JP2023025496A - Joined body, method for manufacturing the same, and electrode embedding member - Google Patents

Joined body, method for manufacturing the same, and electrode embedding member Download PDF

Info

Publication number
JP2023025496A
JP2023025496A JP2021130779A JP2021130779A JP2023025496A JP 2023025496 A JP2023025496 A JP 2023025496A JP 2021130779 A JP2021130779 A JP 2021130779A JP 2021130779 A JP2021130779 A JP 2021130779A JP 2023025496 A JP2023025496 A JP 2023025496A
Authority
JP
Japan
Prior art keywords
metal
ceramic member
joined body
ceramic
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021130779A
Other languages
Japanese (ja)
Inventor
敬介 大木
Keisuke Oki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2021130779A priority Critical patent/JP2023025496A/en
Publication of JP2023025496A publication Critical patent/JP2023025496A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Ceramic Products (AREA)

Abstract

To provide a joined body which can suppress erosion and contamination of a joined surface, has strong bond strength, and has thick metal member, a method for manufacturing the same, and an electrode embedding member.SOLUTION: There is provided a joined body 10 of a ceramic member 20 containing AIN as a main component and a metal member 30 composed of high melting point metal having a melting point of 2,000°C or higher, wherein the ceramic member 20 is joined to at least one main surface 32 of the metal member 30, the ceramic member 20 includes a second phase composed of a metal oxide, the metal member 30 has a maximum thickness in a direction perpendicular to the one main surface 32 of the metal member 30 of 1 mm or more, and in a joint interface between the ceramic member 20 and the metal member 30, the concentration of metal constituting the second phase and oxygen concentration of the ceramic member 20 are larger than the concentration of the metal and the oxygen concentration inside the ceramic member 20.SELECTED DRAWING: Figure 1

Description

本発明は、接合体、その製造方法、および電極埋設部材に関する。 TECHNICAL FIELD The present invention relates to a bonded body, a manufacturing method thereof, and an electrode-embedded member.

半導体製造装置に用いられるAlN製部材は、様々な機能を付加することを目的として、金属部材と接合させることがあった。 AlN members used in semiconductor manufacturing equipment are sometimes joined to metal members for the purpose of adding various functions.

特許文献1には、窒化アルミニウム部材と金属部材がAlロウ材で接合された接合体および半導体保持装置が開示されている。好適な態様として、窒化アルミニウム部材が、半導体ウエハーを設置するための設置面を備えた半導体保持部材であり、金属部材が、半導体保持部材と外部との間で熱量の伝達を行うための熱伝達部材である例が開示されている。また、熱伝達部材の例として、タングステン、モリブデン、銅、またはこれらの合金によって形成する、と開示されている。これらの金属部材はヒートシンクとして機能し一定の厚さを有している。 Patent Literature 1 discloses a joined body and a semiconductor holding device in which an aluminum nitride member and a metal member are joined with Al brazing material. As a preferred embodiment, the aluminum nitride member is a semiconductor holding member having an installation surface for installing a semiconductor wafer, and the metal member is a heat transfer member for transferring heat between the semiconductor holding member and the outside. An example is disclosed that is a member. It also discloses that the heat transfer member is made of tungsten, molybdenum, copper, or an alloy thereof. These metal members function as heat sinks and have a certain thickness.

また、特許文献2には、比較的大きな厚みを有し且つ導電性の高い焼結金属層を内蔵し、しかも、反りの発生が極めて小さく抑えられ、さらには焼結金属層と基板との接合強度も高く、電極埋設部材の用途に好適な窒化アルミニウム接合体及びその製造方法を提供することを目的として、接合面の少なくとも一部に、厚み15~100μmのタングステン又はモリブデンよりなる焼結金属層が形成された窒化アルミニウム焼結体の接合体であって、前記焼結金属層のシート抵抗値が1Ω/□以下であり、且つ前記焼結金属層の反りが100μm/100mm以下である窒化アルミニウム接合体が開示されている。 In addition, in Patent Document 2, a sintered metal layer having a relatively large thickness and high conductivity is incorporated, and warping is suppressed to an extremely low level. A sintered metal layer made of tungsten or molybdenum and having a thickness of 15 to 100 μm is provided on at least a part of the bonding surface for the purpose of providing an aluminum nitride bonded body that has high strength and is suitable for use as an electrode-embedded member, and a method for manufacturing the same. is formed of aluminum nitride sintered bodies, wherein the sintered metal layer has a sheet resistance value of 1 Ω/□ or less and a warp of the sintered metal layer of 100 μm/100 mm or less A conjugate is disclosed.

特開平9-249465号公報JP-A-9-249465 特開2005-159334号公報JP-A-2005-159334 特開平5-246769号公報JP-A-5-246769 特開昭62-78167号公報JP-A-62-78167

日本金属学会誌 第45巻第2号(1981) P.184-P.189Journal of the Japan Institute of Metals, Vol. 45, No. 2 (1981) p. 184-P. 189

半導体製造プロセスで使用されるAlNセラミックは、ヒートシンク等に利用される高融点金属(融点が2000℃以上の金属)と一体化される場合があった。そのためには高融点金属は一定以上の厚みが必要であるが、特許文献2のような焼結金属層ではそのような構造とすることはできなかった。 AlN ceramics used in semiconductor manufacturing processes are sometimes integrated with high-melting-point metals (metals with a melting point of 2000° C. or higher) used for heat sinks and the like. For this purpose, the refractory metal must have a certain thickness or more, but the sintered metal layer as disclosed in Patent Document 2 cannot have such a structure.

また、非特許文献1によると、AlNと高融点金属は接合材なしでは反応しないため接合体を作製することは困難であるとされてきた。そのため、従来はAlNセラミックと高融点金属の接合体は、接合界面にロウ材等を介在させて接合する(特許文献1、3、4)方法で製作されていた。 In addition, according to Non-Patent Document 1, it has been considered difficult to produce a bonded body because AlN and a high-melting-point metal do not react without a bonding material. Therefore, conventionally, a joined body of AlN ceramic and a high-melting-point metal has been manufactured by a method of joining by interposing a brazing material or the like at the joint interface (Patent Documents 1, 3, and 4).

しかし、これらの接合体を半導体製造プロセスで使用する場合、特許文献1、3、4の方法では、接合層であるロウ材の浸食、接合層からのコンタミネーションが懸念された。そのため、AlNセラミックと厚みの厚い高融点金属の接合体であって、接合材からのコンタミネーションや浸食の恐れを抑制したAlN-高融点金属接合体が望まれていた。 However, when these bonded bodies are used in a semiconductor manufacturing process, the methods of Patent Documents 1, 3, and 4 raise concerns about erosion of the brazing material that is the bonding layer and contamination from the bonding layer. Therefore, an AlN-high melting point metal joined body, which is a joined body of AlN ceramic and a thick high melting point metal, and which suppresses the risk of contamination and corrosion from the joining material, has been desired.

本発明は、このような事情に鑑みてなされたものであり、接合面の浸食やコンタミネーションを抑制でき、接合強度が強く、金属部材の厚みが厚い接合体、その製造方法、および電極埋設部材を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and a joined body in which erosion and contamination of the joint surface can be suppressed, joint strength is high, and the thickness of the metal member is large, a method for producing the same, and an electrode-embedded member intended to provide

(1)上記の目的を達成するため、本発明の接合体は、AlNを主成分とするセラミックス部材および融点が2000℃以上の高融点金属からなる金属部材の接合体であって、前記セラミックス部材は、少なくとも前記金属部材の一方の主面に接合され、前記セラミックス部材は、金属酸化物からなる第2相を含み、前記金属部材は、前記金属部材の一方の主面に垂直な方向の最大厚みが1mm以上であり、前記セラミックス部材および前記金属部材の接合界面は、前記前記セラミックス部材の前記第2相を構成する金属の濃度および酸素濃度が、前記セラミックス部材の内部の前記金属の濃度および酸素濃度よりそれぞれ大きいことを特徴としている。 (1) In order to achieve the above object, a joined body of the present invention is a joined body of a ceramic member containing AlN as a main component and a metal member made of a high melting point metal having a melting point of 2000° C. or higher, wherein the ceramic member is bonded to at least one main surface of the metal member, the ceramic member includes a second phase composed of a metal oxide, and the metal member has a maximum It has a thickness of 1 mm or more, and the bonding interface between the ceramic member and the metal member has a concentration of the metal and an oxygen concentration that constitute the second phase of the ceramic member, and a concentration of the metal inside the ceramic member and It is characterized by being larger than the oxygen concentration.

このように、AlNを主成分とするセラミックス部材および高融点金属からなる金属部材の接合界面の第2相を構成する金属の濃度および酸素濃度が、セラミックス部材の内部の金属の濃度および酸素濃度よりそれぞれ大きいことで、これらを介してセラミックス部材と金属部材とが接合され、接合面の浸食やコンタミネーションを抑制した接合体が得られる。また、金属部材の厚みが厚いことで、金属部材をヒートシンクやヒートスプレッダーとして利用したり、セラミックス部材の強度や寸法精度を高めたりするなど、様々な用途に適用できる。金属部材の最大厚みが1mmより小さくなると寸法精度を高める効果が十分に発揮されなくなるため1mm以上であることが好ましい。 Thus, the metal concentration and oxygen concentration of the second phase at the bonding interface between the ceramic member containing AlN as a main component and the metal member made of a high-melting-point metal are higher than the metal concentration and oxygen concentration inside the ceramic member. Since each of them is large, the ceramic member and the metal member are joined via these, and a joined body in which erosion and contamination of the joining surfaces are suppressed can be obtained. In addition, since the thickness of the metal member is large, it can be used for various purposes such as using the metal member as a heat sink or heat spreader, or increasing the strength and dimensional accuracy of the ceramic member. If the maximum thickness of the metal member is less than 1 mm, the effect of improving the dimensional accuracy cannot be sufficiently exhibited, so the maximum thickness is preferably 1 mm or more.

(2)また、本発明の接合体において、前記セラミックス部材は、第4族の金属を含み、前記金属部材は、前記第4族の金属が拡散していることを特徴としている。 (2) In the joined body of the present invention, the ceramic member contains a Group 4 metal, and the metal member has the Group 4 metal diffused therein.

このように、セラミックス部材が第4族の金属を含み、金属部材に第4族の金属が拡散していることで、セラミックス部材と金属部材との接合強度が強くなり、接合体の信頼性が高くなる。 In this way, the ceramic member contains the Group 4 metal, and the Group 4 metal is diffused in the metal member, so that the bonding strength between the ceramic member and the metal member increases, and the reliability of the bonded body increases. get higher

(3)また、本発明の接合体において、前記金属部材は、第2の金属酸化物を1wt%以下含むことを特徴としている。 (3) Further, in the joined body of the present invention, the metal member contains 1 wt % or less of the second metal oxide.

このように、金属部材が第2の金属酸化物を1wt%以下含むことで、セラミックス部材と金属部材との接合強度が強くなり、接合体の信頼性が高くなる。 In this way, when the metal member contains 1 wt % or less of the second metal oxide, the bonding strength between the ceramic member and the metal member increases, and the reliability of the bonded body increases.

(4)また、本発明の接合体は、前記金属部材の一方の主面に対向する側の他方の主面に、さらにセラミックス部材が接合されていることを特徴としている。 (4) In addition, the joined body of the present invention is characterized in that a ceramic member is further joined to the other main surface of the metal member facing the one main surface.

このように、金属部材の両方の主面にセラミックス部材が接合されることにより、接合体の用途がさらに拡大する。 By joining the ceramic member to both main surfaces of the metal member in this way, the application of the joined body is further expanded.

(5)また、本発明の電極埋設部材は、上記(1)から(3)のいずれかに記載の接合体と、前記接合体のセラミックス部材に埋設された電極と、を備えることを特徴としている。 (5) Further, an electrode-embedded member of the present invention is characterized by comprising the joined body according to any one of the above (1) to (3) and an electrode embedded in the ceramic member of the joined body. there is

AlNは熱伝導率が高く絶縁性が高いため、セラミックス部材および金属部材の接合体のセラミックス部材に電極を埋設した電極埋設部材は、熱伝導性に優れたヒーターモジュールとして利用することができる。 Since AlN has a high thermal conductivity and a high insulating property, an electrode-embedded member in which an electrode is embedded in a ceramic member and a joint body of a ceramic member and a metal member can be used as a heater module with excellent thermal conductivity.

(6)また、本発明の接合体の製造方法は、AlNを主成分とするセラミックス部材および融点が2000℃以上の高融点金属からなる金属部材の接合体の製造方法であって、AlN原料粉に金属酸化物原料粉を添加した粉末を造粒して造粒粉を作製する工程と、前記造粒粉または前記造粒粉から形成した成形体、および厚み1mm以上の板状の高融点金属を、前記板状の高融点金属の一方の主面が積層方向に垂直になるようにカーボン型に積層する工程と、前記カーボン型にカーボンパンチを挿入し、積層体を形成する工程と、前記積層体を一軸加圧焼成する工程と、を含むことを特徴としている。 (6) Further, a method for manufacturing a bonded body of the present invention is a method for manufacturing a bonded body of a ceramic member containing AlN as a main component and a metal member made of a high melting point metal having a melting point of 2000° C. or higher, wherein the AlN raw material powder a step of granulating a powder obtained by adding a metal oxide raw material powder to a granulated powder to produce a granulated powder; the granulated powder or a molded body formed from the granulated powder; are stacked in a carbon mold so that one main surface of the plate-like high-melting-point metal is perpendicular to the stacking direction; inserting a carbon punch into the carbon mold to form a laminate; and a step of sintering the laminate under uniaxial pressure.

これにより、接合面の浸食やコンタミネーションを抑制したセラミックス部材および金属部材の接合体が得られる。金属部材の厚みが厚いことで、金属部材をヒートシンクとして利用したり、セラミックス部材の強度や寸法精度を高めたりするなど、様々な用途に適用できる。 As a result, it is possible to obtain a joined body of the ceramic member and the metal member in which corrosion and contamination of the joining surfaces are suppressed. Since the thickness of the metal member is large, it can be used for various purposes such as using the metal member as a heat sink and increasing the strength and dimensional accuracy of the ceramic member.

本発明によれば、AlNを主成分とするセラミックス部材および高融点金属からなる金属部材の接合面の浸食やコンタミネーションを抑制した接合体が得られる。また、金属部材の厚みが厚いことで、金属部材をヒートシンクとして利用したり、セラミックス部材の強度や寸法精度を高めたりするなど、様々な用途に適用できる。 According to the present invention, it is possible to obtain a joined body in which erosion and contamination of the joining surfaces of a ceramic member mainly composed of AlN and a metal member made of a high-melting-point metal are suppressed. In addition, since the thickness of the metal member is large, it can be used for various purposes such as using the metal member as a heat sink and increasing the strength and dimensional accuracy of the ceramic member.

本発明の実施形態に係る接合体の一例を示す模式的な断面図である。1 is a schematic cross-sectional view showing an example of a joined body according to an embodiment of the present invention; FIG. 本発明の実施形態に係る接合体の変形例を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing a modified example of the joined body according to the embodiment of the present invention; 本発明の実施形態に係る電極埋設部材の一例を示す模式的な断面図である。1 is a schematic cross-sectional view showing an example of an electrode-embedded member according to an embodiment of the present invention; FIG. (a)~(e)、それぞれ本発明の実施形態に係る製造方法の製造工程の一段階を模式的に示す断面図である。4A to 4E are cross-sectional views schematically showing one stage of the manufacturing process of the manufacturing method according to the embodiment of the present invention, respectively; FIG. (a)、実施例1の断面のSEM画像である。(b)~(d)、それぞれ実施例1の断面のEPMA分析のマッピングを示す写真である。(a) is a cross-sectional SEM image of Example 1; (b) to (d) are photographs showing the mapping of EPMA analysis of the cross section of Example 1, respectively.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。なお、構成図において、各構成要素の大きさは概念的に表したものであり、必ずしも実際の寸法比率を表すものではない。 Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in each drawing, and overlapping descriptions are omitted. In addition, in the configuration diagram, the size of each component is conceptually represented, and does not necessarily represent the actual size ratio.

[実施形態]
[接合体の構成]
まず、本発明の実施形態に係る接合体を説明する。図1は、本発明の実施形態に係る接合体の一例を示す模式的な断面図である。本発明の実施形態に係る接合体10は、AlNを主成分とするセラミックス部材20および高融点金属からなる金属部材30が接合されて形成されている。AlNを主成分とするセラミックス部材とは、AlNを90wt%以上含むことをいう。また、高融点金属からなる金属部材とは、融点が2000℃以上のモリブデン(Mo)やタングステン(W)、タンタル(Ta)等が適用でき、純度99wt%以上のものを指す。これにより、一軸加圧焼成時の温度であっても金属部材30の変形が抑制される。また、同時にAlNと金属部材30との界面で900℃以上の比較的高温の融点を持つ高融点金属酸化物が形成されるため、AlNと金属部材30の接合界面の変形を抑制することができる。
[Embodiment]
[Structure of conjugate]
First, a bonded body according to an embodiment of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing an example of a joined body according to an embodiment of the invention. A bonded body 10 according to an embodiment of the present invention is formed by bonding a ceramic member 20 mainly composed of AlN and a metal member 30 made of a high-melting-point metal. A ceramic member containing AlN as a main component means containing 90 wt % or more of AlN. A metal member made of a high-melting-point metal can be molybdenum (Mo), tungsten (W), tantalum (Ta), or the like, which has a melting point of 2000° C. or higher, and refers to a material with a purity of 99 wt % or higher. As a result, deformation of the metal member 30 is suppressed even at the temperature during uniaxial pressure firing. At the same time, since a high-melting-point metal oxide having a relatively high melting point of 900° C. or higher is formed at the interface between AlN and the metal member 30, deformation of the bonding interface between AlN and the metal member 30 can be suppressed. .

接合体10は、セラミックス部材20が少なくとも金属部材30の一方の主面に接合されている。また、金属部材30は、セラミックス部材20の最大径の50%以上の最大径を有することが好ましい。また、セラミックス部材20は、金属部材30の一方の主面の全面に接合されることが好ましい。これらの特徴を有することで、金属部材30を様々な用途に応じた形態で適用できる。また、セラミックス部材20は、金属部材30の一方の主面に他の部材を介さず直接接合されることが好ましい。他の部材を介すと、接合強度が小さくなる虞があるためである。 The joined body 10 has a ceramic member 20 joined to at least one main surface of a metal member 30 . Moreover, the metal member 30 preferably has a maximum diameter of 50% or more of the maximum diameter of the ceramic member 20 . Also, the ceramic member 20 is preferably bonded to the entire one main surface of the metal member 30 . By having these characteristics, the metal member 30 can be applied in a form suitable for various uses. Moreover, it is preferable that the ceramic member 20 is directly bonded to one main surface of the metal member 30 without interposing another member. This is because if another member is interposed, the bonding strength may decrease.

セラミックス部材20は、金属酸化物からなる第2相を含む。第2相の金属酸化物を構成する金属は、Y、Caから選択された1種類以上であることが好ましく、Yであることがより好ましい。第2相を構成する金属酸化物は、AlNを主成分とするセラミックス部材の焼結助剤であってもよい。その場合、第2相を構成する金属酸化物は、セラミックス部材の焼結助剤として必要な量添加されていてもよい。例えば、Yを焼結助剤として添加される場合、Y換算で0.1wt%以上5wt%以下添加されてもよい。 The ceramic member 20 contains a second phase of metal oxide. The metal constituting the metal oxide of the second phase is preferably one or more selected from Y and Ca, more preferably Y. The metal oxide that constitutes the second phase may be a sintering aid for a ceramic member containing AlN as a main component. In that case, the metal oxide constituting the second phase may be added in a necessary amount as a sintering aid for the ceramic member. For example, when Y is added as a sintering aid, it may be added in an amount of 0.1 wt % or more and 5 wt % or less in terms of Y 2 O 3 .

金属部材30は、金属部材30の一方の主面32に垂直な方向の最大厚みが1mm以上である。このように、金属部材30の厚みが厚いことで、金属部材30をヒートシンクやヒートスプレッダーとして利用したり、セラミックス部材20の強度や寸法精度を高めたりするなど、様々な用途に適用できる。金属部材30の一方の主面32とは、セラミックス部材20との接合面である。金属部材30の厚みが厚いとは、金属部材30の一方の主面32に垂直な方向の最大厚みが1mm以上であることとする。金属部材30の最大厚みが1mmより小さくなると寸法精度を高める効果が十分に発揮されなくなるため1mm以上であることが好ましい。 Metal member 30 has a maximum thickness of 1 mm or more in a direction perpendicular to one main surface 32 of metal member 30 . Since the metal member 30 is thick as described above, the metal member 30 can be used as a heat sink or a heat spreader, and can be applied to various applications such as increasing the strength and dimensional accuracy of the ceramic member 20 . One main surface 32 of the metal member 30 is a joint surface with the ceramic member 20 . The metal member 30 having a large thickness means that the maximum thickness of the metal member 30 in a direction perpendicular to one main surface 32 is 1 mm or more. If the maximum thickness of the metal member 30 is less than 1 mm, the effect of improving the dimensional accuracy is not sufficiently exhibited, so the maximum thickness is preferably 1 mm or more.

金属部材30の一方の主面32に垂直な方向の最大厚みは、適用する用途に応じた厚みにすることが好ましい。本発明のような金属部材30の厚みの厚い接合体がなかったことを考慮すると、用途によっては、例えば、2mm以上であることが好ましく、3mm以上であることがより好ましく、4mm以上であることがさらに好ましい。 It is preferable that the maximum thickness of the metal member 30 in the direction perpendicular to one main surface 32 is set according to the intended use. Considering that there was no metal member 30 joined with a large thickness like the present invention, the thickness is preferably 2 mm or more, more preferably 3 mm or more, and 4 mm or more depending on the application. is more preferred.

セラミックス部材20および金属部材30の接合界面は、セラミックス部材20の第2相を構成する金属の濃度および酸素濃度が、セラミックス部材20の内部の当該金属の濃度および酸素濃度よりそれぞれ大きい。このように、AlNを主成分とするセラミックス部材20および高融点金属からなる金属部材30の接合界面の第2相を構成する金属の濃度および酸素濃度が、セラミックス部材20の内部の金属の濃度および酸素濃度よりそれぞれ大きいことで、これらを介してセラミックス部材20と金属部材30とが接合され、接合面の浸食やコンタミネーションを抑制した接合体が得られる。 At the bonding interface between the ceramic member 20 and the metal member 30 , the metal concentration and oxygen concentration that constitute the second phase of the ceramic member 20 are higher than the metal concentration and oxygen concentration inside the ceramic member 20 . In this way, the metal concentration and oxygen concentration forming the second phase at the joint interface between the ceramic member 20 mainly composed of AlN and the metal member 30 made of a high-melting-point metal correspond to the metal concentration and oxygen concentration inside the ceramic member 20. Since the respective oxygen concentrations are higher than the oxygen concentration, the ceramic member 20 and the metal member 30 are joined via these, and a joined body in which erosion and contamination of the joint surfaces are suppressed is obtained.

なお、セラミックス部材20および金属部材30の接合界面とは、EDXまたはEPMAによる断面の元素マッピングにおいて金属部材30を主に構成する金属元素が急激にその濃度を低下させる界面を指す。また、セラミックス部材20の内部とは、接合界面から少なくとも1mm離間しセラミックス部材20の第2相を構成する金属の濃度が一様である領域を示す。 Note that the bonding interface between the ceramic member 20 and the metal member 30 refers to an interface where the concentration of the metal element that mainly constitutes the metal member 30 sharply decreases in cross-sectional elemental mapping by EDX or EPMA. Further, the inside of the ceramic member 20 indicates a region which is at least 1 mm away from the bonding interface and where the concentration of the metal forming the second phase of the ceramic member 20 is uniform.

セラミックス部材20、金属部材30、またはその接合界面に存在する金属の濃度変化は、EPMAによる当該領域の特性X線の強度(カウント数)の比較によって行うことができる。これにより界面近傍および内部の金属及び酸素濃度の差を相対的に評価することができる。 The change in concentration of the metal present in the ceramic member 20, the metal member 30, or the joint interface thereof can be performed by comparing the intensity (number of counts) of the characteristic X-rays of the relevant region by EPMA. This makes it possible to relatively evaluate the difference in metal and oxygen concentrations near and inside the interface.

セラミックス部材20は、さらに第4族の金属を含み、金属部材30は、当該第4族の金属が拡散していることが好ましい。このように、セラミックス部材20が第4族の金属を含み、金属部材30に第4族の金属が拡散していることで、セラミックス部材20と金属部材30との接合強度が強くなり、接合体10の信頼性が高くなる。第4族の金属は、Ti、Hfから選択された1種類以上であることが好ましく、Tiであることがより好ましい。 Preferably, the ceramic member 20 further contains a Group 4 metal, and the metal member 30 has the Group 4 metal diffused therein. In this manner, the ceramic member 20 contains the Group 4 metal, and the Group 4 metal is diffused in the metal member 30, so that the bonding strength between the ceramic member 20 and the metal member 30 is increased, resulting in a bonded body. 10 becomes more reliable. The Group 4 metal is preferably one or more selected from Ti and Hf, more preferably Ti.

金属部材30は、第2の金属酸化物を1wt%以下含むことが好ましい。金属部材30が第2の金属酸化物を1wt%以下含むことで、セラミックス部材20と金属部材30との接合強度が強くなり、接合体10の信頼性が高くなる。第2の金属酸化物を構成する金属は、Y、Ce、Caから選択された1種類以上であることが好ましく、Y、またはCeであることがより好ましい。第2の金属酸化物を構成する金属は、セラミックス部材20の第2相の金属酸化物を構成する金属と同じであってもよい。金属部材30に予め含まれるこれらの金属酸化物成分が接合界面の金属や酸素濃度を高め、接合強度を高くすることができる。 The metal member 30 preferably contains 1 wt % or less of the second metal oxide. When the metal member 30 contains 1 wt % or less of the second metal oxide, the bonding strength between the ceramic member 20 and the metal member 30 is increased, and the reliability of the joined body 10 is increased. The metal constituting the second metal oxide is preferably one or more selected from Y, Ce, and Ca, and more preferably Y or Ce. The metal forming the second metal oxide may be the same as the metal forming the second phase metal oxide of the ceramic member 20 . These metal oxide components preliminarily contained in the metal member 30 increase the concentration of metal and oxygen at the bonding interface, thereby increasing the bonding strength.

図2は、本発明の実施形態に係る接合体の変形例を示す模式的な断面図である。図2に示されるように、金属部材30の一方の主面32に対向する側の他方の主面34に、さらにセラミックス部材20が接合されていることが好ましい。このように、金属部材30の両方の主面にセラミックス部材20が接合されることにより、接合体10の用途がさらに拡大する。また、セラミックス部材20で板状の高融点金属(金属部材30)を挟み込むことにより、接合体10の反りを抑制することができ、寸法精度の高い接合体10を作製することができる。なお、一方の主面32および他方の主面34を合わせて、両方の主面32、34、または主面32、34という。また、接合体10は、主面32、34以外の面にセラミックス部材20が接合されていてもよい。 FIG. 2 is a schematic cross-sectional view showing a modification of the joined body according to the embodiment of the invention. As shown in FIG. 2, it is preferable that the ceramic member 20 is further bonded to the main surface 34 of the metal member 30 on the side opposite to the main surface 32 . By bonding the ceramic member 20 to both main surfaces of the metal member 30 in this way, the application of the bonded body 10 is further expanded. Moreover, by sandwiching the plate-like high-melting-point metal (metal member 30) between the ceramic members 20, warping of the joined body 10 can be suppressed, and the joined body 10 with high dimensional accuracy can be manufactured. In addition, one principal surface 32 and the other principal surface 34 are collectively referred to as both principal surfaces 32 and 34 or principal surfaces 32 and 34 . Also, the bonded body 10 may have the ceramic member 20 bonded to surfaces other than the main surfaces 32 and 34 .

[電極埋設部材の構成]
次に、本発明の実施形態に係る電極埋設部材を説明する。図3は、本発明の実施形態に係る電極埋設部材の一例を示す模式的な断面図である。本発明の実施形態に係る電極埋設部材50は、接合体10と、接合体10のセラミックス部材20に埋設された電極40と、を備える。
[Structure of Electrode-Embedded Member]
Next, an electrode-embedded member according to an embodiment of the present invention will be described. FIG. 3 is a schematic cross-sectional view showing an example of an electrode-embedded member according to an embodiment of the invention. An electrode-embedded member 50 according to an embodiment of the present invention includes a joined body 10 and an electrode 40 embedded in a ceramic member 20 of the joined body 10 .

接合体10は、上述した接合体10である。電極40は、接合体10のセラミックス部材20に埋設される。電極40の形状は、メッシュ状や箔状など、様々な形状とすることができる。また、材質も、モリブデン、タングステンなど、様々な材質とすることができる。電極40は、ヒーター用電極として使用できる。 The bonded body 10 is the bonded body 10 described above. The electrode 40 is embedded in the ceramic member 20 of the joined body 10 . The shape of the electrode 40 can be various shapes such as a mesh shape and a foil shape. Also, various materials such as molybdenum and tungsten can be used. Electrode 40 can be used as a heater electrode.

電極埋設部材50は、図示しない端子穴、端子が設けられていてもよい。 The electrode embedded member 50 may be provided with terminal holes and terminals (not shown).

本発明の接合体および電極埋設部材は、AlNを主成分とするセラミックス部材および高融点金属からなる金属部材の接合面の浸食やコンタミネーションを抑制した部材である。また、本発明の接合体および電極埋設部材は、金属部材の厚みが厚いことで、金属部材をヒートシンクやヒートスプレッダーとして利用したり、セラミックス部材の強度や寸法精度を高めたりするなど、様々な用途に適用できる。 The joined body and the electrode-embedded member of the present invention are members in which erosion and contamination of the joining surfaces of the ceramic member mainly composed of AlN and the metal member made of a high-melting-point metal are suppressed. In addition, the joined body and the electrode-embedded member of the present invention have various uses, such as using the metal member as a heat sink or heat spreader, or increasing the strength and dimensional accuracy of the ceramic member, because the thickness of the metal member is large. can be applied to

[接合体の製造方法]
次に、上記のように構成された接合体10の製造方法を説明する。図4(a)~(e)は、それぞれ本発明の実施形態に係る製造方法の製造工程の一段階を模式的に示す断面図である。
[Method for producing joined body]
Next, a method for manufacturing the joined body 10 configured as described above will be described. 4A to 4E are cross-sectional views schematically showing one stage of the manufacturing process of the manufacturing method according to the embodiment of the present invention.

まず、AlN原料粉に金属酸化物原料粉を添加した粉末を造粒して造粒粉22を作製する。AlN原料粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。また、AlN粉末の平均粒径は、好ましくは0.1μm以上1.0μm以下、より好ましくは0.3μm以上0.8μm以下である。金属酸化物原料粉として、例えばYを用いる場合は、AlN原料粉に内比で0.1wt%~5wt%のYを添加し、PVA系等のバインダ、分散剤、溶剤を添加してスラリーを調製し、スプレードライヤー等により造粒粉22を造粒する。 First, granulated powder 22 is produced by granulating a powder obtained by adding metal oxide raw material powder to AlN raw material powder. The AlN raw material powder preferably has a high purity, and the purity is preferably 96% or higher, more preferably 98% or higher. Also, the average particle diameter of the AlN powder is preferably 0.1 μm or more and 1.0 μm or less, more preferably 0.3 μm or more and 0.8 μm or less. For example, when Y 2 O 3 is used as the metal oxide raw powder, 0.1 wt % to 5 wt % of Y 2 O 3 is added to the AlN raw powder, and a binder such as PVA, a dispersant, and a solvent are added. is added to prepare a slurry, and the granulated powder 22 is granulated using a spray dryer or the like.

次に、厚み1mm以上の板状の高融点金属36を準備し、造粒粉22または造粒粉から形成した成形体、および厚み1mm以上の板状の高融点金属36を、板状の高融点金属36の一方の主面が積層方向に垂直になるように有底のカーボン型60(成形型)に積層する。 Next, a plate-shaped high-melting-point metal 36 having a thickness of 1 mm or more is prepared, and the granulated powder 22 or a compact formed from the granulated powder, and the plate-shaped high-melting-point metal 36 having a thickness of 1 mm or more are combined into a plate-shaped high melting point metal. The melting point metal 36 is stacked on a bottomed carbon mold 60 (mold) so that one main surface of the melting point metal 36 is perpendicular to the stacking direction.

成形体を積層する他の例として、得られた造粒粉22を用いて1または複数の成形体を作製する。成形体の成形方法としては、例えば、一軸加圧成形や冷間静水等方圧加圧(CIP:Cold Isostatic Pressing)法などの公知の方法を用いればよい。なお、成形体を形成する方法は、加圧成形に限らず、例えば、グリーンシート積層、または鋳込み成形であっても適用が可能である。 As another example of stacking compacts, the obtained granulated powder 22 is used to produce one or more compacts. As a method for molding the molded body, for example, a known method such as uniaxial pressure molding or cold isostatic pressing (CIP) method may be used. The method for forming the molded body is not limited to pressure molding, and can be applied to, for example, green sheet lamination or cast molding.

電極埋設部材50を作製する場合は、造粒粉22を積層する際に、造粒粉22を仮プレスし電極40を配置しさらに造粒粉22を投入し仮プレスする、または、成形体を積層し電極40を配置しさらに成形体を積層することで、焼結後セラミックス部材20となる部分に電極40が埋設される。 In the case of producing the electrode-embedded member 50, when the granulated powder 22 is laminated, the granulated powder 22 is temporarily pressed, the electrode 40 is placed, and the granulated powder 22 is added and temporarily pressed, or the compact is formed. The electrode 40 is embedded in the portion that will become the ceramics member 20 after sintering by stacking the electrodes 40 and then stacking the compacts.

次に、カーボン型60にカーボンパンチ70を挿入し、積層体12を形成する。積層体12は、焼結後セラミックス部材20となる造粒粉22または成形体の層と、焼結後金属部材30となる板状の高融点金属36の2層であってもよいし、板状の高融点金属36が造粒粉22または成形体の層で挟まれた3層であってもよい。また、積層方向の側面は、板状の高融点金属36が露出する部分があってもよいし、板状の高融点金属36が造粒粉22または成形体で覆われていてもよい。図4は、板状の高融点金属36が造粒粉22で覆われて、3層で作製される場合を示している。 Next, a carbon punch 70 is inserted into the carbon mold 60 to form the laminate 12 . The laminated body 12 may be composed of two layers of a layer of granulated powder 22 or compact that will become the ceramic member 20 after sintering and a plate-shaped high melting point metal 36 that will become the metal member 30 after sintering. The refractory metal 36 may be three layers sandwiched between layers of the granulated powder 22 or compact. Moreover, the side surface in the stacking direction may have a portion where the plate-like high-melting-point metal 36 is exposed, or the plate-like high-melting-point metal 36 may be covered with the granulated powder 22 or the compact. FIG. 4 shows a case where a plate-like high-melting-point metal 36 is covered with granulated powder 22 to produce three layers.

次に、積層体12を一軸加圧焼成することで接合体10を作製する。焼成条件は、例えば、1700℃以上2000℃以下の温度、1MPa以上の圧力で、0.1時間以上10時間以下保持することで焼成することができる。 Next, the laminated body 12 is uniaxially pressure-fired to produce the joined body 10 . The firing conditions are, for example, a temperature of 1700° C. or more and 2000° C. or less, a pressure of 1 MPa or more, and the firing can be performed by holding for 0.1 hour or more and 10 hours or less.

焼成後、所定の形状に加工する工程を設けてもよい。このとき、板状の高融点金属36の積層方向の側面がセラミックス部材で覆われている場合、板状の高融点金属36を露出する加工を行なってもよい。また、板状の高融点金属36がセラミックス部材20の層で挟まれた3層である場合、セラミックス部材20のうちの一部、または一方のセラミックス部材20を全部取り去る加工をしてもよい。また、板状の高融点金属36の形状を加工する工程を設けてもよい。このときは、板状の高融点金属36の一方の主面32に垂直な方向の最大厚みが1mmを下回らないように加工をする。 After firing, a step of processing into a predetermined shape may be provided. At this time, if the side surface of the plate-shaped high-melting-point metal 36 in the stacking direction is covered with a ceramic member, processing may be performed to expose the plate-shaped high-melting-point metal 36 . Further, when the plate-shaped high-melting-point metal 36 has three layers sandwiched between layers of the ceramic member 20, processing may be performed to remove a part of the ceramic member 20 or one of the ceramic members 20 entirely. Further, a step of processing the shape of the plate-shaped high-melting-point metal 36 may be provided. At this time, the plate-shaped high melting point metal 36 is processed so that the maximum thickness in the direction perpendicular to one main surface 32 is not less than 1 mm.

また、電極埋設部材50とした場合は、電極40の一部を露出させる工程や、電極40に端子を接続する工程を設けてもよい。 Further, when the electrode embedding member 50 is used, a step of exposing a part of the electrode 40 or a step of connecting a terminal to the electrode 40 may be provided.

なお、成形体を作製し積層する方法では、成形体を脱脂して脱脂体を作製する工程や脱脂体を仮焼して仮焼体を作製する工程を設けてもよい。その場合、例えば、脱脂温度は400℃以上800℃以下であることが好ましく、脱脂時間は1時間以上120時間以下であることが好ましい。脱脂雰囲気は、大気雰囲気または窒素雰囲気であることが好ましく、大気雰囲気であることがより好ましい。また、例えば、仮焼温度は1200℃以上1700℃以下であることが好ましく、仮焼時間は、0.5時間以上12時間以下であることが好ましい。仮焼雰囲気は、窒素や不活性ガス雰囲気であることが好ましいが、真空などの雰囲気であってもよい。 In addition, in the method of forming and laminating the molded body, a process of degreasing the molded body to produce a degreased body and a process of calcining the degreased body to produce a calcined body may be provided. In that case, for example, the degreasing temperature is preferably 400° C. or higher and 800° C. or lower, and the degreasing time is preferably 1 hour or longer and 120 hours or shorter. The degreasing atmosphere is preferably an air atmosphere or a nitrogen atmosphere, more preferably an air atmosphere. Further, for example, the calcination temperature is preferably 1200° C. or more and 1700° C. or less, and the calcination time is preferably 0.5 hours or more and 12 hours or less. The calcining atmosphere is preferably a nitrogen or inert gas atmosphere, but may be a vacuum atmosphere.

このような方法により、AlNを主成分とするセラミックス部材および高融点金属からなる金属部材の接合面の浸食やコンタミネーションを抑制した接合体または電極埋設部材を製造することができる。 By such a method, it is possible to manufacture a joined body or an electrode-embedded member in which erosion and contamination of the joint surfaces of the ceramic member mainly composed of AlN and the metal member made of a high-melting-point metal are suppressed.

[実施例]
(接合体の作製)
(実施例1)
AlN原料粉に内比で5wt%のYを添加し、バインダ(PVA)、分散剤、溶剤を添加してスラリーを調製し、スプレードライヤーにより造粒粉を造粒した。また、金属部材となる板状の高融点金属として、径Φ50mm、厚み5mmのMoを準備した。
[Example]
(Preparation of conjugate)
(Example 1)
5 wt % of Y 2 O 3 was added to the AlN raw material powder, and a binder (PVA), dispersant and solvent were added to prepare a slurry, and a granulated powder was granulated with a spray dryer. In addition, Mo having a diameter of Φ50 mm and a thickness of 5 mm was prepared as a plate-shaped high-melting-point metal serving as a metal member.

次に、造粒粉を有底のカーボン型に充填し、カーボンパンチでプレス成形し、径Φ80mm、厚み10mmの成形体を作製した。次に、Moを成形体上に載置した。次に、カーボン型に造粒粉をさらに充填してMoを埋設した。このとき、Moの上面より厚みが10mmになるように、造粒粉の充填およびカーボンパンチでの成形をした。 Next, the granulated powder was filled in a carbon mold with a bottom and press-molded with a carbon punch to produce a compact having a diameter of 80 mm and a thickness of 10 mm. Next, Mo was placed on the compact. Next, the carbon mold was further filled with granulated powder to embed Mo. At this time, granulated powder was filled and molding was performed with a carbon punch so that the thickness from the upper surface of Mo was 10 mm.

そして、カーボンパンチをカーボン型に挿入した状態で、温度1800℃、圧力4MPa、N雰囲気で2時間一軸ホットプレス焼成を行った。これにより直径80mmのAlN焼結体の内部に直径50mmのMoからなる金属部材を埋設することができた。このようにして、実施例1の接合体を作製した。その後、積層方向が長辺となるように3mm×4mm×19mmの実施例1の試験片を複数切り出した。 Then, with the carbon punch inserted in the carbon mold, uniaxial hot press firing was performed at a temperature of 1800° C., a pressure of 4 MPa, and an N 2 atmosphere for 2 hours. As a result, a metal member made of Mo with a diameter of 50 mm could be embedded inside the AlN sintered body with a diameter of 80 mm. In this way, the joined body of Example 1 was produced. After that, a plurality of test pieces of Example 1 of 3 mm×4 mm×19 mm were cut out so that the lamination direction was the long side.

(実施例2)
実施例1の造粒粉を、AlN原料粉に内比で5wt%のYおよび0.9wt%のTiNを添加したものに変更した以外、同じ工程、条件で実施例2の接合体を作製した。
(Example 2)
The bonded body of Example 2 was produced in the same process and under the same conditions, except that the granulated powder of Example 1 was changed to AlN raw material powder with 5 wt% Y 2 O 3 and 0.9 wt% TiN added. was made.

(実施例3)
実施例1の高融点金属を、MoにYが0.4wt%添加された合金に置き換えた以外、同じ工程、条件で実施例3の接合体を作製した。
(Example 3)
A bonded body of Example 3 was produced in the same process and under the same conditions, except that the refractory metal of Example 1 was replaced with an alloy in which 0.4 wt % of Y 2 O 3 was added to Mo.

(実施例4)
実施例1の高融点金属を、Wに置き換えた以外、同じ工程、条件で実施例4の接合体を作製した。
(Example 4)
A joined body of Example 4 was produced in the same process and under the same conditions except that the high-melting-point metal of Example 1 was replaced with W.

(接合強度の測定)
JIS R1601 2008(ファインセラミックスの室温曲げ強さ試験方法)に準拠した3点曲げ強度試験により、接合体の接合強度の測定を行なった。スパンは10mmとし、長手方向の中央部に接合面を配置してナイフエッジを接合面に合わせて測定を行なった。試験片は各試料5個準備し、5個の測定値の平均値を各試料の接合強度の値とした。
(Measurement of bonding strength)
The bonding strength of the bonded body was measured by a three-point bending strength test based on JIS R1601 2008 (testing method for room temperature bending strength of fine ceramics). The span was set to 10 mm, the joint surface was placed in the center in the longitudinal direction, and the knife edge was aligned with the joint surface for measurement. Five test pieces were prepared for each sample, and the average value of the five measured values was taken as the bonding strength value of each sample.

(測定結果)
実施例1は、接合強度が77MPa、実施例4は90MPaとなり、十分な接合強度が得られていることが分かった。実施例2は、接合強度が115MPaとなり、実施例1の試料より高い接合強度が得られた。また、実施例3は、103MPaとなり、実施例1の試料より高い接合強度が得られた。
(Measurement result)
It was found that Example 1 had a bonding strength of 77 MPa and Example 4 had a bonding strength of 90 MPa, indicating that sufficient bonding strength was obtained. Example 2 had a bonding strength of 115 MPa, which was higher than that of the sample of Example 1. Moreover, Example 3 had a bonding strength of 103 MPa, which was higher than that of the sample of Example 1.

(実施例5)
(電極埋設部材の作製)
実施例5は、実施例1の製法においてMoの上に位置するAlN焼結体(セラミックス部材)にヒーター電極を埋設し、高温下のプロセスで使用できるヒーターモジュールを作製した。
(Example 5)
(Preparation of electrode embedded member)
In Example 5, a heater electrode was embedded in the AlN sintered body (ceramic member) located on Mo in the manufacturing method of Example 1 to produce a heater module that can be used in a high-temperature process.

造粒粉は、実施例1と同様のものを準備した。また、金属部材となる板状の高融点金属として、径Φ300mm、厚み8mmの板状のMoを準備した。 The same granulated powder as in Example 1 was prepared. Further, a plate-shaped Mo with a diameter of Φ300 mm and a thickness of 8 mm was prepared as a plate-shaped high-melting-point metal to be a metal member.

まず、ヒーター積層体を作製した。造粒粉を有底のカーボン型に充填し、カーボンパンチでプレス成形し、径Φ320mm厚み8mmの成形体を作製した。次に、ヒーター電極を成形体上に載置した。ヒーター電極はMoメッシュ(線径0.1mm、メッシュサイズ#50、平織)をヒーター電極の抵抗値を合わせるため所定のパターンに裁断したものである。次に、カーボン型に造粒粉をさらに充填してヒーター電極を埋設することでヒーター積層体を作製した。このとき、ヒーター電極の上面より厚みが8mmになるように、造粒粉の充填およびカーボンパンチでの成形をした。 First, a heater laminate was produced. The granulated powder was filled in a bottomed carbon mold and press-molded with a carbon punch to prepare a compact having a diameter of Φ320 mm and a thickness of 8 mm. Next, a heater electrode was placed on the compact. The heater electrode is obtained by cutting Mo mesh (wire diameter 0.1 mm, mesh size #50, plain weave) into a predetermined pattern to match the resistance value of the heater electrode. Next, the carbon mold was further filled with the granulated powder, and the heater electrodes were embedded in the carbon mold to prepare a heater laminate. At this time, granulated powder was filled and a carbon punch was used to form the heater electrode so that the thickness was 8 mm from the upper surface of the heater electrode.

次に、板状のMoをヒーター積層体上に載置した。そして、Moを載置したカーボン型に造粒粉をさらに充填してMoを埋設した。このとき、板状のMoの上面より厚みが8mmになるようにカーボンパンチで成形し、積層体を作製した。このようにして、ヒーター積層体、および板状の高融点金属が積層された積層体を作製した。 Next, a plate-shaped Mo was placed on the heater laminate. Then, the carbon mold on which Mo was placed was further filled with granulated powder to embed Mo. At this time, the plate-like Mo was molded with a carbon punch so that the thickness was 8 mm from the upper surface of the plate, and a laminate was produced. In this way, a heater laminate and a laminate in which plate-like high-melting-point metals were laminated were produced.

そして、カーボンパンチをカーボン型に挿入した状態で、温度1800℃、圧力4MPa、N雰囲気で4時間一軸ホットプレス焼成を行った。焼成後、外形加工(Φ300mm×18mm)を行った。各々の電極と外部電源とを接続するための端子穴の穿設、端子の接続、および必要な絶縁構造の作製は、焼成後の加工時に同時に行なった。このようにして、実施例5の電極埋設部材を作製した。 Then, with the carbon punch inserted into the carbon mold, uniaxial hot press firing was performed at a temperature of 1800° C., a pressure of 4 MPa, and an N 2 atmosphere for 4 hours. After firing, the outer shape was processed (Φ300 mm×18 mm). The drilling of terminal holes for connecting the respective electrodes to an external power source, the connection of the terminals, and the preparation of the necessary insulating structure were simultaneously carried out during processing after firing. Thus, an electrode-embedded member of Example 5 was produced.

(評価)
作製されたヒーターモジュールは、ヒーター電極に外部電源より通電することにより400℃に加熱することができた。
(evaluation)
The fabricated heater module could be heated to 400° C. by energizing the heater electrodes from an external power source.

次に、実施例1の試料について、積層方向に垂直な切断面をEPMAで元素分析をしてマッピングした。図5(a)~(d)は、それぞれ実施例1のEPMAのマッピングを示す写真である。図5(a)は、実施例1の断面の分析視野のSEM画像である。図5(b)~(d)は、それぞれ、Mo、Y、およびOをマッピングした写真である。灰色および白色の部分が、それぞれMo、Y、およびOが検出された部分を示している。 Next, with respect to the sample of Example 1, a cut surface perpendicular to the stacking direction was subjected to elemental analysis by EPMA and mapped. 5(a) to (d) are photographs showing EPMA mapping in Example 1, respectively. FIG. 5( a ) is a SEM image of a cross-sectional analysis field of Example 1. FIG. 5(b)-(d) are photographs mapping Mo, Y, and O, respectively. Gray and white portions indicate portions where Mo, Y, and O were detected, respectively.

図5(a)~(d)に示されるように、Y、およびOは、セラミックス部材(AlN)内にも存在するが、セラミックス部材および高融点の金属部材(Mo)の接合界面にそれより多く存在していることが分かった。すなわち、セラミックス部材および金属部材の接合界面は、セラミックス部材の第2相を構成する金属の濃度および酸素濃度が、セラミックス部材の内部の金属の濃度および酸素濃度よりそれぞれ大きいことが確かめられた。 As shown in FIGS. 5(a) to (d), Y and O are also present in the ceramic member (AlN), but are It turns out that there are many. That is, it was confirmed that the metal concentration and oxygen concentration of the second phase of the ceramic member were higher than the metal concentration and oxygen concentration inside the ceramic member at the joint interface between the ceramic member and the metal member.

本発明の接合体は、セラミックス部材および金属部材の接合界面に、セラミックス部材の第2相を構成する金属および酸素が高濃度で存在することで、これらを介してMoとAlNとの化学結合がされている可能性が高いと考えられる。また、本発明の製造方法は、焼結時にMoの再結晶化温度を越えるため、接合面でのMoの塑性変形によりAlN焼結体の表面の凹凸にMoが侵入しアンカー効果を発揮することで、さらに高い接合強度が得られるものと推定される。 In the joined body of the present invention, the metal and oxygen that constitute the second phase of the ceramic member are present at a high concentration at the joint interface between the ceramic member and the metal member, and chemical bonding between Mo and AlN occurs through these. It is highly likely that In addition, in the production method of the present invention, since the recrystallization temperature of Mo is exceeded during sintering, Mo penetrates into the unevenness of the surface of the AlN sintered body due to plastic deformation of Mo at the joint surface, and exerts an anchor effect. It is presumed that even higher bonding strength can be obtained with

以上により、本発明の接合体および電極埋設部材は、接合面の浸食やコンタミネーションを抑制でき、接合強度が強く、金属部材の厚みが厚い接合体および電極埋設部材であることが確かめられた。また、本発明の製造方法は、そのような接合体または電極埋設部材を製造できることが確かめられた。 From the above, it was confirmed that the joined body and the electrode-embedded member of the present invention can suppress the erosion and contamination of the joint surface, have a high joining strength, and have a thick metal member. Moreover, it was confirmed that the manufacturing method of the present invention can manufacture such a bonded body or an electrode-embedded member.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形および均等物に及ぶことはいうまでもない。また、各図面に示された構成要素の構造、形状、数、位置、大きさ等は説明の便宜上のものであり、適宜変更しうる。 It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention. Also, the structure, shape, number, position, size, etc. of the constituent elements shown in each drawing are for convenience of explanation, and may be changed as appropriate.

10 接合体
12 積層体
20 セラミックス部材
22 造粒粉
30 金属部材
32 一方の主面
34 他方の主面
36 板状の高融点金属
40 電極
50 電極埋設部材
60 カーボン型
70 カーボンパンチ
REFERENCE SIGNS LIST 10 joined body 12 laminated body 20 ceramic member 22 granulated powder 30 metal member 32 one principal surface 34 the other principal surface 36 plate-like high melting point metal 40 electrode 50 electrode embedded member 60 carbon mold 70 carbon punch

Claims (6)

AlNを主成分とするセラミックス部材および融点が2000℃以上の高融点金属からなる金属部材の接合体であって、
前記セラミックス部材は、少なくとも前記金属部材の一方の主面に接合され、
前記セラミックス部材は、金属酸化物からなる第2相を含み、
前記金属部材は、前記金属部材の一方の主面に垂直な方向の最大厚みが1mm以上であり、
前記セラミックス部材および前記金属部材の接合界面は、前記セラミックス部材の前記第2相を構成する金属の濃度および酸素濃度が、前記セラミックス部材の内部の前記金属の濃度および酸素濃度よりそれぞれ大きいことを特徴とする接合体。
A joined body of a ceramic member containing AlN as a main component and a metal member made of a high melting point metal having a melting point of 2000° C. or higher,
The ceramic member is bonded to at least one main surface of the metal member,
The ceramic member includes a second phase made of a metal oxide,
The metal member has a maximum thickness of 1 mm or more in a direction perpendicular to one main surface of the metal member,
The bonding interface between the ceramic member and the metal member is characterized in that the concentration of the metal and the concentration of oxygen constituting the second phase of the ceramic member are higher than the concentration of the metal and the concentration of oxygen inside the ceramic member. zygote to be.
前記セラミックス部材は、第4族の金属を含み、
前記金属部材は、前記第4族の金属が拡散していることを特徴とする請求項1記載の接合体。
The ceramic member contains a Group 4 metal,
2. The joined body according to claim 1, wherein said metal member has said Group 4 metal diffused therein.
前記金属部材は、第2の金属酸化物を1wt%以下含むことを特徴とする請求項1または請求項2記載の接合体。 3. The joined body according to claim 1, wherein the metal member contains 1 wt % or less of the second metal oxide. 前記金属部材の一方の主面に対向する側の他方の主面に、さらにセラミックス部材が接合されていることを特徴とする請求項1から請求項3のいずれかに記載の接合体。 4. The joined body according to claim 1, further comprising a ceramic member joined to the other main surface of the metal member facing the one main surface. 請求項1から請求項3のいずれかに記載の接合体と、
前記接合体のセラミックス部材に埋設された電極と、を備えることを特徴とする電極埋設部材。
a joined body according to any one of claims 1 to 3;
and an electrode embedded in the ceramic member of the joined body.
AlNを主成分とするセラミックス部材および融点が2000℃以上の高融点金属からなる金属部材の接合体の製造方法であって、
AlN原料粉に金属酸化物原料粉を添加した粉末を造粒して造粒粉を作製する工程と、
前記造粒粉または前記造粒粉から形成した成形体、および厚み1mm以上の板状の前記高融点金属を、前記板状の高融点金属の一方の主面が積層方向に垂直になるようにカーボン型に積層する工程と、
前記カーボン型にカーボンパンチを挿入し、積層体を形成する工程と、
前記積層体を一軸加圧焼成する工程と、を含むことを特徴とする接合体の製造方法。
A method for manufacturing a joined body of a ceramic member containing AlN as a main component and a metal member made of a high melting point metal having a melting point of 2000° C. or higher,
a step of granulating a powder obtained by adding a metal oxide raw material powder to an AlN raw material powder to produce a granulated powder;
The granulated powder or a molded body formed from the granulated powder, and the plate-shaped high-melting-point metal having a thickness of 1 mm or more are placed so that one main surface of the plate-shaped high-melting-point metal is perpendicular to the stacking direction. A step of laminating in a carbon mold;
inserting a carbon punch into the carbon mold to form a laminate;
and a step of sintering the laminate under uniaxial pressure.
JP2021130779A 2021-08-10 2021-08-10 Joined body, method for manufacturing the same, and electrode embedding member Pending JP2023025496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021130779A JP2023025496A (en) 2021-08-10 2021-08-10 Joined body, method for manufacturing the same, and electrode embedding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021130779A JP2023025496A (en) 2021-08-10 2021-08-10 Joined body, method for manufacturing the same, and electrode embedding member

Publications (1)

Publication Number Publication Date
JP2023025496A true JP2023025496A (en) 2023-02-22

Family

ID=85251424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021130779A Pending JP2023025496A (en) 2021-08-10 2021-08-10 Joined body, method for manufacturing the same, and electrode embedding member

Country Status (1)

Country Link
JP (1) JP2023025496A (en)

Similar Documents

Publication Publication Date Title
JP5008875B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
EP3598485B1 (en) Bonded substrate and method for manufacturing bonded substrate
CN109690760B (en) Heat sink and method for manufacturing the same
KR20140116015A (en) Ceramic member and member for semiconductor manufacturing equipment
WO2020115868A1 (en) Ceramic sintered body and substrate for semiconductor device
JP5487413B2 (en) Ceramic bonded body and manufacturing method thereof
JP2021504970A (en) Dual purpose vias for use in ceramic pedestals
JP2019176152A (en) Insulated circuit board with heat sink
JP2005203734A (en) Ceramic article with embedded metal member and method of manufacturing the same
JPWO2019167942A1 (en) Isolated circuit board
JPWO2010109960A1 (en) Aluminum nitride substrate, aluminum nitride circuit substrate, semiconductor device, and aluminum nitride substrate manufacturing method
JP2023025496A (en) Joined body, method for manufacturing the same, and electrode embedding member
JP5707896B2 (en) Power module substrate with heat sink, power module, and method of manufacturing power module substrate
JP2018135251A (en) Method for manufacturing substrate for power module
JP2023025500A (en) Joined body, method for manufacturing the same, and electrode embedding member
JP6014439B2 (en) Electrostatic chuck and manufacturing method thereof
KR100716100B1 (en) Aluminum Nitride Conjugate Body and Method of Producing the Same
JP2023050782A (en) Joined body, production method of the same, and electrode-embedded member
JP2023107337A (en) Bonded body, method for producing the same, and electrode-embedded member
JP2024007592A (en) Joint body, and electrode embedded member
JP2023050786A (en) Joined body, production method of the same, and electrode-embedded member
JP2023050778A (en) Joined body, production method of the same, and electrode-embedded member
JP2021197535A (en) Method for manufacturing ceramic sintered body, method for manufacturing electrode embedding member, and electrode embedding member
JP2005022966A (en) Aluminum nitride joined body and its producing method