiotics
JP2019180291A (en) * 2018-04-10 2019-10-24 ダートコーヒー株式会社 Production method of aromatic coffee beans, aromatic coffee beans and coffee extract

Also Published As

Publication number Publication date
TWI818323B (en) 2023-10-11
JP7290244B2 (en) 2023-06-13
TW202315529A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
US11607434B2 (en) Bacillus compositions and methods of use with ruminants
KR101241385B1 (en) Rice Lactobacillus Fermented Food Composition with Antimicrobial and Antiviral Effect Containing Rice Glycolic Acid Fermented with Kimchi Lactobacillus as an Active Ingredient
RU2485175C2 (en) Composition containing yeast for use as fodder additive for cows
KR101825836B1 (en) Novel Lactobacillus plantarum Lb41 strain and compositions for the prevention and treatment of diabetes or insulin resistance syndrome containing the same
KR101680014B1 (en) Lactic acid bacterium isolated from Kimchi for treating inflammatory bowel disease and uses thereof
Nyamete et al. Potential of lactic acid fermentation in reducing aflatoxin B1 in Tanzania maize-based gruel
CN110122878A (en) A kind of relieving alcoholism and protecting liver composition and preparation method and application containing probiotics
CN104206789A (en) Feed additive for preventing cow mastitis and brucellosis and preparation method thereof
CN115462473B (en) Daily ration for improving eggshell quality in later period of egg production and preparation method thereof
JP2022551245A (en) Lactobacillus acidophilus KBL409 strain and uses thereof
KR102275115B1 (en) Novel Saccharomyces cerevisiae boulardii-03 strain having probiotic activities and use of the same
Philippeau et al. Impact of barley form on equine total tract fibre digestibility and colonic microbiota
JP7290244B2 (en) Feed additives for promoting growth and preventing and/or treating respiratory diseases and methods for their preparation
CN109287853B (en) Corn straw-soybean meal mixed fermentation material, and preparation method and application thereof
CN116584591A (en) Low-nitrogen biological feed for laying hens producing clean eggs and preparation method thereof
TW201940072A (en) Method for preparing fermented composition with improved odor using yeast
Alaru Evaluation of appropriate storage conditions of liquid brewer’s yeast as feed supplement for lactating dairy cows and its effect on milk quality
CN111296842B (en) Probiotic composition with anti-allergy effect
KR102244007B1 (en) A composition for preventing, improving or treating gliadin-induced inflammatory bowel disease of the comprising lactobacillus paracasei glu70 having gluten degradation activity
Ogunade et al. Effects of adding live Saccharomyces cerevisiae and Aspergillus-based enzyme extracts on ruminal fermentation, plasma polyamine concentrations, and fiber digestibility in beef steers fed a high-forage diet
Niba et al. Effect of micro-organism and particle size on fermentation of sorghum and maize for poultry feed
Dhruw et al. Effect of Live Lactobacillus acidophilus NCDC 15 and CURD as probiot ics on Blood Biochemical Profile of Early Weaned Piglets
KR102579159B1 (en) A novel strain of Saccharomyces boulardii 28-7 and uses thereof
Hwabejire et al. Production of Fermented Weaning Food from Digitaria exilis (Acha) using Lactic Acid Bacteria
CN115838647B (en) Compound microecological preparation for preventing and treating bovine mastitis and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7290244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150