JP2023016355A - Joint method - Google Patents

Joint method Download PDF

Info

Publication number
JP2023016355A
JP2023016355A JP2021120613A JP2021120613A JP2023016355A JP 2023016355 A JP2023016355 A JP 2023016355A JP 2021120613 A JP2021120613 A JP 2021120613A JP 2021120613 A JP2021120613 A JP 2021120613A JP 2023016355 A JP2023016355 A JP 2023016355A
Authority
JP
Japan
Prior art keywords
metal member
metal
joining
joined
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021120613A
Other languages
Japanese (ja)
Inventor
竜之 林
Tatsuyuki Hayashi
宏 金原
Hiroshi Kanehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021120613A priority Critical patent/JP2023016355A/en
Publication of JP2023016355A publication Critical patent/JP2023016355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a joint method that can achieve a joint body with high joint strength.SOLUTION: The joint method includes steps of: forming an uneven shape, in which a ratio of a depth from a tip portion of a convex part to a base end part thereof and a width of the tip portion of the convex part is 10:1 or more, in a first metal member; and jointing the first metal member to a second metal member by giving vibrations along a protruding direction of the convex part to the first metal member while pressurizing the first metal member and the second metal member which are superposed on each other, with the tip portion of the convex part in the uneven shape contacted with a portion to be jointed of the second metal member, along the protruding direction of the convex part.SELECTED DRAWING: Figure 1

Description

本発明は接合方法に関し、特に摩擦熱を利用した接合方法に関する。 TECHNICAL FIELD The present invention relates to a joining method, and more particularly to a joining method using frictional heat.

金属部材同士を高速で擦り合わせて発生する摩擦熱を利用して金属部材同士を固相状態で接合する技術が知られている。 2. Description of the Related Art A technique is known in which metal members are joined together in a solid phase state by utilizing frictional heat generated by rubbing metal members against each other at high speed.

特許文献1には、アルミ合金からなる溶接構造物において、前記溶接構造物の一部または全部が重量で、Si0.4~0.9%及びMg0.4~1.2%を含むアルミ合金からなり、摩擦溶接によって接合されていることを特徴とする溶接構造物が開示されている。 Patent Document 1 discloses a welded structure made of an aluminum alloy, in which part or all of the welded structure is made of an aluminum alloy containing 0.4 to 0.9% Si and 0.4 to 1.2% Mg by weight. Disclosed is a welded structure characterized in that it consists of two parts and is joined by friction welding.

特開平11-5180号公報JP-A-11-5180

特許文献1に記載の技術では、金属部材同士を突き合わせて摩擦溶接を行う。しかしながら、このような接合方法の場合、金属部材同士の接触面積が大きいため、アルミニウム合金等の熱伝導率の高い金属部材を接合する際には、摩擦熱が接合界面以外に伝達しやすい。したがって、特許文献1に記載の技術では、接合界面における発熱が不十分となり、十分な接合強度が得られない虞があるという問題があった。 In the technique described in Patent Document 1, friction welding is performed by butting metal members together. However, in the case of such a joining method, since the contact area between metal members is large, when joining metal members with high thermal conductivity such as aluminum alloys, frictional heat is likely to be transmitted to areas other than the joining interface. Therefore, with the technique described in Patent Document 1, there is a problem that heat generation at the bonding interface is insufficient, and sufficient bonding strength may not be obtained.

本発明は、このような問題を解決するためになされたものであり、高い接合強度の接合体が得られる接合方法を提供することを目的とするものである。 SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and it is an object of the present invention to provide a bonding method capable of obtaining a bonded body having a high bonding strength.

一実施の形態にかかる接合方法は、第1金属部材に凸部の先端部から基端部までの深さと、凸部の先端部の幅と、の比が10:1以上となる凹凸形状を形成するステップと、凹凸形状の凸部の先端部を第2金属部材の被接合部に当接させた状態で重ね合わせた前記第1金属部材および前記第2金属部材を凸部が突出する方向に沿って加圧しながら、第1金属部材に対して凸部が突出する方向に沿った振動を与えて第1金属部材を第2金属部材に接合するステップと、を有する。 In the joining method according to one embodiment, the concave-convex shape is formed on the first metal member such that the ratio of the depth from the distal end to the proximal end of the projection to the width of the distal end of the projection is 10:1 or more. and a direction in which the protrusions project from the first metal member and the second metal member, which are superimposed with the tips of the protrusions having an uneven shape in contact with the joined portion of the second metal member. and bonding the first metal member to the second metal member by applying vibration along the direction in which the projection protrudes to the first metal member while applying pressure along the .

本発明により、高い接合強度の接合体が得られる接合方法を提供することができる。 ADVANTAGE OF THE INVENTION By this invention, the joining method by which the joined body of high joint strength is obtained can be provided.

実施の形態1にかかる接合方法を示すフローチャートである。4 is a flow chart showing a joining method according to the first embodiment; 図1に示すフローチャートのステップS1を説明する図である。It is a figure explaining step S1 of the flowchart shown in FIG. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2; 図1に示すフローチャートのステップS2を説明する第1の図である。FIG. 2 is a first diagram illustrating step S2 in the flowchart shown in FIG. 1; 図1に示すフローチャートのステップS2を説明する第2の図である。FIG. 2 is a second diagram illustrating step S2 in the flowchart shown in FIG. 1; 比較例1の接合方法を説明する図である。10A and 10B are diagrams for explaining a bonding method of Comparative Example 1; FIG. 比較例2の接合方法を説明する図である。8A and 8B are diagrams for explaining a bonding method of Comparative Example 2; FIG.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。さらに、以下の説明において同一又は同等の要素には、同一の符号を付し、重複する説明は省略する。
Embodiment 1
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments. Also, for clarity of explanation, the following description and drawings have been simplified as appropriate. Furthermore, in the following description, the same or equivalent elements are denoted by the same reference numerals, and overlapping descriptions are omitted.

まず、図1を参照して、本実施形態にかかる接合方法の概要を説明する。図1は、実施の形態1にかかる接合方法を示すフローチャートである。図1に示すように、本実施形態にかかる接合方法は、第1金属部材10に凹凸形状を形成するステップS1と、第1金属部材10を第2金属部材20に接合するステップS2と、の工程を有する。 First, with reference to FIG. 1, the outline of the joining method according to this embodiment will be described. FIG. 1 is a flow chart showing a joining method according to a first embodiment. As shown in FIG. 1, the bonding method according to the present embodiment includes a step S1 of forming an uneven shape on the first metal member 10 and a step S2 of bonding the first metal member 10 to the second metal member 20. have a process.

本実施形態にかかる接合方法では、第1金属部材10および第2金属部材20を高速で擦り合わせることにより接合界面に生じる摩擦熱を利用して第1金属部材10と第2金属部材20とを固相状態で接合した接合体を得ることができる。まず、被接合材である第1金属部材10および第2金属部材20について説明する。 In the bonding method according to the present embodiment, the first metal member 10 and the second metal member 20 are bonded together by using frictional heat generated at the bonding interface by rubbing the first metal member 10 and the second metal member 20 together at high speed. A conjugate bonded in a solid state can be obtained. First, the first metal member 10 and the second metal member 20, which are members to be joined, will be described.

第1金属部材10および第2金属部材20を構成する材料は、例えば、軽量で熱伝導性が良好なアルミニウムを主成分とする金属である。すなわち、第1金属部材10および第2金属部材20は、それぞれアルミニウム又はアルミニウム合金により構成される金属部材である。本実施形態では、アルミニウム合金により構成される被接合材(第1金属部材10および第2金属部材20)を接合する場合を例に挙げて説明する。 The material forming the first metal member 10 and the second metal member 20 is, for example, a metal whose main component is aluminum, which is lightweight and has good thermal conductivity. That is, the first metal member 10 and the second metal member 20 are metal members each made of aluminum or an aluminum alloy. In this embodiment, a case of joining materials to be joined (the first metal member 10 and the second metal member 20) made of an aluminum alloy will be described as an example.

具体的には、本実施形態において、第1金属部材10は押出成形されたアルミ押出形材であり、第2金属部材20はダイカスト鋳造されたアルミ鋳物部材である。また、第1金属部材10および第2金属部材20は、それぞれ板状に形成されている。ただし、第1金属部材及び第2金属部材の形状はこれに限定されない。第1金属部材及び第2金属部材の形状は、少なくとも一部が板状に形成されていればよく、それぞれ全体としては角筒形状等のあらゆる形態をとり得る。 Specifically, in this embodiment, the first metal member 10 is an extruded aluminum profile, and the second metal member 20 is a die-cast aluminum casting member. Also, the first metal member 10 and the second metal member 20 are each formed in a plate shape. However, the shapes of the first metal member and the second metal member are not limited to this. The shape of the first metal member and the second metal member may be at least partially plate-like, and each may take any shape such as a square tubular shape as a whole.

本実施形態にかかる接合方法を用いて得られる接合体は、例えば自動車等の車両の車体骨格を構成する部材として用いることができる。このような大型の機械部品に接合体を適用する場合、アルミニウム製とすることで軽量化が図られ、車両の乗り心地の改善や車両の熱費・電費の向上等に寄与できる。 A joined body obtained by using the joining method according to the present embodiment can be used as a member constituting a body frame of a vehicle such as an automobile. When the joined body is applied to such a large machine part, the weight can be reduced by making it made of aluminum, which contributes to the improvement of the ride comfort of the vehicle and the improvement of the heat and electricity costs of the vehicle.

続いて、本実施形態にかかる接合方法の具体的な例について、図2~図5を参照して説明する。まず、図2を参照してステップS1について説明する。図2は、図1に示すフローチャートのステップS1を説明する図である。 Next, a specific example of the joining method according to this embodiment will be described with reference to FIGS. 2 to 5. FIG. First, step S1 will be described with reference to FIG. FIG. 2 is a diagram for explaining step S1 in the flow chart shown in FIG.

第1金属部材10と第2金属部材20との接合を行なうにあたり、ステップS1では、第1金属部材10に凸部12の先端部12aから基端部12bまでの深さと、前記凸部12の先端部12aの幅と、の比が10:1以上となる凹凸形状を形成する。 In joining the first metal member 10 and the second metal member 20, in step S1, the depth from the tip end portion 12a to the base end portion 12b of the projection 12 on the first metal member 10 and the depth of the projection 12 A concave-convex shape having a ratio of 10:1 or more to the width of the tip portion 12a is formed.

図2に示す第1金属部材10は、第2金属部材20と接合される被接合部13にナノオーダーの微細な凹凸形状が形成されている。このように、凹凸形状が形成された第1金属部材10は、板状の本体部11と、本体部11から外側に突出する凸部12と、を有している。以下の説明では、凸部12が突出する方向に沿った方向をX軸方向とする。 The first metal member 10 shown in FIG. 2 has nano-order fine irregularities formed in the joined portion 13 to be joined to the second metal member 20 . In this way, the first metal member 10 formed with an uneven shape has a plate-like body portion 11 and a convex portion 12 projecting outward from the body portion 11 . In the following description, the direction along the direction in which the convex portion 12 protrudes is defined as the X-axis direction.

凸部12は、X軸方向と直交する第1金属部材10の長さ方向に沿って複数形成されている。このような凹凸形状は、プロファイル加工、化成処理等の方法を用いて形成することができる。ただし、第1金属部材10に凹凸形状を形成する方法はこれらの方法に限定されない。 A plurality of protrusions 12 are formed along the length direction of the first metal member 10 orthogonal to the X-axis direction. Such an uneven shape can be formed using methods such as profile processing and chemical conversion treatment. However, the method of forming the uneven shape on the first metal member 10 is not limited to these methods.

続いて、図3を参照して凸部12の詳細について説明する。図3は、図2の部分拡大図である。図3に示すように、凸部12は、X軸方向からみた場合に、本体部11側に位置する基端部12bの断面積よりも本体部11から離れた基端部12bの反対側に位置する先端部12aの断面積が小さくなるように形成されている。本実施形態では、凸部12は、基端部12bから先端部12aに向かうにしたがってX軸方向からみた断面積が漸次小さくなるテーパ形状を有している。 Next, details of the convex portion 12 will be described with reference to FIG. 3 is a partially enlarged view of FIG. 2. FIG. As shown in FIG. 3, the convex portion 12 is located on the opposite side of the base end portion 12b that is farther from the main body portion 11 than the cross-sectional area of the base end portion 12b located on the main body portion 11 side when viewed in the X-axis direction. It is formed so that the cross-sectional area of the located tip portion 12a is small. In this embodiment, the convex portion 12 has a tapered shape in which the cross-sectional area viewed from the X-axis direction gradually decreases from the base end portion 12b toward the tip portion 12a.

また、凸部12の先端部12aは、第2金属部材20と対向する部分が平坦に形成されている。これにより、第1金属部材10に与えられる圧力および振動に伴って先端部12aに生じる応力が低減されるため、凸部12の破損を抑制できる。先端部12aにおいて第2金属部材20と対向する部分の形状は、平坦に限らず、例えば曲面状に形成されていてもよい。 Further, the tip portion 12a of the convex portion 12 has a flat portion facing the second metal member 20. As shown in FIG. As a result, the stress generated in the tip portion 12a due to the pressure and vibration applied to the first metal member 10 is reduced, so that damage to the convex portion 12 can be suppressed. The shape of the portion of the distal end portion 12a that faces the second metal member 20 is not limited to being flat, and may be curved, for example.

さらに、複数の凸部12は、第1金属部材10の長さ方向において連続して形成されていてもよく、互いに所定の間隔で離間して形成されていてもよい。なお、X軸方向と直交する凸部12の幅方向において、基端部12bの両端はR形状に形成されている。これにより、第1金属部材10に与えられる圧力および振動に伴って基端部12bに生じる応力が低減され、凸部12の破損を抑制できる。 Furthermore, the plurality of protrusions 12 may be formed continuously in the length direction of the first metal member 10, or may be formed at predetermined intervals from each other. Both ends of the base end portion 12b are formed in an R shape in the width direction of the protrusion 12 perpendicular to the X-axis direction. As a result, the stress generated in the base end portion 12b due to the pressure and vibration applied to the first metal member 10 is reduced, and breakage of the convex portion 12 can be suppressed.

凸部12は、深さD1、先端部12aの幅W1、および基端部12bの幅W2の寸法を有している。深さD1は、X軸方向に沿う凸部12の先端部12aから基端部12bまでの長さである。また、幅W1は、X軸方向と直交する凸部12の幅方向における先端部12aの長さである。また、幅W2は、X軸方向と直交する凸部12の幅方向における基端部12bの長さである。 The convex portion 12 has dimensions of a depth D1, a width W1 of the distal end portion 12a, and a width W2 of the proximal end portion 12b. The depth D1 is the length from the distal end portion 12a to the proximal end portion 12b of the convex portion 12 along the X-axis direction. Further, the width W1 is the length of the tip portion 12a in the width direction of the convex portion 12 perpendicular to the X-axis direction. Further, the width W2 is the length of the base end portion 12b in the width direction of the convex portion 12 orthogonal to the X-axis direction.

深さD1と幅W1との比(D1:W1)は、好ましくは10:1以上、より好ましくは20:1以上、さらに好ましくは25:1以上であると良好な接合状態の接合体を得ることができる。 When the ratio of the depth D1 to the width W1 (D1:W1) is preferably 10:1 or more, more preferably 20:1 or more, and still more preferably 25:1 or more, a bonded body with a good bonding state can be obtained. be able to.

例えば、図2および図3に示す凸部12の寸法は、深さD1が500nm、幅W1が20nm、幅W2が100nmに形成されている。すなわち、D1:W1が25:1である。また、W1:W2が1:5となるように、基端部12bから先端部12aに向かって凸部12の幅方向の長さが漸次小さくなっている。接合時に振動エネルギを集中させる観点からは、第2金属部材20に対する第1金属部材10の接触面積が極力小さくなるように幅W1と幅W2との比を設計することが好ましい。図2および図3に示す例では、D1:W1:W2=25:1:5の凸部12が第1金属部材10の長さ方向に連続して形成されている。 For example, the projection 12 shown in FIGS. 2 and 3 has a depth D1 of 500 nm, a width W1 of 20 nm, and a width W2 of 100 nm. That is, D1:W1 is 25:1. Further, the length in the width direction of the convex portion 12 gradually decreases from the base end portion 12b toward the tip portion 12a so that W1:W2 is 1:5. From the viewpoint of concentrating the vibration energy during bonding, it is preferable to design the ratio of the width W1 and the width W2 so that the contact area of the first metal member 10 with the second metal member 20 is as small as possible. In the example shown in FIGS. 2 and 3 , the projections 12 of D1:W1:W2=25:1:5 are formed continuously in the length direction of the first metal member 10 .

次に、図4および図5を参照してステップS2について説明する。図4は、図1に示すフローチャートのステップS2を説明する第1の図である。図5は、図1に示すフローチャートのステップS2を説明する第2の図である。 Next, step S2 will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a first diagram for explaining step S2 of the flow chart shown in FIG. FIG. 5 is a second diagram for explaining step S2 of the flow chart shown in FIG.

ステップS2では、ステップS1で形成された凸部12の先端部12aを第2金属部材20の被接合部21に当接させた状態で第1金属部材および第2金属部材を重ね合わせる。ここで、第2金属部材20の被接合部21は、第1金属部材10と接合される部分である。そして、重ね合わせた第1金属部材および第2金属部材を凸部12が突出する方向に沿って加圧しながら、第1金属部材10に対して凸部12が突出する方向に沿った振動を与える。これにより、第1金属部材10を第2金属部材20に接合する。 In step S2, the first metal member and the second metal member are overlapped with the tip portion 12a of the protrusion 12 formed in step S1 in contact with the joined portion 21 of the second metal member 20. As shown in FIG. Here, the joined portion 21 of the second metal member 20 is a portion to be joined to the first metal member 10 . Then, the first metal member 10 and the second metal member that are overlapped are pressed along the direction in which the protrusions 12 protrude, and vibration is applied to the first metal member 10 along the direction in which the protrusions 12 protrude. . Thereby, the first metal member 10 is joined to the second metal member 20 .

第1金属部材10と第2金属部材20とを接合するための接合装置としては、例えば、超音波接合機や振動溶着機を適用することができる。このような接合装置は、重ね合わせた第1金属部材および第2金属部材を加圧する加圧装置と、第1金属部材に対して振動を与える振動体40と、第2金属部材を支持する支持部材30と、を有する。振動体40には振動装置が連結されている。 As a bonding device for bonding the first metal member 10 and the second metal member 20, for example, an ultrasonic bonding machine or a vibration welding machine can be applied. Such a joining device includes a pressurizing device for pressurizing the superimposed first and second metal members, a vibrating body 40 for vibrating the first metal member, and a support for supporting the second metal member. a member 30; A vibrating device is connected to the vibrating body 40 .

接合装置は、接合対象の金属部材同士を接触させ、接合界面に圧力を加えながら振動を与えることで生じる摩擦熱を利用して金属部材同士を固相接合する。接合装置は、金属部材同士を高速で擦り合わせることで接合界面の酸化被膜等を除去して新生面を露出させつつ、加圧に伴う塑性流動により金属部材同士を固相状態で接合することができる。 The joining apparatus brings the metal members to be joined into contact with each other, applies pressure to the joint interface and applies vibration to the joint interface, and utilizes frictional heat generated to solid-state join the metal members. The joining apparatus rubs the metal members together at high speed to remove the oxide film and the like on the joining interface to expose the new surface, and can join the metal members in a solid phase state by plastic flow accompanying pressurization. .

第1金属部材10と第2金属部材20との接合時に与える振動としては、超音波振動または音波振動を用いることができる。超音波振動の場合、接合装置は、振動体40を介して15~50kHz程度の超音波振動を第1金属部材10に与える。音波振動の場合、接合装置は、振動体40を介して100~300Hz程度の振幅の大きな音波振動を第1金属部材10に与える。振動体40は、振動装置の振動子から伝達された超音波振動または音波振動に共振し、上下方向に振動する。 Ultrasonic vibration or sonic vibration can be used as the vibration applied when the first metal member 10 and the second metal member 20 are joined. In the case of ultrasonic vibration, the bonding apparatus applies ultrasonic vibration of about 15 to 50 kHz to the first metal member 10 through the vibrating body 40 . In the case of sonic vibration, the bonding apparatus applies sonic vibration with a large amplitude of about 100 to 300 Hz to the first metal member 10 via the vibrating body 40 . The vibrating body 40 vibrates vertically by resonating with ultrasonic vibrations or sonic vibrations transmitted from the vibrator of the vibrating device.

例えば、第1金属部材10と第2金属部材20との接合は、次のように行なわれる。まず、図4に示すように、接合装置の振動体40と支持部材30との間に、互いに重ね合わせた第1金属部材10および第2金属部材20を挟み込んで加圧する。 For example, the joining of the first metal member 10 and the second metal member 20 is performed as follows. First, as shown in FIG. 4, the first metal member 10 and the second metal member 20 are sandwiched between the vibrating body 40 and the support member 30 of the bonding apparatus and pressed.

振動体40と支持部材30との間に被接合材を挟み込む際には、先端部12aが被接合部21に当接するように第1金属部材10および第2金属部材20を重ね合わせ、第2金属部材20を支持部材30上に載置する。第2金属部材20の被接合部21は、例えば平坦に形成され、支持部材30上に載置された状態では水平方向に配置されている。したがって、接合時に、第1金属部材10は、凸部12の突出する方向が上下方向の下方となるように配置されている。 When the material to be welded is sandwiched between the vibrating body 40 and the support member 30, the first metal member 10 and the second metal member 20 are overlapped so that the tip portion 12a abuts on the portion to be welded 21, and the second metal member 10 and the second metal member 20 are overlapped. The metal member 20 is placed on the support member 30 . The joined portion 21 of the second metal member 20 is formed flat, for example, and arranged horizontally when placed on the support member 30 . Therefore, the first metal member 10 is arranged so that the projecting direction of the convex portion 12 is downward in the vertical direction when the first metal member 10 is joined.

続いて、被接合材は、振動体40および支持部材30により上下方向(X軸方向)から加圧される。本実施形態では、加圧装置により振動体40を第1金属部材10の上から押し当てて所定の荷重で図4の白抜き矢印の方向に加圧している。 Subsequently, the material to be joined is pressed vertically (X-axis direction) by the vibrating body 40 and the support member 30 . In this embodiment, the vibrating body 40 is pressed from above the first metal member 10 by a pressurizing device and pressurized in the direction of the white arrow in FIG. 4 with a predetermined load.

さらに、この加圧状態で、第1金属部材10に対して上下方向(X軸方向)の振動を与えることにより、擦り合わされた凸部12と被接合部21との接合界面に摩擦熱を発生させる。基端部12bよりも先端部12aの断面積が小さくなるように凸部12が形成されているため、第1金属部材10に与えられた振動エネルギは先端部12aに集中する。振動エネルギが集中する先端部12aは、摩擦熱により局所的に発熱する。また、第2金属部材20に対する第1金属部材10の接触面積が小さいため、被接合材の材料として熱伝導率の高い金属を用いた場合でも、摩擦熱が接合界面以外に伝達しにくい。これらによって、接合界面の温度が短時間で接合に必要な温度に上昇する。 Furthermore, in this pressurized state, by applying vibration in the vertical direction (X-axis direction) to the first metal member 10, frictional heat is generated at the joint interface between the convex portion 12 and the joint portion 21 that are rubbed together. Let Since the convex portion 12 is formed so that the cross-sectional area of the tip portion 12a is smaller than that of the base end portion 12b, the vibration energy applied to the first metal member 10 concentrates on the tip portion 12a. The tip portion 12a where vibration energy concentrates locally generates heat due to frictional heat. Moreover, since the contact area of the first metal member 10 with respect to the second metal member 20 is small, even if a metal with high thermal conductivity is used as the material of the material to be joined, frictional heat is less likely to be transmitted to areas other than the joining interface. As a result, the temperature of the bonding interface rises to the temperature necessary for bonding in a short period of time.

この工程では、第1金属部材10に対してX軸方向に平行な上下方向の振動を与えるため、X軸方向と直交する水平方向の振動を与える場合と比べて、微細な凸部12にかかる応力が低減され、凸部12の破損を抑制することができる。なお、接合装置の条件は、第1金属部材10および第2金属部材20の各形状、各材料、接合界面の面積等に応じて適宜設定される。 In this step, since the first metal member 10 is vibrated in the vertical direction parallel to the X-axis direction, the fine projections 12 are affected more than when vibration is applied in the horizontal direction perpendicular to the X-axis direction. Stress is reduced, and breakage of the convex portion 12 can be suppressed. In addition, the conditions of the joining apparatus are appropriately set according to the shapes and materials of the first metal member 10 and the second metal member 20, the area of the joining interface, and the like.

そして、図5に示すように、振動を与えられた接合界面における摩擦現象によって金属表面の酸化被膜が破壊されるとともに、加圧に伴う塑性流動が生じる。また、摩擦熱により凸部12の先端側が局所的に高温になるため、接合界面の温度が短時間で上昇して原子の拡散および再結晶が促進される。これにより、凸部が溶けるように変形し、第1金属部材10の被接合部13と第2金属部材20の被接合部21とが良好な固相状態で接合された面状の接合部が形成される。このように、第1金属部材10と第2金属部材20とを冶金的に接合した接合体を製造することができる。 Then, as shown in FIG. 5, the oxide film on the metal surface is destroyed by the friction phenomenon at the joint interface to which the vibration is applied, and plastic flow occurs due to the pressurization. In addition, since frictional heat locally raises the temperature of the tip side of the protrusion 12, the temperature of the bonding interface rises in a short time, promoting diffusion and recrystallization of atoms. As a result, the protrusions are deformed so as to melt, and a planar joint portion is formed in which the joint portion 13 of the first metal member 10 and the joint portion 21 of the second metal member 20 are joined in a good solid phase state. It is formed. In this manner, a joined body in which the first metal member 10 and the second metal member 20 are metallurgically joined can be manufactured.

ここで、第1金属部材10に凹凸形状を形成しない場合について、図6を参照して説明する。図6は、比較例1の接合方法を説明する図である。図6に示すように、比較例1の接合方法では、図4で説明した接合装置を用いて、板状に形成される金属部材100を第2金属部材20に接合する。 Here, the case where the uneven shape is not formed on the first metal member 10 will be described with reference to FIG. 6A and 6B are diagrams for explaining the bonding method of Comparative Example 1. FIG. As shown in FIG. 6, in the joining method of Comparative Example 1, the plate-shaped metal member 100 is joined to the second metal member 20 using the joining apparatus described with reference to FIG.

金属部材100は、凹凸形状を形成する前の第1金属部材10に相当するものである。金属部材100は、第2金属部材20と接合される平坦な被接合部101を有している。また、第2金属部材20は、金属部材100と接合される平坦な被接合部21を有している。 The metal member 100 corresponds to the first metal member 10 before forming the uneven shape. The metal member 100 has a flat joined portion 101 to be joined with the second metal member 20 . The second metal member 20 also has a flat joined portion 21 to be joined to the metal member 100 .

金属部材100と第2金属部材20とを接合する際には、被接合部101が被接合部21に当接するように金属部材100と第2金属部材20とを重ね合わせて振動体40と支持部材30との間に挟み込み、上下方向から加圧しながら金属部材100に対して振動を与える。 When the metal member 100 and the second metal member 20 are joined together, the metal member 100 and the second metal member 20 are overlapped so that the joined portion 101 abuts against the joined portion 21, and the vibrating body 40 and the supporting member 20 are supported. It is sandwiched between the member 30 and applies vibration to the metal member 100 while applying pressure from above and below.

比較例1の接合方法によると、第2金属部材20に対する金属部材100の接触面積が大きいため、接合時の摩擦熱が拡散して接合界面以外に伝達し、金属部材100から容易に放熱される。この場合、接合界面の発熱が不十分になって、十分な接合強度が得られない虞がある。このような現象は、熱伝導率の高いアルミニウム又はアルミニウム合金の接合を行う場合に特に問題となり得る。 According to the bonding method of Comparative Example 1, since the contact area of the metal member 100 with respect to the second metal member 20 is large, frictional heat during bonding is diffused and transmitted to areas other than the bonding interface, and the heat is easily dissipated from the metal member 100. . In this case, heat generation at the bonding interface becomes insufficient, and there is a possibility that sufficient bonding strength cannot be obtained. Such a phenomenon can be particularly problematic when joining aluminum or aluminum alloys with high thermal conductivity.

また、摩擦熱を利用した他の接合方法として、図7に示す比較例2の接合方法が考えられる。図7は、比較例2の接合方法を説明する図である。図7に示すように、比較例2の接合方法は、凹凸形状を形成した第1金属部材10と第2金属部材20とをスピン溶着により接合する方法を示している。 As another joining method using frictional heat, the joining method of Comparative Example 2 shown in FIG. 7 can be considered. 7A and 7B are diagrams for explaining the joining method of Comparative Example 2. FIG. As shown in FIG. 7, the joining method of Comparative Example 2 shows a method of joining the first metal member 10 and the second metal member 20 having an uneven shape by spin welding.

図7に示すスピン溶着の場合、被接合部13と被接合部21とがX軸方向で対向するように配置した第1金属部材10および第2金属部材20を保持し、第1金属部材10をX軸回りに高速で回転させると同時に加圧しながら第2金属部材20に向かって下降させる。スピン溶着は、高速回転する第1金属部材10を第2金属部材20に押し当てることにより接合界面で発生する摩擦熱を利用して固相接合を行う接合方法である。 In the case of spin welding shown in FIG. 7, a first metal member 10 and a second metal member 20 are held so that the to-be-bonded portion 13 and the to-be-bonded portion 21 face each other in the X-axis direction, and the first metal member 10 is rotated around the X-axis at a high speed and lowered toward the second metal member 20 while being pressurized. Spin welding is a joining method in which the first metal member 10 rotating at high speed is pressed against the second metal member 20, and solid state joining is performed using frictional heat generated at the joining interface.

しかしながら、比較例2の接合方法によると、第1金属部材10の回転により、微細な凸部12がねじられて先端部12a近傍に応力が集中するため、凸部12が容易に折れて破損する可能性がある。したがって、凹凸形状を形成した第1金属部材10を第2金属部材20に接合する方法として、被接合材に対してX軸回りの回転を与えるスピン溶着は好ましくない。 However, according to the joining method of Comparative Example 2, due to the rotation of the first metal member 10, the fine projections 12 are twisted and stress is concentrated near the tip 12a, so that the projections 12 are easily broken and damaged. there is a possibility. Therefore, as a method of joining the first metal member 10 having the uneven shape to the second metal member 20, spin welding, which rotates the material to be joined around the X-axis, is not preferable.

また、金属部材同士を冶金的に接合する他の接合方法として、アーク溶接、ガス溶接、レーザ溶接、または電子ビーム溶接等の溶融溶接が挙げられる。 Fusion welding such as arc welding, gas welding, laser welding, or electron beam welding can be cited as other joining methods for metallurgically joining metal members.

しかしながら、ダイカスト鋳造されたアルミ鋳物部材には、製造法の特性上、内部に水素ガスが含まれる。このため、アルミ鋳物部材を溶融溶接により接合する場合、アルミ鋳物部材を高い入熱量により溶融させることに伴ってアルミ鋳物部材の内部の水素ガスがブローホールとなって接合部に残存し内部欠陥が生じ得る。接合部にブローホールが残存すると、接合面積が低下するため、十分な接合強度を得ることができない。このように、ダイカスト鋳造されたアルミ鋳物部材は、溶融溶接が困難であるという問題がある。 However, die-cast aluminum casting members contain hydrogen gas inside due to the characteristics of the manufacturing method. For this reason, when joining cast aluminum members by fusion welding, the hydrogen gas inside the cast aluminum members becomes a blow hole and remains in the joint as a result of melting the cast aluminum member with a high heat input, resulting in internal defects. can occur. If blowholes remain in the joint, the joint area is reduced, and sufficient joint strength cannot be obtained. Thus, the die-cast aluminum casting member has a problem that fusion welding is difficult.

さらに、異種金属を溶融溶接によって接合する場合、異種金属からなる金属部材間の接合界面に脆弱な金属間化合物が形成されるため、接合強度が低下するという問題がある。 Furthermore, when dissimilar metals are joined by fusion welding, a weak intermetallic compound is formed at the joining interface between metal members made of dissimilar metals, so there is a problem that the joining strength is reduced.

一方、溶融溶接と比較して被接合材への入熱量が小さい固相接合では、金属部材を溶融することなく接合できるため、ブローホールが発生せず、金属間化合物の形成も抑制される。そのため、熱影響に起因する接合強度の低下が起きにくい。固相接合は、被接合材を溶融することなく固相状態で接合することができるため、アルミニウム合金をはじめとする同種金属や異種金属の接合に好適に用いられる。 On the other hand, in solid-state welding, in which the amount of heat input to the materials to be joined is smaller than that in fusion welding, metal members can be joined without melting, so that blowholes do not occur and the formation of intermetallic compounds is suppressed. Therefore, the bonding strength is less likely to be lowered due to thermal effects. Solid-state bonding can be used to bond materials in a solid state without melting them, so that it is suitable for bonding metals of the same kind, such as aluminum alloys, and metals of different kinds.

このような利点を有する固相接合を大型の機械部品に適用する場合、スピン溶着等と比べると、超音波接合等の振動によって摩擦熱を発生させる接合方法は、摩擦熱による入熱量が小さいため、接合界面の温度が上昇しにくいという問題がある。接合界面における発熱が接合に必要な温度に対して不十分であると、接合部の接合強度が低下する。そのため、接合部の接合強度を向上するためには、接合界面の温度を十分に高くする必要がある。 When solid-phase bonding with such advantages is applied to large machine parts, the amount of heat input from frictional heat is smaller in bonding methods that generate frictional heat due to vibration, such as ultrasonic bonding, compared to spin welding, etc. , there is a problem that the temperature of the junction interface is difficult to rise. If the heat generated at the bonding interface is insufficient for the temperature required for bonding, the bonding strength of the bonding portion will decrease. Therefore, in order to improve the joint strength of the joint, the temperature of the joint interface must be sufficiently high.

これらの問題に対し、本実施形態にかかる接合方法は、第1金属部材10に凸部12の先端部12aから基端部12bまでの深さと、凸部12の先端部12aの幅と、の比が10:1以上となる凹凸形状を形成するステップと、凹凸形状の凸部12の先端部12aを第2金属部材20の被接合部21に当接させた状態で重ね合わせた第1金属部材および第2金属部材を凸部12が突出する方向に沿って加圧しながら、第1金属部材10に対して凸部12が突出する方向に沿った振動を与えて第1金属部材10を第2金属部材20に接合するステップと、を有する。 In order to solve these problems, the joining method according to the present embodiment provides the first metal member 10 with the depth from the tip 12a to the base 12b of the protrusion 12 and the width of the tip 12a of the protrusion 12. a step of forming an uneven shape with a ratio of 10:1 or more; While pressing the member and the second metal member along the direction in which the protrusions 12 protrude, vibration is applied to the first metal member 10 along the direction in which the protrusions 12 protrude, thereby moving the first metal member 10 to the second position. and bonding to two metal members 20 .

このような構成により、接合時に与えられる振動エネルギが凸部12の先端部12aに集中する。また、接合時における第1金属部材10と第2金属部材20との接触面積が低減され、摩擦熱が接合界面以外に伝達することが抑制される。そのため、接合界面の温度を効率良く上昇させることができ、摩擦熱が接合界面から逃げる前に接合部を形成することができる。さらに、第1金属部材10に対しては、凸部12が突出する方向に沿った圧力および振動が与えられるため、凸部12にかかる応力が低減される。これにより、凸部12の破損を抑制することができる。 With such a configuration, the vibration energy applied during bonding concentrates on the tip portion 12a of the convex portion 12. As shown in FIG. In addition, the contact area between the first metal member 10 and the second metal member 20 during bonding is reduced, and transmission of frictional heat to areas other than the bonding interface is suppressed. Therefore, the temperature of the joint interface can be efficiently raised, and the joint can be formed before frictional heat escapes from the joint interface. Furthermore, since pressure and vibration are applied to the first metal member 10 along the direction in which the protrusions 12 protrude, the stress applied to the protrusions 12 is reduced. As a result, damage to the convex portion 12 can be suppressed.

また、上記接合方法において、第1金属部材10は、アルミニウム又はアルミニウム合金により構成される金属部材である。アルミニウム又はアルミニウム合金で構成される金属部材は、熱伝導率が高く、潜熱も大きいため、本実施形態にかかる接合方法を適用することにより、接合界面の温度をより効率良く上昇させることができる。 Moreover, in the above joining method, the first metal member 10 is a metal member made of aluminum or an aluminum alloy. A metal member made of aluminum or an aluminum alloy has high thermal conductivity and large latent heat. Therefore, by applying the bonding method according to the present embodiment, the temperature of the bonding interface can be increased more efficiently.

また、上記接合方法において、第2金属部材20は、アルミニウム又はアルミニウム合金により構成されるアルミ鋳物部材である。本実施形態にかかる接合方法によれば、アルミ鋳物部材を溶融させることなく固相状態で接合するため、ブローホールが発生せず、接合強度の低下を抑制できる。 Moreover, in the joining method, the second metal member 20 is an aluminum cast member made of aluminum or an aluminum alloy. According to the joining method of the present embodiment, since the cast aluminum members are joined in a solid state without being melted, blowholes do not occur and reduction in joint strength can be suppressed.

また、上記接合方法において、第1金属部材10の凸部12の先端部12aは平坦に形成される。これにより、接合時に第1金属部材10に対して与えられる圧力および振動に伴って先端部12aに生じる応力が低減されるため、凸部12の破損を抑制できる。 In addition, in the joining method described above, the tip portion 12a of the convex portion 12 of the first metal member 10 is formed flat. As a result, the pressure applied to the first metal member 10 at the time of bonding and the stress generated in the tip portion 12a due to vibration are reduced, so damage to the convex portion 12 can be suppressed.

以上、説明したように、本実施形態にかかる接合方法によれば、高い接合強度の接合体が得られる。 As described above, according to the joining method according to the present embodiment, a joined body with high joining strength can be obtained.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上記実施形態では、アルミニウムを主成分とする同種金属からなる金属部材同士を接合する場合について説明したが、第1金属部材10および第2金属部材20を構成する材料はこれに限らない。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention. In the above embodiment, the case of joining metal members made of the same kind of metal containing aluminum as a main component has been described, but the material forming the first metal member 10 and the second metal member 20 is not limited to this.

第1金属部材10および第2金属部材20を構成する材料としては、アルミニウムを主成分とする金属の他に、銅、銅合金、鉄、鋼、又はステンレス鋼等を用いることができる。また、第1金属部材10と第2金属部材20との組み合わせは、同種金属であっても良く、異種金属であっても良い。 As a material for forming the first metal member 10 and the second metal member 20, copper, a copper alloy, iron, steel, stainless steel, or the like can be used in addition to a metal containing aluminum as a main component. Moreover, the combination of the first metal member 10 and the second metal member 20 may be made of the same kind of metal, or may be made of different metals.

例えば、アルミニウムを主成分とする金属により構成される金属部材と鉄を主成分とする金属部材との組み合わせ、およびアルミニウムを主成分とする金属により構成される金属部材と銅を主成分とする金属部材との組み合わせ等の異種金属の接合に適用できる。異種金属からなる金属部材同士の接合に適用した場合、金属部材間の接合界面における金属間化合物の形成を抑制することができるため、高い接合強度の接合体が得られる。 For example, a combination of a metal member composed of a metal containing aluminum as a main component and a metal member containing iron as a main component, and a metal member containing a metal containing aluminum as a main component and a metal containing copper as a main component It can be applied to joining dissimilar metals such as a combination of members. When applied to the joining of metal members made of dissimilar metals, the formation of an intermetallic compound at the joint interface between the metal members can be suppressed, so that a joined body with high joint strength can be obtained.

10 第1金属部材
11 本体部
12 凸部
12a 先端部
12b 基端部
13 被接合部
20 第2金属部材
21 被接合部
30 支持部材
40 振動体
100 金属部材
101 被接合部
10 First metal member 11 Main body 12 Convex part 12a Tip part 12b Base end part 13 Part to be joined 20 Second metal member 21 Part to be joined 30 Support member 40 Vibrating body 100 Metal member 101 Part to be joined

Claims (4)

第1金属部材に凸部の先端部から基端部までの深さと、前記凸部の先端部の幅と、の比が10:1以上となる凹凸形状を形成するステップと、
前記凹凸形状の凸部の先端部を第2金属部材の被接合部に当接させた状態で重ね合わせた前記第1金属部材および前記第2金属部材を前記凸部が突出する方向に沿って加圧しながら、前記第1金属部材に対して前記凸部が突出する方向に沿った振動を与えて前記第1金属部材を第2金属部材に接合するステップと、
を有する接合方法。
forming an uneven shape on the first metal member such that the ratio of the depth from the tip to the base of the protrusion to the width of the tip of the protrusion is 10:1 or more;
The first metal member and the second metal member, which are superimposed in a state where the tip end portion of the uneven convex portion is in contact with the joined portion of the second metal member, are arranged along the direction in which the convex portion protrudes. joining the first metal member to the second metal member by applying vibration along the direction in which the projection projects to the first metal member while applying pressure;
joining method.
前記第1金属部材は、アルミニウム又はアルミニウム合金により構成される金属部材である請求項1に記載の接合方法。 The joining method according to claim 1, wherein the first metal member is a metal member made of aluminum or an aluminum alloy. 前記第2金属部材は、アルミニウム又はアルミニウム合金により構成されるアルミ鋳物部材である請求項1又は2に記載の接合方法。 The joining method according to claim 1 or 2, wherein the second metal member is an aluminum cast member made of aluminum or an aluminum alloy. 前記凸部の先端部は平坦に形成される請求項1~3のいずれか1項に記載の接合方法。 The joining method according to any one of claims 1 to 3, wherein the tip of the projection is formed flat.
JP2021120613A 2021-07-21 2021-07-21 Joint method Pending JP2023016355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021120613A JP2023016355A (en) 2021-07-21 2021-07-21 Joint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021120613A JP2023016355A (en) 2021-07-21 2021-07-21 Joint method

Publications (1)

Publication Number Publication Date
JP2023016355A true JP2023016355A (en) 2023-02-02

Family

ID=85131825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021120613A Pending JP2023016355A (en) 2021-07-21 2021-07-21 Joint method

Country Status (1)

Country Link
JP (1) JP2023016355A (en)

Similar Documents

Publication Publication Date Title
JP5899907B2 (en) Wedge tool for wire bonding, bonding apparatus, wire bonding method, and method for manufacturing semiconductor device
JP6101513B2 (en) Metal foil lap joint method and joint structure
JP2011098358A (en) Method of bonding metallic members, and metallic bonded body
JP2004174546A (en) Method of joining metallic member
JPH0481288A (en) Method for joining steel material with aluminum material
KR20120073974A (en) Friction stir welding device
JP2023016355A (en) Joint method
JPH10230378A (en) Forming method, combining method and combining device using this forming method
JP4274885B2 (en) Ultrasonic bonding apparatus and ultrasonic bonding method
JP2002035964A (en) Friction stir welding method and tool for lap joint
JP2005111489A (en) Structure and method for joining dissimilar material
JP2006175504A (en) Method for joining different kind of material
Lindamood et al. Ultrasonic welding of metals
JP2014166646A (en) Solid-phase welding method for metal workpiece
JPWO2002058880A1 (en) Friction bonding method and friction bonded body
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
CN113954371A (en) Ultrasonic hot-melt welding method and ultrasonic hot-melt welded assembly
JP2002219584A (en) Friction welding method
JP6957054B1 (en) Rivet joining method and joining processing equipment
JP5509798B2 (en) Joining method
JP2005111547A (en) Ultrasonic welding machine
JP2005288457A (en) Ultrasonic joining method for different kinds of metals and ultrasonic joined structure
JP2005254323A (en) Ultrasonic welding tip and welding method
JPS59137188A (en) Ultrasonic welding method
JP2012125803A (en) Electrically conductive material bonding method