JP2023035944A - ガラス板の製造方法、及びガラス板の成形装置 - Google Patents

ガラス板の製造方法、及びガラス板の成形装置 Download PDF

Info

Publication number
JP2023035944A
JP2023035944A JP2022134099A JP2022134099A JP2023035944A JP 2023035944 A JP2023035944 A JP 2023035944A JP 2022134099 A JP2022134099 A JP 2022134099A JP 2022134099 A JP2022134099 A JP 2022134099A JP 2023035944 A JP2023035944 A JP 2023035944A
Authority
JP
Japan
Prior art keywords
glass plate
mold
reaction force
load
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022134099A
Other languages
English (en)
Inventor
一貴 柳原
Kazutaka Yanagihara
諭 金杉
Satoshi Kanasugi
恭基 福士
Takanori Fukushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JP2023035944A publication Critical patent/JP2023035944A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】ガラス板の面品質を向上する、技術を提供する。【解決手段】ガラス板の製造方法は、第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板を製造する。前記ガラス板の製造方法は、ガラス板を加熱することと、予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含む。前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とする。前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する。【選択図】図2

Description

本開示は、ガラス板の製造方法、及びガラス板の成形装置に関する。
特許文献1に記載の曲げ成形装置は、加熱器と、第1ピン群と、第1ガイド板と、第1可動板と、第1移動機構と、を備える。加熱器は、成形板を加熱する。第1ピン群は、成形板の第1主表面に接触する3本以上の第1ピンを含む。第1ガイド板は、3本以上の第1ピンを互いに平行に支持すると共に、3本以上の第1ピンをそれぞれの長手方向に独立に移動自在に支持する。第1可動板は、第1ガイド板を基準として成形板とは反対側に配置される。第1可動板には、第1ピン群と接触する第1曲面を有する第1成形型が取り付けられる。第1移動機構は、第1ピンの長手方向に、第1可動板を第1ガイド板に対し移動させる。
特許文献2には、成形評価指標Φを用いて、成形条件を設定することが記載されている。成形評価指標Φは、ガラス板の成形時における粘度、圧力、時間の3つのパラメータの関係を無次元化した指標である。3つのパラメータのうち少なくとも1つが違う成形条件同士であっても、成形評価指標Φの値が同一であれば、同一の品質のガラス板が得られると期待される。成形評価指標Φの値が大きいほど、成形時にガラス板が金型に強く押し付けられる。
国際公開第2020/080305号 国際公開第2018/174033号
成形装置がガラス板に荷重を加える際に、ガラス板が局所的に下型又は上型に強く押し付けられると、ドット状の欠点がガラス板に付いてしまう。その傾向は、下型又は上型がピンモールドなどである場合に顕著である。
本開示の一態様は、ガラス板の面品質を向上する、技術を提供する。
本開示の一態様に係るガラス板の製造方法は、第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板を製造する。前記ガラス板の製造方法は、ガラス板を加熱することと、予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含む。前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とする。前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する。
本開示の一態様によれば、第1型を部分的に柔らかくすることで、第1型にガラス板の第1主面が局所的に強く押し付けられるのを抑制でき、ガラス板の第1主面の面品質を向上できる。
図1は、一実施形態に係るガラス板の製造方法を示すフローチャートである。 図2は、一実施形態に係るガラス板の成形装置を示す断面図である。 図3は、図2の成形装置で荷重を加えた後のガラス板の一例を示す断面図である。 図4は、従来の型全体の反力が一定である様態において(E×I×Δk)とΦ1・Φ2MAXの関係の一例を示す図である。 図5は、従来の型全体の反力が一定である様態において(E×I×Δk)とNGDの関係の一例を示す図である。 図6は、下型の第1変形例を示す断面図である。 図7は、下型の第2変形例を示す断面図である。 図8は、下型の第3変形例を示す断面図である。 図9は、格子構造体の一例を示す斜視図である。 図10は、図9の格子構造体の断面図である。
以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。
先ず、図1を参照して、一実施形態に係るガラス板の製造方法について説明する。図1に示すように、ガラス板の製造方法は、ステップS101~S102を含む。ステップS101は、ガラス板を加熱することを含む。ガラス板は、加熱によって軟化し、曲げ成形可能になる。ステップS102では、予め加熱したガラス板を下型と上型で挟んで、ガラス板に荷重を加えることを含む。ガラス板の下面は下型の上面に倣って成形され、ガラス板の上面は上型の下面に倣って成形される。
図1に示す製造方法により、曲面形状を含むガラス板が得られる。得られるガラス板は、第1主面及び第1主面とは反対向きの第2主面を含み、第1主面と第2主面に曲面形状を含む。第1主面と第2主面は、曲面形状を含めばよく、部分的に平面形状を含んでもよい。また、曲面は、複曲面と単曲面のいずれでもよい。平面とは、例えば曲率半径が10000mmより大きいことを指し、曲面とは例えば曲率半径が10000mm以下であることを指す。
本実施形態では、ガラス板の下面が第1主面であり、下型が第1型であり、ガラス板の上面が第2主面であり、上型が第2型である。但し、ガラス板の上面が第1主面であり、上型が第1型であり、ガラス板の下面が第2主面であり、下型が第2型であってもよい。
次に、図2及び図3を参照して、一実施形態に係るガラス板の成形装置1について説明する。成形装置1は、下型11と、上型12と、を備える。下型11は、ガラス板2の下方に配置され、ガラス板2の下面21を上方に押す。上型12は、ガラス板2の上方に配置され、ガラス板2の上面22を下方に押す。図示しないが、下型11又は上型12とガラス板2の間には、耐熱布が設けられてもよい。耐熱布は、例えば、ステンレス鋼繊維又はシリカ繊維、を含む織布又は不織布である。耐熱布を設けることで、ガラス板2が局所的に強く下型11又は上型12に押し付けられるのを抑制できる。
成形装置1は、下型11と上型12でガラス板2を挟んでガラス板2に荷重を加える。成形装置1は、駆動部13を備えてもよい。駆動部13は、プレス機などを含み、下型11と上型12を相対的に接近させる。駆動部13は、上型12を昇降させるが、下型11を昇降させてもよい。なお、成形装置1は、駆動部13を備えなくてもよく、上型12の重さのみでガラス板2に荷重を加えてもよい。
ガラス板2は、例えばソーダライムガラス、アルミノシリケートガラス、ホウケイ酸ガラス、又は無アルカリガラスなどである。無アルカリガラスとは、NaO、KO等のアルカリ金属酸化物を実質的に含有しないガラスを意味する。ここで、アルカリ金属酸化物を実質的に含有しないとは、アルカリ金属酸化物の含有量の合量が0.1質量%以下を意味する。
ガラス板2を構成するガラスとしては、無アルカリガラス、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボロシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラスを使用できる。特にガラス板2を表示装置のカバーガラスに用いる場合、下記に示すようなアルカリ金属酸化物を含むガラスであることが好ましい。アルカリ金属酸化物を含むガラスは、成形後に化学強化処理を施すことにより、ガラス表面に圧縮応力層を形成し、強度を高めることができる。
ガラス組成の具体例としては、酸化物基準のモル%で表示した組成で、SiOを50%~80%、Alを0.1%~25%、LiO+NaO+KOを3%~30%、MgOを0%~25%、CaOを0%~25%及びZrOを0%~5%含むガラスが挙げられるが、特に限定されない。より具体的には、下記(i)~(v)のガラス組成が挙げられる。なお、例えば、「MgOを0%~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。下記(i)のガラスはソーダライムシリケートガラスに含まれ、下記(ii)、(iii)、及び(iv)のガラスはアルミノシリケートガラスに含まれる。下記(v)のガラスはリチウムアルミノシリケートガラスに含まれる。
(i)酸化物基準のモル%で表示した組成で、SiOを63%~73%、Alを0.1%~5.2%、NaOを10%~16%、KOを0%~1.5%、LiOを0%~5%、MgOを5%~13%及びCaOを4%~10%を含むガラス。
(ii)酸化物基準のモル%で表示した組成が、SiOを50%~74%、Alを1%~10%、NaOを6%~14%、KOを3%~11%、LiOを0%~5%、MgOを2%~15%、CaOを0%~6%及びZrOを0%~5%含有し、SiO及びAlの含有量の合計が75%以下、NaO及びKOの含有量の合計が12%~25%、MgO及びCaOの含有量の合計が7%~15%であるガラス。
(iii)酸化物基準のモル%で表示した組成が、SiOを68%~80%、Alを4%~10%、NaOを5%~15%、KOを0%~1%、LiOを0%~5%、MgOを4%~15%及びZrOを0%~1%含有するガラス。
(iv)酸化物基準のモル%で表示した組成が、SiOを67%~75%、Alを0%~4%、NaOを7%~15%、KOを1%~9%、LiOを0%~5%、MgOを6%~14%及びZrOを0%~1.5%含有し、SiO及びAlの含有量の合計が71%~75%、NaO及びKOの含有量の合計が12%~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
(v)酸化物基準のモル%で表示した組成が、SiOを56%~73%、Alを10%~24%、Bを0%~6%、Pを0%~6%、LiOを2%~7%、NaOを3%~11%、KOを0%~2%、MgOを0%~8%、CaOを0%~2%、SrOを0%~5%、BaOを0%~5%、ZnOを0%~5%、TiOを0%~2%、ZrOを0%~4%含有するガラス。
ガラス板2は、荷重を加える前に、例えば図2に示すように平板である。ガラス板2の厚さは、0.2mm以上が好ましく、0.8mm以上がより好ましく、1mm以上が更に好ましい。ガラス板2の厚さは、5mm以下が好ましく、3mm以下がより好ましく、2mm以下が更に好ましい。ガラス板2が車載用表示装置のカバーガラスである場合、ガラス板2の厚さは0.8mm以上3mm以下であることが好ましい。
ガラス板2は、例えば、下型11の上に載せた状態で、加熱炉の内部に入れられ、加熱される。加熱炉は、バッチ式でも連続式でもよい。バッチ式の加熱炉は、下型11と上型12の少なくとも一部を収容する。下型11と上型12は、バッチ式の加熱炉の内部に固定されてもよいし、ガラス板2と共に搬入出されてもよい。連続式の加熱炉は、下型を搬送するコンベアを備えてもよく、連続搬送式であってもよい。連続搬送式の加熱炉は、搬送路に沿って複数のゾーンに区画される。ガラス板2は、下型11と共に搬送されながら、加熱される。上型12は、途中のゾーンに設けられ、プレス機に取付けられるが、ガラス板2の上に載せられガラス板2と共に搬送されてもよい。なお、上記の通り、プレス機は無くてもよい。
ガラス板2は、予め設定された成形温度に加熱される。成形温度は、例えば107.9Pa・s~1012.7Pa・sの粘度範囲に相当する温度範囲内で設定される。ガラスの粘度が107.9Pa・s以上であれば、ガラス板2の変形が緩やかになり、ガラス板2が局所的に強く下型11又は上型12に押し付けられるのを抑制できる。一方、ガラスの粘度が1012.7Pa・s以下であれば、ガラス板2を曲げ成形できる。ガラスの粘度は、好ましくは108.5Pa・s~1011.5Pa・sである。
ガラス板2は、成形温度で荷重を加えた後に、例えば図3に示すように曲面形状を含む。ガラス板2の曲率半径は、50mm以上が好ましく、100mm以上がより好ましく、200mm以上が更に好ましい。ガラス板2の曲率半径は、例えば10000mm以下であり、好ましく5000mm以下であり、より好ましくは3000mm以下である。ガラス板2は、成形装置1で曲げ成形された後に、冷却固化される。
ガラス板2は、例えば自動車に搭載される。ガラス板2の用途は、ウィンドシールド、ヘッドアップディスプレイ、ダッシュボード、表示装置用カバーガラス、カメラ用カバーガラス、レーダー用カバーガラス、又はセンサ用カバーガラスなどである。フロントウィンドシールドは、全体的に又は部分的に車外側に凸に湾曲する。車載用表示装置のカバーガラスには、近年意匠性の観点から複雑な曲げ形状と高い面品質が求められており、本開示の技術を適用する意義が大きい。
なお、下型11と上型12の形状は、図2に示す形状には限定されない。下型11と上型12とで荷重を加えた後のガラス板2の形状は、図3に示す形状には限定されない。
ところで、成形装置1がガラス板2に荷重を加える際に、ガラス板2が局所的に下型11又は上型12に強く押し付けられると、ドット状の欠点がガラス板2に付いてしまう。その傾向は、下型11又は上型12がピンモールド(図6参照)などである場合に顕著である。
本願発明者は、ドット状の欠点を減らすべく、特許文献2に記載の成形評価指標Φを改良することを検討し、下記のΦ1とΦ2を用いることを見出した。Φ1は、下記式(1)で定義される。
Figure 2023035944000002
P1:ガラス板2に荷重を加える際に、第1型(例えば下型11)がガラス板2の第1主面(例えば下面21)を押す圧力[Pa]、
η:ガラス板2の粘度[Pa・sec]、
t:ガラス板2に荷重を加え始めてからの経過時間[sec]。
Φ1は、ガラス板2の成形時における粘度、圧力、時間の3つのパラメータの関係を無次元化した指標であり、ガラス板2と第1型の接触点の各点で求める。3つのパラメータのうち少なくとも1つが違う成形条件同士であっても、Φ1の値が同一であれば、ガラス板2の下面21の面品質が同一になると期待される。下型11と上型12によってガラス板2に荷重を加える時間、つまり成形時間は、例えば10秒~200秒であり、好ましくは10秒~80秒である。
Φ2は下記式(2)で定義される。
Figure 2023035944000003
P2:ガラス板2に荷重を加える際に、第2型(例えば上型12)がガラス板2の第2主面(例えば上面22)を押す圧力[Pa]、
η:ガラス板2の粘度[Pa・sec]、
t:ガラス板2に荷重を加え始めてからの経過時間[sec]。
Φ2は、ガラス板2の成形時における粘度、圧力、時間の3つのパラメータの関係を無次元化した指標であり、ガラス板2と第2型の接触点の各点で求める。3つのパラメータのうち少なくとも1つが違う成形条件同士であっても、Φ2の値が同一であれば、ガラス板2の上面22の面品質が同一になると期待される。成形時間は、例えば10秒~200秒であり、好ましくは10秒~80秒である。
表1に、実験条件及び実験結果の一例を示す。表1に示す例1~例12は、いずれも、参考例である。例1~例12では、表1に示す条件以外、同じ条件で、ガラス板を曲げ成形し、ドット状の欠点の数を目視で調べた。
Figure 2023035944000004
成形温度は、成形時間中のガラス板2の最高温度である。Φ1・Φ2MAXは、Φ1の最大値Φ1MAXと、Φ2の最大値Φ2MAXの2つのうちの最大値である。
Φ1とΦ2は、シミュレーションにより求めた。シミュレーションのソフトウェアとしては、ダッソー・システムズ社製のAbaqusを使用した。粘弾性特性は、Narayanaswamyモデルを実装し、使用した。
ガラスG1は、酸化物基準の質量%表示で、SiOを63.8%、Alを19.5%、MgOを0.1%、TiOを0.1%、ZrOを0.6%、Yを4.5%、LiOを5%、NaOを4.6%、KOを1.7%含有するガラスであった。
ガラスG2は、酸化物基準の質量%表示で、SiOを51.2%、Alを8.7%、Pを5.6%、ZrOを9.5%、Yを3.9%、LiOを17.4%、NaOを1.9%、KOを1.9%含有するガラスであった。
表1に示すように、例1~例12では、ガラス種と成形温度と成形時間を変えて、Φ1・Φ2MAXを変えた。その結果、Φ1MAX及びΦ2MAXが1.0×10-4以下であれば、ドット状の欠点の数がゼロになることがわかった。Φ1MAX及びΦ2MAXは、好ましくは1.0×10-5以下である。なお、Φ1MAX及びΦ2MAXは、ゼロよりも大きい。
例1~例12では、上記の通り、ガラス種と成形温度と成形時間を変えて、Φ1とΦ2を調節した。但し、ガラス種と成形温度と成形時間を自由に変更することは、実際には困難である。例えばガラス種は、ガラス板2の用途などである程度決まってしまう。
そこで、本願発明者は、ドット状の欠点を減らすべく、下型11又は上型12を部分的に柔らかくすることで、下型11又は上型12にガラス板2が局所的に強く押し付けられるのを抑制することを検討した。
下型11の柔らかさは、下型11の上面を鉛直方向(詳細には下方)に10μm押し込んだ場合に生じる反力で表される。同様に、上型12の柔らかさは、上型12の下面を鉛直方向(詳細には上方)に10μm押し込んだ場合に生じる反力で表される。反力が小さいほど、柔軟性が高い。反力は、直径10mmの半球状の先端を持つ治具であって型(下型11または上型12)よりも剛性の高い治具で、型表面を押すことにより計測する。型表面は、ガラス板を押す面である。
本実施形態によれば、下型11と上型12の少なくとも1つは、型表面に、上記治具の先端で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する。例えば、図2に示す下型11と上型12は、両方とも、中央の第2領域X2と第3領域X3が、両端の第1領域X1と第4領域X4よりも小さな反力を有する。反力は、例えば弾性率で調節する。なお、反力の調節方法は、後述するように特に限定されない。
図3に示すガラス板2は、図2に示す下型11と上型12を用いて荷重を加えた後のものである。荷重を加えた後の第1主面(例えば下面21)の重心P0を通る鉛直な軸を含む断面のうち、断面と第1主面の交線Lに沿って5.0mm離れた2点での曲率差(≧0)が最大になる断面を基準断面とし、基準断面上で重心P0を通る水平な軸をX軸とする。基準断面上で重心P0を通る鉛直な軸をZ軸とする。XZ平面が基準断面である。荷重を加えた後の第1主面は、曲面形状を含む。そこで、第1主面の重心P0の位置としては、下型11からガラス板2を降ろす前、例えば荷重を解放した時に、上方から見たときの見かけの第1主面の重心の位置を用いる。
図3に示す第1点P1から第2点P2までの領域は、図2に示す第1領域X1に相当し、一定の曲率半径R2と曲率k2を有し、曲率円の中心を交線Lよりも上方に有する。図3に示す第2点P2から重心P0までの領域は、図2に示す第2領域X2に相当し、一定の曲率半径R1と一定の曲率k1を有し、曲率円の中心を交線Lよりも上方に有する。
図3に示す重心P0から第3点P3までの領域は、図2に示す第3領域X3に相当し、一定の曲率半径R1と曲率k1を有し、曲率円の中心を交線Lよりも下方に有する。図3に示す第3点P3から第4点P4までの領域は、図2に示す第4領域X4に相当し、一定の曲率半径R2と一定の曲率k2を有し、曲率円の中心を交線Lよりも下方に有する。
2点での曲率差Δk(1/mm)は、2点の中点が重心P0、第2点P2、又は第3点P3である場合に、ゼロよりも大きくなる。2点の中点が重心P0である場合、2点での曲率差Δkは2×k1である。2点の中点が第2点P2又は第3点P3である場合、2点での曲率差Δkは(k1-k2(k1>k2))である。従って、2点の中点が重心P0である場合に、2点での曲率差Δkが最大になる。
表2に、第1反力F1と第2反力F2の比(F1/F2)と、Φ1MAX及びΦ2MAXとの関係の一例を示す。第1反力F1は、第2領域X2と第3領域X3で生じる反力である。第2反力F2は、第1領域X1及び第4領域X4で生じる反力である。Φ1MAXはΦ1の最大値であり、Φ2MAXはΦ2の最大値である。Φ1とΦ2は、上記の通り、シミュレーションにより求めた。
表2に示す例13~例16では、下型11と上型12の各々について比(F1/F2)を変更した以外、同じ条件でΦ1MAX及びΦ2MAXを求めた。例13~例16において、ガラス板2の厚みは1.3mmに設定し、曲率k1は1/90mmに設定し、曲率k2は1/1000mmに設定し、第1領域X1及び第4領域X4の各々のX軸方向寸法は305mmに設定し、第2領域X2及び第3領域X3の各々のX軸方向寸法は45mmに設定した。例13において、第1領域X1、第2領域X2、第3領域X3及び第4領域X4の弾性率は10.8GPaである。例14~例16では、第2領域X2及び第3領域X3の弾性率を変更することで、反力の比(F1/F2)を変更した。弾性率の比は、反力の比に等しい。例13が比較例であり、例14~例16が実施例である。
Figure 2023035944000005
表2から、比(F1/F2)が小さいほど、Φ1MAX及びΦ2MAXが小さいことが分かる。このことから、下型11又は上型12を部分的に柔らかくすることで、下型11又は上型12にガラス板2が局所的に強く押し付けられるのを抑制でき、ガラス板2の面品質を向上できることが分かる。
Φ1又はΦ2が1.0×10-4を超える場所があれば、その場所の反力が小さくなるように、下型11又は上型12が設計変更されればよい。Φ1又はΦ2が1.0×10-4を超える場所が無くなるまで、下型11又は上型12の設計変更が繰り返し行われる。但し、シミュレーションでΦ1又はΦ2が1.0×10-4を超える場所を探すのは、煩雑である。
そこで、本願発明者は、荷重を加えた後のガラス板2の第1主面21又は第2主面22の形状に着目し、曲率差Δkの大きい場所、つまり、曲率変化の大きい場所に着目した。曲率変化の大きい場所では、その曲率変化を達成すべくガラス板2が局所的に強く押されると推定され、Φ1又はΦ2が大きくなると推定される。
なお、基準断面として、曲率差Δkが最大になる断面を採用する理由も、同様である。曲率差Δkが最大になる断面において、ガラス板2が局所的に最も強く押されると推定され、Φ1又はΦ2が大きくなると推定される。
本発明者は、曲率差Δkを単独で用いるのではなく、曲率差Δkと曲げ剛性の積を用いることを検討した。曲げ剛性も、Φ1及びΦ2に対して影響を与えるからである。すなわち、曲げ剛性が大きいほど、曲率変化を達成すべくガラス板2が局所的に強く押されると推定されるからである。
図4に、従来の型全体の反力が一定である様態において(E×I×Δk)とΦ1・Φ2MAXとの関係の一例を示す。Eは成形温度でのガラス板2のヤング率(MPa)であり、Iは成形温度でのガラス板2の基準断面(XZ平面)のX軸に関する断面二次モーメント(mm)である。(E×I)は、ガラス板2の曲げ剛性を表す。Δkは、上記の通り、曲率差(1/mm)である。
図4に示す(E×I×Δk)は、曲率k1、k2(図3参照)を変更することで調節した。図4に示すΦ1・Φ2MAXは、曲率k1、k2以外、同じ条件で、シミュレーションにより求めた。そのシミュレーションにおいて、第1反力F1と第2反力F2の比(F1/F2)は、1に設定した。
図4から、従来の型全体の反力が一定である様態において(E×I×Δk)とΦ1・Φ2MAXの関係は、一次方程式で近似できることが分かる。図4に破線で示す一次方程式は、1.39×10-9/mm・MPaの傾きと、-9.98×10―6の切片を有する。(E×I×Δk)が大きくなるほど、Φ1・Φ2MAXが大きくなる。それゆえ、(E×I×Δk)が大きい場所の反力を低くすれば、ガラス板2の面品質を改善できることが分かる。
図4から、従来の型全体の反力が一定である様態において、(E×I×Δk)が8.2×10mm・MPa以下であれば、Φ1・Φ2MAXが1.0×10-4以下になることが分かる。同様に、(E×I×Δk)が1.4×10mm・MPa以下であれば、Φ1・Φ2MAXが1.0×10-5以下になることが分かる。
本実施形態では、下型11及び上型12の少なくとも1つは、好ましくは、(E×I×ΔK)が8.2×10mm・MPa以上(好ましくは1.4×10mm・MPa以上)である2点の中点から30mm以内の範囲の少なくとも一部(好ましくは全部)に、反力が反力の平均値よりも小さい部位を有する。上記30mm以内の範囲に、Φ1・Φ2MAXの位置が存在する。なお、下型11及び上型12の少なくとも1つは、上記の範囲外にも、反力が反力の平均値よりも小さい部位を有してもよい。本明細書において、反力の平均値は、基準断面においてX軸方向全体で計測した値である。
下型11及び上型12の少なくとも1つは、より好ましくは、(E×I×Δk)が最大になる2点の中点から30mm以内の範囲の少なくとも一部に、反力が反力の平均値よりも小さい部位を有する。上記の例13~例16では、(E×I×Δk)が最大になる2点の中点は重心P0である。上記の例14~例16では、下型11と上型12は、重心P0から45mm以内の範囲全体に、反力が反力の平均値よりも小さい部位を有する。
図5に、従来の型全体の反力が一定である様態において(E×I×Δk)とNGD(mm)の関係の一例を示す。NGDは、Φ1・Φ2MAXの位置付近でΦ1又はΦ2が1.0×10-5を超える領域の長さである。図5に示す(E×I×Δk)は、曲率k1、k2(図3参照)を変更することで調節した。図5においてΦ1及びΦ2は、曲率k1、k2以外、同じ条件で、シミュレーションにより求めた。そのシミュレーションにおいて、第1反力F1と第2反力F2の比(F1/F2)は、1に設定した。
図5から、従来の型全体の反力が一定である様態において、(E×I×Δk)とNGDの関係は、一次方程式で近似できることが分かる。図5に破線で示す一次方程式は、1.99×10-4/mm・MPaの傾きと、2.31mmの切片を有する。(E×I×Δk)が大きくなるほど、NGDが大きくなる。
本実施形態では、下型11及び上型12の少なくとも1つは、例えば、反力が反力の平均値よりも小さい部位を有する。その部位は、交線Lに沿って、D(D(mm)=1.99×10-4×(E×I×Δk)+2.31)以上の長さを有する。これにより、従来存在していたΦ1又はΦ2が1.0×10-5を超える場所をより無くしやすい。
図示しないが、下型11及び上型12の少なくとも1つは、荷重を加えた後のガラス板2の厚みが厚みの平均値よりも大きい領域(例えば、ガラス板2の周縁)に、反力が反力の平均値よりも小さい部位を有してもよい。荷重を加えることで発生したシワが寄せ集まり、厚みが厚くなることがある。シワが寄せ集まる領域で、ガラス板2が局所的に強く下型11又は上型12に押し付けられるのを抑制できる。
なお、本実施形態では、上記の通り、下型11及び上型12のうちの少なくとも1つを部分的に柔らかくすることで、ガラス板2の面品質を向上する。但し、上記式(1)及び上記式(2)から明らかなように、ガラス板2の粘度に分布を付けることで、ガラス板2の面品質を向上することも可能である。
ガラス板2に荷重を加える際に、ガラス板2は、下面21と上面22の少なくとも1つに、粘度の異なる複数の部位を有すればよい。ガラス板2に荷重を加える際に、ガラス板の粘度は、107.9Pa・s~1012.7Pa・sである。
次に、図6~図8を参照して、下型11の第1変形例~第3変形例について説明する。なお、上型12も、図6~図8に示す下型11と同様に構成されてもよい。図6に示すように、下型11は、ガラス板2の下面21を独立に押す複数の可動部111と、複数の可動部111の反力を調節する反力調節部112を有する。可動部111は、例えばピンである。ピンは、鉛直に立てて用いられる。なお、可動部111は、板であってもよい。可動部111は、間隔をおいて配列される。
反力調節部112は、例えば弾性率の異なる複数のゴム1121、1122を含む。ゴムの代わりにバネが用いられてもよい。バネ又はゴムなどの弾性率を変更することで、反力を変更することができる。可動部111毎に1つずつバネ又はゴムが設けられてもよいが、図7に示すように1つのゴム(ゴム1121又は1122)が複数の可動部111を付勢してもよい。図7に示すように、弾性率の異なる複数のゴム1121、1122が一体化されてもよい。
反力調節部112は、バネ又はゴムを含まなくてもよく、図8に示すように、凹部113を含んでもよい。凹部113は、下型11の側面に形成されてもよいし、下型11の下面に形成されてもよい。下型11は、凹部113の上方に設けられる肉薄部114と、肉薄部114よりも厚い肉厚部115とで、ガラス板2を押す。肉薄部114では、肉厚部115に比べて、反力が小さくなる。
次に、図9~図10を参照して、格子構造体120の一例について説明する。反力調節部112は、図9~図10に示す格子構造体120を複数有してもよい。複数の格子構造体120は、図示しないが、二次元的、又は三次元的に組み立てられる。組み立てが容易になるように、複数の格子構造体120は同じ大きさの立方体であってもよい。
格子構造体120は、第1四角枠121と、第1四角枠121の一辺から第1四角枠121の中央まで延びるカンチレバー122と、を含み、カンチレバー122の弾性復元力で反力を生じさせる。カンチレバー122の厚みTを変更することで、弾性率を変更でき、反力を変更できる。カンチレバー122の先端には、第1突起123が設けられてもよい。第1突起123は、立方体の外方(上方又は下方)に向けて突出する。複数の格子構造体120が上下方向に積み重ねられる場合、上側の格子構造体120に含まれる下向きの第1突起123と、下側の格子構造体120に含まれる上向きの第1突起123とが接触する。複数の格子構造体120の各カンチレバー122の弾性率で、反力を調節できる。
格子構造体120は、例えば、上面と下面の各々に第1四角枠121を含み、4つの側面の各々に第2四角枠124を含む。格子構造体120は、第2四角枠124の開口部を塞ぐ蓋125を更に含んでもよい。蓋125の中央には、第2突起126が設けられてもよい。第2突起126は、立方体の外方(側方)に向けて突出する。複数の格子構造体120が水平方向に面状に並べられる場合、左側の格子構造体120に含まれる右向きの第2突起126と、右側の格子構造体120に含まれる左向きの第2突起126とが接触する。
以上、本開示に係るガラス板の製造方法、及びガラス板の成形装置について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。
本開示は、以下の発明を記載するものである。なお、これに限定されるものではない。
[1]第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の製造方法であって、
ガラス板を加熱することと、
予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含み、
前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、ガラス板の製造方法。
[2]前記上型と前記下型のうち、前記ガラス板の前記第2主面を押す型を第2型とすると、前記第2型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第2型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、[1]に記載のガラス板の製造方法。
[3]前記荷重を解放した時に上方から見た前記第1主面の重心を通る鉛直な軸を含む断面のうち、前記断面と前記第1主面の交線に沿って5mm離れた2点での曲率差(≧0)が最大になる前記断面を基準断面とし、前記基準断面上で前記重心を通る水平な軸をX軸とし、前記荷重を加える時の前記ガラス板のヤング率をEとし、前記荷重を加える時の前記ガラス板の前記基準断面の前記X軸に関する断面二次モーメントをIとし、前記基準断面と前記第1主面の前記交線に沿って5mm離れた2点での曲率差をΔkとすると、
前記第1型は、EとIとΔkの積(E×I×Δk)が8.2×10mm・MPa以上である前記2点の中点から30mm以内の範囲の少なくとも一部に、前記反力が前記反力の平均値よりも小さい部位を有する、[1]又は[2]に記載のガラス板の製造方法。
[4]前記第1型は、EとIとΔkの積(E×I×Δk)が最大になる前記2点の中点から30mm以内の範囲の少なくとも一部に、前記反力が前記反力の平均値よりも小さい部位を有する、[3]に記載のガラス板の製造方法。
[5]前記第1型は、前記反力が前記反力の平均値よりも小さい部位を有し、
前記部位は、前記交線に沿って、D(D(mm)=1.99×10-4×(E×I×Δk)+2.31)以上の長さを有する、[3]又は[4]に記載のガラス板の製造方法。
[6]前記第1型は、前記荷重を加えた後の前記ガラス板の厚みが前記厚みの平均値よりも大きい領域に、前記反力が前記反力の平均値よりも小さい部位を有する、[1]~[5]のいずれか1つに記載のガラス板の製造方法。
[7]第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の製造方法であって、
ガラス板を加熱することと、
予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含み、
前記ガラス板に前記荷重を加える際に、前記ガラス板は、前記第1主面に、粘度の異なる複数の部位を有する、ガラス板の製造方法。
[8]前記ガラス板に前記荷重を加える際に、前記ガラス板の粘度が107.9Pa・s~1012.7Pa・sである、請求項7に記載のガラス板の製造方法。
[9]下記式(1)で定義されるΦ1が、1.0×10-4以下である、[1]~[8]のいずれか1つに記載のガラス板の製造方法。
Figure 2023035944000006
P1:前記ガラス板に前記荷重を加える際に、前記ガラス板の前記第1主面を押す圧力[Pa]
η:前記ガラス板の粘度[Pa・sec]
t:前記ガラス板に前記荷重を加え始めてからの経過時間[sec]。
[10]下記式(2)で定義されるΦ2が、1.0×10-4以下である、[1]~[9]のいずれか1つに記載のガラス板の製造方法。
Figure 2023035944000007
P2:前記ガラス板に前記荷重を加える際に、前記ガラス板の前記第2主面を押す圧力[Pa]
η:前記ガラス板の粘度[Pa・sec]
t:前記ガラス板に前記荷重を加え始めてからの経過時間[sec]。
[11]前記ガラス板に前記荷重を加える時間が10秒~200秒である、[1]~[10]のいずれか1つに記載のガラス板の製造方法。
[12]前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、
前記第1型は、前記ガラス板の前記第1主面を独立に押す複数の可動部と、複数の前記可動部の反力を調節する反力調節部を有する、[1]~[11]のいずれか1つに記載のガラス板の製造方法。
[13]第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の成形装置であって、
ガラス板の下方に配置される下型と、前記ガラス板の上方に配置される上型と、を備え、前記下型と前記上型で前記ガラス板を挟んで前記ガラス板に荷重を加え、
前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、ガラス板の成形装置。
[14]前記第1型は、前記反力を調節する反力調節部を含む、[13]に記載のガラス板の成形装置。
[15]前記反力調節部は、四角枠と、前記四角枠の一辺から前記四角枠の中央まで延びるカンチレバーと、を含み、前記カンチレバーの弾性復元力で前記反力を生じさせる、[14]に記載のガラス板の成形装置。
本出願は、2021年8月30日出願の日本特許出願2021-139642に基づくものであり、その内容はここに参照として取り込まれる。
1 成形装置
11 下型
12 上型
2 ガラス板
21 下面(第1主面)
22 上面(第2主面)

Claims (15)

  1. 第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の製造方法であって、
    ガラス板を加熱することと、
    予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含み、
    前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、ガラス板の製造方法。
  2. 前記上型と前記下型のうち、前記ガラス板の前記第2主面を押す型を第2型とすると、前記第2型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第2型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、請求項1に記載のガラス板の製造方法。
  3. 前記荷重を解放した時に上方から見た前記第1主面の重心を通る鉛直な軸を含む断面のうち、前記断面と前記第1主面の交線に沿って5mm離れた2点での曲率差(≧0)が最大になる前記断面を基準断面とし、前記基準断面上で前記重心を通る水平な軸をX軸とし、前記荷重を加える時の前記ガラス板のヤング率をEとし、前記荷重を加える時の前記ガラス板の前記基準断面の前記X軸に関する断面二次モーメントをIとし、前記基準断面と前記第1主面の前記交線に沿って5mm離れた2点での曲率差をΔkとすると、
    前記第1型は、EとIとΔkの積(E×I×Δk)が8.2×10mm・MPa以上である前記2点の中点から30mm以内の範囲の少なくとも一部に、前記反力が前記反力の平均値よりも小さい部位を有する、請求項1又は2に記載のガラス板の製造方法。
  4. 前記第1型は、EとIとΔkの積(E×I×Δk)が最大になる前記2点の中点から30mm以内の範囲の少なくとも一部に、前記反力が前記反力の平均値よりも小さい部位を有する、請求項3に記載のガラス板の製造方法。
  5. 前記第1型は、前記反力が前記反力の平均値よりも小さい部位を有し、
    前記部位は、前記交線に沿って、D(D(mm)=1.99×10-4×(E×I×Δk)+2.31)以上の長さを有する、請求項3に記載のガラス板の製造方法。
  6. 前記第1型は、前記荷重を加えた後の前記ガラス板の厚みが前記厚みの平均値よりも大きい領域に、前記反力が前記反力の平均値よりも小さい部位を有する、請求項1または2のいずれか1項に記載のガラス板の製造方法。
  7. 第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の製造方法であって、
    ガラス板を加熱することと、
    予め加熱した前記ガラス板を下型と上型で挟んで、前記ガラス板に荷重を加えることと、を含み、
    前記ガラス板に前記荷重を加える際に、前記ガラス板は、前記第1主面に、粘度の異なる複数の部位を有する、ガラス板の製造方法。
  8. 前記ガラス板に前記荷重を加える際に、前記ガラス板の粘度が107.9Pa・s~1012.7Pa・sである、請求項7に記載のガラス板の製造方法。
  9. 下記式(1)で定義されるΦ1が、1.0×10-4以下である、請求項1または7に記載のガラス板の製造方法。
    Figure 2023035944000008
    P1:前記ガラス板に前記荷重を加える際に、前記ガラス板の前記第1主面を押す圧力[Pa]
    η:前記ガラス板の粘度[Pa・sec]
    t:前記ガラス板に前記荷重を加え始めてからの経過時間[sec]
  10. 下記式(2)で定義されるΦ2が、1.0×10-4以下である、請求項1または7に記載のガラス板の製造方法。
    Figure 2023035944000009
    P2:前記ガラス板に前記荷重を加える際に、前記ガラス板の前記第2主面を押す圧力[Pa]
    η:前記ガラス板の粘度[Pa・sec]
    t:前記ガラス板に前記荷重を加え始めてからの経過時間[sec]
  11. 前記ガラス板に前記荷重を加える時間が10秒~200秒である、請求項1または7のいずれか1項に記載のガラス板の製造方法。
  12. 前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、
    前記第1型は、前記ガラス板の前記第1主面を独立に押す複数の可動部と、複数の前記可動部の反力を調節する反力調節部を有する、請求項1または7のいずれか1項に記載のガラス板の製造方法。
  13. 第1主面及び前記第1主面とは反対向きの第2主面を含み、前記第1主面と前記第2主面に曲面形状を含む、ガラス板の成形装置であって、
    ガラス板の下方に配置される下型と、前記ガラス板の上方に配置される上型と、を備え、前記下型と前記上型で前記ガラス板を挟んで前記ガラス板に荷重を加え、
    前記上型と前記下型のうち、前記ガラス板の前記第1主面を押す型を第1型とすると、前記第1型は、前記ガラス板を押す型表面に、直径10mmの半球状の先端を持つ治具であって前記第1型よりも剛性の高い治具で鉛直方向に10μm押し込んだ場合に異なる反力を生じる複数の部位を有する、ガラス板の成形装置。
  14. 前記第1型は、前記反力を調節する反力調節部を含む、請求項13に記載のガラス板の成形装置。
  15. 前記反力調節部は、四角枠と、前記四角枠の一辺から前記四角枠の中央まで延びるカンチレバーと、を含み、前記カンチレバーの弾性復元力で前記反力を生じさせる、請求項14に記載のガラス板の成形装置。
JP2022134099A 2021-08-30 2022-08-25 ガラス板の製造方法、及びガラス板の成形装置 Pending JP2023035944A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139642 2021-08-30
JP2021139642 2021-08-30

Publications (1)

Publication Number Publication Date
JP2023035944A true JP2023035944A (ja) 2023-03-13

Family

ID=85292874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022134099A Pending JP2023035944A (ja) 2021-08-30 2022-08-25 ガラス板の製造方法、及びガラス板の成形装置

Country Status (2)

Country Link
JP (1) JP2023035944A (ja)
CN (1) CN115724578A (ja)

Also Published As

Publication number Publication date
CN115724578A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US11084751B2 (en) Shaped glass articles and methods for forming the same
TWI794169B (zh) 包含金屬氧化物濃度梯度之玻璃基物件、形成該物件之方法、及包含該物件之裝置
US10759147B2 (en) Laminated glass article and method for forming the same
WO2015005212A1 (ja) 強化ガラス及び強化用ガラス
JP5435166B1 (ja) 屈曲部を有するガラス板の製造方法及び屈曲部を有するガラス板
JP7215662B2 (ja) 曲面合わせガラスの製造方法およびこれにより製造された曲面合わせガラス
WO2014185383A1 (ja) 強化ガラスの製造方法及び強化ガラス
JP2004508995A (ja) 窓ガラス
US20200010358A1 (en) Glasses having improved ion exchangeability and thermal expansion
JP7393604B2 (ja) 化学強化ガラス及びフォルダブルデバイス
US20100126222A1 (en) Method and apparatus for forming and cutting a shaped article from a sheet of material
JP2023035944A (ja) ガラス板の製造方法、及びガラス板の成形装置
CN112512981B (zh) 强化玻璃及强化用玻璃
US20230049035A1 (en) Cover glass
KR102257831B1 (ko) 곡면 접합 유리 및 곡면 접합 유리의 제조 방법
CN111417604A (zh) 制造经涂覆的基于玻璃的部件的方法
CN112969667A (zh) 具有三维形状的玻璃物品及其制造方法、化学强化玻璃物品及其制造方法
JP7196855B2 (ja) 屈曲基材の製造方法及び屈曲基材の成形型
WO2023181719A1 (ja) ガラス板の製造方法
JP2023110893A (ja) ガラス板の製造方法、及びガラス板の成形装置
JP6935806B2 (ja) ガラス板およびその成形方法
TW202346222A (zh) 強化玻璃板、強化玻璃板的製造方法以及強化用玻璃板