JP2023047636A - Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing - Google Patents

Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing Download PDF

Info

Publication number
JP2023047636A
JP2023047636A JP2021156659A JP2021156659A JP2023047636A JP 2023047636 A JP2023047636 A JP 2023047636A JP 2021156659 A JP2021156659 A JP 2021156659A JP 2021156659 A JP2021156659 A JP 2021156659A JP 2023047636 A JP2023047636 A JP 2023047636A
Authority
JP
Japan
Prior art keywords
porous member
rear end
porous
bearing
housing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021156659A
Other languages
Japanese (ja)
Inventor
耕一 角田
Koichi Tsunoda
寛明 和田
Hiroaki Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2021156659A priority Critical patent/JP2023047636A/en
Priority to PCT/JP2022/020126 priority patent/WO2023047695A1/en
Publication of JP2023047636A publication Critical patent/JP2023047636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/04Sealings between relatively-stationary surfaces without packing between the surfaces, e.g. with ground surfaces, with cutting edge

Abstract

To provide a manufacturing method of a static pressure gas journal porous bearing which can fixedly position a porous member relative to a housing member, seal a gap between the housing member and the porous member, and secure a supply amount of a gas to a bearing gap formed between the porous member and a shaft with a simple structure, and to provide the static pressure gas journal porous bearing.SOLUTION: A bearing 100 includes: a cylindrical porous member 110; and a housing member 120 having a cylindrical part 121, into which the porous member 110 is inserted, and supports a radius load of a shaft S with a gas jetted from the porous member 110. A manufacturing method of the bearing 100 includes: a press-fitting step where a front end 113 of the porous member 110 is press-fitted into a front end insertion portion 121A of the cylindrical part 121; and a sealing step where a rear end insertion portion 121C of the cylindrical part 121, in which a rear end 114 of the porous member 110 is loosely fitted, is plastically deformed to form a protruding area 121C1 and deform the rear end 114 of the porous member 110.SELECTED DRAWING: Figure 2

Description

本発明は、気体により支持対象の側面を非接触状態で支持する静圧気体ジャーナル多孔質軸受の製造方法および静圧気体ジャーナル多孔質軸受に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a hydrostatic gas journal porous bearing that supports the side surface of an object to be supported in a non-contact state, and the hydrostatic gas journal porous bearing.

支持対象を面で支持するために、支持対象と対向する多孔質部材と、この多孔質部材を保持するハウジング部材とを備えた流体軸受が知られている。
このような流体軸受の製造方法として、ハウジング(ハウジング部材)に設けられた孔部に潤滑油を浸透した多孔性焼結合金からなる軸受メタル(多孔質部材)を圧入嵌合し、ハウジングの両端を軸受メタルに向けてかしめて軸受メタルを係止することが知られている(例えば、特許文献1参照)。
A hydrodynamic bearing is known that includes a porous member facing the support object and a housing member that holds the porous member in order to support the support object on its surface.
As a method of manufacturing such a hydrodynamic bearing, a bearing metal (porous member) made of a porous sintered alloy permeated with lubricating oil is press-fitted into a hole provided in a housing (housing member), and both ends of the housing are press-fitted. is known to be crimped toward the bearing metal to lock the bearing metal (see Patent Document 1, for example).

実願昭47-132519号(実公昭53-22667号)のマイクロフィルム(特に、図2および図3)Microfilm of Japanese Utility Model Application No. 47-132519 (Japanese Utility Model Publication No. 53-22667) (particularly, FIGS. 2 and 3)

上述した流体軸受の製造方法では、ハウジングに対して軸受メタルが位置決め固定されると共に軸受メタルとハウジングとの間が封止されるものの、ハウジングと当接する軸受メタルの外周面が圧入により塑性変形するため、軸受メタルの外周側の潤滑油を含浸する微細孔が長手方向全長に渡って潰れてしまう。
すなわち、上述した流体軸受の製造方法は、軸受メタルに含浸させた潤滑油によりシャフト(支持対象)の外周面を面支持する動圧流体ジャーナル軸受には適用できるものの、外部の圧縮気体源から供給される圧縮気体を多孔質部材の外周面から取り入れて圧縮気体を多孔質部材の内周面から噴出させて支持対象の側面を非接触状態で支持する静圧気体ジャーナル多孔質軸受の製造には適用できず、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とをすべて満たすような静圧気体ジャーナル多孔質軸受を製造することが難しかった。
In the manufacturing method of the hydrodynamic bearing described above, the bearing metal is positioned and fixed with respect to the housing, and the space between the bearing metal and the housing is sealed. As a result, the fine holes for impregnating the lubricating oil on the outer peripheral side of the bearing metal are crushed over the entire length in the longitudinal direction.
That is, although the above-described method of manufacturing a hydrodynamic bearing can be applied to a hydrodynamic journal bearing in which the outer peripheral surface of a shaft (supported object) is surface-supported by lubricating oil impregnated in a bearing metal, it cannot be supplied from an external compressed gas source. To manufacture a hydrostatic gas journal porous bearing that takes in the compressed gas from the outer peripheral surface of the porous member and ejects the compressed gas from the inner peripheral surface of the porous member to support the side surface of the support object in a non-contact state Not applicable, positioning and fixing of the porous member to the housing member, sealing between the housing member and the porous member, and the amount of gas supply to the bearing gap formed between the porous member and the shaft. It has been difficult to manufacture a hydrostatic gas journal porous bearing that satisfies all requirements.

そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とを簡単な構造ですべて満たす静圧気体ジャーナル多孔質軸受の製造方法および静圧気体ジャーナル多孔質軸受を提供することである。 SUMMARY OF THE INVENTION Accordingly, the present invention is to solve the problems of the prior art as described above. Static pressure gas journal porous bearing manufacturing method and static pressure gas journal that satisfies both the sealing of the bearing and the securing of gas supply to the bearing gap formed between the porous member and the shaft with a simple structure Another object is to provide a porous bearing.

請求項1に係る発明は、外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、該多孔質部材を内挿すると共に前記多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を前記多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受の製造方法であって、前記筒状部の前端挿入部分に前記多孔質部材の前端部を圧入する圧入工程と、前記多孔質部材の後端部を遊嵌する前記筒状部の後端挿入部分を塑性変形させて突出領域を形成して該突出領域により前記多孔質部材の後端部を変形させる封止工程とを備えていることにより、前述した課題を解決するものである。 The invention according to claim 1 comprises: a cylindrical porous member for ejecting gas that has flowed in from the outer peripheral surface from the inner peripheral surface; and a housing member having a cylindrical portion with a flow path, wherein a load in the radial direction of a shaft to be supported is supported by gas ejected from the porous member. a press-fitting step of press-fitting the front end portion of the porous member into the front end insertion portion of the tubular portion; and a sealing step of deforming the rear end portion of the porous member by the projecting region.

請求項2に係る発明は、請求項1に記載された静圧気体ジャーナル多孔質軸受の製造方法の構成に加えて、前記圧入工程で前記筒状部の後端挿入部分に遊嵌される前記多孔質部材の後端側外周面と後端面とが、傾斜面で接続されていることにより、前述した課題をさらに解決するものである。 According to a second aspect of the invention, in addition to the configuration of the method for manufacturing a hydrostatic gas journal porous bearing according to the first aspect, the pressure-insertion gas journal porous bearing is loosely fitted to the rear end insertion portion of the cylindrical portion in the press-fitting step. By connecting the rear end side outer peripheral surface and the rear end surface of the porous member with an inclined surface, the above-described problems can be further solved.

請求項3に係る発明は、請求項1または請求項2に記載された静圧気体ジャーナル多孔質軸受の製造方法の構成に加えて、前記ハウジング部材の後端面が、前記多孔質部材の後端面よりも後方に位置し、前記封止工程が、前記ハウジング部材よりも硬い突起部を有して前記ハウジング部材を塑性変形させる加締め型を前記ハウジング部材の後端面に押しつけて実行されることにより、前述した課題をさらに解決するものである。 The invention according to claim 3 is, in addition to the configuration of the method for manufacturing a hydrostatic gas journal porous bearing according to claim 1 or claim 2, wherein the rear end surface of the housing member is the rear end surface of the porous member. The sealing step is performed by pressing against the rear end surface of the housing member a crimping die that has a projection that is harder than the housing member and plastically deforms the housing member. , which further solves the problems described above.

請求項4に係る発明は、外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、該多孔質部材を内挿すると共に前記多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を前記多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受であって、前記ハウジング部材の筒状部が、前記多孔質部材の前端部と圧接する前端挿入部分と、前記多孔質部材の後端部を遊嵌する後端挿入部分と、前記前端挿入部分と前記後端挿入部分との間に形成されると共に前記気体流路を有する中間挿入部分とを有し、前記ハウジング部材の後端挿入部分から前記多孔質部材に向けて突出する突出領域が、前記多孔質部材の後端部に当接していることにより、前述した課題を解決するものである。 The invention according to claim 4 is characterized by a cylindrical porous member for ejecting gas that has flowed in from the outer peripheral surface from the inner peripheral surface, and a gas that supplies the gas from the outside to the porous member while inserting the porous member. a static pressure gas journal porous bearing comprising a housing member having a cylindrical portion forming a flow path, and supporting a load in a radial direction of a shaft to be supported by gas ejected from the porous member, The cylindrical portion of the housing member includes a front end insertion portion that is in pressure contact with the front end portion of the porous member, a rear end insertion portion that loosely fits the rear end portion of the porous member, the front end insertion portion, and the rear end. an intermediate insertion portion formed between the housing member and the insertion portion and having the gas flow path; and a protruding region protruding from the rear end insertion portion of the housing member toward the porous member The above-mentioned problem is solved by abutting on the rear end of the .

請求項5に係る発明は、請求項4に記載された静圧気体ジャーナル多孔質軸受の構成に加えて、前記ハウジング部材が、一体形成されていることにより、前述した課題をさらに解決するものである。 The invention according to claim 5 further solves the above-described problems by integrally forming the housing member in addition to the configuration of the hydrostatic gas journal porous bearing described in claim 4. be.

請求項6に係る発明は、請求項4または請求項5に記載された静圧気体ジャーナル多孔質軸受の構成に加えて、前記ハウジング部材の突出領域が、前記多孔質部材の後端面よりも後方に位置していることにより、前述した課題をさらに解決するものである。 The invention according to claim 6, in addition to the configuration of the hydrostatic gas journal porous bearing described in claim 4 or 5, is characterized in that the projecting region of the housing member is located rearward of the rear end surface of the porous member. , which further solves the above-mentioned problems.

本発明の静圧気体ジャーナル多孔質軸受は、支持対象となる軸の半径方向の荷重を多孔質部材から噴出される気体で支持できるとともに、以下のような本発明に特有の効果を奏することができる。 The static pressure gas journal porous bearing of the present invention can support the load in the radial direction of the shaft to be supported by the gas ejected from the porous member, and can exhibit the following effects specific to the present invention. can.

請求項1に係る発明の静圧気体ジャーナル多孔質軸受の製造方法によれば、筒状部の前端挿入部分に多孔質部材の前端部を圧入する圧入工程を備えていることにより、多孔質部材が、前端部でハウジング部材の前端挿入部分と圧接するため、簡単な構造でハウジング部材に対して多孔質部材を位置決め固定することができる。
また、筒状部の前端挿入部分に多孔質部材の前端部を圧入する圧入工程と、多孔質部材の後端部を遊嵌する筒状部の後端挿入部分を塑性変形させて突出領域を形成してこの突出領域により多孔質部材の後端部を変形させる封止工程とを備えていることにより、ハウジング部材の前端挿入部分との圧接により多孔質部材の前端部の外周面周辺に目詰まり層が形成され、ハウジング部材の後端挿入部分から多孔質部材に向けて突出する突出領域により多孔質部材の後端部が変形して多孔質部材の後端部の外周面周辺に目詰まり層が形成されるため、ハウジング部材と多孔質部材との間の封止することができるだけでなく、多孔質部材の前端部および後端部以外の通気層の通気率が、目詰まり層の通気率よりも高くなるため、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量を確保することができる。
したがって、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とを簡単な構造ですべて満たすことができる。
According to the method for manufacturing a hydrostatic gas journal porous bearing of the first aspect of the invention, the press-fitting step of press-fitting the front end portion of the porous member into the front end insertion portion of the cylindrical portion is provided. However, since the front end portion is in pressure contact with the front end insertion portion of the housing member, the porous member can be positioned and fixed to the housing member with a simple structure.
In addition, a press-fitting step of press-fitting the front end portion of the porous member into the front end insertion portion of the cylindrical portion, and plastically deforming the rear end insertion portion of the cylindrical portion into which the rear end portion of the porous member is loosely fitted to form the projecting region. and a sealing step of deforming the rear end of the porous member by means of the protruding region, so that the opening around the outer peripheral surface of the front end of the porous member is formed by pressure contact with the front end insertion portion of the housing member. A clogging layer is formed, and the rear end portion of the porous member is deformed by the protruding region protruding from the rear end insertion portion of the housing member toward the porous member, clogging the periphery of the outer peripheral surface of the rear end portion of the porous member. Since the layer is formed, not only is it possible to seal between the housing member and the porous member, but also the permeability of the ventilation layer other than the front end and the rear end of the porous member is higher than that of the clogging layer. Since it is higher than the ratio, it is possible to ensure the amount of gas supplied to the bearing clearance formed between the porous member and the shaft.
Therefore, positioning and fixing of the porous member with respect to the housing member, sealing between the housing member and the porous member, and ensuring the supply of gas to the bearing clearance formed between the porous member and the shaft. can be satisfied with a simple structure.

請求項2に係る発明の静圧気体ジャーナル多孔質軸受の製造方法によれば、請求項1に係る発明の静圧気体ジャーナル多孔質軸受の製造方法が奏する効果に加えて、圧入工程で筒状部の後端挿入部分に遊嵌される多孔質部材の後端側外周面と後端面とが、傾斜面で接続されていることにより、封止工程で多孔質部材の後端部を変形させた際に多孔質部材の後端側外周面付近の潰れ代が少なくなるため、多孔質部材の後端側内周面が中心軸側に張り出しにくくなり、静圧気体ジャーナル多孔質軸受と軸との間の軸受すきまを軸受全体に亘って一定に保つことができるだけでなく、多孔質部材の後端側外周面と後端面とが直接接続されている場合に比べて、圧入工程において、多孔質部材の後端部がハウジング部材と接触して削られにくくなるため、多孔質部材とハウジング部材との間に多孔質部材の削り粉が混入しにくくなり、確実に多孔質部材とハウジング部材との間を封止することができ、削り粉に起因するハウジング部材の内径側の変形を抑制することができる。 According to the method for manufacturing a static pressure gas journal porous bearing according to the second aspect of the invention, in addition to the effects of the method for manufacturing a static pressure gas journal porous bearing according to the first aspect of the invention, the tubular shape is formed in the press-fitting step. By connecting the rear end side outer peripheral surface and the rear end surface of the porous member loosely fitted to the rear end insertion portion of the part by the inclined surface, the rear end portion of the porous member is deformed in the sealing process. Since the crushing margin near the rear end side outer peripheral surface of the porous member is reduced when the porous member is pressed, the rear end side inner peripheral surface of the porous member is less likely to protrude toward the central shaft side, and the hydrostatic gas journal porous bearing and the shaft not only can the bearing clearance between the Since the rear end portion of the member is in contact with the housing member and is less likely to be scraped off, dust from shavings from the porous member is less likely to enter between the porous member and the housing member, and the porous member and the housing member are reliably separated. The gap can be sealed, and deformation of the inner diameter side of the housing member due to shavings can be suppressed.

請求項3に係る発明の静圧気体ジャーナル多孔質軸受の製造方法によれば、請求項1または請求項2に係る発明の静圧気体ジャーナル多孔質軸受の製造方法が奏する効果に加えて、ハウジング部材の後端面が、多孔質部材の後端面よりも後方に位置し、封止工程が、ハウジング部材よりも硬い突起部を有してハウジング部材を塑性変形させる加締め型をハウジング部材の後端面に押しつけて実行されることにより、加締め型をハウジング部材に押しつけた際に、加締め型が多孔質部材に当接しにくくなるため、加締め型によってハウジング部材を塑性変形させる際に、加締め型の接触による多孔質部材の損傷を防ぐことができる。 According to the method for manufacturing a static pressure gas journal porous bearing of the invention according to claim 3, in addition to the effects of the method for manufacturing a static pressure gas journal porous bearing according to the invention according to claim 1 or 2, the housing The rear end surface of the member is positioned rearwardly of the rear end surface of the porous member, and the sealing step includes forming a crimping die that plastically deforms the housing member with a projection that is harder than the housing member. When the caulking die is pressed against the housing member, it becomes difficult for the caulking die to come into contact with the porous member. Damage to the porous member due to contact with the mold can be prevented.

請求項4に係る発明の静圧気体ジャーナル多孔質軸受によれば、ハウジング部材の筒状部が、多孔質部材の前端部と圧接する前端挿入部分と、多孔質部材を遊嵌する後端挿入部分とを有することにより、多孔質部材が、前端部でハウジング部材の前端挿入部分と圧接するため、簡単な構造でハウジング部材に対して多孔質部材を位置決め固定することができる。
また、ハウジング部材の筒状部が、多孔質部材を遊嵌する後端挿入部分を有し、ハウジング部材の後端挿入部分から多孔質部材に向けて突出する突出領域が、多孔質部材の後端側に当接していることにより、ハウジング部材の前端挿入部分との圧接により多孔質部材の前端部の外周面周辺に目詰まり層が形成され、ハウジング部材の後端挿入部分から多孔質部材に向けて突出する突出領域により多孔質部材の後端部が変形して多孔質部材の後端部の外周面周辺に目詰まり層が形成されるため、ハウジング部材と多孔質部材との間の封止することができるだけでなく、多孔質部材の前端部および後端部以外の通気層の通気率が、目詰まり層の通気率よりも高くなるため、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量を確保することができる。
したがって、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とを簡単な構造ですべて満たすことができる。
According to the hydrostatic gas journal porous bearing of the invention according to claim 4, the cylindrical portion of the housing member has a front end insertion portion that is in pressure contact with the front end portion of the porous member and a rear end insertion portion that loosely fits the porous member. Since the porous member is in pressure contact with the front end insertion portion of the housing member at the front end portion, the porous member can be positioned and fixed to the housing member with a simple structure.
In addition, the cylindrical portion of the housing member has a rear end insertion portion into which the porous member is loosely fitted, and the protruding region that protrudes from the rear end insertion portion of the housing member toward the porous member extends behind the porous member. By abutting on the end side, a clogging layer is formed around the outer peripheral surface of the front end portion of the porous member due to pressure contact with the front end insertion portion of the housing member, and the clogging layer is formed from the rear end insertion portion of the housing member to the porous member. Since the rear end of the porous member is deformed by the protruding region that protrudes toward the porous member and a clogging layer is formed around the outer peripheral surface of the rear end of the porous member, sealing between the housing member and the porous member is prevented. In addition, since the air permeability of the air-permeable layer other than the front end and rear end of the porous member is higher than that of the clogging layer, the air permeability formed between the porous member and the shaft is increased. The amount of gas supplied to the bearing clearance can be secured.
Therefore, positioning and fixing of the porous member with respect to the housing member, sealing between the housing member and the porous member, and ensuring the supply of gas to the bearing clearance formed between the porous member and the shaft. can be satisfied with a simple structure.

請求項5に係る発明の静圧気体ジャーナル多孔質軸受によれば、請求項4に係る発明の静圧気体ジャーナル多孔質軸受が奏する効果に加えて、ハウジング部材が、一体形成されていることにより、ハウジング部材を分割して形成する場合に比べてハウジング部材の構造が簡単になるため、静圧気体ジャーナル多孔質軸受の構造がより簡単なものになり、気体の漏出箇所を最小限にすることができる。 According to the static pressure gas journal porous bearing of the invention according to claim 5, in addition to the effects of the static pressure gas journal porous bearing of the invention according to claim 4, the housing member is integrally formed. Since the structure of the housing member is simpler than when the housing member is divided and formed, the structure of the hydrostatic gas journal porous bearing becomes simpler, and gas leakage points are minimized. can be done.

請求項6に係る発明の静圧気体ジャーナル多孔質軸受によれば、請求項4または請求項5に係る発明の静圧気体ジャーナル多孔質軸受が奏する効果に加えて、ハウジング部材の突出領域が、多孔質部材の後端面よりも後方に位置していることにより、ハウジング部材の突出領域が多孔質部材の後端面をより後方から抑えるため、多孔質部材をよりハウジング部材から抜け出しにくくすることができる。 According to the static pressure gas journal porous bearing of the invention according to claim 6, in addition to the effects of the static pressure gas journal porous bearing of the invention according to claim 4 or 5, the protruding region of the housing member is Positioning behind the rear end surface of the porous member allows the protruding region of the housing member to hold the rear end surface of the porous member from the rear, making it more difficult for the porous member to slip out of the housing member. .

本発明の第1実施例である軸受の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view of the bearing which is 1st Example of this invention. 図1のII-II断面図。II-II sectional view of FIG. 図2のIII拡大図。III enlarged view of FIG. 図1に示すハウジング部材の断面図。FIG. 2 is a cross-sectional view of the housing member shown in FIG. 1; 図1に示す軸受の使用態様図。FIG. 2 is a view showing how the bearing shown in FIG. 1 is used; 本発明の第1実施例である軸受の製造方法における圧入工程を説明する図。FIG. 4 is a view for explaining a press-fitting step in the method of manufacturing the bearing according to the first embodiment of the present invention; 図6AのVIB拡大図。VIB enlarged view of FIG. 6A. 本発明の第1実施例である軸受の製造方法における封止工程を説明する図。FIG. 4 is a diagram for explaining a sealing step in the method of manufacturing the bearing according to the first embodiment of the present invention; 本発明の第1実施例である軸受の製造方法における封止工程を説明する図。FIG. 4 is a diagram for explaining a sealing step in the method of manufacturing the bearing according to the first embodiment of the present invention; 本発明の第2実施例である軸受の斜視図。The perspective view of the bearing which is 2nd Example of this invention. 本発明の第2実施例である軸受の底面図。The bottom view of the bearing which is 2nd Example of this invention. 本発明の第1変形例である軸受の断面図。Sectional drawing of the bearing which is a 1st modification of this invention. 本発明の第2変形例である軸受の断面図。Sectional drawing of the bearing which is a 2nd modification of this invention.

本発明は、外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、この多孔質部材を内挿すると共に多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受の製造方法であって、筒状部の前端挿入部分に多孔質部材の前端部を圧入する圧入工程と、多孔質部材の後端部を遊嵌する筒状部の後端挿入部分を塑性変形させて突出領域を形成してこの突出領域により多孔質部材の後端部を変形させる封止工程とを備え、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とを簡単な構造ですべて満たすものであれば、その具体的な実施態様は、如何なるものであっても構わない。
また、本発明は、外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、この多孔質部材を内挿すると共に多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受であって、ハウジング部材の筒状部が、多孔質部材の前端部と圧接する前端挿入部分と、多孔質部材の後端部を遊嵌する後端挿入部分と、前端挿入部分と後端挿入部分との間に形成されると共に気体流路を有する中間挿入部分とを有し、ハウジング部材の後端挿入部分から多孔質部材に向けて突出する突出領域が、多孔質部材の後端部に当接し、ハウジング部材に対する多孔質部材の位置決め固定と、ハウジング部材と多孔質部材との間の封止と、多孔質部材と軸との間に形成される軸受すきまへの気体の供給量の確保とを簡単な構造ですべて満たすものであれば、その具体的な実施態様は、如何なるものであっても構わない。
In the present invention, a cylindrical porous member for ejecting gas that has flowed in from the outer peripheral surface from the inner peripheral surface, and a gas flow path that inserts the porous member and supplies gas from the outside to the porous member are formed. and a housing member having a cylindrical portion, wherein a load in the radial direction of a shaft to be supported is supported by gas ejected from the porous member, the method comprising: a cylindrical portion; a press-fitting step of press-fitting the front end portion of the porous member into the front end insertion portion of the porous member; a sealing step of deforming the rear end portion of the porous member by a region, positioning and fixing the porous member to the housing member; sealing between the housing member and the porous member; Any specific embodiment may be used as long as it satisfies all of the requirements of ensuring the amount of gas supplied to the bearing gap formed between the bearings with a simple structure.
In addition, the present invention includes a cylindrical porous member for ejecting from the inner peripheral surface the gas that has flowed in from the outer peripheral surface, and a gas flow path in which the porous member is inserted and the gas is supplied to the porous member from the outside. a hydrostatic gas journal porous bearing for supporting a load in the radial direction of a shaft to be supported by gas ejected from the porous member, the housing member comprising a housing member having a tubular portion formed therein; A shaped portion is formed between a front end insertion portion that presses against the front end portion of the porous member, a rear end insertion portion that loosely fits the rear end portion of the porous member, and between the front end insertion portion and the rear end insertion portion. and an intermediate insertion portion having a gas flow path, and a protruding region protruding from the rear end insertion portion of the housing member toward the porous member abuts the rear end portion of the porous member and forms a porous body with respect to the housing member. Positioning and fixing of members, sealing between the housing member and the porous member, and securing of gas supply to the bearing clearance formed between the porous member and the shaft are all achieved with a simple structure. Any specific embodiment may be used as long as it is one.

例えば、静圧気体ジャーナル多孔質軸受による支持対象である軸の断面形状は、円形であってもよいし、軸の回転を抑制するために、D字状であってもよいし、2本の直線部分とそれをつなぐ2つの曲線部分とから形成されるようなI字状であってもよい。
なお、軸の断面形状をD字状やI字状とする場合、多孔質部材の軸方向に伸びる貫通孔の断面形状もD字状またはI字状となり、軸の平坦面と対向する位置の多孔質部材の厚みが軸の湾曲面と対向する位置の多孔質部材の厚みより厚くなるため、軸の平坦面と対向する位置から噴出される気体の量を増やすためには、気体流路を軸の平坦面と対向する位置に設けることが好ましい。
For example, the cross-sectional shape of the shaft to be supported by the hydrostatic gas journal porous bearing may be circular, may be D-shaped in order to suppress rotation of the shaft, or may be two It may also be I-shaped, formed from a straight portion and two curvilinear portions connecting it.
When the cross-sectional shape of the shaft is D-shaped or I-shaped, the cross-sectional shape of the through-hole extending in the axial direction of the porous member is also D-shaped or I-shaped, and the cross-sectional shape of the through hole is also D-shaped or I-shaped. Since the thickness of the porous member is greater than the thickness of the porous member at the position facing the curved surface of the shaft, in order to increase the amount of gas ejected from the position facing the flat surface of the shaft, the gas flow path must be widened. It is preferable to provide it at a position facing the flat surface of the shaft.

例えば、本発明の静圧気体ジャーナル多孔質軸受で用いられる気体は、空気であることが好ましいが、その他の気体であってもよい。 For example, the gas used in the hydrostatic gas journal porous bearing of the present invention is preferably air, but other gases are possible.

例えば、本発明の静圧気体ジャーナル多孔質軸受におけるハウジング部材は、一体であることが好ましいが、分割されていてもよい。 For example, the housing member in the hydrostatic gas journal porous bearing of the present invention is preferably integral, but may be split.

以下、図1乃至図6Bに基づいて、本発明の第1実施例である静圧気体ジャーナル多孔質軸受である軸受100について説明する。 A bearing 100, which is a static pressure gas journal porous bearing according to a first embodiment of the present invention, will now be described with reference to FIGS. 1 to 6B.

<1.本発明の第1実施例である軸受100の構造>
まず、図1乃至図4に基づいて、本発明の第1実施例である軸受100の構造を説明する。
図1は本発明の第1実施例である軸受の斜視図であり、図2は図1のII-II断面図であり、図3は図2のIII拡大図であり、図4は図1に示すハウジング部材の断面図である。
<1. Structure of Bearing 100 of First Embodiment of the Present Invention>
First, the structure of a bearing 100, which is a first embodiment of the present invention, will be described with reference to FIGS. 1 to 4. FIG.
1 is a perspective view of a bearing according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1, FIG. 3 is an enlarged view of line III of FIG. 2, and FIG. 2 is a cross-sectional view of the housing member shown in FIG.

本発明の第1実施例である軸受100は、支持対象となる軸の半径方向の荷重を外部から供給される空気で支持する静圧気体ジャーナル多孔質軸受である。
そして、この軸受100は、図1および図2に示すように、外周面111から流入した気体を内周面112から噴出する円筒状の多孔質部材110と、この多孔質部材110を包囲するハウジング部材120とを備えている。
A bearing 100, which is a first embodiment of the present invention, is a hydrostatic gas journal porous bearing that supports the radial load of a shaft to be supported by externally supplied air.
As shown in FIGS. 1 and 2, the bearing 100 includes a cylindrical porous member 110 for ejecting gas from an outer peripheral surface 111 from an inner peripheral surface 112, and a housing surrounding the porous member 110. A member 120 is provided.

<1.1.多孔質部材>
多孔質部材110には、無数の微細孔が形成され、外周面111と内周面112とが連通している。
したがって、外周面111から流入した圧縮空気は、内周面112から噴出する。
<1.1. Porous member>
Innumerable micropores are formed in the porous member 110, and the outer peripheral surface 111 and the inner peripheral surface 112 are in communication.
Therefore, the compressed air that has flowed in from the outer peripheral surface 111 is ejected from the inner peripheral surface 112 .

そして、この多孔質部材110には、図2および図3に示すように、細孔が無数に形成された通気層110Aと、細孔が押し潰されて通気率が通気層110Aよりも低い目詰まり層110Bとが形成されている。
目詰まり層110Bは、多孔質部材110とハウジング部材120とが当接している箇所周辺に形成されている。
具体的には、目詰まり層110Bは、図2および図3に示すように、多孔質部材110の前端部113の外周面111周辺と、多孔質部材110の後端部114の外周面111周辺とに形成されている。
As shown in FIGS. 2 and 3, the porous member 110 includes a ventilation layer 110A in which a myriad of pores are formed and a mesh having a lower permeability than the ventilation layer 110A due to crushed pores. A clogged layer 110B is formed.
The clogging layer 110B is formed around a portion where the porous member 110 and the housing member 120 are in contact with each other.
Specifically, as shown in FIGS. 2 and 3, the clogging layer 110B is formed around the outer peripheral surface 111 of the front end portion 113 of the porous member 110 and around the outer peripheral surface 111 of the rear end portion 114 of the porous member 110. and is formed.

<1.2.ハウジング部材>
ハウジング部材120は、図1乃至図4に示すように、多孔質部材110を内挿する円筒状の筒状部121と、この筒状部121から突出する円環状のフランジ部122とが一体形成された金属部材であり、多孔質部材110よりも硬質になっている。
<1.2. Housing member>
As shown in FIGS. 1 to 4, the housing member 120 is integrally formed with a cylindrical tubular portion 121 into which the porous member 110 is inserted and an annular flange portion 122 protruding from the tubular portion 121. The porous member 110 is harder than the porous member 110 .

<1.2.1.筒状部>
筒状部121は、図2に示すように、前端面121aが多孔質部材110の前端面113aと面一になっており、後端面121bが多孔質部材110の後端面114aよりも後方に位置している。
また、前端面121aと内壁面121dとは、図4に示すように、傾斜面121eによって接続されている。
また、外壁面121cには、図2等に示すように、Oリングを挿入するための凹溝121c1が後述する気体流路121B1の上下に形成されている。
<1.2.1. Cylindrical part>
As shown in FIG. 2, the cylindrical portion 121 has a front end surface 121a flush with the front end surface 113a of the porous member 110, and a rear end surface 121b located behind the rear end surface 114a of the porous member 110. are doing.
4, the front end surface 121a and the inner wall surface 121d are connected by an inclined surface 121e.
Further, as shown in FIG. 2 and the like, the outer wall surface 121c is formed with concave grooves 121c1 for inserting O-rings above and below a gas flow path 121B1, which will be described later.

また、この筒状部121は、図4に示すように、多孔質部材110の前端部113と圧接する前端挿入部分121Aと、中間挿入部分121Bと、多孔質部材110の後端部114を遊嵌する後端挿入部分121Cとから構成されている。 4, the cylindrical portion 121 has a front end insertion portion 121A that presses against the front end portion 113 of the porous member 110, an intermediate insertion portion 121B, and a rear end portion 114 of the porous member 110. and a rear end insertion portion 121C to be fitted.

前端挿入部分121Aの内径φAは、中間挿入部分121Bの内径φBおよび後端挿入部分121Cの内径φCよりも小さくなっている。
さらに、前端挿入部分121Aの内径φAは、多孔質部材110の外径φよりも僅かに小さくなっている。
The inner diameter φA of the front end insertion portion 121A is smaller than the inner diameter φB of the intermediate insertion portion 121B and the inner diameter φC of the rear end insertion portion 121C.
Furthermore, the inner diameter φA of the front end insertion portion 121A is slightly smaller than the outer diameter φ of the porous member 110 .

中間挿入部分121Bは、前端挿入部分121Aと後端挿入部分121Cとの間に形成されている。
中間挿入部分121Bの内径φBは、前端挿入部分121Aの内径φAおよび後端挿入部分121Cの内径φCよりも大きくなっている。
これにより、中間挿入部分121Bと多孔質部材110との間の隙間Gは、図5に示すように前端挿入部分121Aおよび後端挿入部分121Cと多孔質部材110との間の隙間に比べて大きくなるため、多孔質部材110に供給する空気量を十分に確保することができる。
The intermediate insertion portion 121B is formed between the front end insertion portion 121A and the rear end insertion portion 121C.
The inner diameter φB of the intermediate insertion portion 121B is larger than the inner diameter φA of the front end insertion portion 121A and the inner diameter φC of the rear end insertion portion 121C.
As a result, the gap G between the intermediate insertion portion 121B and the porous member 110 is larger than the gaps between the front end insertion portion 121A and the rear end insertion portion 121C and the porous member 110, as shown in FIG. Therefore, a sufficient amount of air to be supplied to the porous member 110 can be ensured.

そして、この中間挿入部分121Bには、半径方向に貫通して多孔質部材110へ外部から気体を供給する気体流路121B1が形成されている。
この気体流路121B1は、継手を螺合するための雌ネジ孔となっている。
また、気体流路121B1の入口周辺の外壁面121cは、図1に示すように、平坦になっている。
A gas passage 121B1 is formed through the intermediate insertion portion 121B in the radial direction to supply gas to the porous member 110 from the outside.
This gas flow path 121B1 is a female screw hole for screwing a joint.
Further, the outer wall surface 121c around the inlet of the gas flow path 121B1 is flat as shown in FIG.

後端挿入部分121Cの内径φCは、多孔質部材110の外径φよりも僅かに大きくなっている。
さらに、後端挿入部分121Cには、多孔質部材110に向けて突出する突出領域121C1が形成され、この突出領域121C1は、図3に示すように、多孔質部材110の後端部114に覆い被さるように当接している。
すなわち、突出領域121C1は、多孔質部材110の後端面114aよりも後方に位置していることになる。
The inner diameter φC of the rear end insertion portion 121C is slightly larger than the outer diameter φ of the porous member 110 .
Further, a protruding region 121C1 protruding toward the porous member 110 is formed in the rear end insertion portion 121C, and the protruding region 121C1 covers the rear end portion 114 of the porous member 110 as shown in FIG. They are in contact so as to cover each other.
That is, the protruding region 121C1 is located behind the rear end surface 114a of the porous member 110. As shown in FIG.

<1.2.2.フランジ部>
フランジ部122の前端面122aは、図2に示すように、筒状部121の前端面121aと面一であると共に多孔質部材110の前端面113aとも面一になっている。
また、フランジ部122には、厚み方向(上下方向)に伸びる段付きのボルト挿通孔122bが、円周方向に等間隔に4個形成されている。
<1.2.2. Flange>
The front end surface 122a of the flange portion 122 is flush with the front end surface 121a of the cylindrical portion 121 and also flush with the front end surface 113a of the porous member 110, as shown in FIG.
Four stepped bolt insertion holes 122b extending in the thickness direction (vertical direction) are formed in the flange portion 122 at regular intervals in the circumferential direction.

<2.本発明の第1実施例である軸受100の組込および気体の流れ>
次に、図1に示す軸受の使用態様図である図5に基づき、本発明の第1実施例である軸受100の組込および軸の支持について説明する。
<2. Assembly of the bearing 100 according to the first embodiment of the present invention and gas flow>
Next, the assembly of the bearing 100 of the first embodiment of the present invention and the support of the shaft will be described with reference to FIG. 5, which is a usage diagram of the bearing shown in FIG.

<2.1.軸受100が組み込まれる装置の要部構造>
まず、図5に基づき、軸受100が組み込まれる装置の要部について説明する。
<2.1. Main structure of device in which bearing 100 is incorporated>
First, based on FIG. 5, the main part of the device in which the bearing 100 is assembled will be described.

軸受100が組み込まれる装置の装置側取付部Mには流路Cが形成されており、この流路Cの一端には継手Jが取り付けられている。
継手Jには、不図示の圧縮空気源から延びるチューブTが接続されている。
したがって、流路CにはチューブTおよび継手Jを介して圧縮空気Aが流入する。
A flow channel C is formed in a device-side mounting portion M of a device in which the bearing 100 is incorporated, and a joint J is attached to one end of the flow channel C. As shown in FIG.
A tube T extending from a compressed air source (not shown) is connected to the joint J.
Therefore, the compressed air A flows into the flow path C through the tube T and the joint J. As shown in FIG.

装置側取付部Mには、軸受100が挿入される軸受取付孔MHが形成されている。
この軸受取付孔MHの直径は、軸受100の筒状部121の外径より少し大きくなっている。
The device-side mounting portion M is formed with a bearing mounting hole MH into which the bearing 100 is inserted.
The diameter of this bearing mounting hole MH is slightly larger than the outer diameter of the tubular portion 121 of the bearing 100 .

さらに、装置側取付部Mには、組み付けボルトBと螺合する雌ネジ穴HSが形成されている。 Further, the device-side mounting portion M is formed with a female threaded hole HS for screwing with the mounting bolt B. As shown in FIG.

<2.2.軸受の装置への組込>
続いて、図5に基づき、上述した装置側取付部Mへの軸受100の組込について説明する。
<2.2. Incorporation of Bearing into Device>
Next, the assembly of the bearing 100 into the device-side mounting portion M described above will be described with reference to FIG. 5 .

軸受100を装置側取付部Mに組み込む際、まず、軸受100の凹溝121c1にOリングRを装着する。
次に、軸受100の気体流路121B1が装置側取付部Mの流路Cと対向する向きで軸受100を装置側取付部Mの軸受取付孔MHに挿入する。
次に、組み付けボルトBを軸受100のボルト挿通孔122bに挿通して組み付けボルトBを雌ネジ穴HSと螺合させることで、軸受100が装置側取付部Mに組み込まれる。
軸受100が装置側取付部Mに組み込まれた際、OリングRが装置側取付部Mとの当接により潰れ、軸受100と装置側取付部Mとの間の隙間から圧縮空気Aが漏出しないようになっている。
When assembling the bearing 100 into the device-side mounting portion M, first, the O-ring R is attached to the concave groove 121c1 of the bearing 100. As shown in FIG.
Next, the bearing 100 is inserted into the bearing mounting hole MH of the device-side mounting portion M so that the gas flow path 121B1 of the bearing 100 faces the flow path C of the device-side mounting portion M. As shown in FIG.
Next, the bearing 100 is incorporated into the device-side mounting portion M by inserting the mounting bolt B through the bolt insertion hole 122b of the bearing 100 and screwing the mounting bolt B into the female screw hole HS.
When the bearing 100 is incorporated in the device-side mounting portion M, the O-ring R is crushed by contact with the device-side mounting portion M, and the compressed air A does not leak from the gap between the bearing 100 and the device-side mounting portion M. It's like

<2.3.軸受による軸の支持>
続いて、図5に基づき、上述の装置側取付部Mに組み込まれた軸受100による軸の支持について説明する。
<2.3. Shaft Support by Bearing>
Next, with reference to FIG. 5, the support of the shaft by the bearing 100 incorporated in the device-side mounting portion M will be described.

軸受100が装置側取付部Mに組み込まれた状態において、軸受100に軸Sを挿通する。
この状態で、圧縮空気Aが装置に供給されると、圧縮空気Aは流路Cおよび軸受100の気体流路121B1を通って多孔質部材110とハウジング部材120との間の隙間Gに供給される。
このとき、多孔質部材110の前端部113に目詰まり層110Bが形成されているため、多孔質部材110の前端部113とハウジング部材120との間が封止され、多孔質部材110の前端部113とハウジング部材120との間から圧縮空気Aが漏出しにくくなっている。
同様に、多孔質部材110の後端部114とハウジング部材120の突出領域121C1との間にも目詰まり層110Bが形成されているため、多孔質部材110の後端部114とハウジング部材120との間が封止され、多孔質部材110の後端部114とハウジング部材120との間から圧縮空気Aが漏出しにくくなっている。
したがって、装置側取付部Mの流路Cから供給される圧縮空気Aは、多孔質部材110の通気層110A内に充満される。
The shaft S is inserted through the bearing 100 in a state in which the bearing 100 is assembled in the device-side mounting portion M. As shown in FIG.
When the compressed air A is supplied to the apparatus in this state, the compressed air A is supplied to the gap G between the porous member 110 and the housing member 120 through the flow path C and the gas flow path 121B1 of the bearing 100. be.
At this time, since the clogging layer 110B is formed on the front end portion 113 of the porous member 110, the space between the front end portion 113 of the porous member 110 and the housing member 120 is sealed, and the front end portion of the porous member 110 is sealed. Compressed air A is less likely to leak from between 113 and housing member 120 .
Similarly, since the clogging layer 110B is also formed between the rear end portion 114 of the porous member 110 and the projecting region 121C1 of the housing member 120, the rear end portion 114 of the porous member 110 and the housing member 120 are separated from each other. The space between is sealed, and the compressed air A is less likely to leak from between the rear end portion 114 of the porous member 110 and the housing member 120 .
Therefore, the compressed air A supplied from the flow path C of the device-side attachment portion M fills the ventilation layer 110A of the porous member 110 .

多孔質部材110の通気層110A内に充満された圧縮空気Aは、内周面112、前端面113a、後端面114aから噴出される。
内周面112から溢れ出る圧縮空気Aが軸受100と軸Sとの間の軸受すきまH内に満たされることで、軸Sの外周面が圧縮空気Aにより非接触状態で支持される。
なお、多孔質部材110の通気層110A内に充満された圧縮空気Aが前端面113aおよび後端面114aからも噴出されることで、軸受すきまHに充満される圧縮空気Aの圧縮性に起因する気体軸受に特有の自励振動(ニューマチックハンマー)が起こりにくくなっている。
The compressed air A filled in the ventilation layer 110A of the porous member 110 is jetted from the inner peripheral surface 112, the front end surface 113a, and the rear end surface 114a.
By filling the bearing clearance H between the bearing 100 and the shaft S with the compressed air A overflowing from the inner peripheral surface 112, the outer peripheral surface of the shaft S is supported by the compressed air A in a non-contact state.
It should be noted that the compressed air A filling the ventilation layer 110A of the porous member 110 is also ejected from the front end surface 113a and the rear end surface 114a, resulting in the compressibility of the compressed air A filling the bearing clearance H. Self-excited vibration (pneumatic hammer) peculiar to gas bearings is less likely to occur.

<3.軸受100の製造方法>
次に、図6A乃至図6Dに基づき、軸受100の製造方法について説明する。
図6Aは本発明の第1実施例である軸受の製造方法における圧入工程を説明する図であり、図6Bは図6AのVIB拡大図であり、図6Cは本発明の第1実施例である軸受の製造方法における封止工程を説明する図であり、図6Dは本発明の第1実施例である軸受の製造方法における封止工程を説明する図である。
<3. Manufacturing Method of Bearing 100>
Next, a method for manufacturing the bearing 100 will be described with reference to FIGS. 6A to 6D.
6A is a view for explaining the press-fitting step in the method of manufacturing the bearing according to the first embodiment of the present invention, FIG. 6B is an enlarged view of VIB of FIG. 6A, and FIG. 6C is the first embodiment of the present invention. FIG. 6D is a diagram for explaining a sealing step in the bearing manufacturing method, and FIG. 6D is a diagram for explaining the sealing step in the bearing manufacturing method according to the first embodiment of the present invention;

まず、図6Aに示すように、フランジ部122が平坦な組立面Fに当接するようにハウジング部材120を平坦な組立面Fに載置する。
ここで、図6Bに示すように、多孔質部材110の後端側外周面111aは、面取りされている。
すなわち、多孔質部材110の後端側外周面111aと後端面114aとは、傾斜面115によって接続されている。
また、ハウジング部材120の前端面121aと内壁面121dとは、傾斜面121eによって接続され、後端面121bと内壁面121dとは、直接接続され、略直交している。
First, as shown in FIG. 6A, the housing member 120 is placed on the flat assembly surface F so that the flange portion 122 contacts the flat assembly surface F. As shown in FIG.
Here, as shown in FIG. 6B, the rear end side outer peripheral surface 111a of the porous member 110 is chamfered.
That is, the rear end side outer peripheral surface 111 a and the rear end surface 114 a of the porous member 110 are connected by the inclined surface 115 .
A front end surface 121a and an inner wall surface 121d of the housing member 120 are connected by an inclined surface 121e, and a rear end surface 121b and an inner wall surface 121d are directly connected and substantially perpendicular to each other.

(圧入工程)
この状態から、多孔質部材110を後端挿入部分121Cからハウジング部材120に挿入する。
ハウジング部材120の後端挿入部分121Cの内径φC、中間挿入部分121Bの内径φBはいずれも多孔質部材110の外径φより大きいため、多孔質部材110はハウジング部材120の後端挿入部分121C、中間挿入部分121Bに対しては遊嵌状態となっている。
しかしながら、ハウジング部材120の前端挿入部分121Aの内径φAは多孔質部材110の外径φより僅かに小さいことから、ハウジング部材120の前端挿入部分121Aに対して多孔質部材110の前端部113を圧入することで、多孔質部材110がハウジング部材120の前端挿入部分121Aに挿入される。
この圧入により、多孔質部材110の前端部113の外周面111の周辺に目詰まり層110Bが形成される共に、図6Cに示すように、多孔質部材110がハウジング部材120に対して位置決め固定される。
(Press fitting process)
From this state, the porous member 110 is inserted into the housing member 120 from the rear end insertion portion 121C.
Since the inner diameter φC of the rear end insertion portion 121C of the housing member 120 and the inner diameter φB of the intermediate insertion portion 121B are both larger than the outer diameter φ of the porous member 110, the porous member 110 is arranged in the rear end insertion portion 121C of the housing member 120, It is loosely fitted to the intermediate insertion portion 121B.
However, since the inner diameter φA of the front end insertion portion 121A of the housing member 120 is slightly smaller than the outer diameter φ of the porous member 110, the front end portion 113 of the porous member 110 is press-fitted into the front end insertion portion 121A of the housing member 120. By doing so, the porous member 110 is inserted into the front end insertion portion 121A of the housing member 120 .
By this press-fitting, a clogging layer 110B is formed around the outer peripheral surface 111 of the front end portion 113 of the porous member 110, and the porous member 110 is positioned and fixed with respect to the housing member 120 as shown in FIG. 6C. be.

(封止工程)
この状態から図6Cに示すように、下方に向けて突出する突起部CT1を有する加締め型CTを軸受100の後端側から軸受100に向かって押し込む。
突起部CT1は、円環状であり、その断面形状は、図6Cに示すように、外周側垂直辺CT1aと、内周側傾斜辺CT1bとから形成される直角三角形状である。
そして、突起部CT1の先端と軸受100と対向するベース面との距離は、突起部CT1の外側と内側で異なっており、突起部CT1の外側における突起部CT1の高さ(突起部CT1の先端と軸受100と対向する外側ベース面CT2との距離)Hoは、突起部CT1の内側における突起部CT1の高さ(突起部CT1の先端と軸受100と対向する内側ベース面CT3との距離)Hiよりも大きくなっている。
さらに、突起部CT1の内側における突起部CT1の高さHiは、図6Dに示すように、ハウジング部材120の後端面121bから多孔質部材の後端面114aまでの距離hよりも、小さくなっている。
また、突起部CT1と内側ベース面CT3とは、図6Cに示すように、曲面CT4で接続されている。
(sealing process)
From this state, as shown in FIG. 6C, a crimping die CT having downwardly protruding projections CT1 is pushed into the bearing 100 from the rear end side thereof.
The protrusion CT1 is annular, and has a cross-sectional shape of a right triangle formed by an outer peripheral vertical side CT1a and an inner peripheral inclined side CT1b, as shown in FIG. 6C.
The distance between the tip of the protrusion CT1 and the base surface facing the bearing 100 is different between the outer side and the inner side of the protrusion CT1, and the height of the protrusion CT1 on the outer side of the protrusion CT1 (the tip of the protrusion CT1 and the distance between the outer base surface CT2 facing the bearing 100) Ho is the height of the projection CT1 inside the projection CT1 (the distance between the tip of the projection CT1 and the inner base surface CT3 facing the bearing 100) Hi is larger than
Furthermore, the height Hi of the protrusion CT1 inside the protrusion CT1 is smaller than the distance h from the rear end surface 121b of the housing member 120 to the rear end surface 114a of the porous member, as shown in FIG. 6D. .
Further, the protrusion CT1 and the inner base surface CT3 are connected by a curved surface CT4 as shown in FIG. 6C.

加締め型CTがハウジング部材120より硬質の材料で形成されているため、ハウジング部材120に加締め型CTが押し込み、加締め型CTをハウジング部材120の後端面121bに押しつけると、図6Dに示すように、ハウジング部材120の後端挿入部分121Cが加締め型CTの突起部CT1の形状に合わせて塑性変形し、突起部CT1の内周側傾斜辺CT1bに沿って突出領域121C1が形成される。
そして、ハウジング部材120が多孔質部材110よりも硬質であるため、突出領域121C1の形成により多孔質部材110の後端部114が押圧され、多孔質部材110のハウジング部材120の突出領域121C1と当接する部分が潰されて変形し、目詰まり層110Bが形成される。
なお、多孔質部材110の後端側外周面111aと後端面114aとが、図6Bに示すように、傾斜面115で接続されていることにより、封止工程で多孔質部材110の後端部114を変形させた際に多孔質部材110の後端側外周面111a付近の潰れ代が少なくなるため、多孔質部材110の後端側内周面112a(図6D参照)が中心軸Ax(図6C参照)側に張り出しにくくなっている。
また、多孔質部材110の後端側外周面111aと後端面114aとが、図6Bに示すように、傾斜面115で接続されていることにより、多孔質部材の後端側外周面と後端面とが直接接続されている場合に比べて、圧入工程において、多孔質部材110の後端部114がハウジング部材120と接触して削られにくくなるため、多孔質部材110とハウジング部材120との間に多孔質部材110の削り粉が混入しにくくなっていると共に削り粉に起因するハウジング部材120の内径側の変形が発生しにくくなっている。
Since the caulking die CT is made of a material harder than the housing member 120, the caulking die CT is pushed into the housing member 120 and pressed against the rear end surface 121b of the housing member 120, as shown in FIG. 6D. , the rear end insertion portion 121C of the housing member 120 is plastically deformed in accordance with the shape of the protrusion CT1 of the crimping mold CT, and a protrusion region 121C1 is formed along the inner peripheral inclined side CT1b of the protrusion CT1. .
Since the housing member 120 is harder than the porous member 110, the rear end portion 114 of the porous member 110 is pressed by the formation of the projecting region 121C1, and the porous member 110 contacts the projecting region 121C1 of the housing member 120. The contacting portion is crushed and deformed to form the clogging layer 110B.
Note that, as shown in FIG. 6B, the rear end side outer peripheral surface 111a and the rear end surface 114a of the porous member 110 are connected by an inclined surface 115, so that the rear end portion of the porous member 110 is not flattened in the sealing step. 114 is deformed, the collapse margin near the rear end side outer peripheral surface 111a of the porous member 110 is reduced, so the rear end side inner peripheral surface 112a (see FIG. 6D) of the porous member 110 is aligned with the central axis Ax (see FIG. 6D). 6C) side is difficult to overhang.
Further, as shown in FIG. 6B, the rear end side outer peripheral surface 111a and the rear end surface 114a of the porous member 110 are connected by the inclined surface 115, so that the rear end side outer peripheral surface and the rear end surface of the porous member 110 are connected to each other. In the press-fitting process, the rear end portion 114 of the porous member 110 is less likely to come into contact with the housing member 120 and be scraped off compared to the case where the two are directly connected. Shaving dust from the porous member 110 is less likely to be mixed into the housing member 110, and deformation of the inner diameter side of the housing member 120 due to the shaving dust is less likely to occur.

<1.5.本実施例の作用効果>
上述した本実施例である軸受100の製造方法によれば、筒状部121の前端挿入部分121Aに多孔質部材110の前端部113を圧入する圧入工程を備えていることにより、多孔質部材110が、前端部113でハウジング部材120の前端挿入部分121Aと圧接するため、簡単な構造でハウジング部材120に対して多孔質部材110を位置決め固定することができるだけでなく、接着による位置決めよりも高精度に位置決め固定することができる。
また、筒状部121の前端挿入部分121Aに多孔質部材110の前端部113を圧入する圧入工程と、多孔質部材110の後端部114を遊嵌する筒状部121の後端挿入部分121Cを塑性変形させて突出領域121C1を形成してこの突出領域121C1により多孔質部材110の後端部114を変形させる封止工程とを備えていることにより、ハウジング部材120の前端挿入部分121Aとの圧接により多孔質部材110の前端部113の外周面111周辺に目詰まり層110Bが形成され、ハウジング部材120の後端挿入部分121Cから多孔質部材110に向けて突出する突出領域121C1により多孔質部材110の後端部114が変形して多孔質部材110の後端部114の外周面111周辺に目詰まり層110Bが形成されるため、ハウジング部材120と多孔質部材110との間の封止することができるだけでなく、多孔質部材110の前端部113および後端部114以外の通気層110Aの通気率が、目詰まり層110Bの通気率よりも高くなるため、多孔質部材110と軸Sとの間に形成される軸受すきまHへの気体の供給量を確保することができる。
したがって、ハウジング部材120に対する多孔質部材110の位置決め固定と、ハウジング部材120と多孔質部材110との間の封止と、多孔質部材110と軸Sとの間に形成される軸受すきまHへの気体の供給量の確保とを簡単な構造ですべて満たすことができる。
さらに、上述した封止工程により多孔質部材110の後端部114の封止を行うことにより、ハウジング部材120と多孔質部材110の熱膨張率を考慮する必要が無いため、焼き嵌めや冷やし嵌めでは実現できないような小型の静圧気体ジャーナル多孔質軸受を作成することができる。
<1.5. Effects of this embodiment>
According to the method of manufacturing the bearing 100 of the present embodiment described above, the press-fitting step of press-fitting the front end portion 113 of the porous member 110 into the front end insertion portion 121A of the cylindrical portion 121 is provided. However, since the front end portion 113 is in pressure contact with the front end insertion portion 121A of the housing member 120, not only can the porous member 110 be positioned and fixed to the housing member 120 with a simple structure, but the positioning accuracy is higher than that by adhesion. can be fixed in position.
In addition, a press-fitting step of press-fitting the front end portion 113 of the porous member 110 into the front end insertion portion 121A of the tubular portion 121, and a rear end insertion portion 121C of the tubular portion 121 in which the rear end portion 114 of the porous member 110 is loosely fitted. is plastically deformed to form a projecting region 121C1, and the rear end portion 114 of the porous member 110 is deformed by the projecting region 121C1. A clogging layer 110B is formed around the outer peripheral surface 111 of the front end portion 113 of the porous member 110 by pressure contact, and the porous member is blocked by the protruding region 121C1 protruding from the rear end insertion portion 121C of the housing member 120 toward the porous member 110. Since the rear end portion 114 of the porous member 110 is deformed to form a clogging layer 110B around the outer peripheral surface 111 of the rear end portion 114 of the porous member 110, sealing between the housing member 120 and the porous member 110 is achieved. In addition, since the air permeability of the air-permeable layer 110A other than the front end portion 113 and the rear end portion 114 of the porous member 110 is higher than the air permeability of the clogging layer 110B, the porous member 110 and the shaft S The amount of gas supplied to the bearing clearance H formed between can be ensured.
Accordingly, positioning and fixing of the porous member 110 to the housing member 120, sealing between the housing member 120 and the porous member 110, and bearing clearance H formed between the porous member 110 and the shaft S are controlled. It is possible to satisfy all requirements with a simple structure.
Furthermore, by sealing the rear end portion 114 of the porous member 110 by the sealing process described above, there is no need to consider the coefficient of thermal expansion of the housing member 120 and the porous member 110, so shrink fitting or cooling fitting is not necessary. It is possible to create a small hydrostatic gas journal porous bearing that cannot be realized with

上述した本実施例である軸受100によれば、ハウジング部材120の筒状部121が、多孔質部材110の前端部113と圧接する前端挿入部分121Aと、多孔質部材110を遊嵌する後端挿入部分121Cとを有することにより、多孔質部材110が、前端部113でハウジング部材120の前端挿入部分121Aと圧接するため、簡単な構造でハウジング部材120に対して多孔質部材110を位置決め固定することができる。
また、ハウジング部材120の筒状部121が、多孔質部材110を遊嵌する後端挿入部分121Cを有し、ハウジング部材120の後端挿入部分121Cから多孔質部材110に向けて突出する突出領域121C1が、多孔質部材110の後端側に当接していることにより、ハウジング部材120の前端挿入部分121Aとの圧接により多孔質部材110の前端部113の外周面111周辺に目詰まり層110Bが形成され、ハウジング部材120の後端挿入部分121Cから多孔質部材110に向けて突出する突出領域121C1により多孔質部材110の後端部114が変形して多孔質部材110の後端部114の外周面111周辺に目詰まり層110Bが形成されるため、ハウジング部材120と多孔質部材110との間の封止することができるだけでなく、多孔質部材110の前端部113および後端部114以外の通気層110Aの通気率が、目詰まり層110Bの通気率よりも高くなるため、多孔質部材110と軸Sとの間に形成される軸受すきまHへの気体の供給量を確保することができる。
したがって、ハウジング部材120に対する多孔質部材110の位置決め固定と、ハウジング部材120と多孔質部材110との間の封止と、多孔質部材110と軸Sとの間に形成される軸受すきまHへの気体の供給量の確保とを簡単な構造ですべて満たすことができる。
According to the bearing 100 of the present embodiment described above, the cylindrical portion 121 of the housing member 120 has a front end insertion portion 121A that press-contacts the front end portion 113 of the porous member 110, and a rear end portion that loosely fits the porous member 110. Since the front end portion 113 of the porous member 110 is pressed against the front end insertion portion 121A of the housing member 120 by having the insertion portion 121C, the porous member 110 is positioned and fixed to the housing member 120 with a simple structure. be able to.
Further, the cylindrical portion 121 of the housing member 120 has a rear end insertion portion 121C into which the porous member 110 is loosely fitted, and a protruding region that protrudes from the rear end insertion portion 121C of the housing member 120 toward the porous member 110. 121C1 is in contact with the rear end side of the porous member 110, the clogging layer 110B is formed around the outer peripheral surface 111 of the front end portion 113 of the porous member 110 due to pressure contact with the front end insertion portion 121A of the housing member 120. The rear end portion 114 of the porous member 110 is deformed by the protruding region 121C1 that is formed and protrudes from the rear end insertion portion 121C of the housing member 120 toward the porous member 110, and the outer periphery of the rear end portion 114 of the porous member 110 is deformed. Since the clogging layer 110B is formed around the surface 111, not only is it possible to seal between the housing member 120 and the porous member 110, Since the gas permeability of the gas permeable layer 110A is higher than that of the clogging layer 110B, the amount of gas supplied to the bearing gap H formed between the porous member 110 and the shaft S can be ensured. .
Accordingly, positioning and fixing of the porous member 110 to the housing member 120, sealing between the housing member 120 and the porous member 110, and bearing clearance H formed between the porous member 110 and the shaft S are controlled. It is possible to satisfy all requirements with a simple structure.

また、ハウジング部材120が、一体形成されていることにより、ハウジング部材120を分割して形成する場合に比べてハウジング部材120の構造が簡単になるため、軸受100の構造がより簡単なものになり、気体の漏出箇所を最小限にすることができる。 In addition, since the housing member 120 is integrally formed, the structure of the housing member 120 is simpler than when the housing member 120 is divided and formed, so the structure of the bearing 100 is simpler. , gas leakage points can be minimized.

また、ハウジング部材120の突出領域121C1が、多孔質部材110の後端面114aよりも後方に位置していることにより、ハウジング部材120の突出領域121C1が多孔質部材110の後端面114aをより後方から抑えるため、多孔質部材110をよりハウジング部材120から抜け出しにくくすることができる。 In addition, since projecting region 121C1 of housing member 120 is located behind rear end surface 114a of porous member 110, projecting region 121C1 of housing member 120 projects rear end surface 114a of porous member 110 from the rear. As a result, the porous member 110 can be made more difficult to slip out of the housing member 120 .

また、図6Aに示すように、ハウジング部材120の後端面121bと外壁面121cとは、傾斜面121fによって接続されている。
これにより、筒状部121の後端の外径が前端側に比べて小さくなるため、加締め型CTをハウジング部材120に押し込んで筒状部121が塑性変形する際、筒状部121の拡径量を少なくすることができる。
Further, as shown in FIG. 6A, the rear end surface 121b and the outer wall surface 121c of the housing member 120 are connected by an inclined surface 121f.
As a result, the outer diameter of the rear end of the tubular portion 121 becomes smaller than that of the front end. The diameter can be reduced.

次に、図7および図8に基づいて、本発明の静圧気体ジャーナル多孔質軸受の第2実施例である軸受200について説明する。
図7は本発明の第2実施例である軸受の斜視図であり、図8は本発明の第2実施例である軸受の底面図である。
なお、第2実施例の軸受200は、第1実施例の軸受100におけるハウジング部材120の形状を変更したものであり、多くの要素について第1実施例の軸受100と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する200番台の符号を付すのみとする。
Next, a bearing 200, which is a second embodiment of the hydrostatic gas journal porous bearing of the present invention, will be described with reference to FIGS. 7 and 8. FIG.
FIG. 7 is a perspective view of the bearing according to the second embodiment of the invention, and FIG. 8 is a bottom view of the bearing according to the second embodiment of the invention.
The bearing 200 of the second embodiment is obtained by changing the shape of the housing member 120 of the bearing 100 of the first embodiment, and has many elements in common with the bearing 100 of the first embodiment. will be omitted from detailed description, and only the 200-series codes having the same last two digits will be assigned.

図7に示すように、ハウジング部材220は、円筒状となっており、第1実施例と異なりフランジ部を有していない。
そして、図8に示すように、ハウジング部材220の前端面221aには、軸受200を装置に固定するためのネジが螺合されるネジ穴221a1が複数(本実施例では4個)周方向に等間隔に形成されている。
As shown in FIG. 7, the housing member 220 is cylindrical and does not have a flange portion unlike the first embodiment.
As shown in FIG. 8, a front end face 221a of the housing member 220 has a plurality of (four in this embodiment) screw holes 221a1 in which screws for fixing the bearing 200 to the device are screwed in the circumferential direction. They are formed at regular intervals.

<変形例>
以上、本発明の実施例について説明したが、本発明は上記に限定されるものではない。
<Modification>
Although the embodiments of the present invention have been described above, the present invention is not limited to the above.

例えば、上述した実施例において、軸受への圧縮空気の供給は、装置側取付部Mの流路Cから行われていたが、軸受のハウジング部の気体流路に直接継手を螺合させて、不図示の圧縮空気源から延びるチューブTを継手に接続させてもよい。 For example, in the above-described embodiment, compressed air is supplied to the bearing from the flow path C of the device-side mounting portion M. A tube T extending from a compressed air source (not shown) may be connected to the joint.

例えば、上述した第1実施例において、フランジ部122には厚み方向に伸びる段付きのボルト挿通孔122bが、円周方向に等間隔に4個形成されていたが、フランジ部122に形成されるボルト挿通孔122bの個数は4個に限定されるものではない。 For example, in the above-described first embodiment, four stepped bolt insertion holes 122b extending in the thickness direction were formed in the flange portion 122 at equal intervals in the circumferential direction. The number of bolt insertion holes 122b is not limited to four.

例えば、上述した第2実施例において、装置側取付部Mへの軸受200の組み込みは、装置側取付部Mから軸受200にネジを挿通し、ネジ穴221a1でネジを螺合させることにより行っていたが、軸受200を装置側取付部Mに直接圧入してもよい。
軸受200を圧入固定する場合、軸受200にネジ穴を設けなくてもよく、また、Oリングも不要である。
For example, in the above-described second embodiment, the bearing 200 is assembled into the device-side mounting portion M by inserting a screw from the device-side mounting portion M into the bearing 200 and screwing the screw into the screw hole 221a1. However, the bearing 200 may be directly press-fitted into the device-side mounting portion M.
When the bearing 200 is press-fitted and fixed, the bearing 200 does not need to be provided with a screw hole and an O-ring is not required.

例えば、上述した実施例における多孔質部材は、気体をその表面から噴出できるものであれば、材質や空孔率は如何なるものであってもよい。
また、上述した実施例においては、多孔質部材の前端面および後端面に封止処理を施していなかったが、多孔質部材の前端面および後端面に封止処理を施してもよい。
For example, the porous member in the above-described embodiments may have any material and porosity as long as it can eject gas from its surface.
In addition, in the above-described embodiment, the front end surface and the rear end surface of the porous member were not subjected to the sealing treatment, but the front end surface and the rear end surface of the porous member may be subjected to the sealing treatment.

例えば、上述した実施例における突出領域121C1の形状は一例にすぎず、加締め型CTの形状次第により、様々な形状となるが、多孔質部材110の後端部114の外周面111周辺に目詰まり層110Bを形成することができれば、突出領域121C1の形状はいかなるものであってもよい。 For example, the shape of the projecting region 121C1 in the above-described embodiment is merely an example, and may vary depending on the shape of the crimping mold CT. The projecting region 121C1 may have any shape as long as the clogged layer 110B can be formed.

具体的には、本発明の第1変形例である軸受の断面図である図9Aに示すように、円環状の突起部CT1の断面形状を第1実施例と同様に直角三角形状としつつ、突起部CT1の内周側傾斜辺CT1bと内側ベース面CT3とは、曲面で接続されるのではなく、直接接続されている。
そして、突起部CT1の外側における突起部CT1の高さHoと突起部CT1の内側における突起部CT1の高さHiとは、ほぼ等しくなっている。
さらに、第1変形例も、突起部CT1の内側における突起部CT1の高さHiが、ハウジング部材120の後端面121bから多孔質部材の後端面114aまでの距離hよりも、小さくなっている。
これらにより、加締め型CTの突起部CT1がハウジング部材120と接触する面積が少なくなり、加締め型CTが痛みにくくなっている。
Specifically, as shown in FIG. 9A, which is a cross-sectional view of a bearing that is a first modified example of the present invention, while the cross-sectional shape of the annular projection CT1 is a right-angled triangular shape as in the first embodiment, The inner peripheral inclined side CT1b of the protrusion CT1 and the inner base surface CT3 are not connected by a curved surface but are directly connected.
The height Ho of the protrusion CT1 outside the protrusion CT1 and the height Hi of the protrusion CT1 inside the protrusion CT1 are substantially equal.
Furthermore, also in the first modification, the height Hi of the protrusion CT1 inside the protrusion CT1 is smaller than the distance h from the rear end surface 121b of the housing member 120 to the rear end surface 114a of the porous member.
As a result, the contact area of the protrusion CT1 of the crimping type CT with the housing member 120 is reduced, and the crimping type CT is less likely to be damaged.

さらに、本発明の第2変形例である軸受の断面図である図9Bに示すように、円環状の突起部CT1の断面形状を三角形状としつつ、突起部CT1の内周側傾斜辺CT1bと内側ベース面CT3とは、曲面で接続されるのではなく、直接接続されている。
そして、突起部CT1の外側における突起部CT1の高さHoと突起部CT1の内側における突起部CT1の高さHiとは、ほぼ等しくなっている。
また、内周側傾斜辺CT1bの内側ベース面CT3に対する傾きは、外周側傾斜辺CT1cの外側ベース面CT2に対する傾きよりも大きくなっている。
すなわち、外周側傾斜辺CT1cの外側ベース面CT2に対する傾きが、内周側傾斜辺CT1bの内側ベース面CT3に対する傾きより小さいため、ハウジング部材120の後端側の外周壁121cが膨らみにくくなっている。
また、突起部CT1の内側における突起部CT1の高さHiは、ハウジング部材120の後端面121bから多孔質部材の後端面114aまでの距離hよりも、大きくなっている。
Furthermore, as shown in FIG. 9B, which is a cross-sectional view of a bearing according to a second modification of the present invention, while the cross-sectional shape of the annular projection CT1 is triangular, the inner peripheral side inclined side CT1b of the projection CT1 and the It is directly connected to the inner base surface CT3 instead of being connected by a curved surface.
The height Ho of the protrusion CT1 outside the protrusion CT1 and the height Hi of the protrusion CT1 inside the protrusion CT1 are substantially equal.
In addition, the inclination of the inner peripheral side inclined side CT1b with respect to the inner base surface CT3 is larger than the inclination of the outer peripheral side inclined side CT1c with respect to the outer base surface CT2.
That is, since the inclination of the outer peripheral side inclined side CT1c with respect to the outer base surface CT2 is smaller than the inclination of the inner peripheral side inclined side CT1b with respect to the inner base surface CT3, the outer peripheral wall 121c on the rear end side of the housing member 120 is less likely to swell. .
Further, the height Hi of the protrusion CT1 inside the protrusion CT1 is larger than the distance h from the rear end surface 121b of the housing member 120 to the rear end surface 114a of the porous member.

100、200 ・・・ 軸受(静圧気体ジャーナル多孔質軸受)
110、210 ・・・ 多孔質部材
110A ・・・ 通気層
110B ・・・ 目詰まり層
111 ・・・ 外周面
111a ・・・ 後端側外周面
112 ・・・ 内周面
112a ・・・ 後端側内周面
113 ・・・ 前端部
113a ・・・ 前端面
114 ・・・ 後端部
114a ・・・ 後端面
120、220 ・・・ ハウジング部材
121 ・・・ 筒状部
121A ・・・ 前端挿入部分
121B ・・・ 中間挿入部分
121B1 ・・・ 気体流路
121C ・・・ 後端挿入部分
121C1 ・・・ 突出領域
121a、221a ・・・ 前端面
221a1・・・ ネジ穴
121b ・・・ 後端面(ハウジング部材の後端面)
121c ・・・ 外壁面
121c1 ・・・ 凹溝
121d ・・・ 内壁面
121e ・・・ 傾斜面
121f ・・・ 傾斜面
122 ・・・ フランジ部
122a ・・・ 前端面
122b ・・・ ボルト挿通孔

φ ・・・ 多孔質部材の外径
φA ・・・ 前端挿入分の内径
φB ・・・ 中間挿入分の内径
φC ・・・ 後端挿入分の内径
M ・・・ 装置側取付部
C ・・・ 流路
MH ・・・ 軸受取付孔
J ・・・ 継手
T ・・・ チューブ
B ・・・ 組み付けボルト
HS ・・・ 雌ネジ穴
A ・・・ 圧縮空気(気体)
R ・・・ Oリング
S ・・・ 軸
G ・・・ 隙間
H ・・・ 軸受すきま
h ・・・ハウジング部材の後端面から多孔質部材の後端面までの距離
Ax ・・・ 中心軸
F ・・・ 組立面
CT ・・・ 加締め型
CT1 ・・・ 突起部
CT1a ・・・ 外周側垂直辺
CT1b ・・・ 内周側傾斜辺
CT2 ・・・ 外側ベース面
CT3 ・・・ 内側ベース面
CT4 ・・・ 曲面
Ho ・・・ 突起部の外側における突起部の高さ
Hi ・・・ 突起部の内側における突起部の高さ
100, 200 ... Bearing (hydrostatic gas journal porous bearing)
110, 210... Porous member 110A... Vent layer 110B... Clogging layer 111... Outer peripheral surface 111a... Rear end side outer peripheral surface 112... Inner peripheral surface 112a... Rear end Side inner peripheral surface 113 Front end portion 113a Front end surface 114 Rear end portion 114a Rear end surfaces 120, 220 Housing member 121 Cylindrical portion 121A Front end insertion Part 121B... Intermediate insertion part 121B1... Gas channel 121C... Rear end insertion part 121C1... Protruding regions 121a, 221a... Front end face
221a1... Screw hole 121b... Rear end face (rear end face of housing member)
121c... Outer wall surface 121c1... Groove 121d... Inner wall surface 121e... Inclined surface 121f... Inclined surface 122... Flange portion 122a... Front end surface 122b... Bolt insertion hole

φ … Outer diameter of porous member φA … Inner diameter of front end insertion φB … Inner diameter of intermediate insertion φC … Inner diameter of rear end insertion M … Device side mounting portion C … Flow path MH ... Bearing mounting hole J ... Joint T ... Tube B ... Mounting bolt HS ... Female screw hole A ... Compressed air (gas)
R...O-ring S...Axis G...Gap H...Bearing clearance h...Distance from the rear end surface of the housing member to the rear end surface of the porous member Ax...Center axis F...・Assembly surface CT: crimping type CT1: protrusion CT1a: outer peripheral vertical side CT1b: inner peripheral inclined side CT2: outer base surface CT3: inner base surface CT4:・Curved surface Ho: height of protrusion on outside of protrusion Hi: height of protrusion on inside of protrusion

Claims (6)

外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、該多孔質部材を内挿すると共に前記多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を前記多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受の製造方法であって、
前記筒状部の前端挿入部分に前記多孔質部材の前端部を圧入する圧入工程と、
前記多孔質部材の後端部を遊嵌する前記筒状部の後端挿入部分を塑性変形させて突出領域を形成して該突出領域により前記多孔質部材の後端部を変形させる封止工程とを備えていることを特徴とする静圧気体ジャーナル多孔質軸受の製造方法。
Cylindrical porous member for ejecting from the inner peripheral surface the gas that has flowed in from the outer peripheral surface, and a cylindrical portion in which the porous member is inserted and a gas flow path for supplying the gas from the outside to the porous member is formed. and a housing member having:
a press-fitting step of press-fitting the front end portion of the porous member into the front end insertion portion of the cylindrical portion;
A sealing step of plastically deforming a rear end insertion portion of the tubular portion into which the rear end portion of the porous member is loosely fitted to form a projecting region, and deforming the rear end portion of the porous member by the projecting region. A method for manufacturing a hydrostatic gas journal porous bearing, comprising:
前記圧入工程で前記筒状部の後端挿入部分に遊嵌される前記多孔質部材の後端側外周面と後端面とが、傾斜面で接続されていることを特徴とする請求項1に記載の静圧気体ジャーナル多孔質軸受の製造方法。 2. The porous member loosely fitted into the rear end inserting portion of the cylindrical portion in the press-fitting step has a rear end side outer peripheral surface and a rear end surface connected by an inclined surface. A method of manufacturing the hydrostatic gas journal porous bearing described. 前記ハウジング部材の後端面が、前記多孔質部材の後端面よりも後方に位置し、
前記封止工程が、前記ハウジング部材よりも硬い突起部を有して前記ハウジング部材を塑性変形させる加締め型を前記ハウジング部材の後端面に押しつけて実行されることを特徴とする請求項1または請求項2に記載の静圧気体ジャーナル多孔質軸受の製造方法。
the rear end surface of the housing member is positioned rearwardly of the rear end surface of the porous member;
2. The sealing step is carried out by pressing against the rear end face of the housing member a crimping die having a protrusion harder than the housing member and plastically deforming the housing member. 3. A method for manufacturing a hydrostatic gas journal porous bearing according to claim 2.
外周面から流入した気体を内周面から噴出する円筒状の多孔質部材と、該多孔質部材を内挿すると共に前記多孔質部材へ外部から気体を供給する気体流路を形成した筒状部を有するハウジング部材とを備え、支持対象となる軸の半径方向の荷重を前記多孔質部材から噴出される気体で支持する静圧気体ジャーナル多孔質軸受であって、
前記ハウジング部材の筒状部が、前記多孔質部材の前端部と圧接する前端挿入部分と、前記多孔質部材の後端部を遊嵌する後端挿入部分と、前記前端挿入部分と前記後端挿入部分との間に形成されると共に前記気体流路を有する中間挿入部分とを有し、
前記ハウジング部材の後端挿入部分から前記多孔質部材に向けて突出する突出領域が、前記多孔質部材の後端部に当接していることを特徴とする静圧気体ジャーナル多孔質軸受。
Cylindrical porous member for ejecting from the inner peripheral surface the gas that has flowed in from the outer peripheral surface, and a cylindrical portion in which the porous member is inserted and a gas flow path for supplying the gas from the outside to the porous member is formed. and a hydrostatic gas journal porous bearing that supports a load in the radial direction of a shaft to be supported by gas ejected from the porous member,
The cylindrical portion of the housing member includes a front end insertion portion that is in pressure contact with the front end portion of the porous member, a rear end insertion portion that loosely fits the rear end portion of the porous member, the front end insertion portion, and the rear end. an intermediate insertion portion formed between the insertion portion and having the gas flow path;
A hydrostatic gas journal porous bearing, wherein a projecting region projecting from a rear end insertion portion of the housing member toward the porous member is in contact with a rear end portion of the porous member.
前記ハウジング部材が、一体形成されていることを特徴とする請求項4に記載の静圧気体ジャーナル多孔質軸受。 5. The hydrostatic gas journal porous bearing of claim 4, wherein said housing member is integrally formed. 前記ハウジング部材の突出領域が、前記多孔質部材の後端面よりも後方に位置していることを特徴とする請求項4または請求項5のいずれか1項に記載の静圧気体ジャーナル多孔質軸受。 6. The hydrostatic gas journal porous bearing according to claim 4, wherein the protruding region of the housing member is located rearward of the rear end surface of the porous member. .
JP2021156659A 2021-09-27 2021-09-27 Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing Pending JP2023047636A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021156659A JP2023047636A (en) 2021-09-27 2021-09-27 Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing
PCT/JP2022/020126 WO2023047695A1 (en) 2021-09-27 2022-05-12 Method for producing aerostatic journal porous bearing and aerostatic journal porous bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021156659A JP2023047636A (en) 2021-09-27 2021-09-27 Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing

Publications (1)

Publication Number Publication Date
JP2023047636A true JP2023047636A (en) 2023-04-06

Family

ID=85720375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021156659A Pending JP2023047636A (en) 2021-09-27 2021-09-27 Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing

Country Status (2)

Country Link
JP (1) JP2023047636A (en)
WO (1) WO2023047695A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143606A1 (en) * 1981-11-03 1983-05-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "GAS STORAGE RELATIVELY MOVING COMPONENTS"
JPH05164215A (en) * 1991-12-06 1993-06-29 Sanden Corp Method for fixing bearing to pulley
JP4465840B2 (en) * 2000-09-14 2010-05-26 オイレス工業株式会社 Method for producing porous hydrostatic gas bearing
JP2019148275A (en) * 2018-02-26 2019-09-05 Ntn株式会社 Fixing structure of rolling bearing

Also Published As

Publication number Publication date
WO2023047695A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP4935117B2 (en) tank
US20070096572A1 (en) Slip fit tolerance ring
KR102068517B1 (en) Fluid dynamic bearing device and motor with same
WO2002012731A1 (en) Accumulator
US6502993B2 (en) Sealing system for a spherical bearing
JP5154057B2 (en) Hydrodynamic bearing device
US20060140527A1 (en) Thrust roller bearing apparatus
WO2023047695A1 (en) Method for producing aerostatic journal porous bearing and aerostatic journal porous bearing
JP4593171B2 (en) Railway vehicle bearing device
US20090148085A1 (en) Bearings
EP0985839A3 (en) Hydrodynamic gas bearing structure
KR101534639B1 (en) Radial-thrust combo metal mesh foil bearing
US5938345A (en) Structure of motor bush bearing
US3719405A (en) Gas bearing
CN107620768B (en) Fluid dynamic bearing device and motor having the same
JP2004332905A (en) Bearing device for rail vehicle
US6371651B1 (en) Thrust dynamic pressure bearing
JPH05180229A (en) Manufacture of oil-impregnated sintered bearing
JP2003074543A (en) Hydrodynamic fluid bearing unit and motor with the same
JP4822123B2 (en) Oilless compressor
JP3602954B2 (en) Bearing seal for water pump
JP2009228873A (en) Fluid bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2006292161A (en) Bearing unit and production method therefor
JP2010065810A (en) Seal structure