JP2002106564A - Porous static pressure gas bearing and its manufacturing method - Google Patents

Porous static pressure gas bearing and its manufacturing method

Info

Publication number
JP2002106564A
JP2002106564A JP2000301119A JP2000301119A JP2002106564A JP 2002106564 A JP2002106564 A JP 2002106564A JP 2000301119 A JP2000301119 A JP 2000301119A JP 2000301119 A JP2000301119 A JP 2000301119A JP 2002106564 A JP2002106564 A JP 2002106564A
Authority
JP
Japan
Prior art keywords
porous
sintered body
metal
green compact
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000301119A
Other languages
Japanese (ja)
Other versions
JP4442012B2 (en
Inventor
Hideo Ozawa
秀夫 小沢
Koichi Tsunoda
耕一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2000301119A priority Critical patent/JP4442012B2/en
Publication of JP2002106564A publication Critical patent/JP2002106564A/en
Application granted granted Critical
Publication of JP4442012B2 publication Critical patent/JP4442012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous static pressure gas bearing capable of conducting sealing treatment without using a sealant, of obtaining the desired dimensional accuracy of a porous metallic sintered compact, of maintaining stable sealing over a long time, of substantially shortening the working time for sealing and of providing sealing to required area only, and its manufacturing method. SOLUTION: A porous static pressure gas bearing 1 is provided with a porous metallic sintered compact 2 and a housing 3 inside which the porous metallic sintered compact is fitted. In the porous metallic sintered compact 2, the cylindrical inner peripheral surface as a radial bearing surface 4 contains a plurality of openings 6 of a pore 5, a metallic part 7, and a mineral part 8. Other than the radial bearing surface 4, both annular end surfaces 10 and 11 exposed to the outside of the porous metallic sintered compact 2 contains a metallic part 12 and the spreading part 13 of the metallic part 12. The openings 6 of the pore 5 on the end surfaces 10 and 11 are stopped up with the spreading part 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質金属焼結体
を用いた多孔質静圧気体軸受及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous hydrostatic gas bearing using a porous metal sintered body and a method of manufacturing the same.

【0002】[0002]

【発明が解決しようとする課題】多孔質静圧気体軸受
は、すぐれた高速安定性と高い負荷容量とをもつものと
して、従来から注目されており、種々研究もなされてい
るが実用化に際してはいくつかの克服すべき問題があ
る。
A porous hydrostatic gas bearing has been attracting attention as a material having excellent high-speed stability and a high load capacity, and various studies have been made. There are several issues to overcome.

【0003】多孔質静圧気体軸受に対して多孔質金属焼
結体を用いる場合、供給される高圧気体が無駄に消費さ
れないように、通常、軸受面以外に対しては封孔処理が
施される。
[0003] When a porous metal sintered body is used for a porous static pressure gas bearing, a sealing process is usually applied to portions other than the bearing surface so that the supplied high-pressure gas is not wasted. You.

【0004】斯かる封孔処理は、多孔質金属焼結体の表
面にシリコーン樹脂等からなる封止剤を塗布して通常な
されるが、塗布されて多孔質金属焼結体の表面に形成さ
れた封孔用の封止剤層は、高圧気体からの風圧を受ける
ためにある程度の厚みを必要とする結果、多孔質金属焼
結体の寸法精度に影響を与えると共に、多孔質金属焼結
体の表面から剥がれだす虞もある。
[0004] Such a sealing treatment is usually performed by applying a sealing agent made of a silicone resin or the like to the surface of the porous metal sintered body, but is applied and formed on the surface of the porous metal sintered body. The sealing agent layer for sealing requires a certain thickness to receive wind pressure from a high-pressure gas, which affects the dimensional accuracy of the porous metal sintered body and also reduces the porous metal sintered body. There is also a risk of peeling off from the surface of the substrate.

【0005】また、封止剤による封孔処理は、塗布後に
その乾燥工程を必要とする上に、封止剤が流動して軸受
面として形成された多孔質金属焼結体の他の表面に流れ
出す虞もあり、作業時間がかかり煩雑な工程となり、更
に、封止剤が多孔質金属焼結体の細孔内に染み込んで、
必要な細孔をも封止してしまう虞もある。
[0005] The sealing treatment with a sealant requires a drying step after coating, and also causes the sealant to flow to the other surface of the porous metal sintered body formed as a bearing surface. There is also a risk of flowing out, it takes a long time to work, and it becomes a complicated process, and further, the sealing agent soaks into the pores of the porous metal sintered body,
There is also a possibility that necessary pores may be sealed.

【0006】本発明は、前記諸点に鑑みてなされたもの
であって、その目的とするところは、シリコーン樹脂等
からなる封止剤を用いないで封孔処理を行い得、而し
て、多孔質金属焼結体の寸法精度を所望に得られて、長
期に亘って安定な封孔を維持でき、しかも、煩雑な工程
をなくし得て封孔作業時間を大幅に短縮できて、必要な
ところのみの封孔を行い得る多孔質静圧気体軸受及びそ
の製造方法を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to perform a sealing treatment without using a sealant made of a silicone resin or the like. Dimensional accuracy of the high quality metal sintered body can be obtained as desired, stable sealing can be maintained for a long time, and complicated steps can be eliminated, and the sealing work time can be greatly reduced. An object of the present invention is to provide a porous hydrostatic gas bearing capable of performing only sealing and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明の第一の態様の多
孔質静圧気体軸受は、多孔質金属焼結体を具備してお
り、ここで、多孔質金属焼結体の軸受面は、無秩序に混
在した、金属部分と無機質部分と多数の細孔の開口とを
有しており、軸受面以外であって多孔質金属焼結体の外
部に露出する面は、金属部分と、この金属部分の展延部
とを有しており、外部に露出する面の少なくとも大部分
の細孔の開口は、展延部で塞がれている。
The porous hydrostatic gas bearing according to the first aspect of the present invention includes a porous metal sintered body, wherein the bearing surface of the porous metal sintered body is Has a metal part, an inorganic part, and a large number of pore openings that are mixed randomly, and other than the bearing surface, the surface exposed to the outside of the porous metal sintered body is a metal part, A metal portion, and the opening of at least most of the pores on the surface exposed to the outside is closed by the spread portion.

【0008】第一の態様の多孔質静圧気体軸受によれ
ば、軸受面以外であって多孔質金属焼結体の外部に露出
する面の少なくとも大部分の細孔の開口が金属部分の展
延部で塞がれているために、この露出する面からの気体
の噴出をなくし得、供給される高圧気体の無駄な消費を
なくし得ると共に、細孔の封孔が金属部分の展延部でな
されているために、封止剤に比較して長期に亘って安定
な封孔を維持できる上に、露出する面からの張り出しが
なく、多孔質金属焼結体の寸法精度を所望に得られる。
[0008] According to the porous hydrostatic gas bearing of the first aspect, the opening of at least most of the pores of the surface other than the bearing surface and exposed to the outside of the porous metal sintered body is expanded by the metal portion. Because it is closed by the extension, it is possible to eliminate gas emission from this exposed surface, to avoid wasteful consumption of the supplied high-pressure gas, and to seal the pores with the extension of the metal part. As a result, it is possible to maintain a stable sealing over a long period of time as compared with the sealing agent, and there is no overhang from the exposed surface, and the dimensional accuracy of the porous metal sintered body can be obtained as desired. Can be

【0009】なお、第一の態様の多孔質静圧気体軸受に
おいては、外部に露出する面の細孔の開口は、展延部以
外の金属部分でも塞がれており、これにより外部に露出
する面は、細孔の開口がほとんど存在しないようにされ
ている。
In the porous hydrostatic gas bearing according to the first aspect, the openings of the pores on the surface exposed to the outside are closed by metal parts other than the extending part, whereby the parts are exposed to the outside. The surface is made so that there are almost no pore openings.

【0010】本発明では、その第二の態様の多孔質静圧
気体軸受のように、軸受面は、更に、金属部分の展延部
を有しており、斯かる軸受面の金属部分の展延部は、本
発明の第三の態様の多孔質静圧気体軸受では、軸受面の
多数の開口のうちの少なくとも一部の開口を絞ってい
る。
According to the present invention, as in the porous hydrostatic gas bearing of the second aspect, the bearing surface further includes a metal portion extending portion, and the metal portion of the bearing surface extends. In the porous hydrostatic gas bearing according to the third aspect of the present invention, the extension narrows at least a part of the multiple openings in the bearing surface.

【0011】第三の態様の多孔質静圧気体軸受によれ
ば、展延部により軸受面の一部の細孔の開口が絞られて
いるために、細孔が軸受面でそのまま大きく開口するこ
とに起因する自励振動(ニューマチックハンマー現象)
を減少でき、安定な軸受機能を発揮できる。
According to the porous static pressure gas bearing of the third aspect, since the opening of a part of the pores on the bearing surface is narrowed by the extending portion, the pores are largely opened directly on the bearing surface. Self-excited vibration (pneumatic hammer phenomenon)
And a stable bearing function can be exhibited.

【0012】本発明の第二の態様における軸受面の金属
部分の展延部は、本発明の第四の態様の多孔質静圧気体
軸受のように、軸受面の多数の開口のうちの一部の開口
を塞いでいても、また、本発明の第五の態様の多孔質静
圧気体軸受のように、無機質部分で分断されていてもよ
い。
[0012] In the second aspect of the present invention, the extended portion of the metal portion of the bearing surface is, like the porous hydrostatic gas bearing of the fourth aspect of the present invention, one of a large number of openings in the bearing surface. The opening of the portion may be closed, or may be separated by an inorganic portion as in the porous hydrostatic gas bearing according to the fifth aspect of the present invention.

【0013】多孔質金属焼結体は、本発明の第六の態様
の多孔質静圧気体軸受では、円筒形状を有していると共
に、外部に露出した環状の端面を有しており、本発明の
第七の態様の多孔質静圧気体軸受では、円筒形状を有し
ていると共に、ハウジング内に嵌装されており、外部に
露出した環状の端面を有している。
The porous metal sintered body of the porous static pressure gas bearing according to the sixth aspect of the present invention has a cylindrical shape and an annular end face exposed to the outside. The porous static pressure gas bearing according to the seventh aspect of the present invention has a cylindrical shape, is fitted in the housing, and has an annular end face exposed to the outside.

【0014】第六の態様の多孔質静圧気体軸受によれ
ば、多孔質金属焼結体の外周面又は内周面を軸受面とす
ることによりラジアル軸受を構成でき、第七の態様の多
孔質静圧気体軸受によれば、ハウジングにより多孔質金
属焼結体の外周面の封孔処理を行うことができ、多孔質
金属焼結体の細孔の外周面での開口から無駄に気体が噴
出することをなくし得る。
According to the porous static pressure gas bearing of the sixth aspect, a radial bearing can be constituted by using the outer peripheral surface or the inner peripheral surface of the porous metal sintered body as the bearing surface, According to the porous hydrostatic gas bearing, the housing can seal the outer peripheral surface of the porous metal sintered body, and gas is wasted from the opening on the outer peripheral surface of the pores of the porous metal sintered body. It can eliminate spurting.

【0015】また、多孔質金属焼結体は、本発明の第八
の態様の多孔質静圧気体軸受では、方形形状を有してい
ると共に、外部に露出した矩形状の端面を有しており、
本発明の第九の態様の多孔質静圧気体軸受では、方形形
状を有していると共に、板状の裏金に固着されており、
外部に露出した矩形状の端面を有している。
In the porous static pressure gas bearing according to the eighth aspect of the present invention, the porous metal sintered body has a rectangular shape and a rectangular end face exposed to the outside. Yes,
In the porous static pressure gas bearing of the ninth aspect of the present invention, it has a rectangular shape and is fixed to a plate-shaped backing metal,
It has a rectangular end face exposed to the outside.

【0016】本発明による多孔質静圧気体軸受は、多孔
質金属焼結体を裸で用いて多孔質金属焼結体そのものか
ら構成してもよいが、上述の第七の態様のように、多孔
質金属焼結体の外周面をハウジングで覆って、多孔質金
属焼結体とハウジングとから構成してもよく、更には、
第九の態様のように、多孔質金属焼結体を板状の裏金に
固着して、斯かる板状の裏金と多孔質金属焼結体とから
構成してもよく、この場合には、本発明の多孔質静圧気
体軸受をスライダのような直動部材の軸受として用いる
ことができる。
The porous static pressure gas bearing according to the present invention may be constituted by the porous metal sintered body itself using the porous metal sintered body naked, but as in the seventh embodiment described above, The outer peripheral surface of the porous metal sintered body may be covered with a housing, and may be composed of a porous metal sintered body and a housing.
As in the ninth embodiment, the porous metal sintered body may be fixed to the plate-shaped backing metal, and may be constituted by such a plate-shaped backing metal and a porous metal sintered body. The porous hydrostatic gas bearing of the present invention can be used as a bearing for a linear member such as a slider.

【0017】本発明の第十の態様の多孔質静圧気体軸受
では、第一から第九のいずれかの態様の多孔質静圧気体
軸受において、軸受面及び外部に露出する面の金属部分
は、少なくとも錫、燐及び銅を含んでおり、軸受面の無
機質部分は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カ
ルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ
素のうちの少なくとも一つを含んでおり、本発明の第十
一の態様の多孔質静圧気体軸受では、第十の態様の多孔
質静圧気体軸受において、軸受面及び外部に露出する面
の金属部分は、更に、ニッケル又はマンガンを含んでい
る。
In the porous static pressure gas bearing according to the tenth aspect of the present invention, in the porous static pressure gas bearing according to any one of the first to ninth aspects, the metal parts of the bearing surface and the surface exposed to the outside are provided. And at least tin, phosphorus and copper, and the inorganic portion of the bearing surface contains at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide. In the porous static pressure gas bearing according to the eleventh aspect of the present invention, in the porous static pressure gas bearing according to the tenth aspect, the metal part of the bearing surface and the surface exposed to the outside further comprises nickel or manganese. Contains.

【0018】第十の態様の多孔質静圧気体軸受によれ
ば、軸受面及び外部に露出する面の金属部分に展延性に
優れた金属を含んでいるために好ましい展延部を提供で
き、また、第十の態様の多孔質静圧気体軸受において、
軸受面の無機質部分に、特に黒鉛、窒化ホウ素、フッ化
黒鉛及びフッ化カルシウムの少なくとも一つを含んでい
ると、これらは固体潤滑材として機能するので、多孔質
静圧気体軸受に支持される回転軸又はスライダの静止時
又は始動時に相互に接触しても、これらに損傷が生じ難
くフェールセーフな多孔質静圧気体軸受となる。
According to the porous hydrostatic gas bearing of the tenth aspect, it is possible to provide a preferable spreadable portion because the metal portion of the bearing surface and the surface exposed to the outside contains metal excellent in spreadability, Further, in the porous static pressure gas bearing of the tenth aspect,
When the inorganic portion of the bearing surface contains at least one of graphite, boron nitride, graphite fluoride and calcium fluoride, these functions as a solid lubricant and are supported by the porous hydrostatic gas bearing. Even when the rotating shaft or the slider comes into contact with each other at the time of standstill or start-up, these components are hardly damaged and a fail-safe porous hydrostatic gas bearing is obtained.

【0019】本発明の第一の態様の多孔質静圧気体軸受
の製造方法は、金属粉末及び無機質粉末を含む円筒状圧
粉部と、この円筒状圧粉部の両端面に配されていると共
に、主として金属粉末を含む環状圧粉部とを一体的に有
した圧粉体を準備する準備工程と、この圧粉体を焼結し
て円筒状の多孔質金属焼結体を作製する多孔質金属焼結
体作製工程と、この多孔質金属焼結体に研削を施して、
多孔質金属焼結体の円筒面に軸受面を形成し、多孔質金
属焼結体の端面に外部に露出する面を形成する研削工程
とを具備する。
In the method of manufacturing a porous static pressure gas bearing according to the first aspect of the present invention, a cylindrical powder portion containing a metal powder and an inorganic powder is disposed on both end surfaces of the cylindrical powder portion. And a preparation step of preparing a green compact integrally having an annular green compact portion mainly containing a metal powder, and a porous step of sintering the green compact to produce a cylindrical porous metal sintered body. A porous metal sintered body manufacturing process, and grinding the porous metal sintered body,
A grinding step of forming a bearing surface on a cylindrical surface of the porous metal sintered body and forming a surface exposed to the outside on an end surface of the porous metal sintered body.

【0020】斯かる第一の態様の製造方法によれば、多
孔質金属焼結体に研削を施して、多孔質金属焼結体の端
面に外部に露出する面を形成するために、主として金属
粉末からなる端面において金属部分に研削により塑性変
形を生じさせて、露出する面の細孔の開口を閉塞できる
結果、シリコーン樹脂等からなる封止剤を用いないで封
孔処理を行い得、而して、多孔質金属焼結体の寸法精度
を所望に得られて、長期に亘って安定な封孔を維持で
き、しかも、煩雑な工程をなくし得て封孔作業時間を大
幅に短縮できて、必要なところのみの封孔を行い得る。
According to the manufacturing method of the first aspect, the porous metal sintered body is ground to form a surface exposed to the outside at the end face of the porous metal sintered body. The metal part of the end face made of the powder is subjected to plastic deformation by grinding to close the openings of the pores on the exposed surface. As a result, the sealing process can be performed without using a sealant made of silicone resin or the like. As a result, the dimensional accuracy of the porous metal sintered body can be obtained as desired, a stable sealing can be maintained for a long time, and a complicated process can be eliminated, thereby greatly reducing the sealing work time. The sealing can be performed only where necessary.

【0021】本発明の第二の態様の多孔質静圧気体軸受
の製造方法は、主として金属粉末を含む厚肉円筒状圧粉
体と、この厚肉円筒状圧粉体の内周面に配されていると
共に、金属粉末及び無機質粉末を含む薄肉円筒状圧粉体
とを有した組み合わせ圧粉体を準備する準備工程と、こ
の組み合わせ圧粉体を焼結して、厚肉円筒状圧粉体と薄
肉円筒状圧粉体とを一体化してなる円筒状の多孔質金属
焼結体を作製する多孔質金属焼結体作製工程と、この多
孔質金属焼結体に研削を施して、多孔質金属焼結体の円
筒面に軸受面を形成し、多孔質金属焼結体の端面に外部
に露出する面を形成する研削工程とを具備する。
The method of manufacturing a porous hydrostatic gas bearing according to the second aspect of the present invention comprises the steps of disposing a thick cylindrical green compact mainly containing metal powder and an inner peripheral surface of the thick cylindrical green compact. And a preparing step of preparing a combined compact having a thin cylindrical compact including metal powder and inorganic powder, and sintering the combined compact to form a thick cylindrical compact. Metal-sintered body manufacturing step of manufacturing a cylindrical porous metal sintered body formed by integrating a body and a thin-walled cylindrical green compact, and grinding the porous metal sintered body to form a porous metal sintered body. Forming a bearing surface on the cylindrical surface of the porous metal sintered body and forming a surface exposed to the outside on the end surface of the porous metal sintered body.

【0022】第二の態様の製造方法によれば、多孔質金
属焼結体に研削を施して、多孔質金属焼結体の端面に外
部に露出する面を形成するために、主として金属粉末を
含む厚肉円筒状圧粉体から大部分がなる端面において金
属部分に研削により塑性変形を生じさせて、露出する面
の細孔の開口を閉塞できる結果、上記の第一の態様の製
造方法と同様な効果を生じさせることができる。
According to the manufacturing method of the second embodiment, the metal powder is mainly ground by grinding the porous metal sintered body to form a surface exposed to the outside at the end face of the porous metal sintered body. As a result of causing plastic deformation by grinding on the metal portion at the end face which is mostly from the thick cylindrical green compact containing, as a result of being able to close the opening of the pores on the exposed surface, the manufacturing method of the first aspect and Similar effects can be produced.

【0023】本発明の第三の態様の多孔質静圧気体軸受
の製造方法は、金属粉末及び無機質粉末を含む軸受面用
の圧粉体と、主として金属粉末を含む端面用の圧粉体と
を準備する準備工程と、軸受面用の圧粉体を軸受面とな
るべき部位に配置し、端面用の圧粉体を軸受面以外であ
って外部に露出する面となる部位に配して、これらの組
み合わせ体を作製する組み合わせ体作製工程と、この作
製した組み合わせ体を焼結して、軸受面用の圧粉体と端
面用の圧粉体とを一体化してなる多孔質金属焼結体を作
製する多孔質金属焼結体作製工程と、多孔質金属焼結体
に研削を施して、軸受面用の圧粉体で形成された部位に
軸受面を形成し、端面用の圧粉体で形成された部位に外
部に露出する面を形成する研削工程とを具備する。
The method of manufacturing a porous hydrostatic gas bearing according to the third aspect of the present invention comprises the steps of providing a green compact for a bearing surface containing a metal powder and an inorganic powder and a green compact for an end surface mainly containing a metal powder. Preparing step and preparing the green compact for the bearing surface at the site to be the bearing surface, and arranging the green compact for the end surface at the site other than the bearing surface and the surface to be exposed to the outside , A composite body manufacturing step of manufacturing these combined bodies, and sintering the manufactured combined body to form a porous metal sintered body by integrating a green compact for a bearing surface and a green compact for an end face. A porous metal sintered body manufacturing step of manufacturing a body, and grinding the porous metal sintered body to form a bearing surface at a portion formed of a green compact for a bearing surface, and forming a green compact for an end surface. A grinding step of forming a surface exposed to the outside at a site formed by the body.

【0024】第三の態様の製造方法によれば、多孔質金
属焼結体に研削を施して、主として金属粉末を含む端面
用の圧粉体で形成された部位に外部に露出する面を形成
し、斯かる露出する面において金属部分に研削により塑
性変形を生じさせて、当該露出する面の細孔の開口を閉
塞する結果、上記の第一及び第二の態様の製造方法と同
様な効果を生じさせることができる。
According to the manufacturing method of the third aspect, the porous metal sintered body is ground to form a surface exposed to the outside at a portion formed mainly by the end compact including the metal powder. Then, plastic deformation is caused by grinding the metal portion on the exposed surface, and the opening of the pores on the exposed surface is closed. As a result, the same effect as the manufacturing method of the first and second aspects is obtained. Can be caused.

【0025】本発明の第四の態様の製造方法では、上記
の製造方法において、金属粉末は、少なくとも錫、燐及
び銅を含んでおり、無機質粉末は、黒鉛、窒化ホウ素、
フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸
化ケイ素及び炭化ケイ素のうちの少なくとも一つを含ん
でいる。
In the manufacturing method according to the fourth aspect of the present invention, in the above manufacturing method, the metal powder contains at least tin, phosphorus and copper, and the inorganic powder is graphite, boron nitride,
It contains at least one of graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide.

【0026】第四の態様の製造方法によれば、金属粉末
からなる焼結部分が優れた展延性を呈するために、外部
に露出する面では細孔の開口を確実に閉塞できる一方、
軸受面では、金属粉末からなる焼結部分の優れた展延性
に拘らず、金属粉末からなる焼結部分が塑性変形して細
孔の開口を閉じようとしても、脆性な無機質部分で金属
粉末からなる焼結部分の塑性流動が分断されて細孔の開
口の閉塞が好ましく抑制され、而して、軸受面の形成後
も、細孔の目詰まりが抑制された理想的な絞り構造とな
った細孔を有した多孔質静圧気体軸受を得ることがで
き、更に、無機質粉末として黒鉛、窒化ホウ素、フッ化
黒鉛及びフッ化カルシウムのうちの少なくとも一つを含
む場合は、これらが固体潤滑材として機能する結果、多
孔質静圧気体軸受に支持される回転軸又はスライダの静
止時又は始動時に相互に接触しても、これらに損傷が生
じ難くフェールセーフな多孔質静圧気体軸受となる。
According to the manufacturing method of the fourth aspect, since the sintered portion made of the metal powder exhibits excellent ductility, the opening of the pore can be reliably closed on the surface exposed to the outside,
On the bearing surface, irrespective of the excellent ductility of the sintered part made of metal powder, even if the sintered part made of metal powder is plastically deformed to close the opening of the pore, the brittle inorganic part will cause The plastic flow of the sintered part is cut off, and the closure of the opening of the pores is preferably suppressed. Thus, even after the formation of the bearing surface, an ideal drawing structure in which the clogging of the pores was suppressed was obtained. A porous hydrostatic gas bearing having fine pores can be obtained, and further, when at least one of graphite, boron nitride, graphite fluoride and calcium fluoride is contained as the inorganic powder, these are solid lubricants. As a result, even if the rotating shaft or the slider supported by the porous hydrostatic gas bearing comes into contact with each other when the rotary shaft or the slider comes to rest or starts, a failure-prone porous hydrostatic gas bearing can be obtained.

【0027】なお、本発明の第五の態様の製造方法のよ
うに、金属粉末が、更に、ニッケル又はマンガンを含ん
でいると、金属粉末からなる焼結部分の剛性を適宜増大
し得る。
When the metal powder further contains nickel or manganese as in the manufacturing method according to the fifth aspect of the present invention, the rigidity of the sintered portion made of the metal powder can be appropriately increased.

【0028】また本発明の第六の態様の製造方法のよう
に、多孔質金属焼結体をハウジング内に嵌装、固着する
嵌装工程を更に具備していてもよい。
Further, as in the manufacturing method according to the sixth aspect of the present invention, the method may further include a fitting step of fitting and fixing the porous metal sintered body in the housing.

【0029】第六の態様の製造方法によれば、ハウジン
グで補強されると共に、多孔質金属焼結体の一つの面を
ハウジングで封孔処理できる多孔質静圧気体軸受を製造
できる。
According to the manufacturing method of the sixth aspect, it is possible to manufacture a porous hydrostatic gas bearing which is reinforced by the housing and one of the surfaces of the porous metal sintered body can be sealed with the housing.

【0030】多孔質金属焼結体を形成するための金属粉
末は、その粒径が30μmから150μmのものを、好
ましくは45μmから75μmのものを用いるのが好ま
しく、同じく無機質粉末は、その粒径が30μmから3
00μmのものを、好ましくは45μmから150μm
のものを用いるのが好ましく、斯かる金属粉末及び無機
質粉末を用いた多孔質金属焼結体の焼結密度及び多孔度
は焼結時間及び焼結温度で異なるが、例えば、2トン/
cmから7トン/cmの圧力を加えて圧粉体を形成
し、この圧粉体を還元性雰囲気もしくは真空中で800
℃から1150℃の温度で20分から60分間焼結した
場合には、概ね焼結密度は、5.15g/cm乃至
6.19g/cm、多孔度は21.1%乃至34.1
%(含油率換算)である。
The metal powder for forming the porous metal sintered body preferably has a particle diameter of 30 μm to 150 μm, and more preferably 45 μm to 75 μm. From 30 μm to 3
00 μm, preferably 45 μm to 150 μm
The sintering density and porosity of a porous metal sintered body using such a metal powder and an inorganic powder are different depending on the sintering time and the sintering temperature.
A pressure of from 7 cm / cm 2 to 7 ton / cm 2 is applied to form a green compact, and this green compact is 800
In the case of sintering at a temperature of from 1 ° C. to 1150 ° C. for 20 to 60 minutes, the sintering density is generally 5.15 g / cm 3 to 6.19 g / cm 3 and the porosity is 21.1% to 34.1.
% (In terms of oil content).

【0031】本発明の方法において、多孔質金属焼結体
に対する機械加工は、多くの場合、旋削加工後、研削加
工が行われる。この研削加工における加工代は、概ね
0.2mm以下の範囲で行われるのがよい。
In the method of the present invention, the machining of the porous metal sintered body is often performed by grinding after turning. It is preferable that the machining allowance in this grinding is performed within a range of about 0.2 mm or less.

【0032】以下、本発明及び本発明の実施の形態を、
図面を参照してその好ましい例に基づいて説明する。な
お、本発明はこれらの例に限定されないのである。
Hereinafter, the present invention and embodiments of the present invention will be described.
A description will be given based on a preferred example with reference to the drawings. Note that the present invention is not limited to these examples.

【0033】[0033]

【発明の実施の形態】図1から図4において、本例の多
孔質静圧気体軸受1は、円筒状の多孔質金属焼結体2
と、同じく円筒状であって、多孔質金属焼結体2が内部
に嵌装された金属製の剛性のハウジング3とを具備して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 to 4, a porous hydrostatic gas bearing 1 of the present embodiment has a cylindrical porous metal sintered body 2 having a cylindrical shape.
And a metal rigid housing 3 which is also cylindrical and has a porous metal sintered body 2 fitted therein.

【0034】円筒形状を有した多孔質金属焼結体2にお
いて、ラジアル軸受面としての円筒状の内周面4は、無
秩序に混在した、多数の細孔5の開口6と、金属部分7
と、無機質部分8と、金属部分7の展延部9とを有して
おり、内周面4以外であって多孔質金属焼結体2の外部
に露出する面、本例では環状の両端面10及び11は、
金属部分12と、金属部分12の展延部13とを有して
おり、両端面10及び11の細孔5の開口は、展延部1
3で塞がれている。
In the porous metal sintered body 2 having a cylindrical shape, the cylindrical inner peripheral surface 4 as a radial bearing surface is provided with openings 6 of a large number of fine holes 5 mixed randomly and a metal portion 7.
, An inorganic portion 8 and a spread portion 9 of the metal portion 7, a surface other than the inner peripheral surface 4 and exposed to the outside of the porous metal sintered body 2, in this example, annular both ends Surfaces 10 and 11 are
It has a metal part 12 and a spread part 13 of the metal part 12, and the openings of the pores 5 on both end faces 10 and 11 are
It is blocked by 3.

【0035】内周面4における金属部分7の展延部9
は、開口6を絞っているもの、開口6を塞いでいるもの
及び無機質部分8で分断されているものからなる。
The extending portion 9 of the metal portion 7 on the inner peripheral surface 4
Are composed of an aperture 6 that is squeezed, an aperture that blocks the aperture 6, and an aperture that is divided by an inorganic portion 8.

【0036】外部に露出する面として環状の両端面10
及び11を有した多孔質金属焼結体2において、その円
筒状の外周面21には環状凹所22が形成されており、
ハウジング3の円筒状の内周面23によって蓋された環
状凹所22は、多孔質金属焼結体2の細孔5へ気体、本
例では高圧空気を供給する環状供給路24を形成してい
る。
As the surfaces exposed to the outside, annular end surfaces 10
In the porous metal sintered body 2 having the steps (a) and (b), an annular recess 22 is formed in a cylindrical outer peripheral surface 21;
The annular recess 22 covered by the cylindrical inner peripheral surface 23 of the housing 3 forms an annular supply passage 24 that supplies gas, in this example, high-pressure air, to the pores 5 of the porous metal sintered body 2. I have.

【0037】ハウジング3は、環状供給路24に連通す
ると共にねじが切られた貫通孔25を具備しており、貫
通孔25に空気供給プラグが取付けられるようになって
いる。ハウジング3の内周面23がぴったりと多孔質金
属焼結体2の外周面21に接触していることにより、外
周面21での多孔質金属焼結体2の細孔5の開口が封止
されている。なお、外周面21での封孔処理をより完全
なものとするために、ハウジング3の内周面23と多孔
質金属焼結体2の外周面21との間に、シリコーン樹脂
等からなる封止剤を介在させてもよい。
The housing 3 has a threaded through-hole 25 communicating with the annular supply passage 24 and an air supply plug is mounted in the through-hole 25. Since the inner peripheral surface 23 of the housing 3 is in close contact with the outer peripheral surface 21 of the porous metal sintered body 2, the opening of the pore 5 of the porous metal sintered body 2 on the outer peripheral surface 21 is sealed. Have been. In order to complete the sealing process on the outer peripheral surface 21, a seal made of silicone resin or the like is provided between the inner peripheral surface 23 of the housing 3 and the outer peripheral surface 21 of the porous metal sintered body 2. A blocking agent may be interposed.

【0038】本例では、内周面4並びに両端面10及び
11の金属部分7及び12は、錫、燐、ニッケル及び銅
を含んでおり、内周面4の無機質部分8は、黒鉛を含ん
でいる。
In this example, the metal portions 7 and 12 of the inner peripheral surface 4 and both end surfaces 10 and 11 contain tin, phosphorus, nickel and copper, and the inorganic portion 8 of the inner peripheral surface 4 contains graphite. In.

【0039】以上の多孔質静圧気体軸受1において、貫
通孔25に供給された高圧空気は、環状供給路24に供
給され、環状供給路24に供給された高圧空気は、多孔
質金属焼結体2の細孔5を介して内周面4から噴出され
て、内周面4に挿着された回転軸31の外周面との間に
高圧空気膜を形成し、而して、多孔質静圧気体軸受1
は、斯かる回転軸31をラジアル方向において回転自在
に支持する。
In the above-described porous hydrostatic gas bearing 1, the high-pressure air supplied to the through-hole 25 is supplied to the annular supply passage 24, and the high-pressure air supplied to the annular supply passage 24 is supplied to the porous metal sintered body. The high-pressure air film is ejected from the inner peripheral surface 4 through the pores 5 of the body 2 to form a high-pressure air film between the inner peripheral surface 4 and the outer peripheral surface of the rotating shaft 31. Hydrostatic gas bearing 1
Supports the rotating shaft 31 rotatably in the radial direction.

【0040】多孔質静圧気体軸受1によれば、内周面4
以外であって多孔質金属焼結体2の外部に露出する両端
面10及び11の細孔5の開口が金属部分12の展延部
13で塞がれているために、両端面10及び11からの
空気の噴出をなくし得、供給される高圧空気の無駄な消
費をなくし得ると共に、細孔5の封孔が金属部分12の
展延部13でなされているために、封止剤に比較して長
期に亘って安定な封孔を維持できる上に、両端面10及
び11からの張り出しがなく、多孔質金属焼結体2の寸
法精度を所望に得られる。
According to the porous static pressure gas bearing 1, the inner peripheral surface 4
Since the openings of the pores 5 of the end faces 10 and 11 exposed to the outside of the porous metal sintered body 2 are closed by the extending portions 13 of the metal portion 12, the end faces 10 and 11 Can be eliminated, the wasteful consumption of the supplied high-pressure air can be eliminated, and the sealing of the pores 5 is made by the extending portion 13 of the metal portion 12, so that the sealing agent is not used. As a result, stable sealing can be maintained for a long period of time, and there is no overhang from both end faces 10 and 11, so that the dimensional accuracy of the porous metal sintered body 2 can be obtained as desired.

【0041】また多孔質静圧気体軸受1によれば、展延
部9により内周面4の一部の細孔5の開口6が絞られて
いるために、多くの細孔5が内周面4でそのまま大きく
開口することに起因する自励振動(ニューマチックハン
マー現象)をなくし得、安定な軸受機能を発揮でき、し
かも、ハウジング3により多孔質金属焼結体2の外周面
21の封孔処理を行うことができ、多孔質金属焼結体2
の細孔5の外周面21での開口から無駄に気体が噴出す
ることをなくし得る。
According to the porous hydrostatic gas bearing 1, since the opening 6 of a part of the pores 5 on the inner peripheral surface 4 is narrowed by the extending portion 9, many pores 5 are Self-excited vibration (pneumatic hammer phenomenon) caused by the large opening in the surface 4 can be eliminated, a stable bearing function can be exhibited, and the housing 3 seals the outer peripheral surface 21 of the porous metal sintered body 2. The porous metal sintered body 2 can be subjected to a hole treatment.
Unnecessary gas can be prevented from being ejected from the opening of the outer peripheral surface 21 of the fine pore 5.

【0042】次に以上の多孔質静圧気体軸受1を製造す
る方法の一例を説明する。先ず、図5に示すような、円
筒状の内周面27を有した外型28と、中子としての小
径円柱部29及び大径円柱部30を有した下型26とを
準備すると共に、外型28と下型26とにより形成され
た円筒中空部32に、例えば錫4%から10%、ニッケ
ル10%から40%、燐0.5%から4%及び残部銅か
らなる混合金属粉末であって、黒鉛、窒化ホウ素、フッ
化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケ
イ素及び炭化ケイ素等の無機質粉末を含まない混合金属
粉末を入れて堆積させることにより、環状の薄い混合粉
末層33を形成し、混合粉末層33の形成後、同じく円
筒中空部32に、重量比で錫4%から10%、ニッケル
10%から40%、燐0.5%から4%、黒鉛3%から
10%及び残部銅からなる金属粉末と、黒鉛、窒化ホウ
素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウ
ム、酸化ケイ素及び炭化ケイ素の少なくとも一つを含む
無機質粉末との混合粉末を入れて堆積させることによ
り、円筒状の厚い混合粉末層34を形成し、混合粉末層
34の形成後に、混合粉末層33と同様な主として混合
金属粉末の環状の薄い混合粉末層35を同様にして形成
する。
Next, an example of a method for manufacturing the above-described porous hydrostatic gas bearing 1 will be described. First, as shown in FIG. 5, an outer mold 28 having a cylindrical inner peripheral surface 27 and a lower mold 26 having a small-diameter cylindrical portion 29 and a large-diameter cylindrical portion 30 as a core are prepared. In the cylindrical hollow portion 32 formed by the outer mold 28 and the lower mold 26, for example, a mixed metal powder composed of 4% to 10% of tin, 10% to 40% of nickel, 0.5% to 4% of phosphorus, and the balance of copper is used. Then, by mixing and depositing a mixed metal powder containing no inorganic powder such as graphite, boron nitride, graphite graphite, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide, the annular thin mixed powder layer 33 is formed. After the formation and the formation of the mixed powder layer 33, the cylindrical hollow portion 32 is similarly filled with tin 4% to 10%, nickel 10% to 40%, phosphorus 0.5% to 4%, and graphite 3% to 10% by weight. Metal powder consisting of By mixing and depositing a mixed powder with an inorganic powder containing at least one of boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide, a thick cylindrical mixed powder layer 34 is formed. After the formation of the mixed powder layer 34, an annular thin mixed powder layer 35 of mainly mixed metal powder similar to the mixed powder layer 33 is formed in the same manner.

【0043】次に、図6に示すような小径円柱部29が
嵌入する円柱状の内部36を有する円筒状の上型37を
準備すると共に、上型37の内部36に小径円柱部29
を嵌入すると共に上型37を下型26に向かって押圧し
ながら円筒中空部32に挿入して、混合粉末層33、3
4及び35に2トン/cmから7トン/cmの圧力
を加えて、混合粉末層34からなる円筒状圧粉部38
と、混合粉末層33及び35からなって、円筒状圧粉部
38の両端面に配された環状圧粉部39及び40とを一
体的に有した圧粉体52を成形し、成形後、型から取り
出して圧粉体52を得る。
Next, a cylindrical upper die 37 having a cylindrical inner portion 36 into which the small-diameter cylindrical portion 29 as shown in FIG.
While pressing the upper mold 37 toward the lower mold 26, and inserting the mixed powder layers 33, 3
A pressure of 2 to 7 ton / cm 2 is applied to 4 and 35 to form a cylindrical compacted portion 38 comprising a mixed powder layer 34.
And a powder compact 52 composed of mixed powder layers 33 and 35 and integrally having annular powder compacts 39 and 40 disposed on both end surfaces of the cylindrical compact compact 38, and after compacting, The green compact 52 is obtained by taking it out of the mold.

【0044】こうして準備された圧粉体52に機械加工
を施して図7に示すような環状凹所22を形成し、環状
凹所22が形成された圧粉体52を、還元性雰囲気もし
くは真空中で800℃から1150℃の温度で20分か
ら60分間焼結して、環状凹所22を有した図7に示す
ような円筒状の多孔質金属焼結体2を作製する。
The green compact 52 thus prepared is machined to form an annular recess 22 as shown in FIG. 7, and the green compact 52 having the annular recess 22 formed therein is placed in a reducing atmosphere or vacuum. Sintering is performed at a temperature of 800 ° C. to 1150 ° C. for 20 minutes to 60 minutes to produce a cylindrical porous metal sintered body 2 having an annular recess 22 as shown in FIG.

【0045】多孔質金属焼結体2の作製後、次に、多孔
質金属焼結体2の円筒面である内周面4を旋削加工し
て、旋削加工後、続いて研削加工して内周面4を軸受面
として形成し、多孔質金属焼結体2の環状の端面10及
び11を、当該端面10及び11において十分な金属部
分12の展延部13が生じるように適宜旋削加工して、
旋削加工後、続いて研削加工して、端面10及び11を
外部に露出する面として形成する。内周面4並びに端面
10及び11の研削加工における加工代は、概ね0.2
mm以下の範囲で行なうとよい。
After the production of the porous metal sintered body 2, the inner peripheral surface 4, which is the cylindrical surface of the porous metal sintered body 2, is turned. The peripheral surface 4 is formed as a bearing surface, and the annular end faces 10 and 11 of the porous metal sintered body 2 are appropriately turned so that a sufficient extended portion 13 of the metal portion 12 is formed on the end faces 10 and 11. hand,
After the turning, the end faces 10 and 11 are formed as surfaces that are exposed to the outside. The machining allowance for grinding the inner peripheral surface 4 and the end surfaces 10 and 11 is approximately 0.2.
mm or less.

【0046】これらの研削工程後、図8に示すように、
多孔質金属焼結体2を、予めねじ切りされた貫通孔25
を有する円筒状のハウジング3内に嵌装、固着すること
により、図1及び図2に示すような多孔質静圧気体軸受
1を得ることができる。
After these grinding steps, as shown in FIG.
The porous metal sintered body 2 is inserted into a through hole 25
By fitting and fixing in the cylindrical housing 3 having the above, the porous hydrostatic gas bearing 1 as shown in FIGS. 1 and 2 can be obtained.

【0047】以上の製造方法によれば、前述の特長をも
った多孔質静圧気体軸受1を得ることができる上に、多
孔質金属焼結体2に研削を施して、多孔質金属焼結体2
の端面10及び11に外部に露出する面を形成するため
に、主として金属粉末からなる端面10及び11の金属
部分12に塑性変形を生じさせて、露出する端面10及
び11の細孔5の開口を閉塞できる結果、シリコーン樹
脂等からなる封止剤を用いないで封孔処理を行い得、而
して、多孔質金属焼結体2の寸法精度を所望に得られ
て、長期に亘って安定な封孔を維持でき、しかも、煩雑
な工程をなくし得て封孔作業時間を大幅に短縮できて、
必要なところのみの封孔を行い得る。
According to the manufacturing method described above, the porous hydrostatic gas bearing 1 having the above-mentioned features can be obtained, and the porous metal sintered body 2 is ground to form the porous metal sintered body. Body 2
In order to form the surfaces exposed to the outside on the end surfaces 10 and 11, the metal portions 12 of the end surfaces 10 and 11 mainly made of metal powder are plastically deformed to open the pores 5 of the exposed end surfaces 10 and 11. As a result, the sealing treatment can be performed without using a sealing agent made of a silicone resin or the like, and thus the dimensional accuracy of the porous metal sintered body 2 can be obtained as desired, and the porous metal sintered body 2 can be stably maintained for a long time. Sealing can be maintained, and the complicated steps can be eliminated to greatly reduce the sealing work time.
Sealing can be performed only where necessary.

【0048】また上記の製造方法によれば、金属部分7
及び12が優れた展延性を呈するために、端面10及び
11では細孔5の開口を確実に閉塞できる一方、内周面
4では、金属部分7の優れた展延性に拘らず、金属部分
7が塑性変形して細孔5の開口6を閉じようとしても、
脆性な無機質部分8で金属部分7の塑性流動が分断され
て細孔5の開口6の閉塞が好ましく抑制され、而して、
内周面4からなる軸受面の形成後も、細孔5の目詰まり
が抑制された理想的な絞り構造となった細孔5を有した
多孔質静圧気体軸受1を得ることができ、更に、無機質
粉末として黒鉛、窒化ホウ素、フッ化黒鉛及びフッ化カ
ルシウムのうちの少なくとも一つを含む場合には、これ
らが固体潤滑材として機能する結果、多孔質静圧気体軸
受1に支持される回転軸31の静止時又は始動時に相互
に接触しても、これらに損傷が生じ難くフェールセーフ
な多孔質静圧気体軸受1となる。
According to the above-described manufacturing method, the metal portion 7
And 12 exhibit excellent spreadability, so that the openings of the pores 5 can be reliably closed at the end faces 10 and 11, while the metal portion 7 is formed on the inner peripheral surface 4 irrespective of the excellent spreadability of the metal portion 7. Is plastically deformed and tries to close the opening 6 of the pore 5,
The plastic flow of the metal part 7 is divided by the brittle inorganic part 8, and the closure of the opening 6 of the pore 5 is preferably suppressed.
Even after the formation of the bearing surface composed of the inner peripheral surface 4, it is possible to obtain the porous hydrostatic gas bearing 1 having the pores 5 having an ideal aperture structure in which the clogging of the pores 5 is suppressed, Further, when at least one of graphite, boron nitride, graphite fluoride, and calcium fluoride is contained as the inorganic powder, they function as a solid lubricant, and are supported by the porous hydrostatic gas bearing 1. Even when the rotating shaft 31 comes into contact with the stationary shaft or at the time of starting, the damping hardly occurs in the rotating shaft 31 and the fail-safe porous hydrostatic gas bearing 1 is obtained.

【0049】更に上記の製造方法によれば、ハウジング
3で補強されると共に、多孔質金属焼結体2の外周面2
1をハウジング3で封孔処理できる多孔質静圧気体軸受
1を製造できる。
Further, according to the above-described manufacturing method, the outer peripheral surface 2 of the porous metal sintered body 2 is reinforced by the housing 3.
The porous static pressure gas bearing 1 in which the housing 1 can be sealed with the housing 3 can be manufactured.

【0050】多孔質静圧気体軸受1を次のようにして製
造してもよい。即ち、図9に示すように、例えば錫4%
から10%、ニッケル10%から40%、燐0.5%か
ら4%及び残部銅の主として金属粉末を含む厚肉円筒状
圧粉体61と、厚肉円筒状圧粉体61の円筒状の内周面
62に密に配されていると共に、重量比で錫4%から1
0%、ニッケル10%から40%、燐0.5%から4
%、黒鉛3%から10%及び残部銅からなる金属粉末及
び無機質粉末を含む薄肉円筒状圧粉体63とを有した組
み合わせ圧粉体64を準備する。
The porous hydrostatic gas bearing 1 may be manufactured as follows. That is, for example, as shown in FIG.
And 10% of nickel, 10% to 40% of nickel, 0.5% to 4% of phosphorus, and the balance of copper. It is densely arranged on the inner peripheral surface 62 and has a weight ratio of tin of 4% to 1%.
0%, nickel 10% to 40%, phosphorus 0.5% to 4
%, Graphite 3% to 10%, and a thin green compact 63 containing a metal powder and an inorganic powder consisting of a balance of copper.

【0051】厚肉円筒状圧粉体61及び薄肉円筒状圧粉
体63は、金属粉末並びに金属粉末と無機質粉末との混
合粉末の夫々を型内に配置して2トン/cmから7ト
ン/cmの圧力を加えて成形することにより作製さ
れ、組み合わせ圧粉体64は、厚肉円筒状圧粉体61の
内部に薄肉円筒状圧粉体63を嵌入することにより作製
される。
The thick cylindrical green compact 61 and the thin cylindrical green compact 63 are prepared by arranging a metal powder and a mixed powder of a metal powder and an inorganic powder in a mold, from 2 tons / cm 2 to 7 tons. / pressure of cm 2 was added be made by molding, combined green compact 64 is produced by fitting a thin-walled cylindrical green compact 63 in the interior of the thick cylindrical green compact 61.

【0052】次に、組み合わせ圧粉体64の円筒状の外
周面65に、本例では図10に示すように二条の環状凹
所22a及び22bと、これら環状凹所22a及び22
bを連通する連通溝66とを機械加工により形成する。
Next, on the cylindrical outer peripheral surface 65 of the combined green compact 64, in this example, as shown in FIG. 10, two annular recesses 22a and 22b and these annular recesses 22a and 22b are formed.
A communication groove 66 for communicating b is formed by machining.

【0053】こうして準備された環状凹所22a及び2
2b並びに連通溝66を有する組み合わせ圧粉体64を
上記と同様にして焼結して、厚肉円筒状圧粉体61と薄
肉円筒状圧粉体63とを一体化し、図10に示すような
円筒状の多孔質金属焼結体2を作製し、多孔質金属焼結
体2に上記と同様に旋削加工、研削加工を施して、多孔
質金属焼結体2の円筒面4に軸受面を形成し、多孔質金
属焼結体2の端面10及び11に外部に露出する面を形
成する。研削工程後、図11に示すように、多孔質金属
焼結体2を、上記と同様に、予めねじ切りされた貫通孔
25を有する円筒状のハウジング3内に嵌装、固着する
ことにより、図1及び図2に示すような多孔質静圧気体
軸受1を得ることができる。
The annular recesses 22a and 2 thus prepared are
2b and the combined green compact 64 having the communication groove 66 are sintered in the same manner as described above, and the thick cylindrical green compact 61 and the thin cylindrical green compact 63 are integrated, as shown in FIG. A cylindrical porous metal sintered body 2 is produced, and the porous metal sintered body 2 is subjected to turning and grinding in the same manner as described above, and a bearing surface is formed on the cylindrical surface 4 of the porous metal sintered body 2. The surface exposed to the outside is formed on the end faces 10 and 11 of the porous metal sintered body 2. After the grinding step, as shown in FIG. 11, the porous metal sintered body 2 is fitted and fixed in a cylindrical housing 3 having a through-hole 25 that has been threaded in advance in the same manner as described above. 1 and 2 can be obtained.

【0054】本例により製造された多孔質静圧気体軸受
1は、環状凹所22a及び22bによる二条の環状供給
路24を有することになり、斯かる二条の環状供給路2
4は、連通溝66を介して貫通孔25に連通されること
になる。なお、環状凹所22a及び22bを互いに連通
する連通溝66を一個に限らず二個以上形成してもよ
い。
The porous hydrostatic gas bearing 1 manufactured according to this embodiment has two annular supply passages 24 formed by annular recesses 22a and 22b.
4 is communicated with the through hole 25 via the communication groove 66. The number of the communication grooves 66 for connecting the annular recesses 22a and 22b to each other is not limited to one, but may be two or more.

【0055】図9から図11に示す製造方法によれば、
多孔質金属焼結体2に研削加工を施して、多孔質金属焼
結体2の端面10及び11に外部に露出する面を形成す
るために、主として金属粉末を含む厚肉円筒状圧粉体6
1の焼結体から大部分がなる端面10及び11の金属部
分12に塑性変形を生じさせて、露出する面の細孔5の
開口を閉塞できる結果、先の製造方法と同様な効果を生
じさせることができる。
According to the manufacturing method shown in FIGS. 9 to 11,
In order to form a surface exposed to the outside on the end faces 10 and 11 of the porous metal sintered body 2 by subjecting the porous metal sintered body 2 to grinding processing, a thick cylindrical green compact mainly containing metal powder 6
As a result of causing plastic deformation in the metal portion 12 of the end faces 10 and 11 which are mostly made of the sintered body 1 and closing the openings of the pores 5 on the exposed surface, the same effect as in the previous manufacturing method is produced. Can be done.

【0056】更に多孔質静圧気体軸受1を次のようにし
て製造してもよい。即ち、図12に示すような、例えば
錫、燐、ニッケル及び銅を含んだ金属粉末と黒鉛を含ん
だ無機質粉末とを含む軸受面用の円筒状の圧粉体41
と、例えば錫4%から10%、ニッケル10%から40
%、燐0.5%から4%及び残部銅からなる金属粉末を
含む図13に示すような端面用の環状の圧粉体42二個
とを準備する。
Further, the porous hydrostatic gas bearing 1 may be manufactured as follows. That is, as shown in FIG. 12, for example, a cylindrical green compact 41 for a bearing surface containing a metal powder containing tin, phosphorus, nickel and copper and an inorganic powder containing graphite.
For example, tin 4% to 10%, nickel 10% to 40
As shown in FIG. 13, two annular green compacts 42 each containing a metal powder consisting of 0.5% to 4% of phosphorus, 0.5% to 4% of phosphorus and the balance of copper are prepared.

【0057】次に、図14に示すように圧粉体41の両
端面に圧粉体42を配置して、すなわち、圧粉体41を
軸受面となるべき部位に配置し、圧粉体42を軸受面以
外であって外部に露出する面となる部位に配して、これ
らの組み合わせ体43を作製する。組み合わせ体43の
作製に際しては、適当な治具を用いて圧粉体41の両端
面に対して圧粉体42がぴったりと接触して且つ互いの
内周面が面一になるようにする。
Next, as shown in FIG. 14, the compacts 42 are arranged on both end surfaces of the compact 41, that is, the compacts 41 are arranged at the portions to be the bearing surfaces. Are disposed on a portion other than the bearing surface and become a surface exposed to the outside, and a combined body 43 of these is manufactured. When manufacturing the combination body 43, the green compact 42 is brought into close contact with both end surfaces of the green compact 41 using an appropriate jig, and the inner peripheral surfaces thereof are flush with each other.

【0058】作製した組み合わせ体43を、還元性雰囲
気もしくは真空中で800℃から1150℃の温度で2
0分から60分間焼結して、圧粉体41と圧粉体42と
を互いの当接面で一体化して、図15に示すような外周
面21に環状凹所22を有した一体物としての多孔質金
属焼結体2を作製する。
The thus-prepared combination 43 is subjected to a heating at 800 ° C. to 1150 ° C. in a reducing atmosphere or vacuum.
After sintering for 0 to 60 minutes, the green compact 41 and the green compact 42 are integrated with each other at their contact surfaces to form an integrated body having an annular recess 22 on the outer peripheral surface 21 as shown in FIG. Is produced.

【0059】多孔質金属焼結体2の作製後、次に、多孔
質金属焼結体2の円筒状の内周面4を旋削加工して、旋
削加工後、続いて研削加工して内周面4を軸受面として
形成し、多孔質金属焼結体2の環状の端面10及び11
を、当該端面10及び11において十分な金属部分12
の展延部13が生じるように適宜旋削加工して、旋削加
工後、続いて研削加工して、端面10及び11を外部に
露出する面として形成する。内周面4並びに端面10及
び11の研削加工における加工代は、概ね0.2mm以
下の範囲で行なうとよい。
After the production of the porous metal sintered body 2, the cylindrical inner peripheral surface 4 of the porous metal sintered body 2 is turned, and after the turning processing, the inner peripheral surface of the porous metal sintered body 2 is ground by grinding. The surface 4 is formed as a bearing surface, and the annular end surfaces 10 and 11 of the porous metal sintered body 2 are formed.
With sufficient metal parts 12 at the end faces 10 and 11
Turning is performed appropriately so that the extended portion 13 is generated, and after the turning, the grinding is performed to form the end surfaces 10 and 11 as surfaces exposed to the outside. The machining allowance in the grinding of the inner peripheral surface 4 and the end surfaces 10 and 11 is preferably approximately within a range of 0.2 mm or less.

【0060】これらの研削工程後、図16に示すよう
に、多孔質金属焼結体2を、予めねじ切りされた貫通孔
25を有する円筒状のハウジング3内に嵌装、固着する
ことにより、図1及び図2に示すような多孔質静圧気体
軸受1を得ることができる。
After these grinding steps, as shown in FIG. 16, the porous metal sintered body 2 is fitted and fixed in a cylindrical housing 3 having a through-hole 25 which has been threaded in advance. 1 and 2 can be obtained.

【0061】以上の製造方法によれば、前述の特長をも
った多孔質静圧気体軸受1を得ることができる上に、多
孔質金属焼結体2に研削を施して、錫4%から10%、
ニッケル10%から40%、燐0.5%から4%及び残
部銅からなる金属粉末を含む圧粉体42で形成された部
位に外部に露出する端面10及び11を形成し、斯かる
端面10及び11において研削により金属部分12に塑
性変形を生じさせて、当該端面10及び11の細孔5の
開口を閉塞する結果、上記と同様の効果を生じさせるこ
とができる。
According to the above-described manufacturing method, the porous hydrostatic gas bearing 1 having the above-mentioned features can be obtained. In addition, the porous metal sintered body 2 is ground to reduce tin from 4% to 10%. %,
The end faces 10 and 11 which are exposed to the outside are formed in a portion formed by the green compact 42 containing a metal powder composed of 10% to 40% of nickel, 0.5% to 4% of phosphorus and the balance of copper. In (11) and (11), the metal portion 12 is plastically deformed by grinding to close the openings of the fine holes 5 on the end faces 10 and 11, so that the same effect as described above can be obtained.

【0062】なお、図12から図16に示す製造方法で
は、圧粉体41の内径と等しい内径を有した二つの圧粉
体42を準備し、圧粉体42を圧粉体41の両端面に配
置して組み合わせ体43を作製したが、これに代えて、
圧粉体41の外径と等しい内径を有した二つの圧粉体4
2を準備し、斯かる圧粉体42を図17に示すように圧
粉体41の両端面に隣接する外周面に配置して組み合わ
せ体51を作製して、組み合わせ体51を上記と同様に
焼成して、多孔質静圧気体軸受1を製造してもよい。ま
た更に、内外径の等しい圧粉体41と圧粉体42とを準
備し、圧粉体41の外周面に環状凹所22と同等の凹所
を機械加工により形成した後に、圧粉体41の両端面に
圧粉体42を配置して組み合わせ体を作製して、この組
み合わせ体を上記と同様に焼成して、多孔質静圧気体軸
受1を製造してもよい。
In the manufacturing method shown in FIGS. 12 to 16, two compacts 42 having an inner diameter equal to the inner diameter of the compact 41 are prepared, and the compact 42 is attached to both end faces of the compact 41. To produce a combined body 43, but instead of this,
Two compacts 4 having an inner diameter equal to the outer diameter of the compact 41
2 and the green compact 42 is arranged on the outer peripheral surface adjacent to both end surfaces of the green compact 41 as shown in FIG. 17 to produce a combined body 51. The porous static pressure gas bearing 1 may be manufactured by firing. Further, a green compact 41 and a green compact 42 having the same inner and outer diameters are prepared, and a recess equivalent to the annular recess 22 is formed on the outer peripheral surface of the green compact 41 by machining. May be produced by arranging the compacts 42 on both end surfaces of the composite body, and firing the combined body in the same manner as described above to produce the porous hydrostatic gas bearing 1.

【0063】上記の製造方法では、ハウジング3内に嵌
装、固着する前に、軸受面4並びに端面10及び11の
旋削、研削加工を行ったが、これに代えて、ハウジング
3内に嵌装、固着後に軸受面4並びに端面10及び11
の旋削、研削加工を行ってもよい。
In the above-described manufacturing method, turning and grinding of the bearing surface 4 and the end surfaces 10 and 11 are performed before fitting and fixing in the housing 3. Bearing surface 4 and end surfaces 10 and 11 after fixation
Turning and grinding may be performed.

【0064】また上記は円筒状の多孔質静圧気体軸受1
を製造する方法であるが、これに代えて、方形形状の軸
受面用及び端面用の圧粉体を準備し、端面用の圧粉体を
軸受面用の圧粉体の端面に配してこれらの組み合わせ体
を作成して、以後、上記と同様に焼成して方形形状の多
孔質金属焼結体を作成し、この多孔質金属焼結体を方形
形状の裏金に固着して、斯かる方形形状の多孔質金属焼
結体の外部に露出する全面に研削を施して方形形状の多
孔質静圧気体軸受1を製造するようにしてもよい。この
場合、組み合わせ体の焼成と同時に、組み合わせ体の裏
金への固着をこの焼成により行わせるようにしてもよ
い。
The above is the cylindrical porous hydrostatic gas bearing 1.
However, instead of this, a green compact for the bearing surface and the end face of a rectangular shape is prepared, and the green compact for the end face is arranged on the end face of the compact for the bearing face. After preparing these combined bodies, thereafter, firing in the same manner as described above to form a rectangular porous metal sintered body, and fixing the porous metal sintered body to a rectangular backing metal, The entire surface exposed to the outside of the rectangular porous metal sintered body may be ground to manufacture the rectangular porous hydrostatic gas bearing 1. In this case, the fixing of the combination to the back metal may be performed by the firing simultaneously with the firing of the combination.

【0065】[0065]

【発明の効果】本発明によれば、シリコーン樹脂等から
なる封止剤を用いないで封孔処理を行い得、而して、多
孔質金属焼結体の寸法精度を所望に得られて、長期に亘
って安定な封孔を維持でき、しかも、煩雑な工程をなく
し得て封孔作業時間を大幅に短縮できて、必要なところ
のみの封孔を行い得る多孔質静圧気体軸受及びその製造
方法を提供することができる。
According to the present invention, the sealing treatment can be performed without using a sealing agent made of a silicone resin or the like, and the dimensional accuracy of the porous metal sintered body can be obtained as desired. A porous hydrostatic gas bearing that can maintain stable sealing over a long period of time, can eliminate complicated steps, greatly reduce the time required for sealing work, and can perform sealing only when necessary, and A manufacturing method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の好ましい例の斜視図であ
る。
FIG. 1 is a perspective view of a preferred example of an embodiment of the present invention.

【図2】図1に示す例の断面図である。FIG. 2 is a sectional view of the example shown in FIG.

【図3】図1に示す例の内周面の拡大断面説明図であ
る。
FIG. 3 is an enlarged sectional explanatory view of an inner peripheral surface of the example shown in FIG. 1;

【図4】図1に示す例の端面の拡大断面説明図である。FIG. 4 is an enlarged sectional explanatory view of an end face of the example shown in FIG. 1;

【図5】図1に示す例の製造方法の一例の説明図であ
る。
FIG. 5 is an explanatory diagram of an example of the manufacturing method of the example shown in FIG. 1;

【図6】図1に示す例の製造方法の一例の説明図であ
る。
FIG. 6 is an explanatory diagram of an example of the manufacturing method of the example shown in FIG. 1;

【図7】図1に示す例の製造方法の一例の説明図であ
る。
FIG. 7 is an explanatory diagram of an example of the manufacturing method of the example shown in FIG.

【図8】図1に示す例の製造方法の一例の説明図であ
る。
FIG. 8 is an explanatory diagram of an example of the manufacturing method of the example shown in FIG.

【図9】図1に示す例の製造方法の他の例の説明図であ
る。
FIG. 9 is an explanatory view of another example of the manufacturing method of the example shown in FIG. 1;

【図10】図1に示す例の製造方法の他の例の説明図で
ある。
FIG. 10 is an explanatory diagram of another example of the manufacturing method of the example shown in FIG. 1;

【図11】図1に示す例の製造方法の他の例の説明図で
ある。
FIG. 11 is an explanatory diagram of another example of the manufacturing method of the example shown in FIG. 1;

【図12】図1に示す例の製造方法の更に他の例の説明
図である。
FIG. 12 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【図13】図1に示す例の製造方法の更に他の例の説明
図である。
FIG. 13 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【図14】図1に示す例の製造方法の更に他の例の説明
図である。
FIG. 14 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【図15】図1に示す例の製造方法の更に他の例の説明
図である。
FIG. 15 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【図16】図1に示す例の製造方法の更に他の例の説明
図である。
FIG. 16 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【図17】図1に示す例の製造方法の更に別の例の説明
図である。
FIG. 17 is an explanatory view of still another example of the manufacturing method of the example shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 多孔質静圧気体軸受 2 多孔質金属焼結体 3 ハウジング 4 内周面 5 細孔 6 開口 7、12 金属部分 8 無機質部分 9、13 展延部 10、11 端面 DESCRIPTION OF SYMBOLS 1 Porous static pressure gas bearing 2 Porous metal sintered compact 3 Housing 4 Inner peripheral surface 5 Pores 6 Opening 7,12 Metal part 8 Inorganic part 9,13 Extension part 10,11 End face

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J102 AA02 BA03 BA17 CA15 EA02 FA02 FA09 4K018 AA05 AB01 AB02 AB03 AB07 AC01 FA06 HA03 JA03 KA03 KA22  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3J102 AA02 BA03 BA17 CA15 EA02 FA02 FA09 4K018 AA05 AB01 AB02 AB03 AB07 AC01 FA06 HA03 JA03 KA03 KA22

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 多孔質金属焼結体を具備した多孔質静圧
気体軸受であって、多孔質金属焼結体の軸受面は、無秩
序に混在した、金属部分と無機質部分と多数の細孔の開
口とを有しており、軸受面以外であって多孔質金属焼結
体の外部に露出する面は、金属部分と、この金属部分の
展延部とを有しており、外部に露出する面の少なくとも
大部分の細孔の開口は、展延部で塞がれている多孔質静
圧気体軸受。
1. A porous hydrostatic gas bearing provided with a porous metal sintered body, wherein a bearing surface of the porous metal sintered body has a metal part, an inorganic part, and a large number of pores mixed randomly. The surface other than the bearing surface and exposed to the outside of the porous metal sintered body has a metal portion and an extended portion of the metal portion, and is exposed to the outside. A porous hydrostatic gas bearing in which at least a majority of the openings of the pores on the surface to be closed are closed by an extension.
【請求項2】 軸受面は、更に、金属部分の展延部を有
している請求項1に記載の多孔質静圧気体軸受。
2. The porous hydrostatic gas bearing according to claim 1, wherein the bearing surface further has an extended portion of a metal portion.
【請求項3】 軸受面の金属部分の展延部は、軸受面の
多数の開口のうちの少なくとも一部の開口を絞っている
請求項2に記載の多孔質静圧気体軸受。
3. The porous hydrostatic gas bearing according to claim 2, wherein the extending portion of the metal portion of the bearing surface narrows at least a part of the plurality of openings of the bearing surface.
【請求項4】 軸受面の金属部分の展延部は、軸受面の
多数の開口のうちの一部の開口を塞いでいる請求項2に
記載の多孔質静圧気体軸受。
4. The porous hydrostatic gas bearing according to claim 2, wherein the extending portion of the metal portion of the bearing surface closes a part of the multiple openings of the bearing surface.
【請求項5】 軸受面の金属部分の展延部は、無機質部
分で分断されている請求項2から4のいずれか一項に記
載の多孔質静圧気体軸受。
5. The porous hydrostatic gas bearing according to claim 2, wherein the extending portion of the metal portion of the bearing surface is divided by an inorganic portion.
【請求項6】 多孔質金属焼結体は、円筒形状を有して
いると共に、外部に露出した環状の端面を有している請
求項1から5のいずれか一項に記載の多孔質静圧気体軸
受。
6. The porous static metal according to claim 1, wherein the porous metal sintered body has a cylindrical shape and has an annular end face exposed to the outside. Pressurized gas bearing.
【請求項7】 多孔質金属焼結体は、円筒形状を有して
いると共に、ハウジング内に嵌装されており、外部に露
出した環状の端面を有している請求項1から6のいずれ
か一項に記載の多孔質静圧気体軸受。
7. The porous metal sintered body according to claim 1, which has a cylindrical shape, is fitted in a housing, and has an annular end surface exposed to the outside. The porous static pressure gas bearing according to claim 1.
【請求項8】 多孔質金属焼結体は、方形形状を有して
いると共に、外部に露出した矩形状の端面を有している
請求項1から5のいずれか一項に記載の多孔質静圧気体
軸受。
8. The porous metal sintered body according to claim 1, wherein the porous metal sintered body has a rectangular shape and a rectangular end face exposed to the outside. Hydrostatic gas bearing.
【請求項9】 多孔質金属焼結体は、方形形状を有して
いると共に、板状の裏金に固着されており、外部に露出
した矩形状の端面を有している請求項1から5及び請求
項8のいずれか一項に記載の多孔質静圧気体軸受。
9. The porous metal sintered body has a rectangular shape, is fixed to a plate-shaped backing metal, and has a rectangular end face exposed to the outside. The porous static pressure gas bearing according to any one of claims 8 to 10.
【請求項10】 軸受面及び外部に露出する面の金属部
分は、少なくとも錫、燐及び銅を含んでおり、軸受面の
無機質部分は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化
カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケ
イ素のうちの少なくとも一つを含んでいる請求項1から
9のいずれか一項に記載の多孔質静圧気体軸受。
10. The metal part of the bearing surface and the surface exposed to the outside contains at least tin, phosphorus and copper, and the inorganic part of the bearing surface is graphite, boron nitride, graphite fluoride, calcium fluoride, oxide The porous hydrostatic gas bearing according to any one of claims 1 to 9, comprising at least one of aluminum, silicon oxide, and silicon carbide.
【請求項11】 軸受面及び外部に露出する面の金属部
分は、更に、ニッケル又はマンガンを含んでいる請求項
10に記載の多孔質静圧気体軸受。
11. The gas bearing according to claim 10, wherein the metal portion of the bearing surface and the surface exposed to the outside further contains nickel or manganese.
【請求項12】 金属粉末及び無機質粉末を含む円筒状
圧粉部と、この円筒状圧粉部の両端面に配されていると
共に、主として金属粉末を含む環状圧粉部とを一体的に
有した圧粉体を準備する準備工程と、この圧粉体を焼結
して円筒状の多孔質金属焼結体を作製する多孔質金属焼
結体作製工程と、この多孔質金属焼結体に研削を施し
て、多孔質金属焼結体の円筒面に軸受面を形成し、多孔
質金属焼結体の端面に外部に露出する面を形成する研削
工程とを具備する、多孔質静圧気体軸受の製造方法。
12. A cylindrical powder compact containing metal powder and inorganic powder, and an annular powder compact mainly containing metal powder and disposed on both end surfaces of the cylindrical powder compact. A preparing step of preparing a green compact, a step of sintering the green compact to form a cylindrical porous metal sintered body, and a step of preparing a porous metal sintered body. Grinding, forming a bearing surface on the cylindrical surface of the porous metal sintered body, and forming a surface exposed to the outside on the end surface of the porous metal sintered body, the grinding step comprising: Manufacturing method of bearing.
【請求項13】 主として金属粉末を含む厚肉円筒状圧
粉体と、この厚肉円筒状圧粉体の内周面に配されている
と共に、金属粉末及び無機質粉末を含む薄肉円筒状圧粉
体とを有した組み合わせ圧粉体を準備する準備工程と、
この組み合わせ圧粉体を焼結して、厚肉円筒状圧粉体と
薄肉円筒状圧粉体とを一体化してなる円筒状の多孔質金
属焼結体を作製する多孔質金属焼結体作製工程と、この
多孔質金属焼結体に研削を施して、多孔質金属焼結体の
円筒面に軸受面を形成し、多孔質金属焼結体の端面に外
部に露出する面を形成する研削工程とを具備する、多孔
質静圧気体軸受の製造方法。
13. A thick cylindrical green compact mainly containing a metal powder, and a thin cylindrical green compact disposed on the inner peripheral surface of the thick cylindrical green compact and containing a metal powder and an inorganic powder. A preparation step of preparing a combined green compact having a body,
Sintering the combined green compact to produce a cylindrical porous metal sintered body obtained by integrating a thick cylindrical green compact and a thin cylindrical green compact. And grinding the porous metal sintered body to form a bearing surface on the cylindrical surface of the porous metal sintered body and to form a surface exposed to the outside on an end surface of the porous metal sintered body. And a method for producing a porous hydrostatic gas bearing.
【請求項14】 金属粉末及び無機質粉末を含む軸受面
用の圧粉体と、主として金属粉末を含む端面用の圧粉体
とを準備する準備工程と、軸受面用の圧粉体を軸受面と
なるべき部位に配置し、端面用の圧粉体を軸受面以外で
あって外部に露出する面となる部位に配して、これらの
組み合わせ体を作製する組み合わせ体作製工程と、この
作製した組み合わせ体を焼結して、軸受面用の圧粉体と
端面用の圧粉体とを一体化してなる多孔質金属焼結体を
作製する多孔質金属焼結体作製工程と、多孔質金属焼結
体に研削を施して、軸受面用の圧粉体で形成された部位
に軸受面を形成し、端面用の圧粉体で形成された部位に
外部に露出する面を形成する研削工程とを具備する、多
孔質静圧気体軸受の製造方法。
14. A preparation step of preparing a green compact for a bearing surface containing metal powder and inorganic powder and a green compact for an end surface mainly containing a metal powder; And a composite body forming step of preparing these combined bodies by arranging the green compact for the end surface in a part other than the bearing surface and serving as a surface exposed to the outside, A step of sintering the combined body to form a porous metal sintered body in which a green compact for the bearing surface and a green compact for the end face are integrated; Grinding the sintered body to form a bearing surface at the portion formed of the green compact for the bearing surface and to form a surface exposed to the outside at the portion formed of the green compact for the end surface A method for manufacturing a porous static pressure gas bearing, comprising:
【請求項15】 金属粉末は、少なくとも錫、燐及び銅
を含んでおり、無機質粉末は、黒鉛、窒化ホウ素、フッ
化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケ
イ素及び炭化ケイ素のうちの少なくとも一つを含んでい
る請求項12から14のいずれか一項に記載の多孔質静
圧気体軸受の製造方法。
15. The metal powder contains at least tin, phosphorus and copper, and the inorganic powder contains at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide. The method for manufacturing a porous hydrostatic gas bearing according to any one of claims 12 to 14, comprising:
【請求項16】 金属粉末は、更に、ニッケル又はマン
ガンを含んでいる請求項15に記載の多孔質静圧気体軸
受の製造方法。
16. The method according to claim 15, wherein the metal powder further contains nickel or manganese.
【請求項17】 多孔質金属焼結体をハウジング内に嵌
装、固着する嵌装工程を更に具備している請求項12か
ら16のいずれか一項に記載の多孔質静圧気体軸受の製
造方法。
17. The production of a porous hydrostatic gas bearing according to claim 12, further comprising a fitting step of fitting and fixing the porous metal sintered body in the housing. Method.
JP2000301119A 2000-09-29 2000-09-29 Porous static pressure gas bearing and manufacturing method thereof Expired - Fee Related JP4442012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301119A JP4442012B2 (en) 2000-09-29 2000-09-29 Porous static pressure gas bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000301119A JP4442012B2 (en) 2000-09-29 2000-09-29 Porous static pressure gas bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002106564A true JP2002106564A (en) 2002-04-10
JP4442012B2 JP4442012B2 (en) 2010-03-31

Family

ID=18782700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301119A Expired - Fee Related JP4442012B2 (en) 2000-09-29 2000-09-29 Porous static pressure gas bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4442012B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275234A (en) * 2005-03-30 2006-10-12 Kumamoto Technology & Industry Foundation Air bearing and ring-shaped motor
JP2008095931A (en) * 2006-10-16 2008-04-24 Shigetaka Yoshimoto Static pressure gas bearing mechanism, shaft rotation device using the same and spindle motor
JP2010019425A (en) * 2009-10-21 2010-01-28 Oiles Ind Co Ltd Static pressure gas bearing device
JP2015098876A (en) * 2013-11-18 2015-05-28 オイレス工業株式会社 Static pressure gas bearing and rotating device using the same
JP2015218608A (en) * 2014-05-15 2015-12-07 日産自動車株式会社 Piston and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275234A (en) * 2005-03-30 2006-10-12 Kumamoto Technology & Industry Foundation Air bearing and ring-shaped motor
JP2008095931A (en) * 2006-10-16 2008-04-24 Shigetaka Yoshimoto Static pressure gas bearing mechanism, shaft rotation device using the same and spindle motor
JP2010019425A (en) * 2009-10-21 2010-01-28 Oiles Ind Co Ltd Static pressure gas bearing device
JP2015098876A (en) * 2013-11-18 2015-05-28 オイレス工業株式会社 Static pressure gas bearing and rotating device using the same
JP2015218608A (en) * 2014-05-15 2015-12-07 日産自動車株式会社 Piston and its manufacturing method

Also Published As

Publication number Publication date
JP4442012B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US6872002B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
US6706239B2 (en) Method of co-forming metal foam articles and the articles formed by the method thereof
JP4450114B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
US20090155116A1 (en) Hydrodynamic bearing device
SE503343C2 (en) Mechanical sealing utilizing pore-containing material and pore-containing cemented carbide and method of making thereof
EP0237627B1 (en) Gas bearing and method of making it
JP2002106564A (en) Porous static pressure gas bearing and its manufacturing method
US20050259898A1 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
JP2007154959A5 (en)
US5967110A (en) Fe-based sintered alloy manufacturing process, Fe-based sintered alloy manufactured through thereof and bearing cap
JP4379951B2 (en) Porous static pressure gas screw
US20040001656A1 (en) Sintered bearing and production method therefor
JP4461593B2 (en) Method for producing porous hydrostatic gas bearing
WO2014034368A1 (en) Aerostatic radial bearing
KR20070121878A (en) Sliding bearing with oil pocket
JP2008231576A (en) Bearing material for porous static pressure gas bearing and porous static pressure gas bearing using the same
JPH05180229A (en) Manufacture of oil-impregnated sintered bearing
JP4983904B2 (en) Porous static pressure gas bearing and manufacturing method thereof
JP5131256B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JPH07145815A (en) Porous hydrostatic bearing
JP2000009142A (en) Manufacture of bearing device and bearing device
JP2558955Y2 (en) Sintered plain bearings
JP2000346071A (en) Porous, static pressure gas bearing
JP2000291656A (en) Manufacture of porous gas hydrostatic bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees