JP2005254323A - Ultrasonic welding tip and welding method - Google Patents

Ultrasonic welding tip and welding method Download PDF

Info

Publication number
JP2005254323A
JP2005254323A JP2004073489A JP2004073489A JP2005254323A JP 2005254323 A JP2005254323 A JP 2005254323A JP 2004073489 A JP2004073489 A JP 2004073489A JP 2004073489 A JP2004073489 A JP 2004073489A JP 2005254323 A JP2005254323 A JP 2005254323A
Authority
JP
Japan
Prior art keywords
aluminum
tip
ultrasonic
based material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073489A
Other languages
Japanese (ja)
Inventor
Seiji Sasabe
誠二 笹部
Satoru Iwase
哲 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004073489A priority Critical patent/JP2005254323A/en
Publication of JP2005254323A publication Critical patent/JP2005254323A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding tip by which a high joining strength can be stably obtained in ultrasonic welding between an aluminum-based material and a steel material, and also to provide the welding method. <P>SOLUTION: As the ultrasonic welding tip for performing welding by applying ultrasonic vibration to a stacked body of the aluminum-based material and the steel material, a tip in a form of R type electrode is used having a curved face that forms a projected shape curved in the direction orthogonal to the vibrating direction. As a result, a stable joining strength can be obtained in the ultrasonic welding between the aluminum-based material and the steel material. Thus, welding of different kinds of metal between the aluminum or aluminum-based material and the steel material can be performed at a low cost without using special consumables like filler metal or welding flux. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウム又はアルミニウム合金材(以下、総称してアルミニウム系材という)と、鋼材との異種金属間の超音波接合用チップ及び接合方法に関する。   The present invention relates to an ultrasonic bonding tip and bonding method between dissimilar metals of aluminum or an aluminum alloy material (hereinafter collectively referred to as an aluminum-based material) and a steel material.

アルミニウム系材は軽量で美観に優れており、輸送機等の軽量化のための材料として使用されている。特に、アルミニウム系材を強度及び成形性に優れた鋼材と組み合わせたハイブリッド構造のものが注目されている。   Aluminum-based materials are lightweight and excellent in aesthetics, and are used as materials for weight reduction of transport aircraft and the like. In particular, a hybrid structure in which an aluminum-based material is combined with a steel material excellent in strength and formability has attracted attention.

しかし、アルミニウム系材と鋼材とを接合する場合、鋼材同士の接合において従来から使用されている各種の溶接技術をそのまま適用することは困難である。例えば、抵抗スポット溶接を適用した場合、アルミニウム系材と鋼材は熱伝導性及び電気伝導性に大きな差があるため、接合界面に正常なナゲットが形成されない。また、接合界面に脆弱な金属間化合物が形成され、アルミニウム系材と鋼材との接合部分は界面剥離しやすくなり、十分な接合品質が得られない。   However, when joining an aluminum-based material and a steel material, it is difficult to apply various welding techniques conventionally used in joining steel materials as they are. For example, when resistance spot welding is applied, a normal nugget is not formed at the joint interface because there is a large difference in thermal conductivity and electrical conductivity between an aluminum-based material and a steel material. Further, a brittle intermetallic compound is formed at the bonding interface, and the bonded portion between the aluminum-based material and the steel material is easily peeled off at the interface, so that sufficient bonding quality cannot be obtained.

前記抵抗スポット溶接に代わり、超音波接合によりこれらの異種金属を接合する方法が提案されている。超音波接合では、接合界面に対して垂直方向の加圧による応力と、平行方向の高い振動加速度による繰返し応力とを与えて接合界面に摩擦発熱を生じさせる。これにより被溶接材の原子を拡散させて接合する。例えば、特許文献1(特開2000−202643号公報)には、鋼材の被接合箇所にフラックスを塗布した後、溶融亜鉛めっきを施し、この亜鉛めっき膜にアルミニウム系材の被接合箇所を当接させて超音波振動を加え、前記亜鉛めっき膜を溶融させて接合するという方法が開示されている。特許文献1には、これにより、鋼材とアルミニウム系材との接合部に、その接合強度を損なうことなく十分な防錆処理を施すことができると記載されている。   A method of joining these dissimilar metals by ultrasonic bonding instead of the resistance spot welding has been proposed. In ultrasonic bonding, a stress generated by pressurization in a direction perpendicular to the bonding interface and a repetitive stress due to high vibration acceleration in a parallel direction are applied to generate frictional heat at the bonding interface. As a result, the atoms of the material to be welded are diffused and joined. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-202643), a flux is applied to a portion to be joined of a steel material, followed by hot dip galvanizing, and the portion to be joined of an aluminum-based material is brought into contact with the galvanized film. And applying ultrasonic vibration to melt and bond the galvanized film. Patent Document 1 describes that a sufficient rust prevention treatment can be applied to the joint between the steel material and the aluminum-based material without impairing the joint strength.

また、特許文献2(特開平10−71465号公報)には、はんだ層を被接合箇所に形成したアルミニウム材と鋼材を超音波接合する技術が開示されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 10-71465) discloses a technique of ultrasonically bonding an aluminum material and a steel material in which a solder layer is formed at a portion to be joined.

しかしながら、これらの技術には以下に示すような問題点がある。特許文献1においては、アルミニウム系材と鋼材を、亜鉛めっき膜を接着層として接合する。このため、鋼材表面に亜鉛めっきを施す工程が必要となる。特許文献2においても同様であり、はんだ層を形成する工程が余分に必要となる。   However, these techniques have the following problems. In Patent Document 1, an aluminum-based material and a steel material are joined using a galvanized film as an adhesive layer. For this reason, the process of giving galvanization to the steel material surface is needed. The same applies to Patent Document 2, and an extra step of forming a solder layer is required.

これに対して、非特許文献1(軽金属溶接Vol.37(1999)No.10)には、超音波振動を利用して金属を溶融させずに固相接合する技術が開示されている。ろう材又はフラックスを使用することのない異種金属間での接合の可能性が示唆されている。   On the other hand, Non-Patent Document 1 (Light Metal Welding Vol. 37 (1999) No. 10) discloses a technique for solid-phase bonding without melting metal using ultrasonic vibration. The possibility of joining between dissimilar metals without the use of brazing material or flux has been suggested.

図1は、従来の超音波接合装置を示す断面図である。また図4は、従来の超音波接合装置で使用するチップの形状を示した図である。図1に示すように、この超音波接合装置においては、アルミニウム系材2と鋼材1とを重ねて、この積層体3をアンビル5に固定する。そして、チップ4によって、積層体3の接合界面に、垂直方向の加圧力Pと水平方向の超音波振動(S)を印加する。図4に示すように、従来のチップ4cの表面6には、材料をしっかり保持して振動がアルミニウム系材2と鋼材1との界面に伝えられるように、ローレット加工と呼ばれる滑り止め加工が施されている。   FIG. 1 is a cross-sectional view showing a conventional ultrasonic bonding apparatus. FIG. 4 is a view showing the shape of a chip used in a conventional ultrasonic bonding apparatus. As shown in FIG. 1, in this ultrasonic bonding apparatus, an aluminum-based material 2 and a steel material 1 are stacked and this laminated body 3 is fixed to an anvil 5. Then, vertical pressure P and horizontal ultrasonic vibration (S) are applied to the bonding interface of the laminate 3 by the chip 4. As shown in FIG. 4, the surface 6 of the conventional chip 4c is subjected to anti-slip processing called knurling so that the material is firmly held and vibration is transmitted to the interface between the aluminum-based material 2 and the steel material 1. Has been.

特開2000−202643号公報Japanese Patent Application Laid-Open No. 2000-202643

特開平10−71465号公報JP-A-10-71465

軽金属溶接Vol.37(1999)No.10Light metal welding Vol. 37 (1999) No. 10

しかしながら、前述の従来技術には問題点がある。非特許文献1に異種間金属の接合に超音波接合を適用した具体例の記載はない。また、一般に超音波接合における最適な接合条件及び工具形状は知られていない。従来の工具形状及び接合条件では、十分な接合強度が確保することは困難である。   However, there is a problem with the above-described prior art. Non-Patent Document 1 does not describe a specific example in which ultrasonic bonding is applied to bonding between different kinds of metals. Moreover, generally the optimal joining conditions and tool shape in ultrasonic joining are not known. With conventional tool shapes and joining conditions, it is difficult to ensure sufficient joining strength.

本発明はかかる問題点に鑑みてなされたものであって、安定して高い接合強度が得られるアルミニウム系材と鋼材との超音波接合に用いるチップ及びそれを用いた超音波接合方法を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: The chip | tip used for ultrasonic bonding of the aluminum-type material and steel material which can obtain high joint strength stably, and the ultrasonic bonding method using the same are provided. For the purpose.

本発明に係るアルミニウム系材と鋼材との超音波接合用チップは、重ね合わせた被接合材に超音波を印加して超音波接合を行うための超音波接合装置用チップにおいて、被接合材と接する面にローレット加工が施されていないことを特徴とする。   The chip for ultrasonic bonding of an aluminum-based material and a steel material according to the present invention is an ultrasonic bonding device chip for performing ultrasonic bonding by applying ultrasonic waves to superposed bonded materials. The contact surface is not knurled.

この場合に、チップの先端が振動方向と直交する断面において湾曲した凸型となる曲面を有することが望ましい。   In this case, it is desirable that the tip of the tip has a convex curved surface that is curved in a cross section orthogonal to the vibration direction.

本発明に係る超音波接合方法は、上記超音波接合用チップを使用して、例えば、アルミニウム材又はアルミニウム合金材と鋼材とを接合することを特徴とする。   The ultrasonic bonding method according to the present invention is characterized in that, for example, an aluminum material or an aluminum alloy material and a steel material are bonded using the ultrasonic bonding chip.

本発明によれば、アルミニウム系材と鋼材との超音波接合において、安定した接合強度が得られる。よって、アルミニウム又はアルミニウム系材と鋼系材との異種金属同士の接合を、ろう材又は溶接フラックス等の特別な消耗品を使用せずに低コストで行うことができる。   According to the present invention, stable bonding strength can be obtained in ultrasonic bonding between an aluminum-based material and a steel material. Therefore, joining of dissimilar metals of aluminum or an aluminum-based material and a steel-based material can be performed at low cost without using a special consumable such as a brazing material or a welding flux.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1は本実施形態に係る超音波接合装置を示す断面図である。また、図2及び図3は本発明に係る超音波接合装置に使用するチップの形状を示す図である。図1に示すように、本実施形態に係る超音波接合装置においては、アルミニウム系材2と鋼材1とを重ねた積層体3が、水平姿勢に固定して設置されたアンビル5に固定される。更に、水平方向に超音波振動(S)するホーン(図示せず)に直結したチップ4と前記アンビル5で積層体3を挟むように構成される。図2に示すように、本発明で使用するチップ4aには、滑り止め用のローレット加工が施されていない。更に、図3に示すように、本発明で使用するチップ4bの先端の形状は、超音波接合時の超音波振動方向に直交する断面において所定の曲率半径で湾曲する凸形状にするのが望ましい。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an ultrasonic bonding apparatus according to this embodiment. 2 and 3 are views showing the shape of a chip used in the ultrasonic bonding apparatus according to the present invention. As shown in FIG. 1, in the ultrasonic bonding apparatus according to the present embodiment, a laminate 3 in which an aluminum-based material 2 and a steel material 1 are stacked is fixed to an anvil 5 that is installed in a horizontal posture. . Further, the laminate 3 is sandwiched between the tip 4 directly connected to a horn (not shown) that performs ultrasonic vibration (S) in the horizontal direction and the anvil 5. As shown in FIG. 2, the tip 4a used in the present invention is not subjected to anti-slip knurling. Furthermore, as shown in FIG. 3, it is desirable that the tip 4b used in the present invention has a convex shape that curves with a predetermined radius of curvature in a cross section orthogonal to the ultrasonic vibration direction during ultrasonic bonding. .

次に、前述の如く構成された本実施形態に係るアルミニウム系材と鋼材との超音波接合用チップの動作及び接合方法について説明する。図1に示すように、アルミニウム系材2と鋼材1とを重ね、この積層体3を水平姿勢に固定されたアンビル5に固定する。そしてチップ4で挟み、チップ4を介して積層体3に接合面に垂直の加圧力Pを印加することによって、アルミニウム系材2はチップ4で保持される。この状態でチップ4を水平方向に超音波振動(S)させて、チップ4とともにアルミニウム系材2を高い振動加速度で超音波振動させる。これにより、超音波振動するアルミニウム系材2と固定された鋼材1との間に摩擦力により発熱が生じる。このとき接合界面にて原子の移動が促進され、Fe原子のアルミニウム系材2への拡散が生じる。これにより、鋼材1とアルミニウム系材2との接合界面にて、アルミニウム系材2と鋼材1とが固相接合される。   Next, the operation and joining method of the ultrasonic joining tip between the aluminum-based material and the steel material according to this embodiment configured as described above will be described. As shown in FIG. 1, the aluminum-based material 2 and the steel material 1 are stacked, and the laminate 3 is fixed to the anvil 5 fixed in a horizontal posture. The aluminum-based material 2 is held by the chip 4 by being sandwiched between the chips 4 and applying a pressure P perpendicular to the bonding surface to the laminated body 3 via the chips 4. In this state, the chip 4 is subjected to ultrasonic vibration (S) in the horizontal direction, and the aluminum-based material 2 is ultrasonically vibrated with high vibration acceleration together with the chip 4. As a result, heat is generated by frictional force between the aluminum-based material 2 that vibrates ultrasonically and the fixed steel material 1. At this time, movement of atoms is promoted at the bonding interface, and diffusion of Fe atoms into the aluminum-based material 2 occurs. Thereby, the aluminum-based material 2 and the steel material 1 are solid-phase bonded at the bonding interface between the steel material 1 and the aluminum-based material 2.

接合の初期においては、固相拡散を開始させるため、材料間の表面酸化膜などを機械的に除去して新生金属面同士を対向させる必要がある。このため、チップはアルミニウム系材2をしっかり保持し、超音波振動を効率よくアルミニウム系材に伝達する必要がある。   In the initial stage of bonding, in order to start solid phase diffusion, it is necessary to mechanically remove the surface oxide film between the materials and make the new metal surfaces face each other. For this reason, the chip needs to hold the aluminum-based material 2 firmly and transmit ultrasonic vibration to the aluminum-based material efficiently.

また拡散接合がある程度進行した後には、接合部の固相拡散を継続させつつ、アルミニウム系材2と鋼材1の接合界面において摺動が生じないようにしなければならない。そのために、チップ4とアルミニウム系材2との界面で摺動による摩擦過熱が発生するようにする必要がある。   In addition, after diffusion bonding has progressed to some extent, it is necessary to prevent sliding from occurring at the bonding interface between the aluminum-based material 2 and the steel material 1 while continuing solid-phase diffusion of the bonded portion. Therefore, it is necessary to generate friction overheating due to sliding at the interface between the tip 4 and the aluminum-based material 2.

本実施形態においては、接合プロセス中でのアルミニウム系材2の保持と開放を前述の如く行うための最適なチップ形状を使用している。図2に示すように、プロセス途中からのクランプ開放を考えると、チップ4表面は滑り止めのためのローレット加工されていないことが必要である。また、ローレット加工をなくしたために低下したアルミニウム系材2の保持性を高めるため、チップの先端を凸形状となる曲面にすることが好ましい。これにより、チップ4からアルミニウム系材2に加わる単位面積当たりの荷重を大きくできる。このとき、先端形状を円錐型にしてしまうと、形状的に摩擦抵抗が小さくなりすぎるため、超音波振動を効率よく被接合材に伝達することができなくなる。そこで、チップ4の形状は超音波振動時の超音波振動方向に直交する方向にのみ凸とする図3に示すようなR型にすることが望ましい。このような形状にすることにより、振動方向のチップ4とアルミニウム系材2の摩擦抵抗を大きくしてアルミニウム系材2を保持し、かつある程度拡散接合が進むとローレット加工がないのでアルミニウム系材2の保持から開放される。   In the present embodiment, an optimum chip shape for holding and releasing the aluminum-based material 2 during the joining process is used as described above. As shown in FIG. 2, considering the clamp release from the middle of the process, it is necessary that the surface of the chip 4 is not knurled to prevent slipping. Moreover, in order to improve the retainability of the aluminum-based material 2 that has been lowered due to the elimination of the knurling process, it is preferable that the tip of the chip has a convex curved surface. Thereby, the load per unit area applied to the aluminum-based material 2 from the chip 4 can be increased. At this time, if the tip shape is conical, the frictional resistance is too small in shape, so that ultrasonic vibration cannot be efficiently transmitted to the material to be joined. Therefore, it is desirable that the chip 4 has an R shape as shown in FIG. 3 which is convex only in the direction orthogonal to the ultrasonic vibration direction during ultrasonic vibration. By adopting such a shape, the friction resistance between the tip 4 and the aluminum-based material 2 in the vibration direction is increased to hold the aluminum-based material 2, and when diffusion bonding proceeds to some extent, there is no knurling, so the aluminum-based material 2 Freed from holding.

なお、チップ4の先端の曲率半径は30乃至150mmであることが好ましい。曲率半径が30mm未満であると、界面における両材料の接触面積が狭く限定されすぎるため、接合破断荷重不足となる。また、加圧力が過大となり過ぎ、アルミニウム系材料が減肉してしまい、接合破断荷重不足となる。更に、拡散接合がある程度進行した後でも保持が開放されず、接合界面に摺動を生じて接合破断荷重がかえって低下してしまう。また、150mmを超えると、接触面積が過大となって加圧力が過小となる。これにより、摩擦抵抗が過小となり、超音波振動が効率よく被接合材料に伝達されないため、接合破断荷重が低下してしまう。   Note that the radius of curvature of the tip of the tip 4 is preferably 30 to 150 mm. If the radius of curvature is less than 30 mm, the contact area between the two materials at the interface is too narrow and limited, resulting in insufficient bond breaking load. In addition, the applied pressure becomes excessive, the aluminum-based material is thinned, and the joint breaking load is insufficient. Further, even after diffusion bonding has progressed to some extent, the holding is not released, and sliding occurs at the bonding interface, resulting in a decrease in bonding breaking load. If it exceeds 150 mm, the contact area becomes excessive and the applied pressure becomes excessive. As a result, the frictional resistance becomes too small, and the ultrasonic vibration is not efficiently transmitted to the material to be joined, so that the joint breaking load is reduced.

なお、鋼材1を保持するアンビル5は常に鋼材1を保持する必要があり、ローレット加工がある方が望ましい。   In addition, the anvil 5 holding the steel material 1 needs to always hold the steel material 1, and it is desirable that there is a knurling process.

本実施形態のように、超音波接合のチップ4の先端形状を適切なものとすることで、接合が安定して行える。   As in the present embodiment, the tip shape of the ultrasonic bonding tip 4 is made appropriate, so that bonding can be performed stably.

なお、本実施形態においては、鋼材1の上にアルミニウム系材2を重ねる例を示したが、本発明はこれに限定されず、アルミニウム系材2上に鋼材1を重ねても良い。また、超音波接合方法自体は従来周知の方法で良く、特に限定しない。   In addition, in this embodiment, although the example which piles up the aluminum-type material 2 on the steel material 1 was shown, this invention is not limited to this, You may pile up the steel material 1 on the aluminum-type material 2. The ultrasonic bonding method itself may be a conventionally known method and is not particularly limited.

次に、本発明の効果を示すために行った試験の結果について説明する。アルミニウム系材として、AA6022合金(AA:米国規格、Al−1.2質量%Si−0.6質量%Mg−0.5質量%Cu−0.1質量%Fe−0.05質量%Mn)の板厚1mmの板材を使用し、鋼材として板厚0.8mmのSPCE鋼板(JIS G 3141に記載)を使用した。図1に示すように、アルミニウム合金材(アルミニウム系材2)をチップ側、鋼板(鋼材1)をアンビル側に配し、加圧力500N、振動周波数20kHz、振幅20μm、接合時間0.23秒で接合を行った。接合が可能であったものについて、U字継手引張試験を行い、破断荷重を求めた。その結果を表1に示す。   Next, the results of tests conducted to show the effects of the present invention will be described. As an aluminum-based material, AA6022 alloy (AA: US standard, Al-1.2 mass% Si-0.6 mass% Mg-0.5 mass% Cu-0.1 mass% Fe-0.05 mass% Mn) A plate material having a thickness of 1 mm was used, and an SPCE steel plate (described in JIS G 3141) having a thickness of 0.8 mm was used as the steel material. As shown in FIG. 1, an aluminum alloy material (aluminum-based material 2) is disposed on the chip side, and a steel plate (steel material 1) is disposed on the anvil side. The applied pressure is 500 N, the vibration frequency is 20 kHz, the amplitude is 20 μm, and the joining time is 0.23 seconds. Bonding was performed. About what was able to join, the U-shaped joint tensile test was done and the breaking load was calculated | required. The results are shown in Table 1.

Figure 2005254323
Figure 2005254323

実施例1乃至7は被接合材と接する面にローレット加工が施されていないので、230N以上と高い接合強度が得られたが、比較例8及び9はローレット加工が施されているので、接合強度が200N以下と低かった。また、実施例3乃至6は先端形状に曲率半径が30乃至150mmの適切な曲面を持たせたので、平坦な実施例1よりも更に接合強度が高くなった。   In Examples 1 to 7, since the knurling process is not performed on the surface in contact with the material to be bonded, a high bonding strength of 230 N or more was obtained. However, in Comparative Examples 8 and 9, the knurling process was performed. The strength was as low as 200 N or less. Further, in Examples 3 to 6, the tip shape was provided with an appropriate curved surface having a curvature radius of 30 to 150 mm, so that the bonding strength was higher than that of the flat Example 1.

本発明の実施形態に係る超音波接合装置を示す断面図である。It is sectional drawing which shows the ultrasonic bonding apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るチップ形状を示す模式図である。It is a schematic diagram which shows the chip | tip shape which concerns on embodiment of this invention. 本発明の実施形態に係るチップ形状を示す模式図である。It is a schematic diagram which shows the chip | tip shape which concerns on embodiment of this invention. 従来のチップ形状を示す模式図である。It is a schematic diagram which shows the conventional chip shape.

符号の説明Explanation of symbols

1;アルミニウム系材
2;鋼材
3;積層体
4、4a、4b、4c;チップ
5;アンビル
6;表面
P;加圧力
S;超音波振動
DESCRIPTION OF SYMBOLS 1; Aluminum type material 2; Steel material 3; Laminated body 4, 4a, 4b, 4c; Chip 5; Anvil 6; Surface P; Pressure S: Ultrasonic vibration

Claims (5)

重ね合わせた被接合材に超音波振動を印加して超音波接合を行うための超音波接合装置用チップにおいて、被接合材と接する面にローレット加工が施されていないことを特徴とする超音波接合用チップ。 An ultrasonic bonding device chip for performing ultrasonic bonding by applying ultrasonic vibrations to superposed bonded materials, the ultrasonic waves characterized in that the surface in contact with the bonded materials is not knurled. Joining tip. 前記チップの先端部が超音波振動方向と直交する断面において湾曲した凸形状となる曲面を有することを特徴とする請求項1に記載の超音波接合用チップ。 The tip for ultrasonic bonding according to claim 1, wherein the tip of the tip has a curved surface having a convex shape curved in a cross section orthogonal to the ultrasonic vibration direction. 前記チップの先端部の曲面の曲率半径が30mm乃至150mmであることを特徴とする請求項2に記載の超音波接合用チップ。 The tip for ultrasonic bonding according to claim 2, wherein a curvature radius of a curved surface of a tip portion of the tip is 30 mm to 150 mm. 請求項1乃至3のいずれか1項に記載のチップを使用することを特徴とする超音波接合方法。 An ultrasonic bonding method using the chip according to any one of claims 1 to 3. アルミニウム材又はアルミニウム合金材と鋼材を接合することを特徴とする請求項4に記載の超音波接合方法。
The ultrasonic joining method according to claim 4, wherein an aluminum material or an aluminum alloy material and a steel material are joined.
JP2004073489A 2004-03-15 2004-03-15 Ultrasonic welding tip and welding method Pending JP2005254323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073489A JP2005254323A (en) 2004-03-15 2004-03-15 Ultrasonic welding tip and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073489A JP2005254323A (en) 2004-03-15 2004-03-15 Ultrasonic welding tip and welding method

Publications (1)

Publication Number Publication Date
JP2005254323A true JP2005254323A (en) 2005-09-22

Family

ID=35080563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073489A Pending JP2005254323A (en) 2004-03-15 2004-03-15 Ultrasonic welding tip and welding method

Country Status (1)

Country Link
JP (1) JP2005254323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150351A1 (en) 2009-06-23 2010-12-29 東芝三菱電機産業システム株式会社 Electrode base
JP2011187199A (en) * 2010-03-05 2011-09-22 Panasonic Corp Induction heating coil
WO2015146952A1 (en) * 2014-03-25 2015-10-01 東京エレクトロン株式会社 Cell separation device and cell separation method
KR20190025652A (en) 2016-08-04 2019-03-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Ultrasonic bonding tool and ultrasonic bonding apparatus
US10864597B2 (en) 2009-06-23 2020-12-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150351A1 (en) 2009-06-23 2010-12-29 東芝三菱電機産業システム株式会社 Electrode base
US10864597B2 (en) 2009-06-23 2020-12-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
JP2011187199A (en) * 2010-03-05 2011-09-22 Panasonic Corp Induction heating coil
WO2015146952A1 (en) * 2014-03-25 2015-10-01 東京エレクトロン株式会社 Cell separation device and cell separation method
JPWO2015146952A1 (en) * 2014-03-25 2017-04-13 東京エレクトロン株式会社 Cell peeling apparatus and cell peeling method
KR20190025652A (en) 2016-08-04 2019-03-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Ultrasonic bonding tool and ultrasonic bonding apparatus
DE112016007117T5 (en) 2016-08-04 2019-04-25 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic welding tool and ultrasonic welding machine
US10946475B2 (en) 2016-08-04 2021-03-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Tool for ultrasonic bonding and apparatus for ultrasonic bonding

Similar Documents

Publication Publication Date Title
JP5376391B2 (en) Dissimilar metal joining method and joining structure
JP6006805B2 (en) Method for joining dissimilar materials
WO2010026892A1 (en) Dissimilar metal joining method for magnesium alloy and steel
JP2007118059A (en) Method and structure of welding different kind of metallic material
CN111801189B (en) Arc welding method for joining dissimilar materials
US8397976B2 (en) Method for cohesively bonding metal to a non-metallic substrate using capacitors
WO2007058257A1 (en) Method for joining members of different kinds
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
JP2004174546A (en) Method of joining metallic member
CN109807457A (en) Ultrasonic bonding/soldering of the steel workpiece on aluminium alloy
JP2007136525A (en) Method for joining dissimilar materials
JP4037109B2 (en) Method of joining aluminum and steel
JP2005254323A (en) Ultrasonic welding tip and welding method
JP2008290129A (en) Method of welding metallic member
JP6702135B2 (en) Method of joining dissimilar metal plates
JP2003236673A (en) Method for joining different kinds of materials
JP4631429B2 (en) Dissimilar materials joining method
JP2005199327A (en) Ultrasonic joining method of aluminum-based metal and steel
JP2009095881A (en) Method of manufacturing welded structural member
JP2005254324A (en) Ultrasonic welding method of aluminum material and steel material
JP2020011287A (en) Method of manufacturing joint body, and joint body
JP2754898B2 (en) Spot welding of Al-Fe based dissimilar metals
JP7156009B2 (en) Manufacturing method of composite of coated metal material and resin material
JP2006320954A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy