JP2023047854A - 電動機制御装置 - Google Patents

電動機制御装置 Download PDF

Info

Publication number
JP2023047854A
JP2023047854A JP2021157002A JP2021157002A JP2023047854A JP 2023047854 A JP2023047854 A JP 2023047854A JP 2021157002 A JP2021157002 A JP 2021157002A JP 2021157002 A JP2021157002 A JP 2021157002A JP 2023047854 A JP2023047854 A JP 2023047854A
Authority
JP
Japan
Prior art keywords
temperature
command value
permanent magnet
motor
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021157002A
Other languages
English (en)
Inventor
健太 犬塚
Kenta Inuzuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2021157002A priority Critical patent/JP2023047854A/ja
Publication of JP2023047854A publication Critical patent/JP2023047854A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

【課題】永久磁石形電動機の暖機を促進しつつ、永久磁石の減磁を抑制し得る制御装置を提供する。【解決手段】車両駆動用の永久磁石形電動機を制御する電動機制御装置において、永久磁石形電動機のロータ温度を取得するロータ温度取得装置と、インバータと、永久磁石形電動機への電流指令値を演算し、電流指令値に基づいてインバータを制御する制御部とを備える。制御部は、トルク成分に対応するq軸の電流指令値がゼロで、励磁成分に対応するd軸の電流指令値が、永久磁石形電動機に用いられる永久磁石の磁束を強める正側と弱める負側の交互に所定周期で変化し、かつ負側の電流指令値が永久磁石の保磁力の温度係数及びロータ温度に基づいて定まる暖機用の電流指令値を演算し、ロータ温度が暖機の要否を判断するための閾値より低い場合に暖機用電流指令値に基づいてインバータを制御する暖機制御を実行する電動機制御装置。【選択図】図7

Description

本発明は、車両駆動用の永久磁石形電動機を制御する電動機制御装置に関する。
電動車両に関し、低温時には電動機、減速機の冷却油及びベアリング等のフリクションが増大することで電動機の効率が低下し、電費性能の低下を招くという問題がある。その対策として、停車時においてトルクに寄与する成分(q軸成分)の電流をゼロにし、トルクに寄与しない成分(d軸成分)の電流を通電することで、通電により生じる損失に起因する熱を利用して電動機を暖機することが知られている。しかし、暖機速度を速めるためには電流値を大きくする必要があるため、永久磁石形電動機の場合には電流を流すことで生じる弱め方向の磁束によって永久磁石が減磁してしまうという問題がある。
特許文献1には、暖機を促進しつつ減磁を防止する制御が開示されている。具体的には、電流進角90°のd軸電流と電流進角270°のd軸電流を交互に所定の周期で流している。そして、弱め方向の磁束を生じさせる電流進角90°の電流値よりも、強め方向の磁束を生じさせる電流進角270°の電流値を大きくしたり、電流進角90°の通電時間より電流進角270°の通電時間を長くしている。
特許第4881991号公報
しかし、減磁するか否か、及び減磁の程度は電流進角90°のd軸電流により生じる弱め方向の磁束(d軸磁束)の大きさのみによって決まるものであり、電流進角270°の電流値や通電時間とは相関関係はない。したがって、上記文献に記載の制御では、減磁を防止する効果が得られないおそれがある。
そこで本発明では、上記問題に鑑み、永久磁石形電動機の暖機を促進しつつ、永久磁石の減磁を抑制し得る制御装置を提供することを目的とする。
本発明のある態様によれば、車両駆動用の永久磁石形電動機を制御する電動機制御装置が提供される。当該装置は、永久磁石形電動機のロータ温度を直接または間接的に取得するロータ温度取得装置と、永久磁石形電動機に電力を変換して供給するインバータと、永久磁石形電動機への電流指令値を演算し、電流指令値に基づいてインバータを制御する制御部と、を備える。制御部は、永久磁石形電動機のトルク成分に対応する軸であるq軸の電流指令値がゼロで、永久磁石形電動機の励磁成分に対応する軸であるd軸の電流指令値が、永久磁石形電動機に用いられる永久磁石の磁束を強める正側と弱める負側の交互に所定周期で変化し、かつ負側の電流指令値が永久磁石の保磁力の温度係数及びロータ温度に基づいて定まる暖機用電流指令値を演算する。そして、制御部は、ロータ温度が暖機の要否を判断するための閾値より低い場合に暖機用電流指令値に基づいてインバータを制御する暖機制御を実行する。
上記態様によれば、永久磁石形電動機の暖機を促進しつつ、永久磁石の減磁を抑制し得る制御装置を提供することができる。
図1は、本発明の実施形態に係る電動機制御装置を搭載した車両システムの構成を示すブロック図である。 図2は、駆動モータの断面図の一例である。 図3は、暖機制御の要否を判断するための制御フローを示すフローチャートである。 図4は、暖機制御の制御フローを示すフローチャートである。 図5は、保磁力と磁石温度との関係を示す図である。 図6は、電流進角β=90°のd軸電流指令値とロータ温度との関係を示す図である。 図7は、暖機制御中のd軸電流指令値のタイムチャートである。 図8は、第1変形例にかかるd軸電流指令値のタイムチャートである。 図9は、第2変形例にかかるd軸電流指令値のタイムチャートである。 図10は、第3変形例にかかるd軸電流指令値のタイムチャートである。
以下、添付図面を参照しながら本発明の実施形態について説明する。図1は、本実施形態に係る電動機制御装置を搭載した車両システムの構成を示すブロック図である。以下、本例の電動機制御装置を電気自動車に適用した例を挙げて説明するが、本例の電動機制御装置は、例えばハイブリッド自動車(HEV)等の電気自動車以外の車両にも適用可能である。
図1に示すように、本例の電動機制御装置を含む車両は、バッテリ1,インバータ2、駆動モータ3、減速機4、ドライブシャフト5、駆動輪6、7、電圧センサ8、電流センサ9、回転センサ10、温度センサ11、充電器12、充電ポート13、モータコントローラ20、及びバッテリコントローラ30を備えている。
バッテリ1は、車両の駆動源であって、複数の二次電池を直列又は並列に接続することで構成されている。インバータ2は、IGBTやMOSFET等の複数のスイッチング素子を相毎に接続した電力変換回路を有している。インバータ2は、制御部としてのモータコントローラ20からの駆動信号により、当該スイッチング素子のオン、オフを切り替えることで、バッテリ1から出力される直流電流を交流電流に変換し駆動モータ3に出力し、駆動モータ3を駆動させる。また、インバータ2は、駆動モータ3の回生により出力された交流電力を逆変換して、バッテリ1に出力する。インバータ2は、1相当たり2個のスイッチング素子を、3相にしつつブリッジ状に接続した接続回路を有している。
駆動モータ3(以下、モータ3と称す。)は、車両の駆動源であって、力行時には減速機4及びドライブシャフト5を介して駆動輪6、7に駆動力を伝達する。また、モータ3は、車両の減速時等には駆動輪6、7に連れ回されて回転し、回生の駆動力を発生することで、車両の運動エネルギを電気エネルギとして回収する。これにより、バッテリ1は、モータ3の力行により放電され、モータ3の回生により充電される。モータ3には、永久磁石形の同期モータが用いられる。
また、本例の車両は、冷媒を用いてモータ3を冷却する冷却機構を備える。当該冷却機構は、冷媒がモータ3及びバッテリ1を循環する構成となっており、後述する暖機制御中は、モータ3と熱交換することにより温度上昇した冷媒がバッテリ1を温める。
電圧センサ8は、バッテリ1の電圧を検出するセンサであり、バッテリ1とインバータ2の間に接続されている。電圧センサ8の検出値は、モータコントローラ20及びバッテリコントローラ30に出力される。電流センサ9は駆動モータの電流を検出するためのセンサであり、インバータ2と駆動モータ3との間に接続されている。電流センサ9の検出電流は、モータコントローラ20に出力される。回転センサ10は、駆動モータ3の回転数を検出するためのセンサであり、レゾルバ等で構成されている。回転センサ10の検出値はモータコントローラ20に出力される。
温度センサ11は、モータ3のステータ温度を検出するためのセンサである。温度センサ11はモータ3に備え付けられている。
充電器12は、充電ポート13に接続される充電プラグを介して、外部の充電装置から供給される電力を、バッテリ1の充電に適した電力に変換し、バッテリ1に供給することで、バッテリ1を充電する。充電器12の出力側は、バッテリ1とインバータ2とを接続する配線に、電気的に接続されている。そのため、充電器12から出力される電力を、バッテリ1のみに限らず、インバータ2にも供給することができる。
充電ポート13は、車両の表面に設けられ、充電プラグを接続するための接続口を有している。充電プラグは、外部の充電装置に接続されている充電用のケーブルの先端部分に設けられている。そして、充電プラグが充電ポート13に挿入されることで、外部の充電装置から、バッテリ1又はインバータ2に電力を供給できる状態となる。
モータコントローラ20は、車両の車速(V)、アクセル開度(APO)、モータ3の回転子位相(θre)、モータ3の電流、バッテリ1の電圧等に基づき、インバータ2を動作させるためのPWM制御信号を作成し、インバータ2を動作させるドライバ回路(図示せず)にPWM制御信号を出力する。そして、当該ドライバ回路がPWM制御信号に基づき、インバータ2のスイッチング素子の駆動信号を生成して、インバータ2に出力する。これにより、モータコントローラ20は、インバータ2を動作させることで、モータ3を駆動させている。
モータコントローラ20は、ユーザのアクセル操作等によるトルク要求に対して、モータ3を駆動するよう制御する通常時のモータ制御モード(通常制御モード)と、低温状態のモータを暖機させる暖機制御モードとを切り替えて、インバータ2、モータ3を制御している。モータコントローラ20は、モータトルク制御部21及び電流制御部22を有している。
モータトルク制御部21は、モータコントローラ20に入力される車両変数を示す車両情報の信号に基づき、ユーザの操作による要求トルク又はシステム上の要求トルクを、駆動モータ3から出力させるためのトルク指令値(Tm1 )を算出する。
モータトルク制御部21には、アクセル開度毎に設定された、モータ回転数とトルク指令値の相関性を示すトルクマップ(図示せず)が予め記憶されている。トルクマップは、アクセル開度及びモータ回転数に対して、モータ3から効率よくトルクを出力させるためのトルク指令値で設定されている。
モータ回転数は、回転センサ10の検出値に基づき算出される。アクセル開度は、図示しないアクセル開度センサにより検出される。そして、モータトルク制御部21は、トルクマップを参照し、入力されたアクセル開度(APO)及びモータ回転数に対応するトルク指令値(Tm1 )を演算する。
また、モータトルク制御部21は、モータ3の温度に応じて、トルク指令値(Tm1 )に制限をかけることでトルク指令値(Tm2 )を算出し、電流制御部22に出力する。モータ3の温度が高くなると、例えばステータ温度が高くなると、コイル34の絶縁性能が劣化するおそれがあり、ロータ温度が高くなると、永久磁石の熱による減磁が生じるおそれがある。そこで、モータ3の温度が高い場合には、モータトルク制御部21はトルク指令値(Tm1 )に制限をかけてトルク指令値を制限値以下に抑えている。
電流制御部22は、トルク指令値(Tm2 )に基づき、モータ3に流れる電流の指令値を演算し、当該指令値に基づいてインバータ2を制御する制御部である。電流制御部22は、暖機モードの時には、後述する暖機用の電流指令値を演算する。
バッテリコントローラ30は、電圧センサ8の検出電圧により、バッテリ1の充電状態(SOC:State of Charge)を算出することで、バッテリ1の状態を管理している。また、バッテリコントローラ30は、充電器12を制御することで、外部の充電装置によるバッテリ1の充電の制御を行っている。
バッテリコントローラ30は、充電ポート13に充電プラグが差し込まれたことを検出すると、バッテリ1の状態に応じて、バッテリ1の充電に適した電圧又は電流を算出する。そして、外部の充電装置から充電器12に電力が供給されると、バッテリコントローラ30は、充電器12を制御して、充電器12への入力電力を、バッテリ1の充電電力に変換して、バッテリ1に電力を供給する。そして、バッテリ1のSOCが目標SOCに達すると、バッテリコントローラ30は、充電器12を制御して、充電器12からバッテリ1への電力の供給を停止しつつ、充電ケーブルを介して、充電を停止する旨の停止信号を外部の充電装置に出力する。
また、バッテリコントローラ30は、充電ポート13に充電プラグが差し込まれた場合には、外部の充電装置の電力を利用できる旨の信号をモータコントローラ20に出力する。モータコントローラ20は、この信号を受信することで、外部の充電装置の電力を用いてモータ3に電流を流すことが可能なことを認識する。
なお、モータトルク制御部21から出力されたトルク指令値(Tm1 )に基づいて、ドライブシャフト5のねじり振動を抑制させるために駆動モータ3を制振させるトルク指令値(Tm3 )を算出する制振制御部を設けてもよい。この場合、電流制御部22には駆動モータ3を制振させるトルク指令値(Tm3 )が入力されることになる。
次に、車両を走行させる際の暖機の必要性と、モータコントローラ20による暖機制御について説明する。
まず、暖機の必要性について説明する。低温時には、モータ3、減速機4の冷却油及び各部のベアリング等のフリクションが増大してモータ3の効率が低下するため、車両の電費性能が低下してしまう。このため暖機が必要になる。暖機の方法としては、停車時にトルクに寄与しない成分の電流(d軸電流)を通電させることが知られている。この方法で暖機速度を高めるためには、電流値を大きくすればよい。しかし、永久磁石形のモータ3では、後述する負側のd軸電流による弱め方向の磁束によって磁石が減磁するという問題がある。つまり、単にd軸電流を大きくするだけでは永久磁石が減磁してしまう。一方、減磁を抑制するためにd軸電流を小さくすると暖機に長時間を要することになる。
上記の問題を解決するために、本例では以下に説明するようにロータの暖機制御を行う。モータコントローラ20は、車両の停車中、モータ3のロータの温度を管理している。モータコントローラ20は、温度センサ11を用いて、所定の周期でステータ温度を検出し、これに基づいてロータ温度を算出している。あるいは、モータコントローラ20は車両を停車させる際に、温度センサ11によりステータ温度を検出し、車両を停車させてからの経過時間と外気温度から、現在のステータ温度を算出し、これに基づいてロータ温度を算出することでロータ温度を取得してもよい。
図2は、本例で用いるモータ3の断面図の一例である。具体的には、8極分布巻きモータの断面の一部(1極分)を示している。図示する通り、ステータ(ステータコア)32は1極あたり6個のスロット32Aを備え、各スロット32Aにはコイル34が配置されている。ロータ(ロータコア)31には1極当たり1個の永久磁石(以下、単に「磁石」ともいう)33が配置されている。なお、スロット32A及び磁石33の数、磁石33の配置はこの限りではない。
本例の暖機制御では、モータ3のトルク成分に対応する軸(q軸)の電流指令値をゼロにする。そして、励磁成分に対応する軸(d軸)については、電流指令値を磁石33の磁束方向に対する強め方向、つまり電流進角β=270°(以下、正側ともいう)と、弱め方向、つまり電流進角β=90°(以下、負側ともいう)に所定の周期で交互に切り替える。これにより、モータ3のステータ32には励磁電流が正負交互に流れるため磁束が発生し、ロータ31には渦電流が流れてロータが発熱する。また、電流を正負交互に流すので、ヒステリシス損が発生するうえ、ロータ31には渦電流が継続的に流れる。これにより、トルクを発生させることなくロータ31が暖機される。
図2に示す通り、電流指令値が強め方向の場合には、磁石33の磁束と同方向の磁束が発生し、弱め方向の場合には磁石33の磁束と逆方向の磁束が発生して磁石33が減磁されることが知られている。
そこで本例では、弱め方向のd軸電流指令値をモータ3に使用されている磁石33の保磁力の温度係数と検出温度とに基づいて設定する。これにより、ロータ温度に応じたd軸電流指令値を設定することができる。例えば、暖機が進むに連れてd軸電流指令値を減少させたり止めたりすることが可能となり、減磁を抑制しつつ効率よく暖機することできる。
さらに、暖機が進むに連れてd軸電流指令値を減少させる一方で、通電時間や強め方向のd軸電流指令値を増大させる。強め方向のd軸電流は減磁には影響がないので、強め方向のd軸電流指令値を増大させることで、発生する損失を大きくして暖機効率をより高めることができる。
また、ロータ温度が低いほど磁石33の保磁力は増加すること、つまり減磁し難いことが知られている。そこで、例えばロータ温度が低いほど大きなd軸電流指令値を設定し、ロータ温度が上昇するほどd軸電流指令値を小さくする、というように保磁力の温度係数に基づいてd軸電流を制御することで、不可逆減磁をさせることなくモータ3を暖機することができる。
次に、モータコントローラ20によるインバータ2の制御について図3及び図4を参照して説明する。図3は、モータコントローラ20が実行する、暖機制御の要否を判断するための制御フローを示すフローチャートである。図4は、モータコントローラ20が実行する、暖機制御の制御フローを示すフローチャートである。以下、各フローチャートのステップにしたがって説明する。
まず、図3の制御フローについて説明する。
ステップS10では、充電中か否かを判定し、充電中であればステップS11の処理を実行し、充電中でなければステップS16の処理を実行する。ステップS16では、バッテリ1の残量Cが予め設定した閾値Cより多いか否かを判定し、多い場合はステップS13の処理を実行する。一方、閾値C以下の場合は本制御フローを終了する。閾値Cは、外部からの電力供給がなくても暖機が可能か否かを判定するための閾値であり、使用するバッテリ1の容量や、使用するモータ3の暖機に要する電力等に応じて定まるものである。なお、ステップS10では、上記の充電中か否かの判定に加え、これから充電を開始するか否かの判定を行うようにしてもよい。この場合、充電中でなくても、これから充電を開始する場合にはステップS11の処理を実行する。ただし、ステップS11以降の処理は充電を開始してから実行する。また、充電中でなく、かつこれから充電を開始することもない場合にステップS16の処理を実行する。これから充電を開始するか否かは、例えばバッテリコントローラ30等に記録されている充電履歴に基づいて判断する。例えば、これまでの充電開始時刻の履歴に照らして、現時刻から数分後に充電を開始すると推測される場合には、これから充電を開始すると判断する。
ステップS11では、バッテリ1の温度を検出する温度センサ(図示せず)の検出信号に基づいて、現在のバッテリ温度TB0が予め設定された閾値TBTより低いか否かを判定し、低い場合はステップS12の処理を実行し、そうでない場合は本制御フローを終了する。ステップS11の判定は、バッテリ1の保護のためのものである。モータ3を暖機すると冷媒を介してバッテリ1も温められるので、バッテリ温度が許容温度に近い状態でモータ3の暖機制御を行うと、バッテリ温度が許容温度を超えるおそれがある。そこで、モータ3の暖機制御を行うことでバッテリ温度が許容温度を超えるか否かをステップS11で判定する。したがって、閾値TBTはモータ3の暖機制御による温度上昇があっても許容温度を超えることがないバッテリ温度であり、使用するバッテリ1の熱容量等により定まる値である。
ステップS12では、冷媒の温度を検出する温度センサ(図示せず)の検出信号に基づいて、現在の冷媒温度TW0が予め設定された閾値TWTより低いか否かを判定し、低い場合はステップS13の処理を実行し、そうでない場合は本制御フローを終了する。
ステップS13では、現在のステータ温度TS0が予め設定された閾値TSTより低いか否かを判定し、低い場合はステップS14の処理を実行し、そうでない場合は本制御フローを終了する。ステップS13の判定は、ステータ32の保護のためのものである。ステータ32にはコイル34と絶縁するための絶縁材料が用いられるが、絶縁材料には絶縁性能を維持可能な上限温度があるので、ステータ32の温度が当該上限温度に近い状態でモータ3の暖機制御を行うと、当該上限温度を超えるおそれがある。そこで、モータ3の暖機制御を行うことでステータ温度が上限温度を超えるか否かをステップS13で判定する。したがって、閾値TSTはモータ3の暖機制御による温度上昇があっても上限温度を超えることがないステータ温度であり、使用する絶縁材料により定まる値である。
なお、上記のステップS10からS13の判定の全部または一部は省略しても構わない。
ステップS14では、温度センサ11で検出した現在のロータ温度TR0が予め設定された閾値TRTより低いか否かを判定し、低い場合はステップS15の処理を実行し、そうでない場合は本制御フローを終了する。閾値TRTは暖機制御を開始するための判定の閾値である。モータコントローラ20は、現在のロータ温度TR0が閾値TRTより低い場合にはロータ31が低温状態であって暖機を必要とすると判定する。一方、現在のロータ温度TR0が閾値TRTより高い場合には、ロータ31は低温状態ではなく、暖機を必要としないと判定する。なお、ロータ温度は、温度センサ11で検出したステータ32の温度から推定してもよいし、冷媒温度から推定してもよい。
ステップS15では、後述する暖機制御を実行する。
次に図4の制御フローについて説明する。当該制御フローは、図3の制御フローで暖機制御を実行することを決定した場合に実行される。
ステップS20では、目標温度(閾値TRT)と現在のロータ温度TR0との温度差ΔTを算出する。
ステップS21では、d軸電流指令値Iを以下に説明する方法で設定する。まず、電流進角βが270°のd軸電流指令値Iを設定する。ここでは一定値としてインバータSW素子の最大許容電流Ilimに設定する。電流進角βが90°のd軸電流指令値Iは、予め設定した磁石の保磁力Hcjの温度係数と、ロータ温度が閾値TRTの時に減磁しない許容電流IdemとΔTから設定する。保磁力Hcjは磁石温度が低いほど大きくなる。そこで図5に示す通り磁石温度毎の保磁力Hcjをプロットし、線形近似(図中の実線L1)または二次関数近似(図中の一点鎖線L2)により温度係数を設定する。
線形近似の場合には保磁力Hcjは温度係数aを用いて下式(1)で表される。
cj=aΔT+1 ・・・(1)
この温度係数aを用いる場合には、d軸電流指令値Idは図6の実線L3のようにロータ温度が高くなるほど直線的に大きくなる。これを式で表すと下式(2)になる。
=Idem{1+a(TRT-TR0)} ・・・(2)
一方、二次関数近似の場合には、保磁力Hcjは温度係数b、cを用いて下式(3)で表される。
cj=bΔT+cΔT+1 ・・・(3)
これらの温度係数b、cを用いる場合には、d軸電流指令値Idは図6の一点鎖線L4のようにロータ温度が高くなるほど二次曲線的に大きくなる。これを式で表すと下式(4)になる。
=Idem{1+b(TRT-TR0+c(TRT-TR0)} ・・・(4)
上記の通りd軸電流指令値Iを設定したら、ステップS22で電流進角β=90°の通電時間t90及び電流進角β=270°の通電時間t270を設定する。ここでは予め設定した一定値とする。
ステップS23では、ステップS22で設定した時間、通電を行う。
ステップS24では、現在のロータ温度TR0が閾値TRTより低いか否かを判定し、低い場合はステップS25の処理を実行する。一方、現在のロータ温度TR0が閾値TRT以上の場合は、暖機が終了したものとして本制御フローを終了する。
ステップS25では、現在のステータ温度TS0が閾値TSTより低いか否かを判定し、低い場合は引き続き暖機を行うためにステップS20の処理に戻る。一方、現在のステータ温度TS0が閾値TST以上の場合には、ステータ保護のために本制御フローを終了する。
図7は、上記の暖機制御を行った場合のd軸電流について示した図である。図中の実線は電流進角β=270°(正側)のd軸電流、破線は電流進角β=90°(負側)のd軸電流指令値、一点鎖線はロータ温度を示している。
図7に示す通り、正側のd軸電流は一定であるが、負側のd軸電流の絶対値はロータ温度の上昇に伴って小さくなる。つまり、減磁の原因となる負側のd軸電流が徐々に小さくなる。これにより、モータ3の暖機による減磁を抑制できる。
次に、暖機制御の変形例について図8から図10を参照して説明する。なお、以下に説明する各変形例も上述した実施形態と同様に本発明の範囲に属する。
[第1変形例]
本変形例は、図4のステップS22における通電時間t270の設定が上記実施形態とは異なる。
図8は、第1変形例にかかる暖機制御を行った場合のd軸電流について示した図である。図示する通り、本変形例では負側のd軸電流が小さくなるのに伴い負側の通電時間t270を長くする。これは、負側のd軸電流が小さくなることによる銅損の減少を、通電時間t270の延長により補うためである。総損失に占める割合が鉄損より銅損の方が大きいモータ3を使用する場合には、本変形例のように銅損の減少を抑制することで暖機を効率的に行うことができる。
ただし、d軸電流の正負が反転する周期が長くなるため、鉄損は減少する。このため、総損失に占める割合が銅損より鉄損の方が大きいモータ3を使用する場合には適さない。この場合には、正負が反転する周期は一定のまま、つまり正側の通電時間t270と負側の通電時間t90の合計は一定のままにして、通電時間t270とt90の割合を変化させることで、鉄損の減少を抑制できる。
[第2変形例]
本変形例は、図4のステップS21における正側のd軸電流指令値の設定が上記実施形態とは異なる。
図9は第2変形例にかかる暖機制御を行った場合のd軸電流について示した図である。図示する通り、本変形例では負側のd軸電流指令値を小さくした分、正側のd軸電流指令値を大きくする。これにより、鉄損の減少を招くことなく、負側のd軸電流が小さくなることによる銅損の減少を補うことができるので、より短時間でモータ3の暖機を行うことができる。ただし、暖機制御開始時の正側のd軸電流指令値をインバータSW素子の最大許容電流Ilimに設定している場合には、最大許容電流Ilimを超える電流を流すことになるので、インバータ2の温度をモニタして、許容し得る上限温度に到達したら暖機制御を終了する必要がある。
[第3変形例]
本変形例は、図4のステップS21における正側のd軸電流指令値の設定が上記実施形態とは異なる。
図10は、第3変形例にかかる暖機制御を行った場合のd軸電流について示した図である。図示する通り、本変形例ではロータ温度の上昇に伴い、正側及び負側のd軸電流指令値を減少させる。これにより、上記の実施形態及び各変形例に比べてモータ3の暖機に要する時間は長くなるが、モータ3の暖機によって温度上昇した冷媒を用いてバッテリ1を昇温させる構成においては、バッテリ1の暖機には効果的である。この効果について以下に説明する。
バッテリ1はモータ3に比べて熱容量が大きいので、モータ3を効率的に暖機すると、モータ3の暖機制御が終了した時点でバッテリ1が十分に昇温していないという状況が生じ得る。これを避けるためには、バッテリ1が昇温するまでモータ3の暖機制御が継続していることが望ましい。ただし、冷媒の温度が低い状態で暖機制御を継続してもバッテリ1の昇温は進まない。
そこで、暖機制御の開始時には相対的に大きなd軸電流を流すことで冷媒の温度を上昇させ、その後はd軸電流を徐々に小さくすることで、冷媒の温度をバッテリ1の暖機に適した温度にしたうえで暖機制御の継続時間を延ばし、バッテリ1を昇温させることができる。
以上のように本実施形態によれば、車両駆動用の永久磁石形電動機(モータ3)を制御する電動機制御装置が提供される。この電動機制御装置は、永久磁石形電動機のロータ温度を直接または間接的に取得するロータ温度取得装置(温度センサ11)と、永久磁石形電動機に電力を変換して供給するインバータ2と、永久磁石形電動機への電流指令値を演算し、電流指令値に基づいてインバータ2を制御する制御部(モータコントローラ20)とを備える。制御部は、永久磁石形電動機のトルク成分に対応する軸であるq軸の電流指令値がゼロで、永久磁石形電動機の励磁成分に対応する軸であるd軸の電流指令値が、永久磁石形電動機に用いられる永久磁石33の磁束方向を強める正側と弱める負側の交互に所定周期で変化し、かつ負側の電流指令値が永久磁石33の保磁力の温度係数及びロータ温度に基づいて定まる暖機用電流指令値を演算する。そして、制御部は、ロータ温度が暖機の要否を判断するための閾値より低い場合に暖機用電流指令値に基づいてインバータ2を制御する暖機制御を実行する。これにより、負側のd軸電流による減磁を抑制しつつ、モータ3を効率よく暖機することができる。
本実施形態によれば、d軸の電流指令値は矩形波であって、正側及び負側の電流指令値は、永久磁石33の保磁力の温度特性に応じた一定値または可変値である。d軸電流が矩形波でなく、いわゆる正弦波のような形であっても、永久磁石33の保磁力の温度特性に応じた一定値または可変値にすることで、減磁を抑制しつつ暖機を行うことはできる。しかし、矩形波にすることで高周波成分をより多く含む電流をモータ3に流すことができるため、暖機時間をより短くすることができる。
本実施形態(第2変形例)では、正側の通電時間と負側の通電時間で定まる所定周期は電流指令値に応じて一定または可変であり、正側と負側のうち電流指令値の小さい方が、通電時間が長い。これにより、負側のd軸電流を小さくしたことによる銅損の減少を補うことができる。
本実施形態によれば、永久磁石形電動機のステータ温度を直接または間接的に取得するステータ温度取得装置(温度センサ11)を備え、制御部は、ステータ温度が所定の温度を超える場合に暖機制御を停止する。これにより、ステータ32を保護しつつモータ3を暖機することができる。なお、ステータ温度取得装置は、上述した通りステータ温度を直接検出する温度センサ11でもよいし、温度センサ11をロータ温度を検出するよう配置し、検出したロータ温度に基づいてステータ温度を推定する、または冷媒温度から推定するモータコントローラ20であってもよい。
本実施形態によれば、永久磁石形電動機の冷却に用いる冷媒の温度を直接または間接的に取得する冷媒温度取得装置を備え、制御部は、冷媒温度が所定の温度を超える場合に暖機制御を停止する。これにより、冷媒温度の過上昇を防止することができる。なお、冷媒温度取得装置は、冷媒の温度を検出するセンサでもよいし、ロータ温度またはステータ温度等から推定するモータコントローラ20であってもよい。
本実施形態によれば、制御部は、停車中である場合に暖機制御を実行する。これは、停車中であればモータ3のトルクに寄与しないq軸電流をゼロにすることができるからである。
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
1 バッテリ、2 インバータ、3 駆動モータ、4 減速機、4 ドライブシャフト、8 電圧センサ、 9 電流センサ、10 回転センサ、11 温度センサ、 12 充電器、 13 充電ポート、 20 モータコントローラ、21 モータトルク制御部、 22 電流制御部、30 バッテリコントローラ、31 ロータ、32 ステータ、32A スロット、33 永久磁石、34 コイル

Claims (6)

  1. 車両駆動用の永久磁石形電動機を制御する電動機制御装置において、
    前記永久磁石形電動機のロータ温度を直接または間接的に取得するロータ温度取得装置と、
    前記永久磁石形電動機に電力を変換して供給するインバータと、
    前記永久磁石形電動機への電流指令値を演算し、前記電流指令値に基づいて前記インバータを制御する制御部と、
    を備え、
    前記制御部は、
    前記永久磁石形電動機のトルク成分に対応する軸であるq軸の電流指令値がゼロで、前記永久磁石形電動機の励磁成分に対応する軸であるd軸の電流指令値が、前記永久磁石形電動機に用いられる永久磁石の磁束を強める正側と弱める負側の交互に所定周期で変化し、かつ負側の電流指令値が前記永久磁石の保磁力の温度係数及び前記ロータ温度に基づいて定まる、暖機用電流指令値を演算し、
    前記ロータ温度が暖機の要否を判断するための閾値より低い場合に前記暖機用電流指令値に基づいて前記インバータを制御する暖機制御を実行することを特徴とする電動機制御装置。
  2. 請求項1に記載の電動機制御装置において、
    前記d軸の電流指令値は矩形波であって、
    前記正側及び前記負側の電流指令値は、前記永久磁石の保磁力の温度特性に応じた一定値または可変値である、電動機制御装置。
  3. 請求項1または2に記載の電動機制御装置において、
    前記正側の通電時間と前記負側の通電時間で定まる前記所定周期は前記電流指令値に応じて一定または可変であり、前記正側と前記負側のうち前記電流指令値の小さい方が、通電時間が長い、電動機制御装置。
  4. 請求項1から3のいずれか一項に記載の電動機制御装置において、
    前記永久磁石形電動機のステータ温度を直接または間接的に取得するステータ温度取得装置を備え、
    前記制御部は、前記ステータ温度が所定の温度を超える場合に前記暖機制御を停止する、電動機制御装置。
  5. 請求項1から4のいずれか一項に記載の電動機制御装置において、
    前記永久磁石形電動機の冷却に用いる冷媒の温度を直接または間接的に取得する冷媒温度取得装置を備え、
    前記制御部は、前記冷媒の温度が所定の温度を超える場合に前記暖機制御を停止する、電動機制御装置。
  6. 請求項1から5のいずれか一項に記載の電動機制御装置において、
    前記制御部は、停車中である場合に前記暖機制御を実行する、電動機制御装置。
JP2021157002A 2021-09-27 2021-09-27 電動機制御装置 Pending JP2023047854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021157002A JP2023047854A (ja) 2021-09-27 2021-09-27 電動機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021157002A JP2023047854A (ja) 2021-09-27 2021-09-27 電動機制御装置

Publications (1)

Publication Number Publication Date
JP2023047854A true JP2023047854A (ja) 2023-04-06

Family

ID=85779210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021157002A Pending JP2023047854A (ja) 2021-09-27 2021-09-27 電動機制御装置

Country Status (1)

Country Link
JP (1) JP2023047854A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485150B1 (ja) 2023-04-27 2024-05-16 いすゞ自動車株式会社 電動モータにおける制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485150B1 (ja) 2023-04-27 2024-05-16 いすゞ自動車株式会社 電動モータにおける制御装置

Similar Documents

Publication Publication Date Title
US8860356B2 (en) Variable magnetic flux motor drive system
JP3232823B2 (ja) 電気自動車の回生制動制御方法
JP5653534B2 (ja) 電動車両の制御装置
AU2007277772B2 (en) Variable-flux motor drive system
EP2345146B1 (en) Motor driver and method of controlling the same
CN107276316B (zh) 用于控制电机的装置
JP5193539B2 (ja) 可変磁束ドライブシステム
JP5085206B2 (ja) 可変磁束ドライブシステム
JP6131715B2 (ja) モータ制御装置
JP5984172B2 (ja) 電動車両用モータの冷却制御装置および冷却制御方法
US8928263B2 (en) Control apparatus in motor drive system and method of controlling motor drive system
JP2013009512A (ja) 回転電機制御装置
JP5329801B2 (ja) 可変磁束ドライブシステム
JP2023047854A (ja) 電動機制御装置
WO2020136765A1 (ja) 制御装置
JP5428234B2 (ja) 回転電機制御システム
JP2004187339A (ja) 車載用モータの制御装置および車両用モータシステム
JP2005045927A (ja) モータ駆動システム及び電気自動車
Hsieh et al. A regenerative braking system for switched reluctance machine applied to electric vehicles
JP2002095105A (ja) 電気自動車の回生制動制御方法および制御装置
JP2015211533A (ja) 電動車両の制御装置及び制御方法
JP2023047855A (ja) 電動機制御装置
WO2021090731A1 (ja) 電動機の制御装置、電動車両、電動機の制御方法
WO2017119227A1 (ja) 回転電機駆動システムの制御装置
JP7206723B2 (ja) 電動発電機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240705