JP2023039180A - 水蒸気電解システム - Google Patents

水蒸気電解システム Download PDF

Info

Publication number
JP2023039180A
JP2023039180A JP2021146213A JP2021146213A JP2023039180A JP 2023039180 A JP2023039180 A JP 2023039180A JP 2021146213 A JP2021146213 A JP 2021146213A JP 2021146213 A JP2021146213 A JP 2021146213A JP 2023039180 A JP2023039180 A JP 2023039180A
Authority
JP
Japan
Prior art keywords
channel
steam
hydrogen
oxygen
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021146213A
Other languages
English (en)
Inventor
康俊 土肥
Yasutoshi Doi
蔚成 劉
wei cheng Liu
仁志 野口
Hitoshi Noguchi
英晃 大川
Hideaki Okawa
創 横山
So Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021146213A priority Critical patent/JP2023039180A/ja
Publication of JP2023039180A publication Critical patent/JP2023039180A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】水蒸気電解セルの排熱を効果的に回収することができる水蒸気電解システムを提供する。【解決手段】水蒸気電解システム1は、水蒸気電解セル2及び熱交換器3を備える。水蒸気電解セル2は、イオン伝導性を有する固体電解質体21を間に介して、水蒸気W1から水素が生成される水素極室22と、空気A1から酸素が生成される酸素極室23とが形成されたものである。熱交換器3は、水素極室22へ水蒸気W1を供給するための水蒸気供給流路31と、水素極室22から水素混合水蒸気W2が排出される水素排出流路32と、酸素極室23へ空気A1を供給するための空気供給流路33と、酸素極室23から酸素混合空気A2が排出される酸素排出流路34とが形成されたものである。水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34のうちの少なくとも3つは、互いに隣接して積層されている。【選択図】図1

Description

本発明は、水蒸気電解システムに関する。
燃料電池システムとしては、水素と酸素の電気化学反応を利用して発電を行うSOFC(固体酸化物形燃料電池、Solid Oxide Fuel Cell)の他に、高温水蒸気を電気分解して水素を製造するとともに発電を行うSOEC(固体酸化物形電解セル、Solid Oxide Electrolysis Cell)がある。水蒸気電解システムは、水素極及び酸素極が設けられた固体電解質体による水蒸気電解セル(SOEC)と、水蒸気電解セルによる排熱を回収するための熱交換器とを用いて構成される。水蒸気電解セルにおいては、水素極に接触する高温の水蒸気が分解されて水素及び酸化物イオンとなり、酸化物イオンが酸素極に向かって固体電解質体を透過する際に放出される電子によって発電が行われる。
水蒸気電解システムにおける熱効率を高めるために、水蒸気電解セルによる排熱は熱交換器によって回収される。例えば、特許文献1に記載された高温水蒸気電解システムにおいては、水素再生熱交換器によって、高温水蒸気電解セルの水素極室に供給される水蒸気を生成するための水を、高温水蒸気電解セルから排出される水素富化水蒸気によって加熱する。また、酸素再生熱交換器によって、高温水蒸気電解セルの酸素極室に供給される空気を、高温水蒸気電解セルから排出される酸素富化空気によって加熱する。この構成により、空気を加熱するための熱交換器を不要にし、空気と水蒸気をほぼ同じ温度で高温水蒸気電解セルへ供給できるようにしている。
特開2009-120900号公報
発明者らの研究により、特許文献1等に記載された、水蒸気電解システムの熱交換器の構成によっては、水蒸気電解セルの排熱を回収する効率に改善の余地があることが分かった。特許文献1においては、水素極室に繋がる経路内においてのみ熱交換を行い、酸素極室に繋がる経路内においてのみ熱交換を行う。しかし、水蒸気電解セルの排熱をさらに効果的に回収するためには、水蒸気、水素富化水蒸気、空気又は酸素富化空気である流体の熱容量の違いも考慮することが効果的であることが分かった。従って、水蒸気電解セルの排熱を効果的に回収するためには更なる工夫が必要とされる。
本発明は、かかる課題に鑑みてなされたもので、水蒸気電解セルの排熱を効果的に回収することができる水蒸気電解システムを提供しようとするものである。
本発明の一態様は、
イオン伝導性を有する固体電解質体(21)を間に介して、水蒸気(W1)から水素が生成される水素極室(22)、及び空気(A1)から酸素が生成される酸素極室(23)が形成された水蒸気電解セル(2)と、
前記水素極室へ前記水蒸気を供給するための水蒸気供給流路(31)、前記水素極室から水素混合水蒸気(W2)が排出される水素排出流路(32)、前記酸素極室へ前記空気を供給するための空気供給流路(33)、及び前記酸素極室から酸素混合空気(A2)が排出される酸素排出流路(34)が形成された熱交換器(3)と、を備え、
前記水蒸気供給流路、前記空気供給流路、前記水素排出流路及び前記酸素排出流路のうちの少なくとも3つは、互いに隣接して積層されている、水蒸気電解システム(1)にある。
前記一態様の水蒸気電解システムにおいては、水蒸気供給流路、空気供給流路、水素排出流路及び酸素排出流路のうちの少なくとも3つが、互いに隣接して積層されている。この構成により、熱交換器において、熱容量がそれぞれ異なる水蒸気、水素混合水蒸気、空気及び酸素混合空気のうちの少なくとも3つの熱交換を行うことができる。換言すれば、水素極室に繋がる水蒸気又は水素混合水蒸気と、酸素極室に繋がる空気又は酸素混合空気との熱交換も行うことができる。
それ故、前記一態様の水蒸気電解システムによれば、水蒸気電解セルの排熱を効果的に回収することができる。
なお、本発明の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。
図1は、実施形態1にかかる、水蒸気電解システムを、断面によって模式的に示す説明図である。 図2は、実施形態1にかかる、水蒸気電解システムを模式的に示す斜視図である。 図3は、実施形態2にかかる、水蒸気電解システムを、断面によって模式的に示す説明図である。
前述した水蒸気電解システムにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
本形態の水蒸気電解システム1は、図1及び図2に示すように、水蒸気電解セル2及び熱交換器3を備える。水蒸気電解セル2は、イオン伝導性を有する固体電解質体21を間に介して、水蒸気W1から水素が生成される水素極室22と、空気A1から酸素が生成される酸素極室23とが形成されたものである。熱交換器3は、水素極室22へ水蒸気W1を供給するための水蒸気供給流路31と、水素極室22から水素混合水蒸気W2が排出される水素排出流路32と、酸素極室23へ空気A1を供給するための空気供給流路33と、酸素極室23から酸素混合空気A2が排出される酸素排出流路34とが形成されたものである。水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34のうちの少なくとも3つは、互いに隣接して積層されている。
以下に、本形態の水蒸気電解システム1について詳説する。
(水蒸気電解システム1)
図1及び図2に示すように、水蒸気電解システム1は、固体酸化物形電解セル(SOEC)としての水蒸気電解セル2によって発電を行うとともに、熱交換器3によって水蒸気電解セル2の排熱を回収するよう構成されている。水蒸気電解システム1は、水素極室22において水素が生成されるため、水素製造システムとして稼働してもよい。水素極室22において生成される水素は、水素排出流路32から取り出して種々の用途に用いてもよい。また、酸素極室23において生成される酸素は、酸素排出流路34から取り出して種々の用途に用いてもよい。
(水蒸気電解セル2)
図1に示すように、水蒸気電解セル2は、水素極221及び酸素極231が設けられた固体電解質体21と、水素極221を収容する状態で固体電解質体21の一方側に隣接して形成された水素極室22と、酸素極231を収容する状態で固体電解質体21の他方側に隣接して形成された酸素極室23とを有する。固体電解質体21は、酸化物イオン(O2-)の伝導性を有するものであり、板状に形成されている。水素極221は、固体電解質体21の一方側の表面に設けられており、水蒸気W1から水素及び酸化物イオンを生成するためのものである。酸素極231は、固体電解質体21の他方側の表面に設けられており、固体電解質体21を透過する酸化物イオンから酸素を生成するためのものである。
固体電解質体21は、ペロブスカイト型酸化物、イットリア安定化ジルコニア、イットリア部分安定化ジルコニア等を用いて構成される。水素極221は、水蒸気W1に対する触媒活性を有する金属、金属化合物等の材料によって構成されており、酸素極231は、酸素に対する触媒活性を有する金属、金属化合物等の材料によって構成されている。
本形態の水蒸気電解セル2は、固体電解質体21、水素極室22及び酸素極室23は軸方向Lに長い形状に形成されている。軸方向Lとは、水蒸気電解セル2の長手方向のことをいう。水蒸気電解セル2は、複数のセルが積層されたセルスタックとして形成されている。本形態の水蒸気電解セル2を構成する複数のセルは、軸方向Lに直交する方向に積層されている。
水素極室22には、水蒸気W1が導入される水蒸気入口222、及び水素が混合された水蒸気W1が排出される水素出口223が形成されている。酸素極室23には、空気A1が導入される空気入口232、及び酸素が混合された空気A1が排出される酸素出口233が形成されている。本形態の水蒸気入口222、水素出口223、空気入口232及び酸素出口233は、水蒸気電解セル2の軸方向Lの両側に分散して配置されている。
水蒸気電解セル2の水素極221においては、H2O+2e-→H2+O2-の電解反応が行われ、水蒸気電解セル2の酸素極231においては、O2-→1/2O2+2e-の電解反応が行われる。この水蒸気W1の電解反応は吸熱反応として行われる一方、発電時における、固体電解質体21に生じる電気抵抗、水素極221及び酸素極231に生じる過電圧等によって、水蒸気電解セル2がジュール熱によって発熱する。そして、電解反応による吸熱とジュール熱による発熱とが釣り合うようにすることにより、水蒸気電解セル2を加熱源によって加熱しなくても、所定の作動温度及び所定の作動電圧を維持することが可能になる。
なお、水蒸気電解セル2の起動時には、外部から熱が与えられる構成になっていてもよい。また、熱交換器3に送られる水蒸気W1は、熱交換器3に接続される加熱装置等によって水を加熱することによって生成すればよい。
(熱交換器3)
図1に示すように、熱交換器3は、水蒸気W1、水素混合水蒸気W2、空気A1及び酸素混合空気A2のうちの少なくとも3つの熱交換を行うものである。本形態の熱交換器3は、水蒸気W1、水素混合水蒸気W2、空気A1及び酸素混合空気A2の4つの熱交換を行うよう構成されている。具体的には、水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34は、水蒸気供給流路31又は空気供給流路33の一方である第1供給側流路S1、水素排出流路32又は酸素排出流路34の一方である第1排出側流路E1、水蒸気供給流路31又は空気供給流路33の他方である第2供給側流路S2、及び水素排出流路32又は酸素排出流路34の他方である第2排出側流路E2の順に隣接して積層されている。
この構成により、水蒸気電解セル2に出入りする、水蒸気W1、水素混合水蒸気W2、空気A1及び酸素混合空気A2の4つの流体の相互間において、熱交換を行うことができる。そのため、水蒸気電解セル2に出入りする4つの流体の温度が平衡しやすくなり、水素混合水蒸気W2及び酸素混合空気A2が有する排熱を、水蒸気W1及び空気A1に回収しやすくすることができる。
流体の熱容量は、密度と流量と比熱との積によって表され、流体の熱量は、熱容量と温度差との積によって表される。各流体の密度は、酸素混合空気A2、空気A1、水蒸気W1、水素混合水蒸気W2の順に高い。各流体の比熱は、水素混合水蒸気W2、水蒸気W1、空気A1、酸素混合空気A2の順に高い。各流体の温度は、水素混合水蒸気W2及び酸素混合空気A2、水蒸気W1、空気A1の順に高い。
水蒸気電解セル2に出入りする4つの流体の中では、酸素混合空気A2の熱容量が最も高い。そのため、水蒸気電解セル2における排熱を効果的に回収するためには、酸素排出流路34と、水蒸気供給流路31及び空気供給流路33との熱交換を行うことが好ましい。
また、水蒸気電解セル2に出入りする4つの流体の中では、水素混合空気A1の熱容量が最も低い。そのため、水蒸気電解セル2から外部への放熱を最小限にするためには、水素排出流路32は、熱交換器3を構成する水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34の中において、水蒸気電解セル2から最も離れた外側位置に配置することが好ましい。
また、水素混合水蒸気W2及び酸素混合空気A2の排熱を、水蒸気W1及び空気A1に効果的に回収するためには、水素混合水蒸気W2及び酸素混合空気A2と水蒸気W1及び空気A1との熱交換をまとめて一体的に行うことが有効である。これを実現するために、第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2の4つの流路が順次隣接して形成されている。
図1及び図2に示すように、本形態の熱交換器3は、水蒸気電解セル2を囲む環形状に形成されている。より具体的には、本形態の熱交換器3は、水蒸気電解セル2の中心軸線の周りを囲む円筒形状に形成されている。水蒸気電解セル2の中心軸線とは、水蒸気電解セルの中心位置を軸方向Lに貫通する仮想線のことをいう。第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2は、水蒸気電解セル2を中心とする径方向Rにおいて順次隣接して積層されている。第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2の各流路は、径方向Rにおいて互いに重なる円筒形状にそれぞれ形成されている。第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2の各流路は、隔壁35によって仕切られて形成されている。
本形態においては、水蒸気供給流路31を第1供給側流路S1とし、酸素排出流路34を第1排出側流路E1とし、空気供給流路33を第2供給側流路S2とし、水素排出流路32を第2排出側流路E2としている。そして、円筒形状の熱交換器3においては、水蒸気電解セル2の中心軸線を中心とする径方向Rの内周側から順に、水蒸気供給流路31、酸素排出流路34、空気供給流路33及び水素排出流路32が順次積層されている。この構成に伴い、熱交換器3においては、酸素排出流路34には、水蒸気供給流路31と空気供給流路33とが両側から隣接して積層されている。この構成により、酸素排出流路34を流れる酸素混合空気A2の排熱を効果的に回収することができる。また、水素排出流路32が熱交換器3の径方向Rの最も外周側に配置されていることにより、熱交換器3から外部への放熱を抑制することができる。
図1に示すように、第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2における、互いに隣接する流路同士は、水蒸気W1、水素混合水蒸気W2、空気A1又は酸素混合空気A2である流体の流れが互いに逆方向となる対向流を形成するよう構成されている。この構成により、水蒸気W1及び空気A1の供給側の流体と、水素混合水蒸気W2及び酸素混合空気A2の排出側の流体との熱交換を、より効果的に行うことができる。
第1供給側流路S1及び第2供給側流路S2における流路入口311,331は、熱交換器3の軸方向Lの一方側に形成されており、第1排出側流路E1及び第2排出側流路E2における流路入口321,341は、熱交換器3の軸方向Lの他方側に形成されている。また、第1供給側流路S1及び第2供給側流路S2における流路出口312,332は、熱交換器3の軸方向Lの他方側に形成されており、第1排出側流路E1及び第2排出側流路E2における流路出口322,342は、熱交換器3の軸方向Lの一方側に形成されている。そして、第1供給側流路S1及び第2供給側流路S2における各流体は、熱交換器3の軸方向Lの一方側から他方側へ流れ、第1排出側流路E1及び第2排出側流路E2における各流体は、熱交換器3の軸方向Lの他方側から一方側へ流れる。
図1においては、水蒸気供給流路31(第1供給側流路S1)の流路入口を符号311で示し、水蒸気供給流路31(第1供給側流路S1)の流路出口を符号312で示す。酸素排出流路34(第1排出側流路E1)の流路入口を符号341で示し、酸素排出流路34(第1排出側流路E1)の流路出口を符号342で示す。空気供給流路33(第2供給側流路S2)の流路入口を符号331で示し、空気供給流路33(第2供給側流路S2)の流路出口を符号332で示す。水素排出流路32(第2排出側流路E2)の流路入口を符号321で示し、水素排出流路32(第2排出側流路E2)の流路出口を符号322で示す。
ここで、図1においては、流路入口311,321,331,341及び流路出口312,322,332,342の形成位置は、図示を簡略化するために模式的に示す。また、図2においては、後述する輻射熱回収器4、熱移動抑制層5及び放熱抑制層6を省略して示す。
水蒸気供給流路31、酸素排出流路34、空気供給流路33及び水素排出流路32の各流路は、配管7を介して水蒸気電解セル2に接続されている。水蒸気供給流路31、酸素排出流路34、空気供給流路33及び水素排出流路32の各流路について、流路入口311,321,331,341と流路出口312,322,332,342とは、熱交換器3の周方向Cに180°異なる位置に形成されている。この構成により、各流路31,32,33,34における各流体の流れの経路を適切に確保することができる。なお、周方向Cとは、水蒸気電解セル2の中心軸線の周りの方向のことをいう。
(輻射熱回収器4)
水蒸気電解セル2は、稼働時には、700℃程度の高温になっており、その熱が輻射熱として外部に放出される。本形態の熱交換器3は、水蒸気電解セル2から外部への放熱を少なくする目的、及び水蒸気電解システム1の小型化を図る目的で、水蒸気電解セル2の周囲を囲む円筒形状に形成されている。
そして、図1に示すように、水蒸気電解セル2から外部への放熱を最小限にするために、円筒形状の熱交換器3の内周側には、輻射熱回収器4が積層されている。換言すれば、円筒形状の熱交換器3における、水蒸気電解セル2に最も近い位置には、水蒸気電解セル2から放出される輻射熱を回収するための輻射熱回収器4が配置されている。輻射熱回収器4を用いることにより、水蒸気電解セル2からの輻射熱を効果的に回収することができる。輻射熱を回収する空気A1は、空気供給流路33を流れる空気A1とすればよい。空気供給流路33を流れる空気A1は、水蒸気電解セル2に出入りする4つの流体のうちで最も温度が低く、熱を回収しやすい。
輻射熱回収器4は、円筒形状の熱交換器3の内周面に沿った円筒形状に形成されている。また、輻射熱回収器4は、熱交換器3の径方向Rに重なって形成された複数の回収流路41を有する。回収流路41は、軸方向Lに折り返す状態で形成されている。回収流路41は、軸方向Lに蛇行する状態で形成されていてもよい。回収流路41が径方向Rに複数重なって形成されていることにより、輻射熱回収器4における空気A1の流れる経路が長くなる。これにより、水蒸気電解セル2からの輻射熱を、回収流路41を流れる空気A1へ効果的に回収することができる。
熱交換器3の空気供給流路33は、配管7を介して輻射熱回収器4の回収流路41に接続されており、回収流路41は、配管7を介して水蒸気電解セル2の酸素極室23に接続されている。換言すれば、輻射熱回収器4は、空気供給流路33と酸素極室23とを中継する位置に配置されている。
本形態の輻射熱回収器4は、空気供給流路33を流れた後の空気A1を、水蒸気電解セル2からの輻射熱によって加熱するための予熱器を構成している。この構成により、水蒸気電解セル2からの輻射熱をさらに効果的に回収することができる。
(熱移動抑制層5,放熱抑制層6)
図1に示すように、熱交換器3と輻射熱回収器4との間には、熱交換器3と輻射熱回収器4との間の熱の移動を抑制するための熱移動抑制層5が配置されている。熱移動抑制層5の形成により、熱交換器3における水素混合水蒸気W2及び酸素混合空気A2の排熱の回収と、輻射熱回収器4による輻射熱の回収とを適切に分けることができる。これにより、水素混合水蒸気W2及び酸素混合空気A2の排熱を適切に回収することができる。本形態の熱移動抑制層5は、空気A1等の気体が充填された断熱層として形成されている。熱移動抑制層5は、円筒形状を有しており、径方向Rにおいて、熱交換器3と輻射熱回収器4との間に挟まれて形成されている。
熱交換器3における、水蒸気電解セル2から最も離れた外側位置には、熱交換器3から外部への放熱を抑制するための放熱抑制層6が配置されている。放熱抑制層6の形成により、熱交換器3から外部への放熱を極力抑えることができる。熱交換器3の径方向Rの最も外周側には水素排出流路32が配置されている。そして、放熱抑制層6により、水素排出流路32を流れる水素混合水蒸気W2の排熱が外部に放出されることが抑制される。本形態の放熱抑制層6は、空気A1等の気体が充填された断熱層として形成されている。放熱抑制層6は、円筒形状を有しており、熱交換器3の水素排出流路32の径方向Rの外周側に積層されている。
なお、熱移動抑制層5及び放熱抑制層6は、断熱層以外にも、種々の断熱材によって構成してもよい。
(水蒸気電解システム1の動作)
水蒸気電解システム1によって発電及び水素の製造が行われるときには、熱交換器3の水蒸気供給流路31から水蒸気電解セル2の水素極室22へ水蒸気W1が送られる。また、熱交換器3の空気供給流路33から輻射熱回収器4の回収流路41を経由して水蒸気電解セル2の酸素極室23へ空気A1が送られる。そして、水蒸気電解セル2においては、水素極221に接触する水蒸気W1から水素が生成されるとともに、酸化物イオンが固体電解質体21を透過して酸素極231へ移動して発電が行われる。
水素極室22から排出される水素混合水蒸気W2の排熱は、水素混合水蒸気W2が熱交換器3の水素排出流路32を流れる際に、空気供給流路33を流れる空気A1へ、隔壁35を介して伝達される。また、酸素極室23から排出される酸素混合空気A2の排熱は、酸素混合空気A2が熱交換器3の酸素排出流路34を流れる際に、空気供給流路33を流れる空気A1、及び水蒸気供給流路31を流れる水蒸気W1へ、隔壁35を介して伝達される。
(作用効果)
本形態の水蒸気電解システム1においては、水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34の4つが、互いに隣接して積層されている。さらに、第1供給側流路S1又は第2供給側流路S2である供給側流路と、第1排出側流路E1又は第2排出側流路E2である排出側流路とが交互に隣接する状態で積層されている。この構成により、熱交換器3において、熱容量がそれぞれ異なる水蒸気W1、水素混合水蒸気W2、空気A1及び酸素混合空気A2の熱交換を効果的に行うことができる。
特に、4つの流路が一体的に積層されていることにより、熱交換器3において、水素混合水蒸気W2及び酸素混合空気A2の熱を、水蒸気W1及び空気A1へ効果的に伝達することができる。そして、熱交換器3において、水素混合水蒸気W2及び酸素混合空気A2の排熱のほとんどを回収することが可能になる。
それ故、本形態の水蒸気電解システム1によれば、水蒸気電解セル2の排熱を効果的に回収することができる。
<実施形態2>
本形態は、水蒸気電解セル2に対して対向して配置する熱交換器3の位置が、実施形態1の場合と異なる水蒸気電解システム1について示す。図3に示すように、本形態の熱交換器3は、水蒸気電解セル2の軸方向Lに対向する位置に配置されている。水蒸気電解セル2は、環形状に形成された輻射熱回収器4の中心位置に配置されている。より具体的には、輻射熱回収器4は、水蒸気電解セル2の中心軸線の周りを囲む円筒形状に形成されている。輻射熱回収器4の径方向Rの外周側の位置には、輻射熱回収器4から外部への放熱を抑制するための放熱抑制層6Aが形成されている。放熱抑制層6Aは、断熱層によって構成されている。
本形態の熱交換器3も、水蒸気供給流路31又は空気供給流路33の一方である第1供給側流路S1、水素排出流路32又は酸素排出流路34の一方である第1排出側流路E1、水蒸気供給流路31又は空気供給流路33の他方である第2供給側流路S2、及び水素排出流路32又は酸素排出流路34の他方である第2排出側流路E2は、順次隣接して積層されている。換言すれば、第1供給側流路S1又は第2供給側流路S2である供給側流路と、第1排出側流路E1又は第2排出側流路E2である排出側流路とが交互に隣接する状態で積層されている。この構成により、熱交換器3において、熱容量がそれぞれ異なる水蒸気W1、水素混合水蒸気W2、空気A1及び酸素混合空気A2の熱交換を効果的に行うことができる。
熱交換器3における、水蒸気電解セル2に対向する内側と、内側とは反対側の外側とには、放熱抑制層6Bが形成されている。放熱抑制層6Bは、断熱層によって構成されている。
本形態においては、熱交換器3が水蒸気電解セル2の軸方向Lに対向する位置に配置されていることにより、水蒸気電解セル2から外部への放熱を少なくし、水蒸気電解システム1の小型化を図ることができる。なお、熱交換器3は、水蒸気電解セル2の軸方向Lの両側に対向する位置に配置されていてもよい。
本形態の水蒸気電解システム1における、その他の構成、作用効果等については、実施形態1の構成、作用効果等と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の構成要素と同様である。
<他の実施形態>
熱交換器3は、水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34のうちの3つが互いに積層して形成されていれば、残りの1つは積層されていなくてもよい。第1供給側流路S1、第1排出側流路E1、第2供給側流路S2及び第2排出側流路E2における、互いに隣接する流路同士は、対向流ではなく、平行流を形成していてもよい。熱交換器3は、円筒形状以外にも、四角等の角筒形状に形成されていてもよい。
また、水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34が積層される順番は、供給側流路S1,S2及び排出側流路E1,E2が交互に並ぶ種々の順番としてもよい。また、熱交換器3における、水蒸気供給流路31、空気供給流路33、水素排出流路32及び酸素排出流路34のうちの少なくとも3つは、熱交換器3の周方向Cの複数箇所において、周方向Cに積層されていてもよい。また、熱交換器3においては、酸素排出流路34の径方向Rの両側に、水蒸気供給流路31と空気供給流路33とが隣接して積層される代わりに、水素排出流路32の径方向Rの両側に、水蒸気供給流路31と空気供給流路33とが隣接して積層されていてもよい。
本発明は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本発明は、様々な変形例、均等範囲内の変形例等を含む。さらに、本発明から想定される様々な構成要素の組み合わせ、形態等も本発明の技術思想に含まれる。
1 水蒸気電解システム
2 水蒸気電解セル
21 固体電解質体
22 水素極室
23 酸素極室
3 熱交換器
31 水蒸気供給流路
32 水素排出流路
33 空気供給流路
34 酸素排出流路

Claims (11)

  1. イオン伝導性を有する固体電解質体(21)を間に介して、水蒸気(W1)から水素が生成される水素極室(22)、及び空気(A1)から酸素が生成される酸素極室(23)が形成された水蒸気電解セル(2)と、
    前記水素極室へ前記水蒸気を供給するための水蒸気供給流路(31)、前記水素極室から水素混合水蒸気(W2)が排出される水素排出流路(32)、前記酸素極室へ前記空気を供給するための空気供給流路(33)、及び前記酸素極室から酸素混合空気(A2)が排出される酸素排出流路(34)が形成された熱交換器(3)と、を備え、
    前記水蒸気供給流路、前記空気供給流路、前記水素排出流路及び前記酸素排出流路のうちの少なくとも3つは、互いに隣接して積層されている、水蒸気電解システム(1)。
  2. 前記酸素排出流路には、前記水蒸気供給流路と前記空気供給流路とが両側から隣接して積層されている、請求項1に記載の水蒸気電解システム。
  3. 前記水蒸気供給流路、前記空気供給流路、前記水素排出流路及び前記酸素排出流路は、前記水蒸気供給流路又は前記空気供給流路の一方である第1供給側流路(S1)、前記水素排出流路又は前記酸素排出流路の一方である第1排出側流路(E1)、前記水蒸気供給流路又は前記空気供給流路の他方である第2供給側流路(S2)、及び前記水素排出流路又は前記酸素排出流路の他方である第2排出側流路(E2)の順に隣接して積層されている、請求項1又は2に記載の水蒸気電解システム。
  4. 前記熱交換器は、前記水蒸気電解セルを囲む環形状に形成されており、
    前記第1供給側流路、前記第1排出側流路、前記第2供給側流路及び前記第2排出側流路は、前記水蒸気電解セルを中心とする径方向(R)において順次隣接して積層されている、請求項3に記載の水蒸気電解システム。
  5. 前記熱交換器は、前記水蒸気電解セルの軸方向(L)、又は前記軸方向に直交する径方向(R)に対向する位置に配置されており、
    前記第1供給側流路、前記第1排出側流路、前記第2供給側流路及び前記第2排出側流路は、順次隣接して積層されている、請求項3に記載の水蒸気電解システム。
  6. 前記第1供給側流路、前記第1排出側流路、前記第2供給側流路及び前記第2排出側流路における、互いに隣接する流路同士は、前記水蒸気、前記水素混合水蒸気、前記空気又は前記酸素混合空気である流体の流れが互いに逆方向となる対向流を形成するよう構成されている、請求項3~5のいずれか1項に記載の水蒸気電解システム。
  7. 前記水素排出流路は、前記熱交換器を構成する前記水蒸気供給流路、前記空気供給流路、前記水素排出流路及び前記酸素排出流路の中において、前記水蒸気電解セルから最も離れた外側位置に配置されている、請求項1~6のいずれか1項に記載の水蒸気電解システム。
  8. 前記熱交換器における、前記水蒸気電解セルに最も近い位置には、前記水蒸気電解セルから放出される輻射熱を回収するための輻射熱回収器(4)が配置されている、請求項1~7のいずれか1項に記載の水蒸気電解システム。
  9. 前記輻射熱回収器は、前記空気供給流路を流れた後の前記空気を、前記水蒸気電解セルからの輻射熱によって加熱するための予熱器を構成している、請求項8に記載の水蒸気電解システム。
  10. 前記熱交換器と前記輻射熱回収器との間には、前記熱交換器と前記輻射熱回収器との間の熱の移動を抑制するための熱移動抑制層(5)が配置されている、請求項8又は9に記載の水蒸気電解システム。
  11. 前記熱交換器における、前記水蒸気電解セルから最も離れた外側位置には、前記熱交換器から外部への放熱を抑制するための放熱抑制層(6)が配置されている、請求項1~10のいずれか1項に記載の水蒸気電解システム。
JP2021146213A 2021-09-08 2021-09-08 水蒸気電解システム Pending JP2023039180A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021146213A JP2023039180A (ja) 2021-09-08 2021-09-08 水蒸気電解システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021146213A JP2023039180A (ja) 2021-09-08 2021-09-08 水蒸気電解システム

Publications (1)

Publication Number Publication Date
JP2023039180A true JP2023039180A (ja) 2023-03-20

Family

ID=85600389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146213A Pending JP2023039180A (ja) 2021-09-08 2021-09-08 水蒸気電解システム

Country Status (1)

Country Link
JP (1) JP2023039180A (ja)

Similar Documents

Publication Publication Date Title
US8026013B2 (en) Annular or ring shaped fuel cell unit
JP4397886B2 (ja) 多層円形パイプ型固体酸化物燃料電池モジュール
US8241801B2 (en) Integrated solid oxide fuel cell and fuel processor
JP5154026B2 (ja) 燃料電池システム
US20070196704A1 (en) Intergrated solid oxide fuel cell and fuel processor
US8021794B2 (en) Fuel cell with cross-shaped reformer
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP4705762B2 (ja) 燃料電池
JP4513281B2 (ja) 燃料電池
JP2023039180A (ja) 水蒸気電解システム
JP4544055B2 (ja) 燃料電池
JP2007005134A (ja) 水蒸気発生器および燃料電池
JP7064678B2 (ja) 燃料電池スタックにおける熱管理のための選択的に回転される流れ場
JP7202107B2 (ja) 電気化学セルスタック、燃料電池および水素製造装置
JP4262030B2 (ja) 燃料電池組立体
JP2010238440A (ja) 燃料電池モジュール
JP2013164241A (ja) 熱交換装置
JP2023010793A (ja) 電気化学セルスタック、燃料電池および水素製造装置
JP5418801B2 (ja) 燃料電池
JP2000306593A (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240610