JP2023044005A - 熱処理装置および熱処理方法 - Google Patents
熱処理装置および熱処理方法 Download PDFInfo
- Publication number
- JP2023044005A JP2023044005A JP2021151806A JP2021151806A JP2023044005A JP 2023044005 A JP2023044005 A JP 2023044005A JP 2021151806 A JP2021151806 A JP 2021151806A JP 2021151806 A JP2021151806 A JP 2021151806A JP 2023044005 A JP2023044005 A JP 2023044005A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- dummy wafer
- dummy
- wafer
- damage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 352
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000001514 detection method Methods 0.000 claims abstract description 108
- 235000012431 wafers Nutrition 0.000 claims description 575
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 231
- 238000012546 transfer Methods 0.000 description 153
- 238000012545 processing Methods 0.000 description 104
- 229910052736 halogen Inorganic materials 0.000 description 55
- 150000002367 halogens Chemical class 0.000 description 55
- 230000007246 mechanism Effects 0.000 description 54
- 239000007789 gas Substances 0.000 description 49
- 238000004364 calculation method Methods 0.000 description 43
- 239000010408 film Substances 0.000 description 29
- 238000003860 storage Methods 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000000758 substrate Substances 0.000 description 24
- 238000001816 cooling Methods 0.000 description 23
- 230000032258 transport Effects 0.000 description 21
- 230000005855 radiation Effects 0.000 description 18
- 239000012535 impurity Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 239000010453 quartz Substances 0.000 description 17
- 230000006866 deterioration Effects 0.000 description 11
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910052724 xenon Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67167—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/6719—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67196—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67748—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/6875—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【課題】ダミーウェハーの劣化を詳細に管理する熱処理装置および熱処理方法を提供する。【解決手段】熱処理装置100は、ダミーウェハーRを管理する熱処理装置100である。熱処理装置100は、ダミーウェハーRに対して熱処理を行う熱処理部160と、ダミーウェハーRの傷を検知する傷検知部170と、傷検知部170により検知された傷情報に基づいて、ダミーウェハーRの使用の可否を判定する制御部3と、を備える。【選択図】図1
Description
本発明は、ダミーウェハーを管理する熱処理方法および熱処理装置に関する。
半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。
このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができる。
典型的には、熱処理に限らず半導体ウェハーの処理はロット(同一条件にて同一内容の処理を行う対象となる1組の半導体ウェハー)単位で行われる。枚葉式の基板処理装置では、ロットを構成する複数枚の半導体ウェハーに対して連続して順次に処理が行われる。フラッシュランプアニール装置においても、ロットを構成する複数の半導体ウェハーが1枚ずつチャンバーに搬入されて順次に熱処理が行われる。
ところが、ロットを構成する複数の半導体ウェハーを順次に処理する過程で半導体ウェハーを保持するサセプタ等のチャンバー内構造物の温度が変化することがある。このような現象は、暫く稼働停止状態にあったフラッシュランプアニール装置にて新たに処理を開始する場合や半導体ウェハーの処理温度等の処理条件を変化させた場合に生じる。ロットの複数の半導体ウェハーを処理する過程でサセプタ等のチャンバー内構造物の温度が変化すると、ロットの初期の半導体ウェハーと後半の半導体ウェハーとで処理時の温度履歴が異なるという問題が生じる。
このような問題を解決するために、ロットの処理を開始する前に、処理対象ではないダミーウェハーをチャンバー内に搬入してサセプタに支持し、処理対象のロットと同一条件にてフラッシュ加熱処理を行うことにより、事前にサセプタ等のチャンバー内構造物を昇温しておくことが行われていた(ダミーランニング)。特許文献1には、10枚程度のダミーウェハーにフラッシュ加熱処理を行ってサセプタ等のチャンバー内構造物の温度を処理時の安定温度に到達させることが開示されている。
処理対象ではないダミーウェハーは複数回のダミーランニングで使用され、繰り返して加熱処理に供されることとなる。その結果、ダミーウェハーの劣化が進行し、それにともなうウェハー割れや反りが生じ易くなる。ダミーランニングの際にダミーウェハーの割れや反りが生じると、チャンバー内汚染や搬送トラブルの原因となる。このため、ダミーウェハーの劣化状態を的確に把握し、劣化が進行したダミーウェハーについては適当なタイミングで交換することが必要となる。しかしながら、従来は作業者が目視や紙に書いておくことでダミーウェハーの処理履歴を管理していたため、劣化状態を十分に把握できておらず、劣化が過度に進行したダミーウェハーを誤って搬送して加熱処理を行うという問題があった。
また、このようなダミーウェハーを管理する他の装置に関して、特許文献2には、複数のダミーウェハーのそれぞれの処理履歴とダミーウェハーを収容するキャリアとを関連付けたダミーデータベースを記憶部に保持する装置が開示されている。
特許文献2に記載のダミーウェハーには、予備加熱処理やフラッシュ加熱処理が繰り返して行われる。このため、ダミーウェハーに傷や反りが生じ易い。ダミーウェハーに反りが生じると、搬送装置による搬送の失敗の原因となる。また、ダミーウェハーに傷が生じると、ダミーウェハーの割れの原因となる。なお、加熱の条件によって、ダミーウェハーの反りや傷の状態が異なる。このため、加熱時間や加熱回数の処理履歴による管理だけでは、ダミーウェハーの反りを原因としたダミーウェハーの搬送失敗や、ダミーウェハーの傷を原因としたダミーウェハーの割れを予防することが困難であった。
本発明は、上記課題に鑑みてなされたものであり、ダミーウェハーの劣化を詳細に管理する熱処理装置および熱処理方法を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、ダミーウェハーを管理する熱処理装置であって、前記ダミーウェハーに対して熱処理を行う熱処理部と、前記ダミーウェハーの傷を検知する傷検知部と、前記傷検知部により検知された傷情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、を備えることを特徴とする。
また、請求項2の発明は、ダミーウェハーを管理する熱処理装置であって、前記ダミーウェハーに対して熱処理を行う熱処理部と、前記ダミーウェハーの反りを検知する反り検知部と、前記反り検知部により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、を備えることを特徴とする。
また、請求項3の発明は、ダミーウェハーを管理する熱処理装置であって、前記ダミーウェハーに対して熱処理を行う熱処理部と、前記ダミーウェハーの傷を検知する傷検知部と、前記ダミーウェハーの反りを検知する反り検知部と、前記傷検知部により検知された傷情報および前記反り検知部により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、を備えることを特徴とする。
また、請求項4の発明は、請求項1または請求項3に記載の熱処理装置において、前記傷情報は、前記傷の深さ、前記傷の長さ、および、前記傷の幅のうち少なくとも一つの情報を含むことを特徴とする。
また、請求項5の発明は、請求項4に記載の熱処理装置において、前記制御部は、前記傷の深さ、前記傷の長さ、および、前記傷の幅から傷量を算定し、前記傷量が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする。
また、請求項6の発明は、請求項5に記載の熱処理装置において、前記制御部は、前記傷の位置情報に基づいて前記傷量の重み付けを行うことを特徴とする。
また、請求項7の発明は、請求項5または請求項6に記載の熱処理装置において、前記制御部は、前記傷量が前記所定の閾値を超えている場合に警告を発報することを特徴とする。
また、請求項8の発明は、請求項2または請求項3に記載の熱処理装置において、前記反り情報は、反りの向き、および、反り幅のうちの少なくとも一つの情報を含むことを特徴とする。
また、請求項9の発明は、請求項8に記載の熱処理装置において、前記制御部は、前記反り情報の値が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする。
また、請求項10の発明は、請求項9に記載の熱処理装置において、前記制御部は、前記反り情報の値が前記所定の閾値を超えている場合に警告を発報することを特徴とする。
また、請求項11の発明は、請求項1ないし請求項10のいずれか一つに記載の熱処理装置において、前記制御部は、さらに連続点灯ランプからの光照射によって前記ダミーウェハーを加熱した加熱時間に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする。
また、請求項12の発明は、請求項1ないし請求項11のいずれか一つに記載の熱処理装置において、前記制御部は、さらにフラッシュランプによるフラッシュ加熱の回数に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする。
また、請求項13の発明は、ダミーウェハーを管理する熱処理方法であって、前記ダミーウェハーに対して熱処理を行う熱処理工程と、前記ダミーウェハーの傷を検知する傷検知工程と、前記傷検知工程により検知された傷情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、を備えることを特徴とする。
また、請求項14の発明は、ダミーウェハーを管理する熱処理方法であって、前記ダミーウェハーに対して熱処理を行う熱処理工程と、前記ダミーウェハーの反りを検知する反り検知工程と、前記反り検知工程により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、を備えることを特徴とする。
また、請求項15の発明は、ダミーウェハーを管理する熱処理方法であって、前記ダミーウェハーに対して熱処理を行う熱処理工程と、前記ダミーウェハーの傷を検知する傷検知工程と、前記ダミーウェハーの反りを検知する反り検知工程と、前記傷検知工程により検知された傷情報および前記反り検知工程により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、を備えることを特徴とする。
また、請求項16の発明は、請求項13または請求項15に記載の熱処理方法において、前記傷情報は、前記傷の深さ、前記傷の長さ、および、前記傷の幅のうち少なくとも一つの情報を含むことを特徴とする。
また、請求項17の発明は、請求項16に記載の熱処理方法において、前記判定工程では、前記傷の深さ、前記傷の長さ、および、前記傷の幅から傷量を算定し、前記傷量が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする。
また、請求項18の発明は、請求項17に記載の熱処理方法において、前記判定工程では、前記傷の位置情報に基づいて前記傷量の重み付けを行うことを特徴とする。
また、請求項19の発明は、請求項17または請求項18に記載の熱処理方法において、前記傷量が前記所定の閾値を超えている場合に警告を発報する発報工程をさらに備えることを特徴とする。
また、請求項20の発明は、請求項14または請求項15に記載の熱処理方法において、前記反り情報は、反りの向き、および、反り幅のうちの少なくとも一つの情報を含むことを特徴とする。
また、請求項21の発明は、請求項20に記載の熱処理方法において、前記判定工程では、前記反り情報の値が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする。
また、請求項22の発明は、請求項21に記載の熱処理方法において、前記反り情報の値が前記所定の閾値を超えている場合に警告を発報する発報工程をさらに備えることを特徴とする。
また、請求項23の発明は、請求項13ないし請求項22のいずれか一つに記載の熱処理方法において、前記判定工程では、さらに連続点灯ランプからの光照射によって前記ダミーウェハーを加熱した加熱時間に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする。
また、請求項24の発明は、請求項13ないし請求項23のいずれか一つに記載の熱処理方法において、前記判定工程では、さらにフラッシュランプによるフラッシュ加熱の回数に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする。
請求項1または請求項13の発明によれば、検知された傷情報に基づいて、ダミーウェハーの使用の可否を判定することから、ダミーウェハーの劣化を詳細に管理することができる。
請求項2または請求項14の発明によれば、検知された反り情報に基づいて、ダミーウェハーの使用の可否を判定することから、ダミーウェハーの劣化を詳細に管理することができる。
請求項3または請求項15の発明によれば、検知された傷情報および検知された反り情報に基づいて、ダミーウェハーの使用の可否を判定することから、ダミーウェハーの劣化を詳細に管理することができる。
請求項4ないし請求項6、請求項16ないし請求項18のいずれかの発明によれば、傷情報は、傷の深さ、傷の長さ、および、傷の幅のうち少なくとも一つの情報を含むことから、個別の傷の状況に応じてダミーウェハーを管理することができる。
請求項7、請求項10、請求項19、または請求項22の発明によれば、所定の閾値を超えている場合に警告を発報することから、管理者がダミーウェハーの不具合の状況を簡易に把握できる。
請求項8、請求項9、請求項20、または請求項21の発明によれば、反り情報は、反りの向き、および、反り幅のうちの少なくとも一つの情報を含むことから、個別の反りの状況に応じてダミーウェハーを管理することができる。
請求項11または請求項23の発明によれば、加熱時間に基づいてダミーウェハーの使用の可否を判定することから、加熱時間に応じてダミーウェハーを管理することもできる。
請求項12又は請求項24の発明によれば、加熱の回数に基づいてダミーウェハーの使用の可否を判定することから、加熱の回数に応じてダミーウェハーを管理することもできる。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
<第1実施形態>
まず、本発明に係る熱処理装置について説明する。図1は、本発明に係る熱処理装置100を示す平面図である。熱処理装置100は基板として円板形状の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。熱処理装置100に搬入される前の半導体ウェハーWには不純物が注入されており、熱処理装置100による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。
まず、本発明に係る熱処理装置について説明する。図1は、本発明に係る熱処理装置100を示す平面図である。熱処理装置100は基板として円板形状の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。熱処理装置100に搬入される前の半導体ウェハーWには不純物が注入されており、熱処理装置100による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。
図1に示すように、熱処理装置100は、未処理の半導体ウェハーW(またはダミーウェハーR)を外部から装置内に搬入するとともに処理済みの半導体ウェハーW(またはダミーウェハーR)を装置外に搬出するためのインデクサ部101、未処理の半導体ウェハーW(またはダミーウェハーR)の位置決めを行うアライメント部230、加熱処理後の半導体ウェハーWの冷却を行う2つの冷却部130,140、半導体ウェハーW(またはダミーウェハーR)にフラッシュ加熱処理を施す熱処理部160並びに冷却部130,140および熱処理部160に対して半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う搬送ロボット150と、半導体ウェハーW(またはダミーウェハーR)の傷を検知する傷検知部170と、半導体ウェハーWの膜厚を検知する膜厚検知部180とを備える。また、熱処理装置100は、上記の各処理部に設けられた動作機構および搬送ロボット150を制御して半導体ウェハーW(またはダミーウェハーR)のフラッシュ加熱処理を進行させる制御部3を備える。
インデクサ部101は、複数のキャリアCA(本実施形態では3個)を並べて載置するロードポート110と、各キャリアCAから未処理の半導体ウェハーW(またはダミーウェハーR)を取り出すとともに、各キャリアCAに処理済みの半導体ウェハーW(またはダミーウェハーR)を収納する受渡ロボット120とを備えている。未処理の半導体ウェハーW(またはダミーウェハーR)を収容したキャリアCAは無人搬送車(AGV、OHT)等によって搬送されてロードポート110に載置されるともに、処理済みの半導体ウェハーW(またはダミーウェハーR)を収容したキャリアCAは無人搬送車によってロードポートから持ち去られる。
また、ロードポート110においては、受渡ロボット120がキャリアCAに対して任意の半導体ウェハーW(またはダミーウェハーR)の出し入れを行うことができるように、キャリアCAが昇降移動可能に構成されている。なお、キャリアCAの形態としては、半導体ウェハーWを密閉空間に収納するFOUP(front opening unified pod)の他に、SMIF(Standard Mechanical Inter Face)ポッドや収納した半導体ウェハーWを外気に曝すOC(open cassette)であっても良い。
また、受渡ロボット120は、図1の矢印120Sにて示すようなスライド移動、矢印120Rにて示すような旋回動作および昇降動作が可能とされている。これにより、受渡ロボット120は、3つのキャリアCAに対して半導体ウェハーWやダミーウェハーRの出し入れを行うとともに、2つのアライメント部230に対して半導体ウェハーWやダミーウェハーRの受け渡しを行う。受渡ロボット120によるキャリアCAに対する半導体ウェハーW(またはダミーウェハーR)の出し入れは、ハンド121のスライド移動、および、キャリアCAの昇降移動により行われる。また、受渡ロボット120とアライメント部230との半導体ウェハーWの受け渡しは、ハンド121のスライド移動、および、受渡ロボット120の昇降動作によって行われる。
2つのアライメント部230は、インデクサ部101の受渡ロボット120と搬送ロボット150との間にX方向に並んで設けられる。各アライメント部230は、半導体ウェハーWを水平面内で回転させてフラッシュ加熱に適切な向きに向ける処理部である。アライメント部230は、アルミニウム合金製の筐体であるアライメントチャンバー231の内部に、半導体ウェハーWを水平姿勢に支持して回転させる機構、および、半導体ウェハーWの周縁部に形成されたノッチやオリフラ(オリエンテーション・フラット)等を光学的に検知する機構(図示省略)を設けて構成される。また、アライメント部230は、半導体ウェハーW(またはダミーウェハーR)の反りを検知する反り検知機構232を備える。反り検知機構232は、公知の光学センサー技術を用いて半導体ウェハーW(またはダミーウェハーR)の反りを検知する。反り検知機構232を備えることにより、アライメント部230は、半導体ウェハーW(またはダミーウェハーR)の向きを修正しつつ半導体ウェハーW(またはダミーウェハーR)の反りを検知することができる。
2つのアライメント部230への半導体ウェハーW(またはダミーウェハーR)の受け渡しは受渡ロボット120によって行われる。受渡ロボット120からそれぞれのアライメントチャンバー231へはウェハー中心が所定の位置に位置するように半導体ウェハーW(またはダミーウェハーR)が渡される。また、それぞれのアライメント部230では、インデクサ部101から受け取った半導体ウェハーW(またはダミーウェハーR)の中心部を回転中心として鉛直方向軸まわりで半導体ウェハーW(またはダミーウェハーR)を回転させ、ノッチ等を光学的に検知することによって半導体ウェハーW(またはダミーウェハーR)の向きを調整する。向き調整の終了した半導体ウェハーW(またはダミーウェハーR)は、搬送ロボット150(後に説明する)によってアライメントチャンバー231から取り出される。また、アライメント部230で検知された半導体ウェハーW(またはダミーウェハーR)の反りの情報は、制御部3に記憶される。
搬送ロボット150による半導体ウェハーW(またはダミーウェハーR)の搬送空間として搬送ロボット150を収容する搬送チャンバー151が設けられている。アライメント部230は、インデクサ部101と搬送チャンバー151との間にて、それらの双方に接続されている。各アライメント部230には、インデクサ部101へ半導体ウェハーWを搬入出するための開口がそれぞれ形設されている。これらの各開口は、それぞれゲートバルブ233によって開閉可能とされている。同様に、各アライメント部230には、搬送チャンバー151へ半導体ウェハーW(またはダミーウェハーR)を搬入出するための開口がそれぞれ形設されている。これらの各開口もまた、それぞれゲートバルブ234によって開閉可能とされている。すなわち、インデクサ部101とアライメント部230とはゲートバルブ233を介して接続され、搬送チャンバー151とアライメント部230とはゲートバルブ234を介して接続される。
インデクサ部101とアライメント部230との間で半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う際には、ゲートバルブ233が開放される。また、アライメント部230と搬送チャンバー151との間で半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う際には、ゲートバルブ234が開放される。ゲートバルブ233およびゲートバルブ234が閉鎖されているときには、アライメント部230の内部が密閉空間となる。
搬送チャンバー151の周囲に熱処理部160の熱処理チャンバー161、冷却部130の第1クールチャンバー131、冷却部140の第2クールチャンバー141、傷検知部170の傷検知チャンバー171、および、膜厚検知部180の膜厚検知チャンバー181が連通接続されている。搬送チャンバー151には、熱処理チャンバー161へ半導体ウェハーW(またはダミーウェハーR)を搬入出するための開口、第1クールチャンバー131、第2クールチャンバー141に半導体ウェハーW(またはダミーウェハーR)を搬入出するための開口、傷検知チャンバー171に半導体ウェハーW(またはダミーウェハーR)を搬入出するための開口、および、膜厚検知チャンバー181に半導体ウェハーW(またはダミーウェハーR)を搬入出するための開口がそれぞれ形設される。これらの各開口もまた、それぞれゲートバルブ162,132,142,172,182によって開閉可能とされている。
すなわち、熱処理チャンバー161と搬送チャンバー151とはゲートバルブ162を介して接続され、第1クールチャンバー131と搬送チャンバー151とはゲートバルブ132を介して接続され、第2クールチャンバー141と搬送チャンバー151とはゲートバルブ142を介して接続され、傷検知チャンバー171と搬送チャンバー151とはゲートバルブ172を介して接続され、膜厚検知チャンバー181と搬送チャンバー151とはゲートバルブ182を介して接続されている。
搬送チャンバー151に設けられた搬送ロボット150は、鉛直方向に沿った軸を中心に矢印150Rにて示すように旋回可能とされる。搬送ロボット150は、複数のアームセグメントからなる2つのリンク機構を有し、それら2つのリンク機構の先端にはそれぞれ半導体ウェハーW(またはダミーウェハーR)を保持する2つの搬送ハンド152が設けられている。これらの2つの搬送ハンド152は上下に所定のピッチだけ隔てて配置され、リンク機構によりそれぞれ独立して同一水平方向に直線的にスライド移動可能とされている。また、搬送ロボット150は、2つのリンク機構が設けられるベースを昇降移動することにより、所定のピッチだけ離れた状態のまま2つの搬送ハンド152を昇降移動させる。
搬送ロボット150が、アライメントチャンバー231、傷検知チャンバー171、膜厚検知チャンバー181、第1クールチャンバー131、第2クールチャンバー141または熱処理チャンバー161を受け渡し相手として半導体ウェハーW(またはダミーウェハーR)の受け渡し(出し入れ)を行う際には、まず、搬送ハンド152が受け渡し相手と対向するように旋回し、その後(または旋回している間に)昇降移動していずれかの搬送ハンド152が受け渡し相手と半導体ウェハーWを受け渡しする高さに位置する。そして、搬送ハンド152を水平方向に直線的にスライド移動させて受け渡し相手と半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う。
搬送ロボット150と受渡ロボット120との半導体ウェハーW(またはダミーウェハーR)の受け渡しはアライメント部230を介して行うことができる。すなわち、アライメント部230のアライメントチャンバー231は、搬送ロボット150と受渡ロボット120との間で半導体ウェハーW(またはダミーウェハーR)を受け渡すためのパスとしても機能するものである。具体的には、搬送ロボット150または受渡ロボット120のうちの一方がアライメントチャンバー231に渡した半導体ウェハーW(またはダミーウェハーR)を他方が受け取ることによって半導体ウェハーW(またはダミーウェハーR)の受け渡しが行われる。搬送ロボット150および受渡ロボット120によって半導体ウェハーW(またはダミーウェハーR)をキャリアCAから各チャンバー(傷検知チャンバー171、膜厚検知チャンバー181、第1クールチャンバー131,第2クールチャンバー141、および、熱処理チャンバー161)にまで搬送する搬送機構が構成される。
傷検知部170は、半導体ウェハーW(またはダミーウェハーR)の表面の傷を検知する。傷検知部170の傷検知チャンバー171内には、傷検知装置173としての撮像ユニットが備えられる。傷検知装置173は、例えば、周知の撮像装置であり、例えば検査カメラや検査照明部を有する。傷検知装置173は、傷検知部170に搬送された半導体ウェハーW(またはダミーウェハーR)に形成される傷を、例えば、+Z方向から(上方から)撮像することにより、半導体ウェハーW(またはダミーウェハーR)の傷を検知する。
記憶部34には、例えば半導体ウェハーW(またはダミーウェハーR)の画像データが記憶されている。制御部3は、傷検知部170の各部(例えば、検査カメラ、検査照明部、センサーなど)に接続されており、それらの動作を制御する。また、制御部3は、種々の演算も行う。この演算は、例えば、検査カメラにより撮像された画像データをリファレンス画像データと比較し、半導体ウェハーW(またはダミーウェハーR)の傷を検知するための演算である。この演算は、取り込まれた画像データを、例えば2値化して行われる。撮像された半導体ウェハーW(またはダミーウェハーR)の画像が上述のような画像処理を施されることにより、半導体ウェハーW(またはダミーウェハーR)に生じた傷が検知される。
膜厚検知部180は、半導体ウェハーW(またはダミーウェハーR)の表面に形成された薄膜の厚さを検知する。膜厚検知部180の膜厚検知チャンバー181には、例えば周知の膜厚検知装置としての膜厚センサ183が備えられている。膜厚センサ183は、半導体ウェハーW(またはダミーウェハーR)上に形成された膜の厚さまたは半導体ウェハーW(またはダミーウェハーR)自体の厚さを計測するセンサである。膜厚センサは例えば光学式センサ、またはその他の周知のセンサであってよい。
2つの冷却部130,140は、概ね同様の構成を備える。冷却部130,140はそれぞれ、アルミニウム合金製の筐体である第1クールチャンバー131,第2クールチャンバー141の内部に、金属製の冷却プレートと、その上面に載置された石英板とを備える(いずれも図示省略)。当該冷却プレートは、ペルチェ素子または恒温水循環によって常温(約23℃)に温調されている。熱処理部160にて加熱処理が施された半導体ウェハーWは、第1クールチャンバー131または第2クールチャンバー141に搬入されて当該石英板に載置されて冷却される。
搬送チャンバー151と各チャンバー(傷検知チャンバー171、膜厚検知チャンバー181、第1クールチャンバー131,第2クールチャンバー141、および、熱処理チャンバー161)との間で半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う際には、各チャンバーに対応する各ゲートバルブ132,142,162,172,182が開放される。各チャンバーに対応するゲートバルブ132,142,162,172,182が閉鎖されているときには、対応するチャンバー(傷検知チャンバー171、膜厚検知チャンバー181、第1クールチャンバー131,第2クールチャンバー141、および、熱処理チャンバー161)の内部が密閉空間となる。例えば、第1クールチャンバー131に対応するゲートバルブ132が閉鎖されているときには、第1クールチャンバー131が密閉空間となる。熱処理装置100内にて半導体ウェハーWが搬送される際には、適宜これらのゲートバルブが開閉される。
さらに、冷却部130,140はそれぞれ、第1クールチャンバー131,第2クールチャンバー141に清浄な窒素ガスを供給するガス供給機構とチャンバー内の雰囲気を排気する排気機構を備える。これらのガス供給機構および排気機構は、流量を2段階に切り換え可能とされていても良い。同様に、搬送チャンバー151,熱処理チャンバー161,傷検知チャンバー171,膜厚検知チャンバー181,およびアライメントチャンバー231にもガス供給部から窒素ガスが供給されるとともに、それらの内部の雰囲気が排気部によって排気される(いずれも図示省略)。
次に、熱処理部160の構成について説明する。図2は、熱処理部160の構成を示す縦断面図である。熱処理部160は、半導体ウェハーW(またはダミーウェハーR)を収容して加熱処理を行う熱処理チャンバー161と、複数のフラッシュランプFLを内蔵するフラッシュランプハウス5と、複数のハロゲンランプHLを内蔵するハロゲンランプハウス4と、を備える。熱処理チャンバー161の上側にフラッシュランプハウス5が設けられるとともに、下側にハロゲンランプハウス4が設けられている。また、熱処理部160は、熱処理チャンバー161の内部に、半導体ウェハーW(またはダミーウェハーR)を水平姿勢に保持する保持部7と、保持部7と搬送ロボット150との間で半導体ウェハーW(またはダミーウェハーR)の受け渡しを行う移載機構10と、を備える。
熱処理チャンバー161は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。熱処理チャンバー161の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュランプFLから出射されたフラッシュ光を熱処理チャンバー161内に透過する石英窓として機能する。また、熱処理チャンバー161の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲンランプHLからの光を熱処理チャンバー161内に透過する石英窓として機能する。
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。熱処理チャンバー161の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
チャンバー側部61に反射リング68,69が装着されることによって、熱処理チャンバー161の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、熱処理チャンバー161の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
また、チャンバー側部61には、熱処理チャンバー161に対して半導体ウェハーW(またはダミーウェハーR)の搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ162によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ162が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ162が搬送開口部66を閉鎖すると熱処理チャンバー161内の熱処理空間65が密閉空間とされる。
また、チャンバー側部61の外壁面の貫通孔61a,61bが設けられている各部位には放射温度計25,20がそれぞれ取り付けられている。貫通孔61aは、後述するサセプタ74に保持された半導体ウェハーW(またはダミーウェハーR)の上面から放射された赤外光を放射温度計25に導くための円筒状の孔である。また、貫通孔61bは、後述するサセプタ74に保持された半導体ウェハーW(またはダミーウェハーR)の下面から放射された赤外光を放射温度計20に導くための円筒状の孔である。貫通孔61a,61bは、その貫通方向の軸がサセプタ74に保持された半導体ウェハーWの主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、放射温度計25が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓26が装着されている。また、貫通孔61bの熱処理空間65に臨む側の端部には、放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。
また、熱処理チャンバー161の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81は熱処理チャンバー161の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、窒素(N2)等の不活性ガス、または、水素(H2)、アンモニア(NH3)等の反応性ガスを用いることができる(本実施形態では窒素)。
一方、熱処理チャンバー161の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86は熱処理チャンバー161の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気機構190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、熱処理チャンバー161の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気機構190は、熱処理装置100に設けられた機構であっても良いし、熱処理装置100が設置される工場のユーティリティであっても良い。
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気機構190に接続されている。バルブ192を開放することによって、搬送開口部66を介して熱処理チャンバー161内の気体が排気される。
図3は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、熱処理チャンバー161の壁面に支持されることとなる(図2参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図4は、サセプタ74の平面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
図3に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71が熱処理チャンバー161の壁面に支持されることによって、保持部7が熱処理チャンバー161に装着される。保持部7が熱処理チャンバー161に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
熱処理チャンバー161に搬入された半導体ウェハーW(またはダミーウェハーR)は、熱処理チャンバー161に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
また、図3および図4に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20(図2参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78を介してサセプタ74に保持された半導体ウェハーW(またはダミーウェハーR)の下面から放射された光を受光してその半導体ウェハーW(またはダミーウェハーR)の温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーW(またはダミーウェハーR)の受け渡しのために貫通する4個の貫通孔79が穿設されている。
図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。移載動作位置はサセプタ74の下方であり、退避位置はサセプタ74よりも外方である。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図3および図4参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気が熱処理チャンバー161の外部に排出されるように構成されている。
図2に戻り、熱処理チャンバー161の上方に設けられたフラッシュランプハウス5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュランプハウス5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュランプハウス5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュランプハウス5が熱処理チャンバー161の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLは熱処理チャンバー161の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
熱処理チャンバー161の下方に設けられたハロゲンランプハウス4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。複数のハロゲンランプHLは熱処理チャンバー161の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行う。
図7は、複数のハロゲンランプHLの配置を示す平面図である。本実施形態では、上下2段に各20本ずつのハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段の各ハロゲンランプHLの長手方向と下段の各ハロゲンランプHLの長手方向とが直交するように計40本のハロゲンランプHLが配設されている。
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。また、ハロゲンランプハウス4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図3)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
また、熱処理部160は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲンランプハウス4、フラッシュランプハウス5および熱処理チャンバー161の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、熱処理チャンバー161の壁体には水冷管(図示省略)が設けられている。また、ハロゲンランプハウス4およびフラッシュランプハウス5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュランプハウス5および上側チャンバー窓63を冷却する。
制御部3は、熱処理装置100に設けられた上記の種々の動作機構を制御する。図8は、熱処理装置100の電気的な構成の一例を概略的に示す機能ブロック図である。熱処理装置100は、各処理ユニット(アライメント部230、傷検知部170、膜厚検知部180、熱処理部160、冷却部130,140)、搬送ロボット150および受渡ロボット120を制御するコンピュータ30を含んでいる。コンピュータ30は、パーソナルコンピュータ(FAパソコン)の形態を有していてもよく、制御部(制御回路)3と、入力部33と、記憶部34と、表示部35とを含んでいる。制御部3は、CPU等の演算処理装置を含む。入力部33は、キーボード、ポインティングデバイスおよびタッチパネル等の入力機器を含む。さらに、入力部33は、ホストコンピュータとの通信のための通信モジュールを含む。記憶部34は、固体メモリデバイスおよびハードディスクドライブ等の記憶装置を含む。表示部35は、例えば液晶表示ディスプレイを含み、制御部3の制御下で各種情報を表示する。表示部35として、例えば液晶ディスプレイが採用される。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置100における処理が進行する。例えば、制御部3は、搬送ロボット150および受渡ロボット120を備える搬送機構を制御して半導体ウェハーW(またはダミーウェハーR)を設定された搬送経路に沿って搬送させる。なお、図1においては、インデクサ部101とアライメント部230との間に制御部3を示しているが、これに限定されない。制御部3は熱処理装置100内の任意の位置に配置することができる。
図9に示すように、制御部3は算定部31および発報部32を備える。算定部31および発報部32は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。算定部31および発報部32の処理内容についてはさらに後述する。
次に、本発明に係る熱処理装置100の処理動作について説明する。ここでは、通常の半導体ウェハーWに対する処理動作について説明した後、ダミーウェハーRの管理について説明する。処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置100によるフラッシュ光照射加熱処理(アニール)により実行される。
通常の半導体ウェハーWを処理する場合には、まず、不純物が注入された未処理の半導体ウェハーWがキャリアCAに複数枚収容された状態でインデクサ部101のロードポート110に載置される。そして、受渡ロボット120がキャリアCAから未処理の半導体ウェハーWを1枚ずつ取り出し、アライメント部230のアライメントチャンバー231に搬入する。アライメントチャンバー231では、半導体ウェハーWをその中心部を回転中心として水平面内にて鉛直方向軸まわりで回転させ、ノッチ等を光学的に検知することによって半導体ウェハーWの向きを調整する。
次に、搬送ロボット150がアライメントチャンバー231から向きの調整された半導体ウェハーWを取り出し、搬送チャンバー151に搬出される。半導体ウェハーWを取り出した搬送ロボット150は熱処理部160を向くように旋回する。続いて、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を開放し、搬送ロボット150が未処理の半導体ウェハーWを熱処理チャンバー161に搬入する。このときに、先行する加熱処理済みの半導体ウェハーWが熱処理チャンバー161に存在している場合には、2つの搬送ハンド152のうちどちらか一方によって加熱処理後の半導体ウェハーWを取り出してから未処理の半導体ウェハーWを熱処理チャンバー161に搬入してウェハー入れ替えを行う。その後、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を閉鎖する。
熱処理チャンバー161に搬入された半導体ウェハーWには、ハロゲンランプHLによって予備加熱が行われた後、フラッシュランプFLからのフラッシュ光照射によってフラッシュ加熱処理が行われる。このフラッシュ加熱処理により半導体ウェハーWに注入された不純物の活性化が行われる。
フラッシュ加熱処理が終了した後、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を再び開放し、搬送ロボット150が熱処理チャンバー161からフラッシュ加熱処理後のダミーウェハーRを搬送チャンバー151に搬出する。半導体ウェハーWを取り出した搬送ロボット150は、熱処理チャンバー161から第1クールチャンバー131または第2クールチャンバー141に向くように旋回する。また、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を閉鎖する。
その後、搬送ロボット150が加熱処理後の半導体ウェハーWを冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。第1クールチャンバー131または第2クールチャンバー141では、フラッシュ加熱処理後の半導体ウェハーWの冷却処理が行われる。熱処理部160の熱処理チャンバー161から搬出された時点での半導体ウェハーW全体の温度は比較的高温であるため、これを第1クールチャンバー131または第2クールチャンバー141にて常温近傍にまで冷却するのである。
所定の冷却処理時間が経過した後、搬送ロボット150が冷却後の半導体ウェハーWを第1クールチャンバー131または第2クールチャンバー141から搬出し、再び搬送チャンバー151に搬入する。搬送チャンバー151に搬入された半導体ウェハーWは、膜厚検知部180の膜厚検知チャンバー181に搬入される。膜厚検知チャンバー181では、半導体ウェハーW上に形成された膜の厚さが計測される。計測された膜厚は、制御部3により、予め設定された閾値と比較される。制御部3で計測された膜厚と閾値とが比較された結果、閾値を超えている場合は、半導体ウェハーWが使用できない半導体ウェハーWであることが記憶部34に記憶される。このように使用できない状態であると記憶された半導体ウェハーWは、廃棄用のキャリアCAに搬送される。反対に、計測された膜厚が閾値の範囲内である場合は、半導体ウェハーWは、元のキャリアCAへと返却される。キャリアCAに所定枚数の処理済み半導体ウェハーWが収容されると、そのキャリアCAはインデクサ部101のロードポート110から搬出される。
熱処理部160における加熱処理について説明を続ける。熱処理チャンバー161への半導体ウェハーWの搬入に先立って、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されて熱処理チャンバー161内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86から熱処理チャンバー161内の気体が排気される。これにより、熱処理チャンバー161内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
また、バルブ192が開放されることによって、搬送開口部66からも熱処理チャンバー161内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理部160における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。
続いて、ゲートバルブ162が開いて搬送開口部66が開放され、搬送ロボット150により搬送開口部66を介して処理対象となる半導体ウェハーWが熱処理チャンバー161内の熱処理空間65に搬入される。搬送ロボット150は、未処理の半導体ウェハーWを保持する搬送ハンド152を保持部7の直上位置まで進出させて停止させる。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
未処理の半導体ウェハーWがリフトピン12に載置された後、搬送ロボット150が搬送ハンド152を熱処理空間65から退出させ、ゲートバルブ162によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、600℃ないし800℃程度とされる(本実施の形態では700℃)。
半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。
このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲンランプハウス4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。
半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接に熱処理チャンバー161内へと向かい、他の一部は一旦リフレクタ52により反射されてから熱処理チャンバー161内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、フラッシュ加熱では半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。
フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ162により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された処理後の半導体ウェハーWが搬送ロボット150の搬送ハンド152により搬出される。搬送ロボット150は、搬送ハンド152をリフトピン12によって突き上げられた半導体ウェハーWの直下位置にまで進出させて停止させる。そして、一対の移載アーム11が下降することにより、フラッシュ加熱後の半導体ウェハーWが搬送ハンド152に渡されて載置される。その後、搬送ロボット150が搬送ハンド152を熱処理チャンバー161から退出させて処理後の半導体ウェハーWを搬出する。
ところで、典型的には、半導体ウェハーWの処理はロット単位で行われる。ロットとは、同一条件にて同一内容の処理を行う対象となる1組の半導体ウェハーWである。本実施形態の熱処理装置100においても、ロットを構成する複数枚(例えば、25枚)の半導体ウェハーWが1つのキャリアCAに収容されてインデクサ部101のロードポート110に載置され、そのキャリアCAから半導体ウェハーWが1枚ずつ順次に熱処理チャンバー161に搬入されて加熱処理が行われる。
ここで、しばらく処理を行っていなかった熱処理装置100にてロットの処理を開始する場合、概ね室温の熱処理チャンバー161にロットの最初の半導体ウェハーWが搬入されて予備加熱およびフラッシュ加熱処理が行われることとなる。このような場合は、例えばメンテナンス後に熱処理装置100が起動されてから最初のロットを処理する場合や先のロットを処理した後に長時間が経過した場合などである。加熱処理時には、昇温した半導体ウェハーWからサセプタ74等のチャンバー内構造物に熱伝導が生じるため、初期には室温であったサセプタ74が半導体ウェハーWの処理枚数が増えるにつれて徐々に蓄熱により昇温することとなる。また、ハロゲンランプHLから出射された赤外光の一部は下側チャンバー窓64に吸収されるため、半導体ウェハーWの処理枚数が増えるにつれて下側チャンバー窓64の温度も徐々に昇温することとなる。
そして、約10枚の半導体ウェハーWの加熱処理が行われたときにサセプタ74および下側チャンバー窓64の温度が一定の安定温度に到達する。安定温度に到達したサセプタ74では、半導体ウェハーWからサセプタ74への伝熱量とサセプタ74からの放熱量とが均衡する。サセプタ74の温度が安定温度に到達するまでは、半導体ウェハーWからの伝熱量がサセプタ74からの放熱量よりも多いため、半導体ウェハーWの処理枚数が増えるにつれてサセプタ74の温度が徐々に蓄熱により上昇する。これに対して、サセプタ74の温度が安定温度に到達した後は、半導体ウェハーWからの伝熱量とサセプタ74からの放熱量とが均衡するため、サセプタ74の温度は一定の安定温度に維持されることとなる。また、下側チャンバー窓64の温度が安定温度に到達した後は、下側チャンバー窓64がハロゲンランプHLの照射光から吸収する熱量と下側チャンバー窓64から放出される熱量とが均衡するため、下側チャンバー窓64の温度も一定の安定温度に維持されることとなる。
このように室温の熱処理チャンバー161にて処理を開始すると、ロットの初期の半導体ウェハーWと途中からの半導体ウェハーWとで熱処理チャンバー161の構造物の温度が異なることに起因して温度履歴が不均一になるという問題があった。また、初期の半導体ウェハーWについては低温のサセプタ74に支持されてフラッシュ加熱処理が行われるためにウェハー反りが生じることもあった。このため、ロットの処理を開始する前に、処理対象ではないダミーウェハーRを熱処理チャンバー161内に搬入して処理対象の半導体ウェハーWと同様の予備加熱およびフラッシュ加熱処理を行ってサセプタ74等のチャンバー内構造物を安定温度に昇温するダミーランニングが実施されている。10枚程度のダミーウェハーRに予備加熱およびフラッシュ加熱処理を行うことにより、サセプタ74等のチャンバー内構造物を安定温度に昇温することができる。このようなダミーランニングは、室温の熱処理チャンバー161にて処理を開始する場合のみならず、予備加熱温度T1や処理温度T2を変更する場合にも実行される。既述したように、ダミーウェハーRには繰り返して予備加熱およびフラッシュ加熱処理が行われるため、ダミーウェハーRの劣化が進行してウェハー割れや反りが生じ易くなる。このため、ダミーウェハーRの劣化状態を適切に管理することが必要となる。以下、熱処理装置100におけるダミーウェハーRの管理について説明する。
図9ないし図11は、ダミーウェハーRの管理手順を示すフローチャートである。ダミーウェハーRは、処理対象となる半導体ウェハーWと同様の円板形状のシリコンウェハーであり、半導体ウェハーWと同様のサイズおよび形状を有する。但し、ダミーウェハーRには、パターン形成やイオン注入はなされていない。すなわち、ダミーウェハーRはいわゆるベアウェハーである。
ダミーランニングを行うに際しては、まず搬送を開始しようとする対象がダミーウェハーRであるか否かが確認される。ダミーウェハーRは、通常の半導体ウェハーWを収容するキャリアCAとは異なるダミーウェハーR専用のキャリアCA(ダミーキャリア)に収容されて運用される。そのようなダミーウェハーR専用のキャリアCAがインデクサ部101のロードポート110に載置されると、キャリアCAに付されたタグが読み取られて当該キャリアCAがダミーキャリアであることが制御部3によって認識される。制御部3は、搬送を開始しようとするウェハーがダミーキャリアに収容されたウェハーであるときに当該ウェハーをダミーウェハーRであると判断する。搬送を開始しようとするウェハーがダミーウェハーRでない場合には、ダミーランニングは開始されない。なお、ダミーウェハーR専用のキャリアCAの形態自体は通常の半導体ウェハーWを収容するキャリアCAと同じであり、本実施形態ではFOUPである。
搬送を開始しようとする対象がダミーウェハーRである場合、そのダミーウェハーRが受渡ロボット120によってインデクサ部101からアライメント部230に搬送される(ステップS1)。ダミーウェハーRの搬送手順は、上述した処理対象となる半導体ウェハーWの搬送手順と概ね同様である。
アライメント部230に搬入され、ダミーウェハーRの位置決めが行われる。これとともに、反り検知機構232により、ダミーウェハーRの反りが光学的に検知される(ステップS2)。検知されたダミーウェハーRの反りの情報は、記憶部34および算定部31に入力される。算定部31において、ダミーウェハーRの反り情報の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS3)。
反り情報の値は、反り量ともいうことができる。反り情報の値は、例えば、反りの向き、反り幅である。また、反り情報の値は、好ましくは、反りの向きと反り幅との乗算である。反りの向きは、図1において、Z軸方向に+であるか-であるかの向きを示す。これは、後の熱処理部160での熱処理において、半導体ウェハーWの保持のタイプによって、反りの向きと反り幅との関係が変わるために必要となる。そして、半導体ウェハーWの保持のタイプによって所定値が変更可能に構成される。例えば、半導体ウェハーWの下側から保持するタイプであれば、図1における-Z方向への反りの閾値は狭くなる。一方で、例えば、ダミーウェハーRの側方から保持するタイプであれば、図1における+Z方向への反りの閾値は狭くなる。
図12および図13は、半導体ウェハーWの反り幅を示す側断面の概略図である。図12に示すように、半導体ウェハーWが中央部分から側方にかけて、+Z方向(鉛直上方)に反っている場合には、反りの向きは+であると判定される。この場合の反り情報の値は、+t1である。また、図13に示すように、半導体ウェハーWが中央部分から側方にかけて、-Z方向(鉛直下方)に沿っている場合には、反りの向きは-であると判定される。この場合の反り情報の値は、-t2である。
また、図14および図15は、表示部35に表示される画面である。図14に示すように、反り情報の値が閾値の範囲内であるか閾値を超えているかが、ウェハー毎に示されている。図14においては、slоt1のダミーウェハーRもslоt2のダミーウェハーRも反り情報の値が閾値の範囲内であるため、〇印で示されている。一方、反り情報の値が閾値を超えている場合には、×印で示される。また、図15に示すように、それぞれのダミーウェハーR毎に反り情報の詳細が表示部35上に表示されても良い。例えば、表示部35がタッチパネル式の画面になっており、管理者が図14におけるα部に触れると図15に示す画面が表示される。図15においては、ダミーウェハーRの反りイメージ図も共に表されている。これにより、管理者がダミーウェハーRの不具合を簡易に把握できる。
ステップS3で検知された反り情報の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図10のフローに示すように、発報部32から警報が発報される(ステップS101)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS102)。このようにステップS102で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS103)。反対に、反り情報の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、傷検出処理、加熱時間算定処理、加熱回数算定処理、熱処理である。
また、アライメント部230に搬入され、ダミーウェハーRの位置決めが行われた後、ダミーウェハーRが傷検知部170の傷検知チャンバー171に搬入されてもよい。ダミーウェハーRが傷検知チャンバー171に搬入されると、傷検知チャンバー171にある傷検知装置173でダミーウェハーRに形成された傷が検知される(ステップS4)。検知されたダミーウェハーRの傷情報は、記憶部34または算定部31に入力される。算定部31において、ダミーウェハーRの傷情報の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS5)。
傷情報の値は、傷量ということできる。傷情報の値は、例えば、傷の深さ、傷の長さ、傷の幅である。また、傷情報の値は、好ましくは、傷の深さと傷の長さと傷の幅との乗算である。つまり、傷情報の値Eは傷の深さ(d)×傷の長さ(l)×傷の幅(w)で表される。また、一つのダミーウェハーRの中に傷が複数存在する場合、傷情報の値はこれらの各傷情報の値の和であっても良い。つまり、傷情報の値(E)が、傷Aの傷情報の値EA(傷の深さ(dA)×傷の長さ(lA)×傷の幅(wA))+傷Bの傷情報の値EB(傷の深さ(dB)×傷の長さ(lB)×傷の幅(wB))+傷Cの傷情報の値EC(傷の深さ(dC)×傷の長さ(lC)×傷の幅(wC))で表されても良い。また、傷情報の値Eは、傷の位置情報に基づいて傷量の重み付けが行われても良い。傷の位置情報として、例えば、ダミーウェハーRの中心Oから傷までの距離mが利用できる。この中心Oから傷までの距離mは、例えば、中心Oと傷の中央部との間の距離、中心Oと傷の中で中心Oと最も近い箇所との間の距離、である。例えば、傷情報の値(E)は、傷の深さ(dA)×傷の長さ(lA)×傷の幅(wA)/(傷Aと中心Oとの間の距離mA)+傷の深さ(dB)×傷の長さ(lB)×傷の幅(wB)/(傷Bと中心Oとの間の距離mB)+傷の深さ(dC)×傷の長さ(lC)×傷の幅(wC)/(傷Cと中心Oとの距離mC)で表される。
傷の位置情報が傷情報の値に含まれる理由は以下である。一般的に、傷の位置が半導体ウェハーW(またはダミーウェハーR)の中心に近ければ近いほど、半導体ウェハーW(またはダミーウェハーR)が割れやすくなる傾向がある。そのため、中心近くの傷と端の傷と間で、半導体ウェハーW(またはダミーウェハーR)の割れに対する影響の大きさが異なる。したがって、傷情報の値に対して「中心Oから傷までの距離m」を除算することで、傷情報の値に重み付けが行われることが好ましい。
また、図16および図17は、表示部35に表示される画面である。再び図14を参照して、傷情報の値が閾値の範囲内であるか閾値を超えているかが、ウェハー毎に示されている。図14においては、slоt1のダミーウェハーRは傷情報の値が閾値の範囲内であるため、〇印で示されている。一方、slоt2のダミーウェハーRは傷情報の値が閾値を超えているため、×印で示されている。また、図16に示すように、それぞれのダミーウェハーR毎に傷情報の詳細が表示部35上に表示されても良い。例えば、表示部35がタッチパネル式の画面になっており、管理者が図14におけるβ部に触れると、図16に示す画面が表示部35に表示される。図16においては、ダミーウェハーRの傷のイメージ図も共に表されている。図16のようなイメージ図により、管理者はそれぞれの傷の位置や大きさを一見して把握できる。また、管理者が図16におけるγ部に触れると、図17に示す画面が表示部35に表示される。これにより、管理者がダミーウェハーRの不具合を簡易に把握できる。
ステップS5で検知された傷情報の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図10のフローに示すように、発報部32から警報が発報される(ステップ101)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS102)。このようにステップS102で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS103)。反対に、反り情報の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、加熱時間算定処理、加熱回数算定処理、熱処理である。
また、アライメント部230に搬入され、ダミーウェハーRの位置決めが行われた後、算定部31において、当該ダミーウェハーRに関するこれまでの加熱の総時間が算定され、加熱の総時間の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS6)。具体的には、ダミーウェハーRの加熱の総時間は、これまでの各回におけるハロゲンランプHLによる予備加熱の時間を全て足し合わせたものである。例えば、これまでに3回の予備加熱がなされたダミーウェハーRにおいて、1回目が4秒、2回目が5秒、3回目が3秒であった場合、加熱の総時間は、4秒+5秒+3秒=12秒となる。算定部31において、この加熱の総時間と、予め記憶部23に記憶された閾値とが比較される。
図14に示すように、加熱の総時間の値が閾値の範囲内であるか閾値を超えているかが、ウェハー毎に示される。図14においては、slоt1のダミーウェハーRもslоt2のダミーウェハーRも加熱の総時間の値が閾値の範囲内であるため、〇印で示されている。一方、加熱の総時間の値が閾値を超えている場合には、×印で示される。このような表示により、管理者がダミーウェハーRの不具合を簡易に把握できる。
ステップS6で比較される加熱の総時間の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図10のフローに示すように、発報部32から警報が発報される(ステップS101)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS102)。このようにステップS102で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS103)。反対に、加熱の総時間の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、傷検出処理、加熱回数算定処理、熱処理である。
また、アライメント部230に搬入され、ダミーウェハーRの位置決めが行われた後、算定部31において、当該ダミーウェハーRに関するこれまでの加熱の回数が算定され、加熱の回数の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS7)。具体的は、ダミーウェハーRの加熱の回数は、これまでのフラッシュランプFLによるフラッシュ光照射の回数である。例えば、これまでに3回のフラッシュ加熱がなされたダミーウェハーRにおいて、加熱の回数は3回となる。算定部31において、この加熱の回数と、予め記憶部34に記憶された閾値とが比較される。
図14に示すように、加熱の回数の値が閾値の範囲内であるか閾値を超えているかが、ウェハー毎に示されている。図14においては、slоt1のダミーウェハーRもslоt2のダミーウェハーRも加熱の回数の値が閾値の範囲内であるため、〇印で示されている。一方、加熱の回数の値が閾値を超えている場合には、×印で示される。このような表示により、管理者がダミーウェハーRの不具合を簡易に把握できる。
ステップS6で比較される加熱の回数の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図10のフローに示すように、発報部32から警報が発報される(ステップS101)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS102)。このようにステップS12で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS103)。反対に、加熱の回数の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、傷検出処理、加熱時間算定処理、熱処理である。
以上に説明した、ステップS2およびステップS3の反り検出処理、ステップS4およびステップS5の傷検出処理、ステップS6の加熱時間算定処理、ステップS7の加熱回数算定処理が全て行われてもよい。少なくとも、反り検出処理、および、傷検出処理のどちらか一方、または両方が行われる。これにより、ダミーウェハーRの劣化を詳細に管理することができる。このような構成により、複数回繰り返し行われてきた搬送処理や加熱処理によって生じていたダミーウェハーRの反りや傷を、加熱処理前に検出することができる。仮に、反りや傷など不具合のあるダミーウェハーRに対して搬送処理や加熱処理を行うと、搬送失敗、搬送経路または熱処理チャンバー161内での破損が起きてしまうことがある。ダミーウェハーRの反りや傷を加熱処理前に検出しておくことで、ダミーウェハーRの損傷を予め把握することができる。そして、その後の熱処理を行わないことで、このような損傷に起因する破損を未然に防止することができる。
また、ハロゲンランプHLによる光照射によってダミーウェハーRを加熱した時間に基づいてダミーウェハーRの使用の可否を判定することもできる。これにより、反り情報または傷情報には表れない損傷によるダミーウェハーRの破損を未然に防止することができる。また、フラッシュランプFLによるフラッシュ光照射の回数に基づいてダミーウェハーRの使用の可否を判定することもできる。これにより、反り情報または傷情報には表れない損傷によるダミーウェハーRの破損を未然に防止することができる。
以上のダミーウェハーRの状態が検知された後、それぞれの閾値の範囲内にあるダミーウェハーRの加熱処理が行われる(ステップS8)。ステップS8の加熱処理が行われるときにはまず、ダミーウェハーRを取り出した搬送ロボット150は熱処理部160を向くように旋回する。続いて、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を開放し、搬送ロボット150が未処理のダミーウェハーRを熱処理チャンバー161に搬入する。このときに、先行する加熱処理済みのダミーウェハーRが熱処理チャンバー161に存在している場合には、2つの搬送ハンド152のうちどちらか一方によって加熱処理後のダミーウェハーRを取り出してから未処理のダミーウェハーRを熱処理チャンバー161に搬入して入れ替えを行う。その後、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を閉鎖する。
熱処理チャンバー161に搬入されたダミーウェハーRには、ハロゲンランプHLによって予備加熱が行われた後、フラッシュランプFLからのフラッシュ光照射によってフラッシュ加熱処理が行われる。
フラッシュ加熱処理が終了した後、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を再び開放し、搬送ロボット150が熱処理チャンバー161からフラッシュ加熱処理後のダミーウェハーRを搬送チャンバー151に搬出する。ダミーウェハーRを取り出した搬送ロボット150は、熱処理チャンバー161から第1クールチャンバー131または第2クールチャンバー141に向くように旋回する。また、ゲートバルブ162が熱処理チャンバー161と搬送チャンバー151との間を閉鎖する。
その後、搬送ロボット150が加熱処理後のダミーウェハーRを冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。第1クールチャンバー131または第2クールチャンバー141では、フラッシュ加熱処理後のダミーウェハーRの冷却処理が行われる(ステップS9)。熱処理部160の熱処理チャンバー161から搬出された時点でのダミーウェハーR全体の温度は比較的高温であるため、これを第1クールチャンバー131または第2クールチャンバー141にて常温近傍にまで冷却するのである。
所定の冷却処理時間が経過した後、搬送ロボット150が冷却後のダミーウェハーRを第1クールチャンバー131または第2クールチャンバー141から搬出し、再び、加熱処理前のステップS2ないしステップS7と同様に、ダミーウェハーRの反り検出処理、傷検出処理、加熱時間算定処理、または、加熱回数算定処理が行われる。
具体的には、ダミーウェハーRがアライメント部230に搬入され、ダミーウェハーRの反りが光学的に検知される(ステップS10)。検知されたダミーウェハーRの反りの情報は、記憶部34および算定部31に入力される。算定部31において、ダミーウェハーRの反り情報の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS11)。
ステップS11で検知された反り情報の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図11のフローに示すように、発報部32から警報が発報される(ステップS201)。この発報は、図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS201)。このようにステップS202で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS203)。反対に、反り情報の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、傷検出処理、加熱時間算定処理、加熱回数算定処理である。また、その後の処理がない場合は、キャリアCAへ返却される。
また、ダミーウェハーRが傷検知部170の傷検知チャンバー171に搬入されてもよい。ダミーウェハーRが傷検知チャンバー171に搬入されると、傷検知チャンバー171にある傷検知装置173でダミーウェハーRに形成された傷が検知される(ステップS12)。検知されたダミーウェハーRの傷情報は、記憶部34または算定部31に入力される。算定部31において、ダミーウェハーRの傷情報の値が、予め記憶部34に記憶された閾値の範囲内であるか閾値を超えているか、が算定される(ステップS13)。
図16のようなイメージ図により、管理者はそれぞれの傷の位置や大きさを一見して把握できる。また、管理者が図16におけるγ部に触れると、図17に示す画面が表示部35に表示される。これにより、管理者がダミーウェハーRの不具合を簡易に把握できる。
ステップS13で検知された傷情報の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図10のフローに示すように、発報部32から警報が発報される(ステップ201)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS202)。このようにステップS202で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS203)。反対に、傷情報の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、加熱時間算定処理、加熱回数算定処理、熱処理である。また、その後の処理がない場合は、キャリアCAへ返却される。
また、算定部31において、当該ダミーウェハーRに関するこれまでの加熱の総時間が算定される(ステップS14)。算定部31において、ダミーウェハーRの加熱の総時間の値は、予め記憶部34に記憶されていた閾値の範囲内であるか閾値を超えているかが算定される(ステップS15)。
ステップS15で算定された加熱の総時間の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図11のフローに示すように、発報部32から警報が発報される(ステップ201)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS202)。このようにステップS202で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS203)。反対に、加熱の総時間の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、傷検知処理、加熱回数算定処理、熱処理である。また、その後の処理がない場合は、キャリアCAへ返却される。
また、算定部31において、当該ダミーウェハーRに関するこれまでの加熱の回数が算定される(ステップS16)。つまり、算定部31において、当該ダミーウェハーRに対して今回加熱された回数が加算される。算定部31において、ダミーウェハーRの加熱の回数の値が、予め記憶部34に記憶されていた閾値の範囲内であるか閾値を超えているかが算定される(ステップS17)。
ステップS17で算定された加熱の回数の値が閾値を超えていると判定された場合には、制御部3は「ダミーウェハーRの使用が不可」と判定する。この場合には、図11のフローに示すように、発報部32から警報が発報される(ステップ201)。この発報は、例えば図14における×印で示される。そして、制御部3が「ダミーウェハーRの使用が不可」と判定し、当該ダミーウェハーRが使用できないダミーウェハーRであることを記憶部34が記憶する(ステップS202)。このようにステップS202で使用が不可であると記憶されたダミーウェハーRは、廃棄用のキャリアCAに搬送される(ステップS203)。反対に、加熱の回数の値が閾値の範囲内である場合は、ダミーウェハーRは、予定通り、その後の処理に進む。その後の処理は、例えば、反り検出処理、傷検知処理、加熱回数算定処理、または、熱処理である。また、その後の処理がない場合は、キャリアCAへ返却される。
キャリアCAに所定枚数の処理済み半導体ウェハーWが収容されると、そのキャリアCAはインデクサ部101のロードポート110から搬出される。
以上に説明した、ステップS10およびステップS11の反り検出処理、ステップS12およびステップS13の傷検出処理、ステップS14およびステップS15の加熱時間算定処理、ステップS16およびステップS17の加熱回数算定処理が全て行われてもよい。少なくとも、反り検出処理、および、傷検出処理のどちらか一方、または両方が行われる。これにより、ダミーウェハーRの劣化を詳細に管理することができる。このような構成により、複数回繰り返し行われてきた搬送処理や加熱処理によって生じていたダミーウェハーRの反りや傷を、加熱処理後にも検出することができる。これにより、仮に加熱処理前は閾値の範囲内であっても加熱処理後に閾値の範囲を超えるようになったダミーウェハーRについては、次回の搬送もその他の処理も行われないように、当該ダミーウェハーRを使用不可の状態にできる。
<その他>
上述した実施形態においては、反り情報の値として、反りの向きと反り幅との乗算が説明されているが、これに限定されない。半導体ウェハーWを下側から保持するタイプについては、図12に示すような-方向の反りの場合にのみ、保持が困難になるという問題が生じる。一方で、半導体ウェハーWを側方から保持するタイプについては、図13に示すような反りの向きが+方向の場合にのみ、保持が困難になるという問題が生じる。したがって、反り情報として、反りの向きの情報のみであってもよい。この場合、半導体ウェハーW(またはダミーウェハーR)を下側から保持するタイプは、反りの向きが-方向の場合にダミーウェハーRを使用できないと判定する。一方、半導体ウェハーW(またはダミーウェハーR)を側方から保持するタイプは、反りの向きが+方向の場合にダミーウェハーRを使用できないと判定する。
上述した実施形態においては、反り情報の値として、反りの向きと反り幅との乗算が説明されているが、これに限定されない。半導体ウェハーWを下側から保持するタイプについては、図12に示すような-方向の反りの場合にのみ、保持が困難になるという問題が生じる。一方で、半導体ウェハーWを側方から保持するタイプについては、図13に示すような反りの向きが+方向の場合にのみ、保持が困難になるという問題が生じる。したがって、反り情報として、反りの向きの情報のみであってもよい。この場合、半導体ウェハーW(またはダミーウェハーR)を下側から保持するタイプは、反りの向きが-方向の場合にダミーウェハーRを使用できないと判定する。一方、半導体ウェハーW(またはダミーウェハーR)を側方から保持するタイプは、反りの向きが+方向の場合にダミーウェハーRを使用できないと判定する。
また、上述した実施形態においては、傷情報の値は、傷の深さ、傷の長さ、傷の幅で表されるが、これに限定されない。傷の個数のみの情報であってもよい。また、傷情報の値は、傷の深さと傷の長さと傷の幅との乗算が挙げられているが、これにも限定されない。傷の深さ、傷の長さ、傷の幅のうち少なくとも一つでもよく、これらのうち2つの乗算であってもよい。
また、上述した実施形態においては、発報部からの警報として、×印が表示されるように設定されているが、これに限定されない。発報部からの警報として、色彩の相違により表示されてもよい。例えば、閾値の範囲内にある場合には青色を表示し、閾値を超えている場合には赤色を表示することにより、管理者にダミーウェハーの状況を把握させてもよい。また、閾値の範囲を超えている場合には、警報音(アラーム)が発せられても良い。
また、上述した実施形態においては、ダミーウェハーRの加熱処理前と加熱処理後において、ダミーウェハーRの反りや傷を検知しているが、これに限定されない。反りや傷の検知はダミーウェハーRの加熱処理前だけでも良い。ダミーウェハーRの加熱処理前に検知できていれば、搬送経路や熱処理チャンバー161内でのダミーウェハーRの破損を未然に防止することができる。これにより、搬送経路や熱処理チャンバー161内の部品の損傷も未然に防止することができる。
また、上記第1実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)またはLEDランプを連続点灯ランプとして用いて予備加熱を行うようにしても良い。
また、熱処理装置100によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。
3 制御部
4 ハロゲンランプハウス
5 ラッシュランプハウス
7 保持部
10 移載機構
11 移載アーム
12 リフトピン
13 水平移動機構
14 昇降機構
20,25 放射温度計
21,26 透明窓
30 コンピュータ
31 算定部
32 発報部
33 入力部
34 記憶部
35 表示部
41,51 筐体
43,52 リフレクタ
53 ランプ光放射窓
61 チャンバー側部
61a 貫通孔
61b 貫通孔
62 凹部
63 上側チャンバー窓
64 下側チャンバー窓
65 熱処理空間
66 搬送開口部
68 反射リング
69 反射リング
71 基台リング
72 連結部
74 サセプタ
75 保持プレート
75a 保持面
76 ガイドリング
77 基板支持ピン
78 開口部
79 貫通孔
81 ガス供給孔
82 緩衝空間
83 ガス供給管
84,89,192 バルブ
85 処理ガス供給源
86 ガス排気孔
87 緩衝空間
88 ガス排気管
100 熱処理装置
101 インデクサ部
110 ロードポート
120 受渡ロボット
121 ハンド
130,140 冷却部
131 第1クールチャンバー
132,142,162,172、182 ゲートバルブ
141 第2クールチャンバー
150 搬送ロボット
151 搬送チャンバー
152 搬送ハンド
160 熱処理部
161 熱処理チャンバー
170 傷検知部
171 傷検知チャンバー
173 傷検知装置
180 膜厚検知部
181 膜厚検知チャンバー
183 膜厚センサー
190 排気機構
191 ガス排気管
230 アライメント部
231 アライメントチャンバー
232 反り検知機構
233,234 ゲートバルブ
A,B,C 傷
CA キャリア
FL フラッシュランプ
HL ハロゲンランプ
O 中心
R ダミーウェハー
W 半導体ウェハー
T1 予備加熱温度
T2 処理温度
4 ハロゲンランプハウス
5 ラッシュランプハウス
7 保持部
10 移載機構
11 移載アーム
12 リフトピン
13 水平移動機構
14 昇降機構
20,25 放射温度計
21,26 透明窓
30 コンピュータ
31 算定部
32 発報部
33 入力部
34 記憶部
35 表示部
41,51 筐体
43,52 リフレクタ
53 ランプ光放射窓
61 チャンバー側部
61a 貫通孔
61b 貫通孔
62 凹部
63 上側チャンバー窓
64 下側チャンバー窓
65 熱処理空間
66 搬送開口部
68 反射リング
69 反射リング
71 基台リング
72 連結部
74 サセプタ
75 保持プレート
75a 保持面
76 ガイドリング
77 基板支持ピン
78 開口部
79 貫通孔
81 ガス供給孔
82 緩衝空間
83 ガス供給管
84,89,192 バルブ
85 処理ガス供給源
86 ガス排気孔
87 緩衝空間
88 ガス排気管
100 熱処理装置
101 インデクサ部
110 ロードポート
120 受渡ロボット
121 ハンド
130,140 冷却部
131 第1クールチャンバー
132,142,162,172、182 ゲートバルブ
141 第2クールチャンバー
150 搬送ロボット
151 搬送チャンバー
152 搬送ハンド
160 熱処理部
161 熱処理チャンバー
170 傷検知部
171 傷検知チャンバー
173 傷検知装置
180 膜厚検知部
181 膜厚検知チャンバー
183 膜厚センサー
190 排気機構
191 ガス排気管
230 アライメント部
231 アライメントチャンバー
232 反り検知機構
233,234 ゲートバルブ
A,B,C 傷
CA キャリア
FL フラッシュランプ
HL ハロゲンランプ
O 中心
R ダミーウェハー
W 半導体ウェハー
T1 予備加熱温度
T2 処理温度
Claims (24)
- ダミーウェハーを管理する熱処理装置であって、
前記ダミーウェハーに対して熱処理を行う熱処理部と、
前記ダミーウェハーの傷を検知する傷検知部と、
前記傷検知部により検知された傷情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、
を備えることを特徴とする熱処理装置。 - ダミーウェハーを管理する熱処理装置であって、
前記ダミーウェハーに対して熱処理を行う熱処理部と
前記ダミーウェハーの反りを検知する反り検知部と、
前記反り検知部により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、
を備えることを特徴とする熱処理装置。 - ダミーウェハーを管理する熱処理装置であって、
前記ダミーウェハーに対して熱処理を行う熱処理部と、
前記ダミーウェハーの傷を検知する傷検知部と、
前記ダミーウェハーの反りを検知する反り検知部と、
前記傷検知部により検知された傷情報および前記反り検知部により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する制御部と、
を備えることを特徴とする熱処理装置。 - 請求項1または請求項3に記載の熱処理装置において、
前記傷情報は、前記傷の深さ、前記傷の長さ、および、前記傷の幅のうち少なくとも一つの情報を含む
ことを特徴とする熱処理装置。 - 請求項4に記載の熱処理装置において、
前記制御部は、前記傷の深さ、前記傷の長さ、および、前記傷の幅から傷量を算定し、前記傷量が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする熱処理装置。 - 請求項5に記載の熱処理装置において、
前記制御部は、前記傷の位置情報に基づいて前記傷量の重み付けを行うことを特徴とする熱処理装置。 - 請求項5または請求項6に記載の熱処理装置において、
前記制御部は、前記傷量が前記所定の閾値を超えている場合に警告を発報することを特徴とする熱処理装置。 - 請求項2または請求項3に記載の熱処理装置において、
前記反り情報は、反りの向き、および、反り幅のうちの少なくとも一つの情報を含むことを特徴とする熱処理装置。 - 請求項8に記載の熱処理装置において、
前記制御部は、前記反り情報の値が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする熱処理装置。 - 請求項9に記載の熱処理装置において、
前記制御部は、前記反り情報の値が前記所定の閾値を超えている場合に警告を発報することを特徴とする熱処理装置。 - 請求項1ないし請求項10のいずれか一つに記載の熱処理装置において、
前記制御部は、さらに連続点灯ランプからの光照射によって前記ダミーウェハーを加熱した加熱時間に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする熱処理装置。 - 請求項1ないし請求項11のいずれか一つに記載の熱処理装置において、
前記制御部は、さらにフラッシュランプによるフラッシュ加熱の回数に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする熱処理装置。 - ダミーウェハーを管理する熱処理方法であって、
前記ダミーウェハーに対して熱処理を行う熱処理工程と、
前記ダミーウェハーの傷を検知する傷検知工程と、
前記傷検知工程により検知された傷情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、
を備えることを特徴とする熱処理方法。 - ダミーウェハーを管理する熱処理方法であって、
前記ダミーウェハーに対して熱処理を行う熱処理工程と、
前記ダミーウェハーの反りを検知する反り検知工程と、
前記反り検知工程により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、
を備えることを特徴とする熱処理方法。 - ダミーウェハーを管理する熱処理方法であって、
前記ダミーウェハーに対して熱処理を行う熱処理工程と、
前記ダミーウェハーの傷を検知する傷検知工程と、
前記ダミーウェハーの反りを検知する反り検知工程と、
前記傷検知工程により検知された傷情報および前記反り検知工程により検知された反り情報に基づいて、前記ダミーウェハーの使用の可否を判定する判定工程と、
を備えることを特徴とする熱処理方法。 - 請求項13または請求項15に記載の熱処理方法において、
前記傷情報は、前記傷の深さ、前記傷の長さ、および、前記傷の幅のうち少なくとも一つの情報を含むことを特徴とする熱処理方法。 - 請求項16に記載の熱処理方法において、
前記判定工程では、前記傷の深さ、前記傷の長さ、および、前記傷の幅から傷量を算定し、前記傷量が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする熱処理方法。 - 請求項17に記載の熱処理方法において、
前記判定工程では、前記傷の位置情報に基づいて前記傷量の重み付けを行うことを特徴とする熱処理方法。 - 請求項17または請求項18に記載の熱処理方法において、
前記傷量が前記所定の閾値を超えている場合に警告を発報する発報工程をさらに備えることを特徴とする熱処理方法。 - 請求項14または請求項15に記載の熱処理方法において、
前記反り情報は、反りの向き、および、反り幅のうちの少なくとも一つの情報を含む
ことを特徴とする熱処理方法。 - 請求項20に記載の熱処理方法において、
前記判定工程では、前記反り情報の値が所定の閾値を超えている場合には前記ダミーウェハーの使用を不可と判定することを特徴とする熱処理方法。 - 請求項21に記載の熱処理方法において、
前記反り情報の値が前記所定の閾値を超えている場合に警告を発報する発報工程をさらに備えることを特徴とする熱処理方法。 - 請求項13ないし請求項22のいずれか一つに記載の熱処理方法において、
前記判定工程では、さらに連続点灯ランプからの光照射によって前記ダミーウェハーを加熱した加熱時間に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする熱処理方法。 - 請求項13ないし請求項23のいずれか一つに記載の熱処理方法において、
前記判定工程では、さらにフラッシュランプによるフラッシュ加熱の回数に基づいて前記ダミーウェハーの使用の可否を判定することを特徴とする熱処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021151806A JP2023044005A (ja) | 2021-09-17 | 2021-09-17 | 熱処理装置および熱処理方法 |
US17/835,340 US20230087029A1 (en) | 2021-09-17 | 2022-06-08 | Heat treatment apparatus and heat treatment method |
KR1020220102561A KR20230041594A (ko) | 2021-09-17 | 2022-08-17 | 열처리 장치 및 열처리 방법 |
CN202211003994.3A CN115831807A (zh) | 2021-09-17 | 2022-08-19 | 热处理装置以及热处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021151806A JP2023044005A (ja) | 2021-09-17 | 2021-09-17 | 熱処理装置および熱処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023044005A true JP2023044005A (ja) | 2023-03-30 |
Family
ID=85523162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021151806A Pending JP2023044005A (ja) | 2021-09-17 | 2021-09-17 | 熱処理装置および熱処理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230087029A1 (ja) |
JP (1) | JP2023044005A (ja) |
KR (1) | KR20230041594A (ja) |
CN (1) | CN115831807A (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6539568B2 (ja) | 2015-11-04 | 2019-07-03 | 株式会社Screenホールディングス | 熱処理方法および熱処理装置 |
JP7288745B2 (ja) | 2018-09-13 | 2023-06-08 | 株式会社Screenホールディングス | 熱処理方法および熱処理装置 |
-
2021
- 2021-09-17 JP JP2021151806A patent/JP2023044005A/ja active Pending
-
2022
- 2022-06-08 US US17/835,340 patent/US20230087029A1/en active Pending
- 2022-08-17 KR KR1020220102561A patent/KR20230041594A/ko not_active Application Discontinuation
- 2022-08-19 CN CN202211003994.3A patent/CN115831807A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115831807A (zh) | 2023-03-21 |
KR20230041594A (ko) | 2023-03-24 |
US20230087029A1 (en) | 2023-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI670773B (zh) | 熱處理裝置及熱處理方法 | |
JP7315331B2 (ja) | 熱処理方法および熱処理装置 | |
KR102311153B1 (ko) | 열처리 방법 및 열처리 장치 | |
JP7288745B2 (ja) | 熱処理方法および熱処理装置 | |
KR102549304B1 (ko) | 열처리 방법 및 열처리 장치 | |
KR102321176B1 (ko) | 열처리 방법 및 열처리 장치 | |
KR102303333B1 (ko) | 열처리 방법 및 열처리 장치 | |
CN112420498B (zh) | 热处理方法以及热处理装置 | |
TWI757561B (zh) | 熱處理方法 | |
JP2024116492A (ja) | 熱処理方法および熱処理装置 | |
KR102225759B1 (ko) | 열처리 방법 및 열처리 장치 | |
JP7211789B2 (ja) | 熱処理方法および熱処理装置 | |
JP2023044005A (ja) | 熱処理装置および熱処理方法 | |
JP7294802B2 (ja) | 熱処理方法および熱処理装置 | |
JP7208100B2 (ja) | 熱処理装置および熱処理方法 | |
JP2023045652A (ja) | 熱処理方法および熱処理装置 | |
TW202437355A (zh) | 熱處理裝置及熱處理方法 | |
JP2022122342A (ja) | 熱処理方法 | |
TW202412110A (zh) | 熱處理方法及熱處理裝置 | |
JP2024126039A (ja) | 熱処理装置および熱処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240617 |