JP2023040171A - 振動式流量メータのノッチフィルタ - Google Patents
振動式流量メータのノッチフィルタ Download PDFInfo
- Publication number
- JP2023040171A JP2023040171A JP2023001609A JP2023001609A JP2023040171A JP 2023040171 A JP2023040171 A JP 2023040171A JP 2023001609 A JP2023001609 A JP 2023001609A JP 2023001609 A JP2023001609 A JP 2023001609A JP 2023040171 A JP2023040171 A JP 2023040171A
- Authority
- JP
- Japan
- Prior art keywords
- notch filter
- component
- phase shift
- sensor assembly
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010363 phase shift Effects 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims description 45
- 238000001914 filtration Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 238000012795 verification Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000001739 density measurement Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WABPQHHGFIMREM-DFNMHJECSA-N lead-195 Chemical compound [195Pb] WABPQHHGFIMREM-DFNMHJECSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8431—Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8436—Coriolis or gyroscopic mass flowmeters constructional details signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
- G01F15/022—Compensating or correcting for variations in pressure, density or temperature using electrical means
- G01F15/024—Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/8472—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/8472—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
- G01F1/8477—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Measuring Volume Flow (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Filtration Of Liquid (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】振動式メータのセンサアセンブリからのセンサ信号をフィルタ処理する。【解決手段】振動式メータ(5)のセンサアセンブリ(10)からのセンサ信号をフィルタ処理するように構成されたノッチフィルタ(26)を有しているメータ電子機器(20)が提供される。メータ電子機器(20)は、センサアセンブリ(10)に通信可能に接続されたノッチフィルタ(26)を含む。メータ電子機器(20)は、センサアセンブリ(10)の共振周波数にある第1の成分と、非共振周波数にある第2の成分とで構成されるセンサ信号を、センサアセンブリ(10)から受信し、ノッチフィルタにおいて第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるように構成される。【選択図】図2
Description
以下で説明される実施形態は、振動式流量メータに関し、より詳細には、振動式流量メータのノッチフィルタに関する。
例えばコリオリ流量メータ、液体密度メータ、気体密度メータ、液体粘度メータ、気体/液体比重メータ、気体/液体相対密度メータ、気体分子量メータなどの振動式メータが、一般的に知られており、流体の特性の測定に使用されている。一般に、振動式メータは、センサアセンブリおよびメータ電子機器を備える。センサアセンブリ内の物質は、流れていても、静止していてもよい。各々の種類のセンサアセンブリが、固有の特性を有する可能性があり、メータは、最適な性能を達成するため、そのような特性を考慮しなければならない。例えば、一部のセンサアセンブリは、特定の変位レベルで振動する管装置を必要とするかもしれない。他の種類のセンサアセンブリは、特別な補償アルゴリズムを必要とするかもしれない。
メータ電子機器は、他の機能の実行に加えて、典型的には、使用される特定のセンサアセンブリのセンサ較正値を保存している。例えば、メータ電子機器は、基準センサ時間期間(すなわち、基準共振周波数の逆数)を含むことができる。基準センサ時間期間は、工場において基準条件の下で測定された特定のセンサアセンブリのセンサジオメトリの基本的な測定性能を表す。振動メータが顧客の現場に設置された後に測定されるセンサ時間期間と基準センサ時間期間との間の変化が、他の原因に加えて、センサアセンブリ内の導管の被膜形成、浸食、腐食、または損傷に起因するセンサアセンブリの物理的変化を表すことができる。メータ検証または健全性確認テストが、これらの変化を検出することができる。
メータ検証テストは、典型的には、センサアセンブリに印加されるマルチトーン駆動信号と呼ばれることもある多成分駆動信号を使用して実行される。マルチトーン駆動信号は、典型的には、センサアセンブリの共振周波数にある共振成分、または駆動トーンと、駆動トーンの周波数から離れた周波数を有する複数の非共振成分、またはテストトーンとで構成される。これは、複数のテストトーンが順次に繰り返される手法とは異なる。順次トーンの手法が使用される場合、系に時間変化(例えば、温度依存の作用、流れの変化)が存在すると、センサアセンブリの周波数応答の評価が乱される可能性がある。マルチトーン駆動信号は、データサンプルが同時に取得されるため、有利です。
流量および密度の測定のための信号処理ループならびに駆動トーンをもたらすために使用されるフィードバックループに含まれることがないように、テストトーンに関連する成分、すなわち非共振成分は、フィルタ処理にて除去される。典型的には、フィードバックループの前に非共振成分をフィルタ処理にて除去するために、ノッチフィルタが使用される。しかしながら、ノッチフィルタは、ノッチフィルタの通過帯域部分において共振成分に遅延または位相シフトを引き起こす可能性がある。この位相遅延またはシフトにより、駆動トーンの周波数がセンサアセンブリの共振周波数からずれる可能性がある。したがって、共振成分に遅延または位相シフトを引き起こさず、かつテストトーンに関連する成分をフィードバックループに到達させない通過帯域を有するノッチフィルタが必要とされる。
振動式メータのセンサアセンブリからのセンサ信号をフィルタ処理するように構成され
たノッチフィルタを有しているメータ電子機器が提供される。一実施形態によれば、メータ電子機器は、センサアセンブリに通信可能に接続されたノッチフィルタを備える。ノッチフィルタは、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある
第2の成分とで構成されるセンサ信号を、センサアセンブリから受信し、ノッチフィルタ
において第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるように構成される。
たノッチフィルタを有しているメータ電子機器が提供される。一実施形態によれば、メータ電子機器は、センサアセンブリに通信可能に接続されたノッチフィルタを備える。ノッチフィルタは、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある
第2の成分とで構成されるセンサ信号を、センサアセンブリから受信し、ノッチフィルタ
において第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるように構成される。
振動式メータのセンサ信号をノッチフィルタでフィルタ処理する方法が提供される。一実施形態によれば、この方法は、センサアセンブリの共振周波数にある第1の成分と、非
共振周波数にある第2の成分とを含むセンサ信号を、ノッチフィルタで受信するステップ
と、ノッチフィルタで、第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるステップとを含む。
共振周波数にある第2の成分とを含むセンサ信号を、ノッチフィルタで受信するステップ
と、ノッチフィルタで、第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるステップとを含む。
振動式メータのノッチフィルタを設定する方法が提供される。一実施形態によれば、この方法は、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を受信するように構成されたノッチフィルタを用意するステップと、第1の成分を通過させ、第2の成分を実質的に減衰させ、第1の成分の位相シフトが実
質的に最小化されるように、ノッチフィルタを調整するステップとを含む。
質的に最小化されるように、ノッチフィルタを調整するステップとを含む。
態様
一態様によれば、振動式メータ(5)のセンサアセンブリ(10)からのセンサ信号をフ
ィルタ処理するように構成されたノッチフィルタ(26)を有するメータ電子機器(20)が、センサアセンブリ(10)に通信可能に接続されたノッチフィルタ(26)を備える。ノッチフィルタ(26)は、センサアセンブリ(10)の共振周波数にある第1の成分と、非共振
周波数にある第2の成分とで構成されるセンサ信号を、センサアセンブリ(10)から受信
し、ノッチフィルタにおいて第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるように構成される。
一態様によれば、振動式メータ(5)のセンサアセンブリ(10)からのセンサ信号をフ
ィルタ処理するように構成されたノッチフィルタ(26)を有するメータ電子機器(20)が、センサアセンブリ(10)に通信可能に接続されたノッチフィルタ(26)を備える。ノッチフィルタ(26)は、センサアセンブリ(10)の共振周波数にある第1の成分と、非共振
周波数にある第2の成分とで構成されるセンサ信号を、センサアセンブリ(10)から受信
し、ノッチフィルタにおいて第1の成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるように構成される。
好ましくは、第1の成分を実質的にゼロの位相シフトで通過させるように構成されたノ
ッチフィルタ(26)は、固定小数点精度フィルタである。
ッチフィルタ(26)は、固定小数点精度フィルタである。
好ましくは、センサ信号は、少なくとも1つのさらなる非共振成分でさらに構成され、
ノッチフィルタは、少なくとも1つのさらなる非共振成分を実質的に減衰させるようにさ
らに構成される。
ノッチフィルタは、少なくとも1つのさらなる非共振成分を実質的に減衰させるようにさ
らに構成される。
好ましくは、メータ電子機器(20)は、ノッチフィルタ(26)に通信可能に接続され、ノッチフィルタ(26)が通過させた第1の成分に基づいてセンサアセンブリ(10)のため
のマルチトーン駆動信号を生成するように構成された駆動回路(22)をさらに備える。
のマルチトーン駆動信号を生成するように構成された駆動回路(22)をさらに備える。
一態様によれば、振動式メータのセンサ信号をノッチフィルタでフィルタ処理する方法が、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を、ノッチフィルタで受信するステップと、ノッチフィルタで、第1の
成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるステップ
とを含む。
成分を実質的にゼロの位相シフトで通過させ、第2の成分を実質的に減衰させるステップ
とを含む。
好ましくは、この方法は、固定小数点精度フィルタであるノッチフィルタで、第1の成
分を実質的にゼロの位相シフトで通過させることをさらに含む。
分を実質的にゼロの位相シフトで通過させることをさらに含む。
好ましくは、センサ信号は、少なくとも1つのさらなる非共振成分でさらに構成され、
ノッチフィルタで少なくとも1つのさらなる非共振成分を実質的に減衰させるステップを
さらに含む。
ノッチフィルタで少なくとも1つのさらなる非共振成分を実質的に減衰させるステップを
さらに含む。
好ましくは、この方法は、ノッチフィルタが通過させた第1の成分に基づいてセンサア
センブリのためのマルチトーン駆動信号を生成するステップをさらに含む。
センブリのためのマルチトーン駆動信号を生成するステップをさらに含む。
一態様によれば、振動式メータのノッチフィルタを設定する方法が、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を受信するように構成されたノッチフィルタを用意するステップと、第1の成分を通過させ、
第2の成分を実質的に減衰させ、第1の成分の位相シフトが実質的に最小化されるように、ノッチフィルタを調整するステップとを含む。
第2の成分を実質的に減衰させ、第1の成分の位相シフトが実質的に最小化されるように、ノッチフィルタを調整するステップとを含む。
好ましくは、第1の成分の位相シフトが実質的に最小化されるようにノッチフィルタを
調整するステップは、第1の成分の位相シフトが共振周波数を含む周波数範囲にわたって
実質的に最小化されるようにノッチフィルタを調整するステップを含む。
調整するステップは、第1の成分の位相シフトが共振周波数を含む周波数範囲にわたって
実質的に最小化されるようにノッチフィルタを調整するステップを含む。
好ましくは、第1の成分の位相シフトが実質的に最小化されるようにノッチフィルタを
調整するステップは、第1の成分の位相シフトが共振周波数において実質的に最小化され
るようにノッチフィルタを調整するステップを含む。
調整するステップは、第1の成分の位相シフトが共振周波数において実質的に最小化され
るようにノッチフィルタを調整するステップを含む。
好ましくは、この方法は、第1の固定小数点精度を有するノッチフィルタに関する第1の位相シフトと、第2の固定小数点精度を有するノッチフィルタに関する第2の位相シフトとを比較することによって、ノッチフィルタの固定小数点精度の実装の誤差を最小化するステップをさらに含む。
好ましくは、この方法は、ノッチフィルタの固定小数点精度の実装における誤差を実質的に最小化するようにノッチフィルタの形態を実装するステップをさらに含む。
同じ参照番号は、すべての図において同じ要素を表している。図面が必ずしも比例尺ではないことを、理解すべきである。
ノッチフィルタを備えた振動式メータ5を示している。
一実施形態によるノッチフィルタを備えた振動式メータ5のブロック図を示している。
かなりの位相シフトを伴う振動式メータのノッチフィルタの位相応答を示すグラフ300を示している。
かなりの位相シフトを伴う振動式メータのノッチフィルタの位相応答を示すグラフ400を示している。
振動式メータのセンサアセンブリからのセンサ信号をノッチフィルタでフィルタ処理する方法500を示している。
振動式メータのセンサアセンブリからのセンサ信号をフィルタ処理するためのノッチフィルタを構成する方法600を示している。
一実施形態によるノッチフィルタの位相応答を示すグラフ700を示している。
一実施形態によるノッチフィルタの位相応答を示すグラフ800を示している。
一実施形態による振動式メータのノッチフィルタの位相応答を示すグラフ900を示している。
一実施形態による振動式メータのノッチフィルタの位相応答を示すグラフ1000を示している。
図1~図10および以下の説明は、振動式メータのノッチフィルタの実施形態の最良の態
様を作成および使用するやり方を当業者に教示するために、特定の例を示す。本発明の原理を教示する目的において、いくつかの従来からの態様は、簡略化され、あるいは省略されている。当業者であれば、本明細書の範囲に含まれるこれらの例からの変形を、理解できるであろう。以下で説明される特徴をさまざまなやり方で組み合わせて、振動式メータのノッチフィルタの多数の変種を形成できることを、当業者であれば理解できるであろう。結果として、以下で説明される実施形態は、後述される具体的な例に限定されるものではなく、特許請求の範囲およびその均等物によってのみ限定される。
様を作成および使用するやり方を当業者に教示するために、特定の例を示す。本発明の原理を教示する目的において、いくつかの従来からの態様は、簡略化され、あるいは省略されている。当業者であれば、本明細書の範囲に含まれるこれらの例からの変形を、理解できるであろう。以下で説明される特徴をさまざまなやり方で組み合わせて、振動式メータのノッチフィルタの多数の変種を形成できることを、当業者であれば理解できるであろう。結果として、以下で説明される実施形態は、後述される具体的な例に限定されるものではなく、特許請求の範囲およびその均等物によってのみ限定される。
ノッチフィルタは、共振成分の通過を許しつつ、非共振成分を除去することにより、駆動信号発生器に共振成分を供給することができる。共振成分の位相シフトがゼロであることを保証するために、ノッチフィルタを、共振成分の位相シフトを実質的に最小化するように構成することができる。位相シフトを、共振周波数または共振周波数の付近、ならびに幅広い範囲の共振周波数を考慮する周波数範囲にわたって、実質的に最小化することができる。また、位相シフトを、例えばメータ電子機器の計算負荷も軽減する固定小数点精度値を選択することによって実質的に最小化することもできる。したがって、共振成分の位相シフトを調整する必要がないことにより、駆動アルゴリズムまたは回路を簡素化することができる。
図1は、ノッチフィルタを備えた振動式メータ5を示している。図1に示されるように、
振動式メータ5は、センサアセンブリ10と、メータ電子機器20とを備える。センサアセン
ブリ10は、プロセス物質の質量流量および密度に応答する。メータ電子機器20は、経路6
にて密度、質量流量、および温度の情報をもたらし、さらには他の情報をもたらすために、リード線100によってセンサアセンブリ10に接続される。
振動式メータ5は、センサアセンブリ10と、メータ電子機器20とを備える。センサアセン
ブリ10は、プロセス物質の質量流量および密度に応答する。メータ電子機器20は、経路6
にて密度、質量流量、および温度の情報をもたらし、さらには他の情報をもたらすために、リード線100によってセンサアセンブリ10に接続される。
センサアセンブリ10は、1対のマニホールド150および150’と、フランジ首部110および110’を有するフランジ103および103’と、1対の平行な導管130および130’と、駆動機構180と、抵抗温度検出器(RTD)190と、1対のピックオフセンサ170lおよび170rとを含む。導管130および130’は、導管取り付けブロック120および120’においてお互いに向かって収束する2つの本質的にまっすぐな入口レグ131,131’および出口レグ134,134’を有す
る。導管130,130’は、それらの長さに沿った2つの対称な位置において曲がり、それら
の長さの全体にわたって本質的に平行である。補強バー140および140’が、各々の導管130,130’の振動の中心軸WおよびW’を定めるように機能する。導管130,130’のレグ131
,131’および134,134’は、導管取り付けブロック120および120’に堅固に取り付けら
れ、次いでこれらのブロックは、マニホールド150および150’に堅固に取り付けられる。これは、センサアセンブリ10を通る連続的な閉じた物質の経路をもたらす。
る。導管130,130’は、それらの長さに沿った2つの対称な位置において曲がり、それら
の長さの全体にわたって本質的に平行である。補強バー140および140’が、各々の導管130,130’の振動の中心軸WおよびW’を定めるように機能する。導管130,130’のレグ131
,131’および134,134’は、導管取り付けブロック120および120’に堅固に取り付けら
れ、次いでこれらのブロックは、マニホールド150および150’に堅固に取り付けられる。これは、センサアセンブリ10を通る連続的な閉じた物質の経路をもたらす。
穴102および102’を有しているフランジ103および103’が、測定対象のプロセス物質を運ぶプロセス配管(図示せず)へと入口端104および出口端104’を介して接続されると、物質は、フランジ103のオリフィス101を通ってメータの入口端104に進入し、マニホール
ド150を通り、表面121を有している導管取り付けブロック120へと導かれる。マニホール
ド150において、物質は分割され、導管130,130’を通って送られる。導管130,130’を
出ると、プロセス物質は、表面121’を有するブロック120’およびマニホールド150’に
おいて再び合流して単一の流れとなり、その後に穴102’を有するフランジ103’によってプロセス配管(図示せず)へと接続された出口端104’へと送られる。
ド150を通り、表面121を有している導管取り付けブロック120へと導かれる。マニホール
ド150において、物質は分割され、導管130,130’を通って送られる。導管130,130’を
出ると、プロセス物質は、表面121’を有するブロック120’およびマニホールド150’に
おいて再び合流して単一の流れとなり、その後に穴102’を有するフランジ103’によってプロセス配管(図示せず)へと接続された出口端104’へと送られる。
導管130,130’は、それぞれの曲げ軸W-WおよびW’-W’の周りの質量分布、慣性モーメント、およびヤング率が実質的に同じであるように選択され、導管取り付けブロック120,120’に適切に取り付けられる。これらの曲げ軸は、補強バー140,140’を通過する。
導管のヤング率が温度とともに変化し、この変化が流量および密度の計算に影響を及ぼすため、RTD190が導管130’に取り付けられ、導管130’の温度を連続的に測定する。導管130’の温度、したがってRTD190を通過する所与の電流においてRTD190の両端に現れる電圧
は、導管130’を通過する物質の温度によって支配される。RTD190の両端に現れる温度依
存性の電圧は、導管の温度の変化に起因する導管130,130’の弾性率の変化を補償するために、メータ電子機器20によって周知の方法で使用される。RTD190は、リード線195によ
ってメータ電子機器20へと接続される。
導管のヤング率が温度とともに変化し、この変化が流量および密度の計算に影響を及ぼすため、RTD190が導管130’に取り付けられ、導管130’の温度を連続的に測定する。導管130’の温度、したがってRTD190を通過する所与の電流においてRTD190の両端に現れる電圧
は、導管130’を通過する物質の温度によって支配される。RTD190の両端に現れる温度依
存性の電圧は、導管の温度の変化に起因する導管130,130’の弾性率の変化を補償するために、メータ電子機器20によって周知の方法で使用される。RTD190は、リード線195によ
ってメータ電子機器20へと接続される。
両方の導管130,130が、駆動機構180によって、それぞれの曲げ軸WおよびW’を中心に
して反対の方向に、いわゆる流量メータの第1の逆位相曲げモードで駆動される。この駆
動機構180は、導管130’に取り付けられた磁石、および導管130に取り付けられ、両方の
導管130、130’を振動させるために交流が通される対向するコイルなど、多数の周知の構成のうちの任意の1つを備えることができる。適切な駆動信号が、メータ電子機器20によ
って、リード線185を介して、駆動機構180に印加される。
して反対の方向に、いわゆる流量メータの第1の逆位相曲げモードで駆動される。この駆
動機構180は、導管130’に取り付けられた磁石、および導管130に取り付けられ、両方の
導管130、130’を振動させるために交流が通される対向するコイルなど、多数の周知の構成のうちの任意の1つを備えることができる。適切な駆動信号が、メータ電子機器20によ
って、リード線185を介して、駆動機構180に印加される。
メータ電子機器20は、リード線195上のRTD温度信号と、左右のセンサ信号165l、165rをそれぞれ運ぶリード線100に現れる左右のセンサ信号とを受信する。メータ電子機器20は
、機構180を駆動し、導管130,130’を振動させるために、リード線185に現れる駆動信号を生成する。メータ電子機器20は、左右のセンサ信号およびRTD信号を処理して、センサ
アセンブリ10を通過する物質の質量流量および密度を計算する。この情報は、他の情報とともに、信号として経路6を介してメータ電子機器20によって適用される。
、機構180を駆動し、導管130,130’を振動させるために、リード線185に現れる駆動信号を生成する。メータ電子機器20は、左右のセンサ信号およびRTD信号を処理して、センサ
アセンブリ10を通過する物質の質量流量および密度を計算する。この情報は、他の情報とともに、信号として経路6を介してメータ電子機器20によって適用される。
図2は、一実施形態によるノッチフィルタを備えた振動式メータ5のブロック図を示している。図2に示されるように、振動式メータ5は、センサアセンブリ10と、センサアセンブリ10に通信可能に接続されたメータ電子機器20とを含む。メータ電子機器20は、センサアセンブリ10にマルチトーン駆動信号を供給するように構成される。センサアセンブリ10は、メータ電子機器20へとセンサ信号をもたらす。メータ電子機器20は、センサアセンブリ10に通信可能に接続された駆動回路22および復調フィルタ24を含む。復調フィルタ24は、FRF推定ユニット25に通信可能に接続される。ノッチフィルタ26は、駆動回路22ならびに
流量および密度測定モジュール27に通信可能に接続される。ノッチフィルタによって処理された信号が、流量および密度測定モジュール27へともたらされ、振動式メータ5内の流
体の流量および/または密度が割り出される。
流量および密度測定モジュール27に通信可能に接続される。ノッチフィルタによって処理された信号が、流量および密度測定モジュール27へともたらされ、振動式メータ5内の流
体の流量および/または密度が割り出される。
駆動回路22は、ノッチフィルタ26からセンサ信号の共振成分を受け取る。駆動回路22は、センサアセンブリ10のためのマルチトーン駆動信号を生成するように構成される。マルチトーン駆動信号は、駆動トーンとテストトーンとで構成される。駆動トーンは、ノッチフィルタ26によって提供される共振成分に基づく。例えば、駆動回路22は、共振成分を受け取り、共振成分を増幅することにより駆動トーンを生成するフィードバック回路を含むことができる。他の方法も採用可能である。さらに、駆動回路22は、共振周波数から離れた所定の周波数のテストトーンを生成することができる。
復調フィルタ24は、センサアセンブリ10からセンサ信号を受け取り、センサ信号に存在する可能性がある相互変調歪み信号を除去する。例えば、マルチトーン駆動信号の駆動トーンおよびテストトーンが、センサアセンブリ10によってもたらされるセンサ信号に相互変調歪み信号を生じさせる可能性がある。相互変調歪み信号を除去するために、復調フィルタ24は、駆動トーンおよびテストトーンの周波数を含む復調ウィンドウまたは通過帯域を含むことができる。したがって、復調フィルタ24は、相互変調歪み信号によってセンサアセンブリ10のメータ検証が損なわれることを防止しつつ、共振成分とテストトーンに対応する成分とで構成されるセンサ信号をもたらす。メータ検証は、テストトーンとテストトーンに対応する成分とを比較して、センサアセンブリの周波数応答の特徴を明らかにす
るFRF推定ユニット25を使用して実行される。
るFRF推定ユニット25を使用して実行される。
ノッチフィルタ26は、メータ検証の際に使用される。したがって、ノッチフィルタ26は、通常の流量および密度の測定の際には使用されないかもしれない。通常の動作におけるかなり大きな周波数変化ゆえに、ノッチフィルタ26の係数の係数を頻繁に計算および更新する必要があり、結果として、追加の計算負荷が生じ、望ましくない過渡現象が発生する可能性がある。代わりに、メータ検証が利用されるとき、駆動トーンが、キャリア周波数を決定するためにサンプリングされ、ノッチフィルタ26の係数が、決定されたキャリア周波数に基づいて計算される。次いで、ノッチフィルタ26が使用され、テストトーンが所望の振幅へと増やされる。メータ検証の際に、キャリア周波数を監視することができ、決定されたキャリア周波数(上述のように駆動トーンのサンプリング時に決定される)とメータ検証の際のキャリア周波数との間の差がしきい値よりも大きい場合、メータ検証を、例えばノッチフィルタ26を除き、テストトーンをオフにすることによって終了さえることができる。
センサ信号成分を除去するために、ノッチフィルタ26は、テストトーンの周波数またはその付近を中心とする複数の阻止帯域を含む。センサ信号成分は、阻止帯域の周波数またはその付近に集中しているため、減衰させられ、あるいは除去される。共振信号は、ノッチフィルタ26の通過帯域にあるため、通過する。しかしながら、ノッチフィルタにより、共振信号に位相シフトが生じる可能性がある。この位相シフトは、駆動フィードバックの全体的な位相遅延を増加させる可能性があり、これにより、駆動トーンを生成する駆動アルゴリズムまたは回路の全体的な複雑さが増す可能性がある一方で、ノッチフィルタ26がメータ検証のために使用されるときに位相シフトを補正する必要もある。
図3および図4は、かなりの位相シフトを伴う振動式メータのノッチフィルタの位相応答を示すグラフ300、400を示している。図3および図4に示されるように、グラフ300、400は、周波数軸310、410および位相シフト軸320、420を含む。図3において、周波数軸310は、102~108ヘルツ(Hz)の範囲であり、位相シフト軸320は、-180~180度の範囲である。
図4において、周波数軸410は、104.85~105.15Hzの範囲であり、位相シフト軸は、約-39.7~約-37.6度の範囲である。グラフ300、400は、位相プロット330も含んでいる。
より具体的には、図4は、図3に示される位相プロット330の拡大図を示している。さらに
、グラフ300、400は、キャリア周波数線340および周波数ドリフト線350も含んでいる。
図4において、周波数軸410は、104.85~105.15Hzの範囲であり、位相シフト軸は、約-39.7~約-37.6度の範囲である。グラフ300、400は、位相プロット330も含んでいる。
より具体的には、図4は、図3に示される位相プロット330の拡大図を示している。さらに
、グラフ300、400は、キャリア周波数線340および周波数ドリフト線350も含んでいる。
図4に見られるように、位相プロット330は、約104.85~105.15Hzの周波数範囲にわたって約-37.6度から約-39.7度への直線として現れる。キャリア周波数線340によって
示される約105.1Hzのキャリア周波数において、位相プロット330は、約-38.6度にある。結果として、ノッチフィルタを通過した共振信号の位相シフトは、約38.6度になる。
駆動アルゴリズムまたは回路は、位相シフトまたは遅延を考慮して、駆動アルゴリズムまたは回路の全体的な位相遅延が、例えば実質的にゼロなどの所望の値になることを保証する必要がある。
示される約105.1Hzのキャリア周波数において、位相プロット330は、約-38.6度にある。結果として、ノッチフィルタを通過した共振信号の位相シフトは、約38.6度になる。
駆動アルゴリズムまたは回路は、位相シフトまたは遅延を考慮して、駆動アルゴリズムまたは回路の全体的な位相遅延が、例えば実質的にゼロなどの所望の値になることを保証する必要がある。
図5は、振動式メータのセンサアセンブリからのセンサ信号をノッチフィルタでフィル
タ処理する方法500を示している。図5に示されるように、方法500は、ステップ510において、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を、ノッチフィルタで受信する。ステップ520で、この方法は、第1の成分を通過させ、ノッチフィルタで第2の成分を実質的に減衰させ、ここで第1の成分は、実質的にゼロの位相シフトで通過する。
タ処理する方法500を示している。図5に示されるように、方法500は、ステップ510において、センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を、ノッチフィルタで受信する。ステップ520で、この方法は、第1の成分を通過させ、ノッチフィルタで第2の成分を実質的に減衰させ、ここで第1の成分は、実質的にゼロの位相シフトで通過する。
第1の成分は、センサアセンブリに供給される多成分駆動信号の駆動トーンに対応する
共振信号であってよい。第1の成分は、センサアセンブリの共振周波数にあってよい。ノ
ッチフィルタは、図7および図8を参照して以下でさらに詳しく論じられるように、共振周波数を中心とする位相シフトを伴う通過帯域を有することができる。
共振信号であってよい。第1の成分は、センサアセンブリの共振周波数にあってよい。ノ
ッチフィルタは、図7および図8を参照して以下でさらに詳しく論じられるように、共振周波数を中心とする位相シフトを伴う通過帯域を有することができる。
第2の成分は、例えば、センサアセンブリ10へと供給されるマルチトーン駆動信号のテ
ストトーンのうちの1つに対応する非共振成分であってよい。駆動回路22ならびに流量お
よび密度測定モジュール27にとって、ノッチフィルタ26の後に第2の成分が存在しないこ
とが望ましい。FRF推定ユニット25については、第1および第2の両方の成分が必要かもし
れない。例えば、フィルタ処理されていないセンサ信号が、センサアセンブリ10の周波数応答を記述する極ゼロなどの曲線のフィットに使用されるかもしれない。
ストトーンのうちの1つに対応する非共振成分であってよい。駆動回路22ならびに流量お
よび密度測定モジュール27にとって、ノッチフィルタ26の後に第2の成分が存在しないこ
とが望ましい。FRF推定ユニット25については、第1および第2の両方の成分が必要かもし
れない。例えば、フィルタ処理されていないセンサ信号が、センサアセンブリ10の周波数応答を記述する極ゼロなどの曲線のフィットに使用されるかもしれない。
第1の成分を通過させるように構成されたノッチフィルタは、第1の成分の周囲の周波数範囲を有する通過帯域を含むことができる。例えば、センサアセンブリの共振周波数は、温度変化などのさまざまな理由で、或る周波数範囲内で変化し、第1の成分を変化させる
可能性がある。結果として、第1の成分の周波数が、ノッチフィルタの通過帯域内で変化
する可能性がある。それにもかかわらず、ノッチフィルタを、第1の成分の周波数が通過
帯域内で変化するときに、第1の成分の位相シフトが依然として実質的にゼロであること
を保証するように構成することができる。ノッチフィルタを構成する方法が、以下で説明される。
可能性がある。結果として、第1の成分の周波数が、ノッチフィルタの通過帯域内で変化
する可能性がある。それにもかかわらず、ノッチフィルタを、第1の成分の周波数が通過
帯域内で変化するときに、第1の成分の位相シフトが依然として実質的にゼロであること
を保証するように構成することができる。ノッチフィルタを構成する方法が、以下で説明される。
図6は、振動式メータのセンサアセンブリからのセンサ信号をフィルタ処理するための
ノッチフィルタを構成する方法600を示している。図6に示されるように、方法600は、ス
テップ610において、センサアセンブリの共振周波数にある周波数を有する第1の成分と、第2の成分とを含むセンサ信号を受信するように構成されたノッチフィルタを用意する。
ステップ620において、方法600は、第1の成分を通過させ、第2の成分を実質的に減衰させるようにノッチフィルタを調整し、ここで第1の成分の位相シフトは実質的に最小化され
る。
ノッチフィルタを構成する方法600を示している。図6に示されるように、方法600は、ス
テップ610において、センサアセンブリの共振周波数にある周波数を有する第1の成分と、第2の成分とを含むセンサ信号を受信するように構成されたノッチフィルタを用意する。
ステップ620において、方法600は、第1の成分を通過させ、第2の成分を実質的に減衰させるようにノッチフィルタを調整し、ここで第1の成分の位相シフトは実質的に最小化され
る。
方法500と同様に、方法600において受信される第1の成分は、センサアセンブリ10の共
振周波数にあってよく、第2の成分は、非共振周波数にあってよい。ステップ620において、方法600は、ノッチフィルタの通過帯域の中心をセンサアセンブリの共振周波数に合わ
せることによって第1の成分を通過させるように、ノッチフィルタを調整することができ
る。通過帯域の中心を位置させるべき共振周波数を、例えば、センサアセンブリの設計時、較正時、動作中、などに決定することができる。
振周波数にあってよく、第2の成分は、非共振周波数にあってよい。ステップ620において、方法600は、ノッチフィルタの通過帯域の中心をセンサアセンブリの共振周波数に合わ
せることによって第1の成分を通過させるように、ノッチフィルタを調整することができ
る。通過帯域の中心を位置させるべき共振周波数を、例えば、センサアセンブリの設計時、較正時、動作中、などに決定することができる。
ノッチフィルタの調整は、有限インパルス応答フィルタ(FIR)または無限インパルス
応答フィルタ(IIR)などのデジタルフィルタの係数の調整を含むことができる。典型的
なフィルタが、図10を参照して以下でさらに詳しく論じられる。さらに、ノッチフィルタの調整は、ノッチフィルタの設計に起因する位相シフトを補償することができる位相シフト要素など、ノッチフィルタ内の他の要素の調整も含むことができる。例えば、フィルタの計算速度を高めるためにフィルタに遅延を導入する一方で、遅延を位相シフト要素で補償することが望ましいかもしれない。
応答フィルタ(IIR)などのデジタルフィルタの係数の調整を含むことができる。典型的
なフィルタが、図10を参照して以下でさらに詳しく論じられる。さらに、ノッチフィルタの調整は、ノッチフィルタの設計に起因する位相シフトを補償することができる位相シフト要素など、ノッチフィルタ内の他の要素の調整も含むことができる。例えば、フィルタの計算速度を高めるためにフィルタに遅延を導入する一方で、遅延を位相シフト要素で補償することが望ましいかもしれない。
第1の成分の位相シフトを、例えば、共振周波数において生じる位相シフトがゼロであ
るように設計されたノッチフィルタの通過帯域の中心を位置させることによって最小化することができる。また、位相シフトを、或る周波数範囲にわたって通過帯域の位相シフトを最小化することによって最小化することもできる。例えば、方法500を参照して上述し
たように、通過帯域の位相シフトは、第1の成分の周波数範囲内で変化し得る。
るように設計されたノッチフィルタの通過帯域の中心を位置させることによって最小化することができる。また、位相シフトを、或る周波数範囲にわたって通過帯域の位相シフトを最小化することによって最小化することもできる。例えば、方法500を参照して上述し
たように、通過帯域の位相シフトは、第1の成分の周波数範囲内で変化し得る。
結果として、第1の成分が実質的にゼロの位相シフトでノッチフィルタを通過できる一
方で、センサアセンブリの共振周波数の或る程度の変化も許容される。典型的なノッチフ
ィルタおよびそれらの位相応答は、図7および図8を参照して以下でさらに詳しく論じられる。
方で、センサアセンブリの共振周波数の或る程度の変化も許容される。典型的なノッチフ
ィルタおよびそれらの位相応答は、図7および図8を参照して以下でさらに詳しく論じられる。
図7および図8は、一実施形態によるノッチフィルタの位相応答を示すグラフ700、800を示している。図7および図8に示されるように、グラフ700、800は、周波数軸710、810および位相シフト軸720、820を含む。図7のグラフ700は、比較的高い周波数の振動式メータに関するものであり、図8に示されるグラフ800は、比較的低い周波数の振動式メータに関するものである。図7において、周波数軸710は、約483.8Hz~約484.8Hzの範囲であり、位相シフト軸720は、約-0.125~約0.15度の範囲である。図8において、周波数軸810は、約75.44~約75.64Hzの範囲であり、位相シフト軸820は、約-0.5~約0.65度の範囲である。図7および図8には、位相応答プロット730、830およびキャリア周波数線740、840も示されている。キャリア周波数線740、840の各側に、周波数ドリフト線750、850が存在する。
見て取ることができるとおり、位相応答プロット730、830は、中心が実質的にセンサアセンブリの共振周波数に位置する。位相応答プロット730、830の図示の部分は、ノッチフィルタの通過帯域内にある。したがって、ノッチフィルタの通過帯域の中心が、センサアセンブリ10の共振周波数に位置する。結果として、ノッチフィルタは、共振成分(例えば、方法500、600を参照して上述した第1の成分)を実質的にゼロの位相シフトで通過させ
ることができる。
ることができる。
加えて、共振成分の周波数は、周波数ドリフト線750、850によって定められる範囲内などの範囲内で変動し得るが、依然として実質的にゼロの位相シフトでノッチフィルタを通過することができる。例えば、図7を参照すると、約484Hzにおいて、ノッチフィルタの位相シフトは約0.1度である。約484.65Hzの周波数において、ノッチフィルタの位相シフ
トは約-0.1度である。結果として、共振成分は、0.1度を超える位相シフトを引き起こすことなく、この範囲内で変化またはドリフトすることができる。同様に、図8を参照す
ると、位相シフトは、約75.47Hzにおける約0.4度から、約75.61Hzにおける約-0.3Hzまでの範囲である。これらの位相シフトは、図4を参照して上述した38~39度の位相シフ
トよりも大幅に小さい。したがって、位相応答プロット730、830を特徴とするノッチフィルタは、共振成分の周波数ドリフト範囲にわたって実質的にゼロの位相シフトで共振成分を通過させることができる。
トは約-0.1度である。結果として、共振成分は、0.1度を超える位相シフトを引き起こすことなく、この範囲内で変化またはドリフトすることができる。同様に、図8を参照す
ると、位相シフトは、約75.47Hzにおける約0.4度から、約75.61Hzにおける約-0.3Hzまでの範囲である。これらの位相シフトは、図4を参照して上述した38~39度の位相シフ
トよりも大幅に小さい。したがって、位相応答プロット730、830を特徴とするノッチフィルタは、共振成分の周波数ドリフト範囲にわたって実質的にゼロの位相シフトで共振成分を通過させることができる。
理解できるとおり、位相応答プロット730、830を特徴とするノッチフィルタを、方法500、600に従ってさらに構成または調整して、第1の成分の位相シフトをさらに低減するこ
とができる。例えば、ノッチフィルタは、ノッチフィルタの通過帯域における位相シフトを低減するように調整することができる図3に示した阻止帯域と同様の複数の阻止帯域を
有することができる。より具体的には、ノッチフィルタの通過帯域における位相シフトを低減して、ノッチフィルタの通過帯域における位相シフトの変動を低減することができる。したがって、図7を参照すると、周波数ドリフト線750によって定められる周波数の範囲内の位相シフト範囲を、0.1度~-0.1度からさらに減らすことができる。
とができる。例えば、ノッチフィルタは、ノッチフィルタの通過帯域における位相シフトを低減するように調整することができる図3に示した阻止帯域と同様の複数の阻止帯域を
有することができる。より具体的には、ノッチフィルタの通過帯域における位相シフトを低減して、ノッチフィルタの通過帯域における位相シフトの変動を低減することができる。したがって、図7を参照すると、周波数ドリフト線750によって定められる周波数の範囲内の位相シフト範囲を、0.1度~-0.1度からさらに減らすことができる。
さらに、理解できるとおり、ノッチフィルタを実現するために使用される信号処理が、各々の離散値に関連した精度を有し得る。例えば、センサ信号の所与のサンプルが、浮動小数点数または固定小数点数であってよい。しかしながら、例えばメータ電子機器20のプロセッサによる適切に効率的な信号処理を保証するために、固定小数点数を利用することが望ましいかもしれない。したがって、所定の固定小数点精度を最小化できる一方で、図9および図10を参照して以下でさらに詳しく説明されるように、例えば共振周波数におけ
る位相シフトが実質的にゼロであり、あるいは実質的に最小化されることも保証される。
る位相シフトが実質的にゼロであり、あるいは実質的に最小化されることも保証される。
図9および図10は、一実施形態による振動式メータのノッチフィルタの位相応答を示す
グラフ900、1000を示している。図9および図10に示されるとおり、グラフ900、1000は、
周波数軸910、1010および位相シフト軸920、1020を含む。図9および図10において、周波
数軸910は、104.85~106.15Hzの範囲であり、位相シフト軸は。-1.8~0.2度の範囲
である。グラフ900、1000には、位相プロット930、1030も示されている。さらに、グラフ900、1000は、キャリア周波数線940および周波数ドリフト線1050も含んでいる。キャリア周波数線940は、約105Hzにある。
グラフ900、1000を示している。図9および図10に示されるとおり、グラフ900、1000は、
周波数軸910、1010および位相シフト軸920、1020を含む。図9および図10において、周波
数軸910は、104.85~106.15Hzの範囲であり、位相シフト軸は。-1.8~0.2度の範囲
である。グラフ900、1000には、位相プロット930、1030も示されている。さらに、グラフ900、1000は、キャリア周波数線940および周波数ドリフト線1050も含んでいる。キャリア周波数線940は、約105Hzにある。
理解できるとおり、位相プロット930、1030は、図4に示される位相プロット330とは対
照的に、直線ではない。やはり理解できるとおり、図9に示される位相プロット930は、図10に示される位相プロット1040よりも実質的にばらばら、または不連続である。位相プロット930、1030のばらばらな外観は、例えば係数量子化誤差を引き起こす可能性があるセ
ンサ信号のフィルタ処理に採用されるノッチフィルタの精度に起因する。より具体的には、例えばIIRフィルタの実数係数が、最も近いデジタル表現による数に量子化され得る。
照的に、直線ではない。やはり理解できるとおり、図9に示される位相プロット930は、図10に示される位相プロット1040よりも実質的にばらばら、または不連続である。位相プロット930、1030のばらばらな外観は、例えば係数量子化誤差を引き起こす可能性があるセ
ンサ信号のフィルタ処理に採用されるノッチフィルタの精度に起因する。より具体的には、例えばIIRフィルタの実数係数が、最も近いデジタル表現による数に量子化され得る。
図9に示されるノッチフィルタが、16ビットの精度を有するのに対し、図10に示される
ノッチフィルタは、32ビットの精度を有する。理解できるとおり、図9に示される位相プ
ロット930は、105Hzのキャリア周波数において実質的にゼロではなく、あるいは最小化されていない。対照的に、図10に示される位相プロット1030は、105Hzのキャリア周波数に
おいて約-0.1度であり、これは実質的にゼロであり、あるいは最小化されている。したがって、32ビット精度のノッチフィルタは、16ビット精度のノッチフィルタよりも好適である。
ノッチフィルタは、32ビットの精度を有する。理解できるとおり、図9に示される位相プ
ロット930は、105Hzのキャリア周波数において実質的にゼロではなく、あるいは最小化されていない。対照的に、図10に示される位相プロット1030は、105Hzのキャリア周波数に
おいて約-0.1度であり、これは実質的にゼロであり、あるいは最小化されている。したがって、32ビット精度のノッチフィルタは、16ビット精度のノッチフィルタよりも好適である。
ノッチフィルタの精度に加えて、ノッチフィルタの設計が、ノッチフィルタの位相シフトに影響を及ぼす可能性がある。例えば、図9および図10に示される結果は、以下のz伝
達関数H(z)として表現することができる2次IIRフィルタで実現され、ここで
達関数H(z)として表現することができる2次IIRフィルタで実現され、ここで
であり、
ω0は阻止帯域の中心周波数であり、
αは帯域幅パラメータである。
ω0は阻止帯域の中心周波数であり、
αは帯域幅パラメータである。
これは、例えば、図3および図4に示した位相シフトを生じ得る遅延出力を備えた2次IIRフィルタの修正形に対する改善となり得る。図3および図4に示した2つのトーンを含む4つのテストトーンについて、帯域幅係数αは、[0.9999 0.99987 0.9999 0.9999]のベクトルであり得る。つまり、ベクトル内の各々の値が、阻止帯域周波数ω0の中心が位置するテストトーン周波数に対応する。したがって、ノッチフィルタを、4つの2次IIRフィ
ルタ段のカスケードとして構築することができ、各段は、テストトーン周波数に位置する阻止帯域中心周波数を有し、上記ベクトルからの対応する帯域幅パラメータαを有する。
ルタ段のカスケードとして構築することができ、各段は、テストトーン周波数に位置する阻止帯域中心周波数を有し、上記ベクトルからの対応する帯域幅パラメータαを有する。
より具体的には、各々のノッチフィルタの帯域幅パラメータαを調整して、ノッチフィルタ段のカスケードにおける位相シフトが中心周波数ω0においてゼロであるように保証
することができる。上記は、ノッチフィルタ段のカスケードについて4つの帯域幅パラメ
ータαを挙げているが、他の実施形態においては他の値を使用することができる。上記の帯域幅パラメータαは、第1の通過信号の位相シフトを実質的にゼロにすることができる
。これらの実施形態および他の実施形態において、帯域幅パラメータαは、典型的には、
オフラインのやり方で(例えば、設計時または較正時など)一度だけ調整されるが、帯域幅パラメータαを、メータ検証の最中など、リアルタイムで動的に調整してもよい。
することができる。上記は、ノッチフィルタ段のカスケードについて4つの帯域幅パラメ
ータαを挙げているが、他の実施形態においては他の値を使用することができる。上記の帯域幅パラメータαは、第1の通過信号の位相シフトを実質的にゼロにすることができる
。これらの実施形態および他の実施形態において、帯域幅パラメータαは、典型的には、
オフラインのやり方で(例えば、設計時または較正時など)一度だけ調整されるが、帯域幅パラメータαを、メータ検証の最中など、リアルタイムで動的に調整してもよい。
さらに、ひとたび帯域幅パラメータαが計算されると、位相シフトは、幅広い範囲の中心周波数について実質的にゼロになる必要がある。例えば、帯域幅パラメータαを、或る範囲のキャリア周波数にわたって機能するように、すなわち中心周波数ω0における位相
シフトが中心周波数ω0の関数ではないように、選択することができる。これは、帯域幅
パラメータαおよび中心周波数ω0に関してパラメトリックに実現されるこれらのIIRフィルタの実装によって可能にすることができる。帯域幅パラメータαは、中心周波数ω0に
つれて変化しなくてもよい。帯域幅パラメータαおよび中心周波数ω0(およびサンプル
時間)に基づくフィルタ係数を、フィルタの適用時にリアルタイムで計算することができる。この実装は、ただ一組の帯域幅パラメータαを幅広い範囲の中心周波数ω0について
使用でき、依然として位相シフトは最小限であることを意味する。
シフトが中心周波数ω0の関数ではないように、選択することができる。これは、帯域幅
パラメータαおよび中心周波数ω0に関してパラメトリックに実現されるこれらのIIRフィルタの実装によって可能にすることができる。帯域幅パラメータαは、中心周波数ω0に
つれて変化しなくてもよい。帯域幅パラメータαおよび中心周波数ω0(およびサンプル
時間)に基づくフィルタ係数を、フィルタの適用時にリアルタイムで計算することができる。この実装は、ただ一組の帯域幅パラメータαを幅広い範囲の中心周波数ω0について
使用でき、依然として位相シフトは最小限であることを意味する。
より低い固定小数点精度で位相シフトが最小限である別の形態を使用することができる。例えば、以下の式
によって記述されるノッチフィルタのラティス形式を実装することができ、ここで
fnotchは、ノッチフィルタの阻止帯域の中心周波数であり、
fsampleは、サンプリング周波数であり、
αは、阻止帯域の帯域幅に比例する帯域幅パラメータであり、
θ1は、ノッチ周波数fnotchに関するパラメータであり、
θ2は、αに関するパラメータである。
fnotchは、ノッチフィルタの阻止帯域の中心周波数であり、
fsampleは、サンプリング周波数であり、
αは、阻止帯域の帯域幅に比例する帯域幅パラメータであり、
θ1は、ノッチ周波数fnotchに関するパラメータであり、
θ2は、αに関するパラメータである。
ノッチフィルタがラティス形式で実装される場合、ノッチフィルタは、16ビットの精度を有することができるが、依然としてキャリア周波数または駆動トーン周波数において許容範囲の位相シフトを提供することができる。例えば、ノッチフィルタの16ビットラティス形式の位相シフトは、非ラティス形式で実装された16ビットノッチフィルタの図9に示
した大きな位相シフトよりもむしろ、図10に示した位相シフトに類似することができる。したがって、特定のデジタルフィルタ形式を使用することにより、より低い固定小数点精度で、所望の実質的に最小化された位相シフトを実現することができ、あるいは位相シフトをゼロにすることができる。
した大きな位相シフトよりもむしろ、図10に示した位相シフトに類似することができる。したがって、特定のデジタルフィルタ形式を使用することにより、より低い固定小数点精度で、所望の実質的に最小化された位相シフトを実現することができ、あるいは位相シフトをゼロにすることができる。
方法600は、共振成分などのセンサ信号の成分の位相シフトが実質的に最小化されるよ
うに、新規かつ改善されたノッチフィルタを提供する。位相シフトを実質的に最小化することにより、駆動アルゴリズムまたは駆動回路は、位相遅延を実質的に最小化されていると見なすことができ、あるいはノッチフィルタの位相遅延が実質的にゼロであると見なすことができる。これにより、駆動アルゴリズムまたは回路を簡素化することができ、したがってメータ電子機器20の設計コストを削減することができる。新規かつ改良された方法
500および振動式メータ5は、ノッチフィルタを使用して、センサアセンブリ10がもたらすセンサ信号のセンサ信号成分を減衰させ、あるいは除去することで、センサ信号が駆動信号の生成に使用されることを防止する。これにより、メータ電子機器20内のプロセッサの計算負荷を軽減することができる。
うに、新規かつ改善されたノッチフィルタを提供する。位相シフトを実質的に最小化することにより、駆動アルゴリズムまたは駆動回路は、位相遅延を実質的に最小化されていると見なすことができ、あるいはノッチフィルタの位相遅延が実質的にゼロであると見なすことができる。これにより、駆動アルゴリズムまたは回路を簡素化することができ、したがってメータ電子機器20の設計コストを削減することができる。新規かつ改良された方法
500および振動式メータ5は、ノッチフィルタを使用して、センサアセンブリ10がもたらすセンサ信号のセンサ信号成分を減衰させ、あるいは除去することで、センサ信号が駆動信号の生成に使用されることを防止する。これにより、メータ電子機器20内のプロセッサの計算負荷を軽減することができる。
以上の実施形態の詳細な説明は、本発明の発明者が本明細書の技術的範囲に含まれると考えるすべての実施形態を述べ尽くすものではない。実際、当業者であれば、上述の実施形態の特定の要素をさまざまに組み合わせ、あるいは取り除いて、さらなる実施形態を生み出すことが可能であり、そのようなさらなる実施形態が、本明細書の技術的範囲および教示に包含されることを、理解できるであろう。また、上述の実施形態を全体的または部分的に組み合わせて、本明細書の技術的範囲および教示の範囲内のさらなる実施形態を生成できることも、当業者にとって明らかであろう。
このように、特定の実施形態を本明細書において例示の目的で説明したが、当業者であれば理解できるとおり、本明細書の技術的範囲の中で種々の均等な変更が可能である。本明細書において提示した教示は、上述および添付の図面に図示された実施形態だけでなく、振動メータの他のノッチフィルタにも適用可能である。したがって、上述の実施形態の技術的範囲は、以下の特許請求の範囲から決定されなければならない。
Claims (13)
- 振動式メータ(5)のセンサアセンブリ(10)からのセンサ信号をフィルタ処理するよ
うに構成されたノッチフィルタ(26)を有しているメータ電子機器(20)であって、
前記ノッチフィルタ(26)が、前記センサアセンブリ(10)に通信可能に接続され、
前記センサアセンブリ(10)の共振周波数にある第1の成分と、非共振周波数にある第2の成分とで構成されるセンサ信号を、前記センサアセンブリ(10)から受信し、
前記第1の成分を実質的にゼロの位相シフトで通過させ、前記第2の成分を該ノッチフィルタによって実質的に減衰させる
ように構成されている、メータ電子機器(20)。 - 前記第1の成分を実質的にゼロの位相シフトで通過させるように構成された前記ノッチ
フィルタ(26)は、固定小数点精度フィルタである、請求項1に記載のメータ電子機器(20)。 - 前記センサ信号は、少なくとも1つのさらなる非共振成分でさらに構成され、前記ノッ
チフィルタ(26)は、前記少なくとも1つのさらなる非共振成分を実質的に減衰させるよ
うにさらに構成される、請求項1または2に記載のメータ電子機器(20)。 - 前記ノッチフィルタ(26)に通信可能に接続され、前記ノッチフィルタ(26)が通過させた前記第1の成分に基づいて前記センサアセンブリ(10)のためのマルチトーン駆動信
号を生成するように構成された駆動回路(22)
をさらに備える、請求項1~3のいずれか一項に記載のメータ電子機器(20)。 - 振動式メータのセンサ信号をノッチフィルタでフィルタ処理する方法であって、
センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を、前記ノッチフィルタで受信するステップと、
前記ノッチフィルタで、前記第1の成分を実質的にゼロの位相シフトで通過させ、前記
第2の成分を実質的に減衰させるステップと
を含む方法。 - 固定小数点精度フィルタである前記ノッチフィルタで、前記第1の成分を実質的にゼロ
の位相シフトで通過させること
をさらに含む、請求項5に記載の方法。 - 前記センサ信号は、少なくとも1つのさらなる非共振成分でさらに構成され、
当該方法は、
前記ノッチフィルタで、前記少なくとも1つのさらなる非共振成分を実質的に減衰させ
るステップ
をさらに含む、請求項5または6に記載の方法。 - 前記ノッチフィルタが通過させた前記第1の成分に基づいて前記センサアセンブリのた
めのマルチトーン駆動信号を生成するステップ
をさらに含む、請求項5~7のいずれか一項に記載の方法。 - 振動式メータのノッチフィルタを設定する方法であって、
センサアセンブリの共振周波数にある第1の成分と、非共振周波数にある第2の成分とを含むセンサ信号を受信するように構成された前記ノッチフィルタを用意するステップと、
前記第1の成分を通過させ、前記第2の成分を実質的に減衰させ、前記第1の成分の位相
シフトが実質的に最小化されるように、前記ノッチフィルタを調整するステップと
を含む方法。 - 前記第1の成分の位相シフトが実質的に最小化されるように前記ノッチフィルタを調整
するステップは、前記第1の成分の位相シフトが前記共振周波数を含む周波数範囲にわた
って実質的に最小化されるように前記ノッチフィルタを調整するステップを含む、請求項9に記載の方法。 - 前記第1の成分の位相シフトが実質的に最小化されるように前記ノッチフィルタを調整
するステップは、前記第1の成分の位相シフトが前記共振周波数において実質的に最小化
されるように前記ノッチフィルタを調整するステップを含む、請求項9または10に記載の
方法。 - 第1の固定小数点精度を有するノッチフィルタに関する第1の位相シフトと、第2の固定
小数点精度を有するノッチフィルタに関する第2の位相シフトとを比較することによって
、前記ノッチフィルタの固定小数点精度の実装の誤差を最小化するステップ
をさらに含む、請求項9~11のいずれか一項に記載の方法。 - 前記ノッチフィルタの固定小数点精度の実装における誤差を実質的に最小化するように前記ノッチフィルタの形態を実装するステップ
をさらに含む、請求項9~12のいずれか一項に記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023001609A JP2023040171A (ja) | 2017-06-14 | 2023-01-10 | 振動式流量メータのノッチフィルタ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/037518 WO2018231227A1 (en) | 2017-06-14 | 2017-06-14 | A notch filter in a vibratory flow meter |
JP2019569297A JP2020523594A (ja) | 2017-06-14 | 2017-06-14 | 振動式流量メータのノッチフィルタ |
JP2021147736A JP2021192055A (ja) | 2017-06-14 | 2021-09-10 | 振動式流量メータのノッチフィルタ |
JP2023001609A JP2023040171A (ja) | 2017-06-14 | 2023-01-10 | 振動式流量メータのノッチフィルタ |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021147736A Division JP2021192055A (ja) | 2017-06-14 | 2021-09-10 | 振動式流量メータのノッチフィルタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023040171A true JP2023040171A (ja) | 2023-03-22 |
Family
ID=59153335
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019569297A Pending JP2020523594A (ja) | 2017-06-14 | 2017-06-14 | 振動式流量メータのノッチフィルタ |
JP2021147736A Pending JP2021192055A (ja) | 2017-06-14 | 2021-09-10 | 振動式流量メータのノッチフィルタ |
JP2023001609A Pending JP2023040171A (ja) | 2017-06-14 | 2023-01-10 | 振動式流量メータのノッチフィルタ |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019569297A Pending JP2020523594A (ja) | 2017-06-14 | 2017-06-14 | 振動式流量メータのノッチフィルタ |
JP2021147736A Pending JP2021192055A (ja) | 2017-06-14 | 2021-09-10 | 振動式流量メータのノッチフィルタ |
Country Status (11)
Country | Link |
---|---|
US (1) | US11209299B2 (ja) |
EP (1) | EP3638989B1 (ja) |
JP (3) | JP2020523594A (ja) |
KR (3) | KR20240113988A (ja) |
CN (2) | CN110753831A (ja) |
AU (2) | AU2017418298A1 (ja) |
BR (1) | BR112019024696B1 (ja) |
CA (1) | CA3067199C (ja) |
MX (1) | MX2019013396A (ja) |
RU (1) | RU2731028C1 (ja) |
WO (1) | WO2018231227A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2742973C1 (ru) * | 2017-06-14 | 2021-02-12 | Майкро Моушн, Инк. | Частотные разнесения для предотвращения помех, вызванных сигналами интермодуляционного искажения |
CN112748299A (zh) * | 2020-12-24 | 2021-05-04 | 国网江西省电力有限公司电力科学研究院 | 一种大负荷开关柜温升振动模拟试验评价方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA864703A (en) * | 1971-02-23 | F. Aemmer Peter | Active narrow notch filter | |
US3370247A (en) | 1964-07-24 | 1968-02-20 | Navy Usa | Harmonic notch filter |
US3728476A (en) * | 1971-03-17 | 1973-04-17 | Gen Electric | Luminance notch filter |
US3867712A (en) * | 1972-06-28 | 1975-02-18 | Honeywell Inc | Adaptive filter |
US4426630A (en) * | 1981-12-28 | 1984-01-17 | Rockwell International Corporation | Electronically tunable band reject filter |
US5469748A (en) * | 1994-07-20 | 1995-11-28 | Micro Motion, Inc. | Noise reduction filter system for a coriolis flowmeter |
US5555190A (en) * | 1995-07-12 | 1996-09-10 | Micro Motion, Inc. | Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement |
US5734112A (en) * | 1996-08-14 | 1998-03-31 | Micro Motion, Inc. | Method and apparatus for measuring pressure in a coriolis mass flowmeter |
US6360175B1 (en) * | 1998-02-25 | 2002-03-19 | Micro Motion, Inc. | Generalized modal space drive control system for a vibrating tube process parameter sensor |
MY124536A (en) * | 2000-03-14 | 2006-06-30 | Micro Motion Inc | Initialization algorithm for drive control in a coriolis flowmeter |
DE01918944T1 (de) * | 2000-03-23 | 2004-10-21 | Invensys Systems, Inc., Foxboro | Korrektur für eine zweiphasenströmung in einem digitalen durchflussmesser |
US6505135B2 (en) * | 2001-03-13 | 2003-01-07 | Micro Motion, Inc. | Initialization algorithm for drive control in a coriolis flowmeter |
US6930544B2 (en) * | 2003-03-07 | 2005-08-16 | Matsushita Electric Industrial Co., Ltd. | Filter |
JP4676254B2 (ja) * | 2005-05-31 | 2011-04-27 | 日立ビアメカニクス株式会社 | ディジタルサーボ制御装置及びレーザ加工装置 |
JP4966306B2 (ja) * | 2005-08-18 | 2012-07-04 | マイクロ・モーション・インコーポレーテッド | 流量計における多相流体物質に対するセンサ信号を処理するための計測器電子機器及び方法 |
BR122017014865B1 (pt) * | 2005-09-19 | 2018-07-24 | Micro Motion, Inc. | Aparelhos eletrônicos de medidor e método para determinar um parâmetro de rigidez de um medidor de fluxo |
CA2695363C (en) * | 2007-07-30 | 2015-02-24 | Micro Motion, Inc. | Flow meter system and method for measuring flow characteristics of a three phase flow |
KR20080049833A (ko) * | 2008-04-18 | 2008-06-04 | 마이크로 모우션, 인코포레이티드 | 유량계에 대한 확인 진단을 위한 방법 및 전자 계측장치 |
MX2011004353A (es) * | 2008-11-13 | 2011-05-24 | Micro Motion Inc | Metodo y aparato de medicion de parametro de fluido en medidor de vibracion. |
JP4694645B1 (ja) * | 2010-02-19 | 2011-06-08 | 株式会社オーバル | 信号処理方法、信号処理装置、及び振動型密度計 |
JP5679781B2 (ja) * | 2010-11-26 | 2015-03-04 | キヤノン株式会社 | 振動型アクチュエータの制御装置 |
US20150351655A1 (en) * | 2013-01-08 | 2015-12-10 | Interaxon Inc. | Adaptive brain training computer system and method |
CN103162755B (zh) * | 2013-01-31 | 2016-04-13 | 西安东风机电有限公司 | 一种基于改进自适应算法的科里奥利流量计信号跟踪方法 |
JP2016043417A (ja) * | 2014-08-19 | 2016-04-04 | 株式会社豊田中央研究所 | ロボットの制御装置 |
CN107850478B (zh) * | 2015-07-27 | 2020-11-10 | 高准公司 | 确定流动科里奥利流量计中的左特征向量的方法 |
RU2742973C1 (ru) * | 2017-06-14 | 2021-02-12 | Майкро Моушн, Инк. | Частотные разнесения для предотвращения помех, вызванных сигналами интермодуляционного искажения |
US11940309B2 (en) * | 2020-05-15 | 2024-03-26 | Expro Meters, Inc. | Method for determining a fluid flow parameter within a vibrating tube |
-
2017
- 2017-06-14 WO PCT/US2017/037518 patent/WO2018231227A1/en unknown
- 2017-06-14 CN CN201780092116.4A patent/CN110753831A/zh active Pending
- 2017-06-14 KR KR1020247024233A patent/KR20240113988A/ko active Search and Examination
- 2017-06-14 EP EP17732705.3A patent/EP3638989B1/en active Active
- 2017-06-14 AU AU2017418298A patent/AU2017418298A1/en not_active Abandoned
- 2017-06-14 KR KR1020207000204A patent/KR20200014411A/ko not_active Application Discontinuation
- 2017-06-14 CN CN202311670122.7A patent/CN117686066A/zh active Pending
- 2017-06-14 JP JP2019569297A patent/JP2020523594A/ja active Pending
- 2017-06-14 KR KR1020217029990A patent/KR20210118242A/ko active Application Filing
- 2017-06-14 RU RU2019144016A patent/RU2731028C1/ru active
- 2017-06-14 CA CA3067199A patent/CA3067199C/en active Active
- 2017-06-14 MX MX2019013396A patent/MX2019013396A/es unknown
- 2017-06-14 US US16/618,549 patent/US11209299B2/en active Active
- 2017-06-14 BR BR112019024696-7A patent/BR112019024696B1/pt active IP Right Grant
-
2021
- 2021-05-31 AU AU2021203535A patent/AU2021203535B2/en active Active
- 2021-09-10 JP JP2021147736A patent/JP2021192055A/ja active Pending
-
2023
- 2023-01-10 JP JP2023001609A patent/JP2023040171A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US20200149942A1 (en) | 2020-05-14 |
BR112019024696B1 (pt) | 2022-11-01 |
KR20200014411A (ko) | 2020-02-10 |
AU2017418298A1 (en) | 2019-12-12 |
JP2020523594A (ja) | 2020-08-06 |
CN117686066A (zh) | 2024-03-12 |
RU2731028C1 (ru) | 2020-08-28 |
CA3067199A1 (en) | 2018-12-20 |
EP3638989B1 (en) | 2023-03-01 |
CN110753831A (zh) | 2020-02-04 |
JP2021192055A (ja) | 2021-12-16 |
BR112019024696A2 (pt) | 2020-06-09 |
AU2021203535B2 (en) | 2022-10-13 |
AU2021203535A1 (en) | 2021-07-01 |
EP3638989A1 (en) | 2020-04-22 |
KR20210118242A (ko) | 2021-09-29 |
US11209299B2 (en) | 2021-12-28 |
MX2019013396A (es) | 2020-02-07 |
CA3067199C (en) | 2023-05-16 |
WO2018231227A1 (en) | 2018-12-20 |
KR20240113988A (ko) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023040171A (ja) | 振動式流量メータのノッチフィルタ | |
JP3276154B2 (ja) | コリオリ質量流量計における圧力計測の方法および装置 | |
JP2012508377A (ja) | 振動計にて流体パラメータを測定する方法及び装置 | |
KR101827459B1 (ko) | 현장 정비 장치 및 진동 유량계에서 프로세싱 시스템 교체를 용이하게 하는 방법 | |
CN107850477B (zh) | 无斜坡时间的振动式流量计测试音调 | |
RU2742973C1 (ru) | Частотные разнесения для предотвращения помех, вызванных сигналами интермодуляционного искажения | |
JP6080880B2 (ja) | 振動計にて流体パラメータを測定する方法及び装置 | |
CN115917265A (zh) | 使用刚度测量结果补偿流体特性测量结果 | |
CA3109268C (en) | Method to determine when to verify a stiffness coefficient of a flowmeter | |
EP3830530B1 (en) | Meter electronics and methods for verification diagnostics for a flow meter | |
MXPA99001510A (en) | Method and apparatus for measuring pressure in a coriolis mass flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230110 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240604 |