JP4465840B2 - Method for producing porous hydrostatic gas bearing - Google Patents

Method for producing porous hydrostatic gas bearing Download PDF

Info

Publication number
JP4465840B2
JP4465840B2 JP2000280089A JP2000280089A JP4465840B2 JP 4465840 B2 JP4465840 B2 JP 4465840B2 JP 2000280089 A JP2000280089 A JP 2000280089A JP 2000280089 A JP2000280089 A JP 2000280089A JP 4465840 B2 JP4465840 B2 JP 4465840B2
Authority
JP
Japan
Prior art keywords
sintered body
porous metal
liquid
air permeability
metal sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000280089A
Other languages
Japanese (ja)
Other versions
JP2002089561A (en
Inventor
秀夫 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000280089A priority Critical patent/JP4465840B2/en
Publication of JP2002089561A publication Critical patent/JP2002089561A/en
Application granted granted Critical
Publication of JP4465840B2 publication Critical patent/JP4465840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質金属焼結体を用いた多孔質静圧気体軸受の製造方法に関する。
【0002】
【発明が解決しようとする課題】
多孔質静圧気体軸受は、すぐれた高速安定性と高い負荷容量をもつものとして、従来から注目されており、種々研究もなされているが実用化に際してはいくつかの克服すべき問題がある。
【0003】
多孔質静圧気体軸受に用いられている多孔質体としては、青銅焼結体、ポーラスカーボン、セラミックス等が知られているが、多孔質静圧気体軸受の軸受面には、1μmオーダーの表面粗さが要求されるので、多くの場合には、軸受面となる多孔質体の表面に研削等の機械加工が施される。
【0004】
青銅焼結体では、軸受面を得るべくそれに研削加工を施すと、研削面(軸受面)に青銅の塑性流動が惹起して細孔の開口にカエリやバリが生じるので、通常、研削加工後に、ラッピングを施して適正な通気性を得るようにされる。
【0005】
ポーラスカーボンやセラミックスでは、それが高い脆性を有するために、その研削加工によっては細孔の開口にカエリやバリがほとんど生じないので、これによる目詰まりがほとんど生じないが、細孔が軸受面でそのまま大きく開口する虞があり、斯かる開口が多く存在していると自励振動(ニューマチックハンマー現象)の要因となる上に、気体消費量が大きくなり不経済となるために、研削加工後、軸受面に接着剤を塗布して、適度に細孔の開口に目詰まりを生じさせて自励振動の防止と適正な通気性とを得るようにしている。
【0006】
ところで、軸受面に対しては極めて高い形状寸法精度が要求されるので、研削加工後に、形状寸法をその精度内に維持するためには、ラッピングによるカエリやバリの除去には一定の制限があり、したがって、ラッピングにより適正流量を得るには限界があり、また、研削加工後に軸受面へ接着剤を塗布するとしても、塗布量の制御には極めて困難を伴い、しかも、軸受面に関して高い精度の形状寸法と表面粗さとを維持するために、塗布後に軸受面から残余の接着剤を除去する極めて煩雑な精緻な作業を必要とする。
【0007】
更にまた、青銅焼結体、ポーラスカーボン及びセラミックスのいずれの場合にも、研削加工後には、切粉や砥粒が細孔内に埋没、残留する虞があり、斯かる切粉や砥粒が使用中において細孔から除去されて外部に飛び出ると、通気性の変動が生じる虞がある上に、その使用環境を汚染することとなるので、超精密の分野での使用に適さない軸受となる。
【0008】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、適正且つ安定な通気性を容易に得ることができ、しかも、同時に細孔内に埋没した切粉や砥粒を除去できる多孔質静圧気体軸受の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の第一の態様の、多孔質金属焼結体の通気性が調整された多孔質静圧気体軸受を製造する方法は、金属粉末と無機質粉末とを混合、焼結してなる多孔質金属焼結体を準備する段階と、この多孔質金属焼結体の一面を研削して軸受面を形成する段階と、軸受面が形成された多孔質金属焼結体を超音波振動される液体中に浸漬させて、多孔質金属焼結体の軸受面の細孔の開口面積を増大する段階とを具備している。
【0010】
第一の態様の方法によれば、金属粉末と無機質粉末とを混合、焼結してなる多孔質金属焼結体を用いるために、研削により多孔質金属焼結体の金属部分は、塑性流動して、脆性的に研削された無機質部分の一部及び当該無機質部分と金属部分との間の細孔を覆い、切粉や砥粒は、細孔内に埋没されることになるが、金属部分と無機質部分とからなる多孔質金属焼結体を超音波振動される液体中に浸漬させる結果、先ず、細孔内に埋没した切粉や砥粒を除去でき、切粉や砥粒に基づく目詰まりを解消でき、切粉や砥粒による不確定な通気性をなくし得、しかも、使用環境中に切粉や砥粒を飛散させることがないために、クリーンな環境を維持でき、更に、金属部分の塑性流動部及び無機質部分の弱い部分を粉砕できて細孔の開口面積を増大でき、多孔質金属焼結体の通気性を、研削加工後の軸受面の形状寸法精度及び表面粗さを阻害することなしに調整でき、而して適正且つ安定な通気性を容易に得ることができる。
【0011】
多孔質金属焼結体を形成するための金属粉末は、その粒径が通常30μmから150μmのものを、好ましくは45μmから75μmのものを用い、同じく無機質粉末は、その粒径が通常30μmから300μmのものを、好ましくは45μmから150μmのものを用いる。斯かる金属粉末及び無機質粉末を用いた多孔質金属焼結体の焼結密度及び多孔度は焼結時間及び焼結温度で異なるが、例えば、2トン乃至7トン/cmの圧力を加えて圧粉体を成形し、この圧粉体を還元性雰囲気もしくは真空中で800〜1150度の温度で20〜60分間焼結した場合には、概ね焼結密度は、5.15g/cm乃至6.19g/cm、多孔度は21.1%乃至34.1%(含油率換算)である。
【0012】
本発明では、上記のように超音波振動される液体中への多孔質金属焼結体の浸漬時間を適宜調整することにより、所望の通気性を得ることができる。
【0013】
多孔質金属焼結体を浸漬させる液体としては、研削液の油分を除去できるものが好ましいが、簡便性、低価格性及び環境汚染性等の観点から、本発明の第二の態様の方法のように、水又はエタノール若しくはアルカリ液を用いるのが好ましい。
【0014】
液体に付与する超音波振動の周波数としては、多孔質金属焼結体に要求される通気性との関連で適宜決定すればよいのであるが、通常、40〜100KHz程度のものを用いるとよい。
【0015】
ところで、超音波振動後に過度の通気性となる場合には、本発明の第三の態様の方法のように、超音波振動される液体中に浸漬させた後の多孔質金属焼結体の細孔に、トルエン等の溶剤に所定量の樹脂を溶かした液体を注入した後に、当該細孔に空気を注入してもよく、このような液体を細孔に注入すると共に、空気を注入することにより、細孔に適宜の厚さの樹脂を付着させて、当該細孔の径を小さくでき、通気性を所望の値にすることができる。
【0016】
溶剤に溶かす樹脂としては、本発明の第四の態様の方法のように、シリコーン樹脂を用いるのが好ましいが、その他の樹脂、例えば、フェノール樹脂でもよい。なお、種々の樹脂濃度をもった液体を用いることにより、細孔への樹脂の付着厚みを変えることができ、これにより所望の通気性を得ることができる。また、この方法によれば使用環境中への異物の飛散をより確実に防止でき、クリーンな環境の維持に効果的である。
【0017】
本発明の第五の態様の方法においては、多孔質金属焼結体における金属部分の素材である金属粉末は、少なくとも錫、燐及び銅を含んでおり、無機質部分の素材である無機質粉末は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでおり、本発明の第六の態様の方法においては、金属粉末は、更に、ニッケル又はマンガンを含んでいる。
【0018】
なお、本発明により製造する多孔質静圧気体軸受としては、円筒状又は板状のスラスト軸受又はラジアル軸受のいずれでもよく、更には、直動軸受、いわゆるスライダでもよい。
【0019】
以下、本発明及び本発明の実施の形態を、図面を参照してその好ましい例に基づいて説明する。本発明はこれらの例に限定されないのである。
【0020】
【発明の実施の形態】
本発明の方法では、先ず、金属粉末と無機質粉末とを混合、焼結してなる図1に示すような円筒状の多孔質金属焼結体1を準備する。多孔質金属焼結体1は、例えば、重量比で錫4〜10%、ニッケル10〜40%、燐0.5〜4%、黒鉛3〜10%及び残部銅からなる混合粉末を例えば2トン乃至7トン/cmで加圧成形して円筒状の圧粉体を製造し、この圧粉体を、還元性雰囲気もしくは真空中で800〜1150度の温度で20〜60分間焼結して形成する。
【0021】
こうして形成された多孔質金属焼結体1を図2に示すような円筒状のハウジング(ケーシング)30内に嵌挿する。本例のハウジング30は、内周面に環状の凹所31を有すると共に、凹所31に連通した通路32を有しているが、ハウジングとしては斯かるハウジング30に限定されない。
【0022】
ハウジング30内に嵌挿された多孔質金属焼結体1において、その円筒状の内周面2を、旋削加工後、研削加工して当該内周面2を軸受面として形成すると共に、その円環状の端面34及び35に適宜の封孔剤を用いて封孔処理を施す。研削加工における加工代は、概ね0.2mm以下の範囲で行うとよい。
【0023】
研削加工された内周面2は、図3及び図4に示すように、細孔11の開口12と、錫、燐、ニッケル及び銅からなる金属粉末を素材とする金属部分13の露出面14と、無機質粉末を素材とする無機質部分15の露出面16とが無秩序に分布した面となり、金属部分13の露出面14は、金属部分13が研削加工により塑性流動されて展延された展延部分17の露出面18を含んでおり、斯かる展延部分17は、細孔11の開口12、脆性的に研削された無機質部分15の一部及び無機質部分15と金属部分13との間の細孔11の開口12を覆って、細孔11を開口12で絞っており、無機質部分15の一部も、細孔11を開口12で絞っている。
【0024】
斯かる軸受面としての内周面2が形成され且つハウジング30内に嵌挿された多孔質金属焼結体1を、次に図5に示すように、容器21内の超音波振動される液体22中に浸漬させる。液体22としては水又はエタノール若しくはアルカリ液を用いる。浸漬時間は、使用する超音波振動の周波数及び必要とする通気性との関連で決定される。
【0025】
超音波振動される液体22中への浸漬により、多孔質金属焼結体1の内周面(軸受面)2の細孔11の開口面積を増大させ、多孔質金属焼結体1の通気性を調整した後に、容器21から取り出して多孔質金属焼結体1を常温下で乾燥させることにより、円筒状の多孔質金属焼結体1からなる多孔質静圧気体軸受を得ることができる。
【0026】
図6に、超音波振動される液体22への浸漬時間と通気性との関係を、超音波振動の周波数45kHzと100kHzとについて求めた一例を示す。多孔質金属焼結体1としては、内径25mm、外径35mm、長さ25mmのものを用い、液体22としては水を用いた。図6より、適当な超音波振動の周波数と浸漬時間を選択することにより、通気性を調整できることが判る。
【0027】
なお、多孔質金属焼結体1が超音波振動後に過度な通気性を呈する場合には、ハウジング30の通路32を介して凹所31に所定量の樹脂、例えばトルエン等の溶剤にシリコーン樹脂を溶かした液体を圧送、供給して、多孔質金属焼結体1の外周面33から細孔11に当該液体を注入し、細孔11を通過した液体を内周面2から噴出させ、その後、液体に替えて空気を同様にして細孔11に注入して内周面2から噴出させて、不用な液体を空気噴出と共に細孔11から排出し、この排出後、溶剤を染み込ませたウエス等により、軸受面2の液体を拭き取り、多孔質金属焼結体1を常温で乾燥させて、多孔質金属焼結体1の細孔11に注入された樹脂を硬化させる。
【0028】
このようにシリコーン樹脂を溶融した液体を細孔11に注入することにより多孔質金属焼結体1の通気性を減小させることができる。通気性の減小の程度は、液体中のシリコーン樹脂の濃度に依存し、通気性を大きく減小したい場合には、シリコーン樹脂が高濃度の液体を用い、通気性を少しだけ減小したい場合には、シリコーン樹脂が低濃度の液体を用いるとよい。
【0029】
シリコーン樹脂濃度と通気性との関係の一例を図7に示す。シリコーン樹脂を溶かす溶剤としては、トルエンとリグロインの混合液を用いた。多孔質金属焼結体1としては、内径50mm、外径70mm、長さ50mmのものを用いた。通気性は、樹脂含浸前の流量を100としたときの樹脂含浸後の流量の割合で表した。
【0030】
以上の方法によれば、金属部分13と無機質部分15とからなる多孔質金属焼結体1を、超音波振動される液体22中に浸漬させる結果、先ず、細孔11内に埋没した切粉や砥粒を除去できる結果、切粉や砥粒に基づく目詰まりを解消でき、切粉や砥粒による不確定な通気性をなくし得、しかも、使用環境中に切粉や砥粒を飛散させることがないために、クリーンな環境を維持でき、更に、展延部分(塑性流動部分)17及び無機質部分15の弱い部分を粉砕できて細孔11の開口面積を増大し、多孔質金属焼結体1の通気性を、研削加工後の軸受面2の形状寸法精度及び表面粗さを阻害することなしに、調整でき、而して適正且つ安定な通気性を容易に得ることができる。
【0031】
なお、上記は、円筒状の多孔質静圧気体軸受を製造する場合の例であるが、板状の多孔質静圧気体軸受も同様にして製造できる。
【0032】
【発明の効果】
本発明によれば、適正な且つ安定な通気性を容易に得ることができ、しかも、同時に細孔内に埋没した切粉や砥粒を除去できる多孔質静圧気体軸受の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の好ましい例の多孔質金属焼結体の斜視図である。
【図2】図1に示す多孔質金属焼結体をハウジングに嵌挿した例の説明図である。
【図3】図2に示す多孔質金属焼結体の内周面(軸受面)を顕微鏡で拡大した場合のその模写図である。
【図4】図2に示す多孔質金属焼結体の内周面側の断面を拡大した場合の説明図である。
【図5】本発明の実施の形態の好ましい例において多孔質金属焼結体を超音波振動される液体中に浸漬させる例の説明図である。
【図6】超音波振動される液体への多孔質金属焼結体の浸漬時間と通気性との関係図である。
【図7】シリコーン樹脂濃度と多孔質金属焼結体の通気性との関係図である。
【符号の説明】
1 多孔質金属焼結体
2 内周面
11 細孔
12 開口
13 金属部分
15 無機質部分
17 展延部分
22 液体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous static pressure gas bearing using a porous metal sintered body.
[0002]
[Problems to be solved by the invention]
Porous hydrostatic gas bearings have been attracting attention as having excellent high-speed stability and high load capacity, and various studies have been made, but there are some problems to be overcome in practical use.
[0003]
Bronze sintered bodies, porous carbon, ceramics, etc. are known as porous bodies used for porous hydrostatic gas bearings, but the surface of porous hydrostatic gas bearings has a surface of the order of 1 μm. Since roughness is required, in many cases, machining such as grinding is performed on the surface of the porous body serving as the bearing surface.
[0004]
In a bronze sintered body, if grinding is performed to obtain a bearing surface, plastic flow of bronze is induced on the ground surface (bearing surface), and burrs and burrs are generated in the pore openings. Wrapping is performed to obtain proper air permeability.
[0005]
Porous carbon and ceramics have high brittleness, so there are almost no burrs or burrs in the opening of the pores due to the grinding process, so clogging due to this hardly occurs, but the pores on the bearing surface If there are many such openings, they will cause self-excited vibration (pneumatic hammer phenomenon), and the gas consumption will become large and uneconomical. Then, an adhesive is applied to the bearing surface to appropriately clog the opening of the pores, thereby preventing self-excited vibration and proper air permeability.
[0006]
By the way, since the bearing surface is required to have extremely high shape accuracy, there is a certain limitation in removing burrs and burrs by lapping in order to maintain the shape within the accuracy after grinding. Therefore, there is a limit to obtaining an appropriate flow rate by lapping, and even if an adhesive is applied to the bearing surface after grinding, it is extremely difficult to control the coating amount, and the bearing surface is highly accurate. In order to maintain the shape dimension and the surface roughness, an extremely complicated and precise operation for removing the remaining adhesive from the bearing surface after application is required.
[0007]
Furthermore, in any case of sintered bronze, porous carbon, and ceramics, there is a risk that chips and abrasive grains will be buried and remain in the pores after grinding. If it is removed from the pores during use and jumps to the outside, the air permeability may be changed and the usage environment will be contaminated. Therefore, the bearing is not suitable for use in the ultra-precision field. .
[0008]
The present invention has been made in view of the above-mentioned points, and its object is to easily obtain appropriate and stable air permeability, and at the same time, chips and abrasives buried in the pores. An object of the present invention is to provide a method for producing a porous hydrostatic gas bearing capable of removing particles.
[0009]
[Means for Solving the Problems]
The method for producing a porous hydrostatic gas bearing in which the air permeability of the porous metal sintered body of the first aspect of the present invention is adjusted is obtained by mixing and sintering a metal powder and an inorganic powder. A step of preparing a metal sintered body, a step of grinding one surface of the porous metal sintered body to form a bearing surface, and a liquid that is ultrasonically vibrated in the porous metal sintered body on which the bearing surface is formed. A step of increasing the opening area of the pores of the bearing surface of the porous metal sintered body by being immersed therein.
[0010]
According to the method of the first aspect, in order to use a porous metal sintered body obtained by mixing and sintering a metal powder and an inorganic powder, the metal portion of the porous metal sintered body is plastically flowed by grinding. Then, a part of the inorganic part ground brittlely and the pores between the inorganic part and the metal part are covered, and chips and abrasive grains are buried in the pores. As a result of immersing a porous metal sintered body composed of a part and an inorganic part in a liquid that is ultrasonically vibrated, first, the chips and abrasive grains buried in the pores can be removed, and based on the chips and abrasive grains Clogging can be eliminated, uncertain air permeability due to chips and abrasive grains can be eliminated, and since chips and abrasive grains are not scattered during the use environment, a clean environment can be maintained. The plastic flow part of the metal part and the weak part of the inorganic part can be crushed to increase the pore opening area. The air permeability of the porous metal sintered body can be adjusted without obstructing the shape accuracy and surface roughness of the bearing surface after grinding, and thus appropriate and stable air permeability can be easily obtained. .
[0011]
The metal powder for forming the porous metal sintered body usually has a particle size of 30 μm to 150 μm, preferably 45 μm to 75 μm. Similarly, the inorganic powder has a particle size of usually 30 μm to 300 μm. Preferably, those having a thickness of 45 μm to 150 μm are used. The sintered density and porosity of the porous metal sintered body using such metal powder and inorganic powder differ depending on the sintering time and the sintering temperature. For example, a pressure of 2 to 7 tons / cm 2 is applied. When a green compact is formed and the green compact is sintered in a reducing atmosphere or vacuum at a temperature of 800 to 1150 degrees for 20 to 60 minutes, the sintered density is generally 5.15 g / cm 2 to 6.19 g / cm 2 and the porosity is 21.1% to 34.1% (in terms of oil content).
[0012]
In the present invention, desired air permeability can be obtained by appropriately adjusting the immersion time of the porous metal sintered body in the liquid that is ultrasonically vibrated as described above.
[0013]
The liquid for immersing the porous metal sintered body is preferably one that can remove the oil content of the grinding fluid. However, from the viewpoint of simplicity, low cost, environmental pollution, etc., the method of the second aspect of the present invention. Thus, it is preferable to use water, ethanol or an alkaline solution.
[0014]
The frequency of the ultrasonic vibration applied to the liquid may be appropriately determined in relation to the air permeability required for the porous metal sintered body, but usually a frequency of about 40 to 100 KHz is preferably used.
[0015]
By the way, in the case of excessive air permeability after ultrasonic vibration, as in the method of the third aspect of the present invention, the fineness of the porous metal sintered body after being immersed in a liquid that is ultrasonically vibrated. After injecting a liquid in which a predetermined amount of resin is dissolved in a solvent such as toluene into the pores, air may be injected into the pores, and such liquid is injected into the pores and air is injected. By attaching a resin having an appropriate thickness to the pores, the diameter of the pores can be reduced, and the air permeability can be set to a desired value.
[0016]
As the resin dissolved in the solvent, a silicone resin is preferably used as in the method of the fourth aspect of the present invention, but other resins such as a phenol resin may be used. In addition, by using liquids having various resin concentrations, the thickness of the resin attached to the pores can be changed, and thereby desired air permeability can be obtained. Further, according to this method, the scattering of foreign matters into the use environment can be prevented more reliably, and it is effective for maintaining a clean environment.
[0017]
In the method of the fifth aspect of the present invention, the metal powder that is the material of the metal part in the porous metal sintered body contains at least tin, phosphorus, and copper, and the inorganic powder that is the material of the inorganic part is: In the method of the sixth aspect of the present invention, the metal powder further comprises at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Contains nickel or manganese.
[0018]
The porous hydrostatic gas bearing manufactured according to the present invention may be either a cylindrical or plate-like thrust bearing or a radial bearing, and may be a linear motion bearing, a so-called slider.
[0019]
Hereinafter, the present invention and embodiments of the present invention will be described based on preferred examples with reference to the drawings. The present invention is not limited to these examples.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, first, a cylindrical porous metal sintered body 1 as shown in FIG. 1 is prepared by mixing and sintering a metal powder and an inorganic powder. The porous metal sintered body 1 is, for example, a mixed powder composed of 4 to 10% of tin, 10 to 40% of nickel, 0.5 to 4% of phosphorus, 3 to 10% of graphite, and the remaining copper in a weight ratio of 2 tons, for example. A cylindrical green compact is produced by pressure forming at 7 ton / cm 2 , and the green compact is sintered in a reducing atmosphere or vacuum at a temperature of 800 to 1150 degrees for 20 to 60 minutes. Form.
[0021]
The porous metal sintered body 1 thus formed is inserted into a cylindrical housing (casing) 30 as shown in FIG. The housing 30 of this example has an annular recess 31 on the inner peripheral surface and a passage 32 communicating with the recess 31, but the housing is not limited to such a housing 30.
[0022]
In the porous metal sintered body 1 inserted into the housing 30, the cylindrical inner peripheral surface 2 is ground and then ground to form the inner peripheral surface 2 as a bearing surface, and the circle. Sealing treatment is performed on the annular end faces 34 and 35 using an appropriate sealing agent. The machining allowance in grinding is preferably performed in a range of approximately 0.2 mm or less.
[0023]
As shown in FIGS. 3 and 4, the ground inner peripheral surface 2 includes an opening 12 of the pore 11 and an exposed surface 14 of the metal portion 13 made of metal powder made of tin, phosphorus, nickel, and copper. And the exposed surface 16 of the inorganic portion 15 made of an inorganic powder are randomly distributed, and the exposed surface 14 of the metal portion 13 is spread by the plastic flow of the metal portion 13 by grinding. Including the exposed surface 18 of the part 17, such an extended part 17 being the opening 12 of the pores 11, part of the brittlely ground inorganic part 15 and between the inorganic part 15 and the metal part 13. Covering the opening 12 of the pore 11, the pore 11 is squeezed by the opening 12, and part of the inorganic portion 15 also squeezes the pore 11 by the opening 12.
[0024]
The porous metal sintered body 1 in which the inner peripheral surface 2 as such a bearing surface is formed and fitted in the housing 30 is then used as the ultrasonically vibrated liquid in the container 21 as shown in FIG. Immerse in 22 As the liquid 22, water, ethanol, or an alkaline liquid is used. The immersion time is determined in relation to the frequency of ultrasonic vibration used and the required air permeability.
[0025]
By immersing in the ultrasonically vibrated liquid 22, the opening area of the pores 11 on the inner peripheral surface (bearing surface) 2 of the porous metal sintered body 1 is increased, and the air permeability of the porous metal sintered body 1 is increased. After the adjustment, the porous metal sintered body 1 is taken out from the container 21 and dried at room temperature to obtain a porous hydrostatic gas bearing made of the cylindrical porous metal sintered body 1.
[0026]
FIG. 6 shows an example in which the relationship between the immersion time in the liquid 22 that is ultrasonically vibrated and the air permeability is obtained for the frequencies of ultrasonic vibration of 45 kHz and 100 kHz. As the porous metal sintered body 1, one having an inner diameter of 25 mm, an outer diameter of 35 mm, and a length of 25 mm was used, and the liquid 22 was water. It can be seen from FIG. 6 that air permeability can be adjusted by selecting an appropriate ultrasonic vibration frequency and immersion time.
[0027]
When the porous metal sintered body 1 exhibits excessive air permeability after ultrasonic vibration, a predetermined amount of resin, for example, a silicone resin in a solvent such as toluene, is placed in the recess 31 through the passage 32 of the housing 30. Pumping and supplying the melted liquid, injecting the liquid from the outer peripheral surface 33 of the porous metal sintered body 1 into the pores 11, and ejecting the liquid that has passed through the pores 11 from the inner peripheral surface 2; In place of liquid, air is similarly injected into the pores 11 and ejected from the inner peripheral surface 2. Unnecessary liquid is ejected from the pores 11 together with air ejection, and after this drainage, a waste soaked with a solvent, etc. Thus, the liquid on the bearing surface 2 is wiped off, the porous metal sintered body 1 is dried at room temperature, and the resin injected into the pores 11 of the porous metal sintered body 1 is cured.
[0028]
By injecting the liquid in which the silicone resin is melted into the pores 11 in this way, the air permeability of the porous metal sintered body 1 can be reduced. The degree of reduction in air permeability depends on the concentration of silicone resin in the liquid. If you want to greatly reduce the air permeability, use a liquid with a high concentration of silicone resin and want to reduce the air permeability slightly. For this, a liquid having a low concentration of silicone resin is preferably used.
[0029]
An example of the relationship between the silicone resin concentration and air permeability is shown in FIG. As a solvent for dissolving the silicone resin, a mixed solution of toluene and ligroin was used. As the porous metal sintered body 1, one having an inner diameter of 50 mm, an outer diameter of 70 mm, and a length of 50 mm was used. The air permeability was expressed as a ratio of the flow rate after resin impregnation when the flow rate before resin impregnation was 100.
[0030]
According to the above method, as a result of immersing the porous metal sintered body 1 composed of the metal portion 13 and the inorganic portion 15 in the liquid 22 that is ultrasonically vibrated, first, the chips embedded in the pores 11. As a result, it is possible to eliminate clogging based on chips and abrasive grains, to eliminate indefinite air permeability due to chips and abrasive grains, and to disperse chips and abrasive grains in the environment of use. Therefore, it is possible to maintain a clean environment, and further, the weak part of the spread part (plastic flow part) 17 and the inorganic part 15 can be crushed to increase the opening area of the pores 11, and the porous metal sintered The air permeability of the body 1 can be adjusted without impairing the shape accuracy and surface roughness of the bearing surface 2 after grinding, and thus appropriate and stable air permeability can be easily obtained.
[0031]
In addition, although the above is an example in the case of manufacturing a cylindrical porous hydrostatic gas bearing, a plate-shaped porous hydrostatic gas bearing can be manufactured similarly.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the porous hydrostatic gas bearing which can acquire appropriate and stable air permeability easily, and can remove simultaneously the chips and abrasives which were buried in the pore is provided. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view of a porous metal sintered body according to a preferred example of an embodiment of the present invention.
FIG. 2 is an explanatory view of an example in which the porous metal sintered body shown in FIG. 1 is inserted into a housing.
FIG. 3 is a copy of the porous metal sintered body shown in FIG. 2 when the inner peripheral surface (bearing surface) is enlarged with a microscope.
4 is an explanatory diagram in the case of enlarging the cross section of the inner peripheral surface side of the porous metal sintered body shown in FIG. 2;
FIG. 5 is an explanatory diagram of an example in which a porous metal sintered body is immersed in a liquid that is ultrasonically vibrated in a preferred example of an embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the immersion time of a porous metal sintered body in a liquid subjected to ultrasonic vibration and the air permeability.
FIG. 7 is a relationship diagram between a silicone resin concentration and air permeability of a porous metal sintered body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous metal sintered compact 2 Inner peripheral surface 11 Pore 12 Opening 13 Metal part 15 Inorganic part 17 Extension part 22 Liquid

Claims (5)

金属粉末と無機質粉末とを混合、焼結してなる多孔質金属焼結体を準備する段階と、この多孔質金属焼結体の一面を研削して軸受面を形成する段階と、軸受面が形成された多孔質金属焼結体を超音波振動される液体中に浸漬させて、多孔質金属焼結体の軸受面の細孔の開口面積を増大する段階と、超音波振動される液体中に浸漬させた後の多孔質金属焼結体の細孔に、溶剤に所定量の樹脂を溶かした液体を注入した後に、当該細孔に空気を注入する段階とを具備しており、浸漬時間と通気性との関係を各超音波振動の周波数について求め、この関係から浸漬時間と超音波振動の周波数とを選択すると共に樹脂濃度をも選択して通気性を調整する、多孔質金属焼結体の通気性が調整された多孔質静圧気体軸受を製造する方法。  A step of preparing a porous metal sintered body obtained by mixing and sintering a metal powder and an inorganic powder; a step of grinding one surface of the porous metal sintered body to form a bearing surface; The step of immersing the formed porous metal sintered body in the ultrasonically vibrated liquid to increase the opening area of the pores of the bearing surface of the porous metal sintered body, and the ultrasonically vibrated liquid A step of injecting air into the pores after injecting a liquid in which a predetermined amount of resin is dissolved in a solvent into the pores of the porous metal sintered body after being immersed in Porous metal sintering, which determines the relationship between air permeability and air permeability for each ultrasonic vibration frequency, and selects the immersion time and the frequency of ultrasonic vibration and also selects the resin concentration to adjust the air permeability. A method for producing a porous hydrostatic gas bearing with adjusted body air permeability. 液体として水又はエタノール若しくはアルカリ液を用いる請求項1に記載の方法。  The method according to claim 1, wherein water, ethanol or an alkaline liquid is used as the liquid. 樹脂としてシリコーン樹脂を用いる請求項1又は2に記載の方法。  The method according to claim 1, wherein a silicone resin is used as the resin. 金属粉末は、少なくとも錫、燐及び銅を含んでおり、無機質粉末は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでいる請求項1から3のいずれか一項に記載の方法。  The metal powder contains at least tin, phosphorus, and copper, and the inorganic powder contains at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. 4. A method according to any one of claims 1 to 3. 金属粉末は、更に、ニッケル又はマンガンを含んでいる請求項4に記載の方法。  The method according to claim 4, wherein the metal powder further contains nickel or manganese.
JP2000280089A 2000-09-14 2000-09-14 Method for producing porous hydrostatic gas bearing Expired - Lifetime JP4465840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280089A JP4465840B2 (en) 2000-09-14 2000-09-14 Method for producing porous hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280089A JP4465840B2 (en) 2000-09-14 2000-09-14 Method for producing porous hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JP2002089561A JP2002089561A (en) 2002-03-27
JP4465840B2 true JP4465840B2 (en) 2010-05-26

Family

ID=18764989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280089A Expired - Lifetime JP4465840B2 (en) 2000-09-14 2000-09-14 Method for producing porous hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP4465840B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930572B2 (en) * 2009-10-21 2012-05-16 オイレス工業株式会社 Static pressure gas bearing device
WO2016158663A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Porous metal body
WO2016158662A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Collector for electrochemical cells, lithium ion secondary battery, electric double layer capacitor, and lithium ion capacitor
JP2023047636A (en) * 2021-09-27 2023-04-06 オイレス工業株式会社 Manufacturing method of static pressure gas journal porous bearing and static pressure gas journal porous bearing

Also Published As

Publication number Publication date
JP2002089561A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
EP0747106A4 (en) Porous ceramic filter, method of manufacturing the same, extrusion molding die for manufacturing the same, and extrusion molding machine using the same
JP4450114B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP4465840B2 (en) Method for producing porous hydrostatic gas bearing
WO2002022253A3 (en) Adsorbent having differently modified surface areas, method for the production thereof and use of the same
JP5065197B2 (en) Vitrified grinding wheel
CN109015339A (en) Grinding tool and method for manufacturing the same
JP2007232113A (en) Method of manufacturing sintered dynamic pressure bearing
JP4589085B2 (en) Method for manufacturing ceramic honeycomb structure
JP4379951B2 (en) Porous static pressure gas screw
EP2333366A1 (en) Sintered bearing and process for producing same
JP2001162515A (en) Abrasive cloth, method of manufacturing for the same, microcapsule, and method of manufacturing for the same
JP4141778B2 (en) Sliding parts and manufacturing method thereof
JP3417015B2 (en) Porous member and method for manufacturing the same
JP2021020263A (en) Vitrified super finishing grinding wheel
JP2002028682A (en) Water treating material based on coal ash, its manufacturing method and water treating method
JP2005337274A (en) Manufacturing method of sintered bearing member, fluid dynamic pressure bearing device and spindle motor
JP3122374B2 (en) Method for producing porous resinoid grinding wheel
JP2000027865A (en) Static pressure porous bearing
JPH0346522B2 (en)
JP2002106564A (en) Porous static pressure gas bearing and its manufacturing method
BR112021004103A2 (en) laser sintered filter, method to produce the filter and method to ensure fluid flow
JPH08323571A (en) Suction locking device
JP3929087B2 (en) Grinding wheel
KR200325457Y1 (en) Air bearing using a porous ceramic
JP2006125461A (en) Dynamic pressure bearing manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3