JP2023012613A - Method for manufacturing high metal powder containing aluminum composite, method for manufacturing preform, and high metal powder containing aluminum composite - Google Patents
Method for manufacturing high metal powder containing aluminum composite, method for manufacturing preform, and high metal powder containing aluminum composite Download PDFInfo
- Publication number
- JP2023012613A JP2023012613A JP2021116133A JP2021116133A JP2023012613A JP 2023012613 A JP2023012613 A JP 2023012613A JP 2021116133 A JP2021116133 A JP 2021116133A JP 2021116133 A JP2021116133 A JP 2021116133A JP 2023012613 A JP2023012613 A JP 2023012613A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- preform
- metal powder
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 366
- 239000002184 metal Substances 0.000 title claims abstract description 366
- 239000000843 powder Substances 0.000 title claims abstract description 342
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 115
- 239000002131 composite material Substances 0.000 title claims abstract description 115
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 69
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 119
- 239000002245 particle Substances 0.000 claims abstract description 91
- 239000011230 binding agent Substances 0.000 claims abstract description 62
- 239000000463 material Substances 0.000 claims abstract description 53
- 238000000465 moulding Methods 0.000 claims abstract description 53
- 239000002994 raw material Substances 0.000 claims abstract description 37
- 230000007547 defect Effects 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 74
- 239000011863 silicon-based powder Substances 0.000 claims description 51
- 238000005470 impregnation Methods 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 44
- 239000010703 silicon Substances 0.000 claims description 41
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 238000009715 pressure infiltration Methods 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 229910019018 Mg 2 Si Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 229920002050 silicone resin Polymers 0.000 claims description 6
- 150000004703 alkoxides Chemical class 0.000 claims description 5
- 238000011049 filling Methods 0.000 abstract description 30
- 238000001354 calcination Methods 0.000 abstract description 5
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 66
- 239000000047 product Substances 0.000 description 42
- 238000010304 firing Methods 0.000 description 21
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 17
- 239000005416 organic matter Substances 0.000 description 16
- 239000011812 mixed powder Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 230000008595 infiltration Effects 0.000 description 10
- 238000001764 infiltration Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 239000012466 permeate Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000011156 metal matrix composite Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000009718 spray deposition Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- -1 etc. Inorganic materials 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000003832 thermite Substances 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000551 Silumin Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/02—Pressure casting making use of mechanical pressure devices, e.g. cast-forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/09—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
- B22D27/11—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/09—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
- B22D27/13—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2203/00—Controlling
- B22F2203/13—Controlling pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/35—Molten metal infiltrating a metal preform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1073—Infiltration or casting under mechanical pressure, e.g. squeeze casting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、高金属粉末含有アルミニュウム複合体の製造方法、プリフォームの作製方法及び高金属粉末含有アルミニュウム複合体に関し、詳しくは、高い体積充填率の金属粉末からなるプリフォームに金属アルミニュウム又はアルミニュウム合金が良好に含浸してなる高金属粉末含有アルミニュウム複合体を提供すると共に、該複合材料の生産性及び品質の飛躍的な向上をもたらすことができる新たな技術に関する。 TECHNICAL FIELD The present invention relates to a method for producing an aluminum composite containing high metal powder, a method for producing a preform, and an aluminum composite containing high metal powder. It relates to a new technology that can provide an aluminum composite containing a high metal powder, which is satisfactorily impregnated with, and that can dramatically improve the productivity and quality of the composite material.
近年、金属とAl合金等を複合化させた材料は、軽量、高強度、高ヤング率、高熱伝導、低熱膨張の材料として、例えば、ヒートシンク、放熱スプレッダー、電子部品パッケージ製品等の電子材料、或いは、XYスライダー、真空チャック等の半導体装置部材として注目されている。これらの材料は、いわゆるMMC(Metal Matrix Composite)の一種である。従来は、金属マトリックスにセラミックス粉末を複合化したMMCが一般的であったが、近年、金属粉末とAl合金等からなる複合体材料が注目されようになってきた。例えば、高ヤング率で低熱膨張なシリコンとAl合金等の複合素材や、高強度なチタンや鉄粉末にAl合金等を複合化させることが提案されている。また、下記に述べるように、金属粉末とAl合金等の複合体は、加工性に優れていることからも注目されている。 In recent years, composite materials such as metals and Al alloys have been used as materials with light weight, high strength, high Young's modulus, high thermal conductivity, and low thermal expansion. , XY sliders, and vacuum chucks. These materials are a kind of so-called MMC (Metal Matrix Composite). Conventionally, MMC, in which a ceramic powder is compounded with a metal matrix, has been generally used, but in recent years, attention has been paid to a composite material composed of a metal powder and an Al alloy or the like. For example, composite materials such as silicon and Al alloys with high Young's modulus and low thermal expansion, and compounding Al alloys with high-strength titanium or iron powder have been proposed. In addition, as will be described below, composites of metal powders and Al alloys are attracting attention because of their excellent workability.
例えば、シリコン金属は熱膨張係数が小さいことから、電子部品や、半導体部品として使用されているが、非常に脆いことに加え、複雑、大型の部品が製造できないという弱点がある。このため、Al合金等とのシリコンアルミニュウム複合体が開発されつつある。上記した理由から、第一に、シリコン粉末をできるだけ多く含有したアルミニュウムとの複合体が望まれ、しかも、加工性を保ちつつ、熱膨張係数が小さく、ヤング率が大きい複合体の出現が求められている。具体的には、例えば、シリコン成分が70v%以上、望ましくは80v%程度のシリコンアルミニュウム複合体が製造できれば、熱膨張係数が小さい電子部品を搭載する、ヒートシンクや電子部品パッケージへの応用が飛躍的に広まると予想される。 For example, silicon metal has a small coefficient of thermal expansion, so it is used for electronic parts and semiconductor parts. Therefore, a silicon-aluminum composite with an Al alloy or the like is being developed. For the above-mentioned reasons, firstly, a composite with aluminum containing as much silicon powder as possible is desired, and a composite with a small coefficient of thermal expansion and a large Young's modulus while maintaining workability is desired. ing. Specifically, for example, if a silicon-aluminum composite with a silicon content of 70 v% or more, preferably about 80 v%, can be produced, the application to heat sinks and electronic component packages for mounting electronic components with a small coefficient of thermal expansion will be dramatic. expected to spread to
チタン金属は、熱膨張係数が小さく、軽量、高剛性な金属として多種多様な機械部品として使用されている。しかし、硬度が高く、難加工性材料であり、この点で用途が限定されている面がある。したがって、チタン金属にアルミニュウム金属を複合化させて加工性をよくすることができれば、応用範囲を益々拡大できるので、チタンアルミニュウム複合体の開発が要望され、進められている。 Titanium metal has a small coefficient of thermal expansion and is used as a wide variety of machine parts as a lightweight and highly rigid metal. However, it has a high hardness and is a difficult-to-work material, which limits its applications. Therefore, if it is possible to improve workability by combining titanium metal with aluminum metal, the range of applications can be further expanded.
ここで、金属粉末とAl合金等の複合体の製造方法としては、以下に例示する方法が一般的である。
(高シリコンアルミニュウム合金の鋳造方法)
この方法は、シリコン成分を含んだ通称シルミンと呼ばれるシリコン含有アルミニュウム合金(シリコンアルミ合金とも呼ぶ)粉末を溶解して、砂型や金型に鋳造する方法である。しかし、この方法では、シリコン成分が高くなると、合金流れ性が低下して鋳造できなくなるので、シリコン成分の含有量は、最大20v%程度が一般的である。したがって、上記した鋳造方法で、要望されているような金属成分の含有率が高い、高シリコンアルミニュウム複合体を製造することは困難である。
Here, as a method for producing a composite of metal powder and Al alloy, the following methods are generally used.
(Casting method for high silicon aluminum alloy)
In this method, silicon-containing aluminum alloy powder (also called silicon-aluminum alloy) commonly called silumin containing a silicon component is melted and cast into a sand mold or metal mold. However, in this method, if the silicon content is high, the flowability of the alloy is lowered and casting becomes impossible. Therefore, it is difficult to produce a high-silicon-aluminum composite with a desired high content of metal components by the casting method described above.
(スプレイフォーミング法)
この方法は、シリコンとアルミニュウムを高い温度で溶解し、溶融物をスプレイ噴霧して得た粉末堆積体のビュレットを作製し、熱間押し出しでシリコンアルミニュウム複合体を製造する方法であり、「スプレイフォーミング法」と呼ばれている。スプレイフォーミング法では、高い温度で金属を溶解して、シリコンとアルミニュウムの比率を自由に変えた複合原料粉末を作製することができる。このため、金属成分の含有比率が高い高シリコン含有アルミニュウム複合体を製造することは、理論的には可能である。しかし、シリコンの含有比率が50v%以上の複合材料を製造するためには、1000℃以上で材料を溶解する必要がある。また、噴霧冷却過程で、シリコンが先に析出してしまい、均一な複合体が得られないことから、製品化されているのは、シリコン成分が約50v%程度のものまでであり、シリコン成分の含有比率がより高いシリコンアルミニュウム複合体を得ることは、できていない。また、溶融物をスプレイ噴霧して粉末堆積体のビュレットを作製する凝固堆積過程で空隙が発生するので、製品にするためには、得られたビュレットを半溶融して高圧押し出しする、或いは、HIP処理して空隙を押しつぶす必要がある。この点で、「スプレイフォーミング法」は、製造コストが非常に高くなり、経済性に劣るという工業上の重大な問題もある。
(Spray forming method)
In this method, silicon and aluminum are melted at a high temperature, the melt is sprayed to form a powder deposit, a bullet is produced, and a silicon-aluminum composite is produced by hot extrusion. called the law. In the spray forming method, metal is melted at a high temperature to produce a composite material powder in which the ratio of silicon and aluminum is freely changed. Therefore, it is theoretically possible to produce a silicon-rich aluminum composite with a high metal component content. However, in order to manufacture a composite material with a silicon content of 50 v % or more, it is necessary to melt the material at 1000° C. or more. In addition, in the spray cooling process, silicon precipitates first, and a uniform composite cannot be obtained. It has not been possible to obtain a silicon-aluminum composite with a higher content ratio of In addition, since voids are generated in the process of solidification and deposition in which the melted material is sprayed to produce a burette of the powder deposit, the resulting burette is semi-melted and high-pressure extruded or HIPed in order to produce a product. It needs to be treated to crush the voids. In this respect, the "spray forming method" has a serious industrial problem that the manufacturing cost is extremely high and the economy is inferior.
(シリコン粉末充填体へのアルミニュウムの非加圧浸透法)
特許文献1には、シリコン粉末の充填率が50~70体積%の充填体または成形体に、溶融したアルミニウムまたはアルミニウム合金を、マグネシウム蒸気を含む窒素雰囲気中の700℃~1000℃の温度下で非加圧浸透させてなるシリコン-アルミニウム複合金属が提案されている。特許文献1には、窒素雰囲気中にマグネシウム蒸気を含ませることで、溶融したAl合金の充填体への浸透を早くできることが開示されている。また、その実施例に、平均粒径が5μmのシリコン粉末100質量部に、マグネシウム粉末を2質量部加えて混合したものを容器に充填した充填体を用いること、シリコンの充填率が50体積%であることが記載されている。上記実施例に対して、必要であれば、平均粒径1~100μmのシリコン粉末にするとしたことが記載されている。
(Non-pressure impregnation method of aluminum into silicon powder packing)
In Patent Document 1, molten aluminum or aluminum alloy is added to a filled body or molded body having a silicon powder filling rate of 50 to 70% by volume at a temperature of 700 to 1000 ° C. in a nitrogen atmosphere containing magnesium vapor. Non-pressure infiltrated silicon-aluminum composite metals have been proposed. Patent Literature 1 discloses that the impregnation of the molten Al alloy into the filler can be accelerated by including magnesium vapor in the nitrogen atmosphere. Further, in the example, a filler obtained by filling a container with a mixture of 100 parts by mass of silicon powder having an average particle size of 5 μm and 2 parts by mass of magnesium powder is used, and the filling rate of silicon is 50% by volume. It is stated that It is described that silicon powder having an average particle size of 1 to 100 μm was used, if necessary, in contrast to the above examples.
上記したように、特許文献1に開示されていることは、1種のシリコン粉末に、マグネシウム粉末を加え、これを容器に充填し、該充填体に、常圧の窒素雰囲気下(非加圧)で溶融したAl合金を浸透させて複合金属を作製することである。しかしながら、本発明者らの検討によれば、シリコン粉末の単なる充填体は、不均一であったり、内部にポアが残存する恐れがある。そして、このような充填体に非加圧でアルミニュウムの溶湯を含浸させた場合、亀裂や欠陥が発生したり、シリコン粉末が、均一な状態で十分充填された充填体が得られないという問題がある。このため、前記した充填体を用いての非加圧浸透法では、製品に求められているような金属成分の含有比率が高く均一な、金属粉体-アルミニュウム複合体を製造することはできない。 As described above, what is disclosed in Patent Document 1 is that magnesium powder is added to one type of silicon powder, this is filled in a container, and the packed body is placed in a nitrogen atmosphere at normal pressure (non-pressurized ) to produce a composite metal by infiltrating a molten Al alloy. However, according to the study of the present inventors, a mere filling of silicon powder may be non-uniform or may leave pores inside. When such a filling body is impregnated with molten aluminum without pressure, cracks and defects occur, and a filling body in which the silicon powder is uniformly and sufficiently filled cannot be obtained. be. For this reason, the non-pressure infiltration method using the above-mentioned packing cannot produce a metal powder-aluminum composite with a high and uniform metal component content, which is required for products.
また、特許文献2には、シリコン粉末等の金属粉末に、バインダーとしてPVA(ポリビニルアルコール)を加えて得た、金属粉末の成型体又は仮焼体に、溶融したアルミニュウムなどの金属を非加圧で浸透することが記載されている。その実施例に、平均粒径20μmのシリコン粉末にバインダーとしてPVAを加えた材料を用い、プレス成形して得た成形体に、マグネシウムが存在する窒素雰囲気炉で、溶融したAl合金を常圧で含浸させて複合金属を得ること、2種類の金属粉末を用いることや、金属粉末にセラミックス粉末を混合することなどが記載されている。しかし、特許文献2に記載の技術は、金属粉末にセラミックス粉末を混合していることからもわかるように、溶融した金属を非加圧浸透させて複合化させる相手である、金属粉末の成型体又は仮焼体を金属含有率が高いものにすることを目的とした技術ではない。 Further, in Patent Document 2, a metal powder such as silicon powder is added with PVA (polyvinyl alcohol) as a binder to form a metal powder compact or calcined body. It has been reported to penetrate in In the example, a material obtained by adding PVA as a binder to silicon powder having an average particle size of 20 μm was used, and a molded body obtained by press molding was placed in a nitrogen atmosphere furnace in which magnesium was present, and a molten Al alloy was added at normal pressure. It describes obtaining a composite metal by impregnation, using two types of metal powder, and mixing ceramic powder with metal powder. However, as can be seen from the fact that the technique described in Patent Document 2 mixes the ceramic powder with the metal powder, the molded body of the metal powder, which is the counterpart to be composited by infiltrating the molten metal without pressure, Also, it is not a technique aimed at increasing the metal content of the calcined body.
本発明者らの検討によれば、例えば、シリコン粉末を高含有率で充填させた充填体に、アルミニュウム合金等を高圧含浸或いは非加圧浸透させた場合、含浸過程で充填体とAl合金等との接触面に応力が発生して、Al合金等の溶湯の含浸時に金属粉末成型体に亀裂等が発生したり、亀裂によって毛管現象が損なわれて未含浸の欠陥が生じる場合がある。これに対し、上記した従来技術は、いずれも、亀裂等や欠陥が極めて少ない、金属含有率が高い高金属粉末-アルミニュウム複合体を如何にして得るかについて検討したものでも、そのような複合体を提供したものでもない。例えば、上記した従来技術のように、シリコン粉末充填体や、プレス成形しただけの成形体に非加圧でアルミニュウム金属を浸透させた場合にも、シリコン粉末充填体とAl合金等との接触面に応力が発生して、Al合金等の溶湯の含浸時に亀裂等が発生したり、未含浸の欠陥が生じる場合がある。 According to the studies of the present inventors, for example, when an aluminum alloy or the like is impregnated under high pressure or non-pressure impregnated into a filler filled with silicon powder at a high content, the filler and the Al alloy etc. When impregnated with a molten metal such as an Al alloy, stress is generated on the contact surface with the metal powder compact, and cracks or the like may occur in the metal powder molded body. On the other hand, all of the above-described prior arts are studies on how to obtain a high metal powder-aluminum composite with a high metal content and very few cracks and defects. nor does it provide For example, as in the above-described prior art, even when aluminum metal is impregnated into a silicon powder-filled body or a press-molded compact without pressure, the contact surface between the silicon powder-filled body and an Al alloy or the like stress is generated in the aluminum alloy, cracks or the like may occur during impregnation with a molten metal such as an Al alloy, or defects due to non-impregnation may occur.
ここで、上記した従来技術において行われている、非加圧浸透でAl合金等の溶湯を充填体または成形体に含浸させることによるメリットは、金属粉末をプレス成形等して得た成型体(プリフォーム)の形状のまま、Al合金等の溶湯が成型体内に毛管現象で静かに含浸して、含浸後に製品形状に近い金属粉末-アルミニュウム複合体が製造できることである。すなわち、成型体に溶融した金属を含浸させた後に製品形状に近い複合体を得ることができれば、通常、その後に必要になる機械加工を少なくできるので、製造コストを低減するメリットがある。 Here, the advantage of impregnating a filled body or molded body with a molten metal such as an Al alloy without pressure infiltration, which is performed in the above-described conventional technology, is that a molded body obtained by press molding metal powder ( It is possible to produce a metal powder-aluminum composite having a shape close to that of a product after impregnation by gently impregnating a molded body with a molten metal such as an Al alloy while maintaining the shape of the preform by capillary action. That is, if it is possible to obtain a composite having a shape close to that of the product after impregnating the molded body with the molten metal, it is possible to reduce the machining required thereafter, which has the advantage of reducing the manufacturing cost.
このことは、Al合金等の溶湯を非加圧浸透させた場合に、亀裂や欠陥が発生しない強固な成型体(プリフォーム)が得られれば、製品価値とコストメリットは飛躍的に大きくなることを意味する。また、得られる金属粉末-アルミニュウム複合体のシリコン等の金属粉末材料の含有量を高くできれば、より低熱膨張で高ヤング率な金属粉末-アルミニュウム複合体が得られる。例えば、シリコン50v%超のシリコン粉末-アルミニュウム複合体の製造方法が確立できれば、その用途は格段に大きくなる。 This means that if a strong molded body (preform) that does not cause cracks or defects can be obtained when a molten metal such as an Al alloy is impregnated without pressure, the product value and cost benefits will increase dramatically. means Further, if the content of metal powder material such as silicon in the resulting metal powder-aluminum composite can be increased, a metal powder-aluminum composite having a lower thermal expansion and a higher Young's modulus can be obtained. For example, if a method for producing a silicon powder-aluminum composite containing more than 50 v% silicon can be established, its applications will be greatly increased.
上記に対し、粒径が細かい金属粉末の成型体を、金属の溶融温度よりもやや低い温度で焼結させて粉末の仮焼結法でプリフォームを製造することが広く行われている。しかし、本発明者らの検討によれば、この方法では、焼結により成型体(プリフォーム)を製造するが、焼結中に、成型体が収縮してプリフォームが変形したり、プリフォーム内の空隙が外部と遮断された閉気孔となって、後に行うAl合金等の含浸工程で、良好な含浸が行われず、不均一な金属粉末アルミニュウム複合体となる恐れがある。 In contrast to the above, it is widely practiced to manufacture a preform by sintering a molded body of metal powder having a fine particle size at a temperature slightly lower than the melting temperature of the metal, and by pre-sintering the powder. However, according to the study of the present inventors, in this method, a molded body (preform) is produced by sintering, but during sintering, the molded body shrinks and the preform is deformed, or the preform is deformed. There is a risk that the internal voids will become closed pores that are cut off from the outside, resulting in poor impregnation in the subsequent Al alloy impregnation step, resulting in a non-uniform metal powder aluminum composite.
したがって、本発明の目的は、例えば、シリコン、シリコンアルミ合金、鉄、チタン、銅、ニッケル、フェロシリコン等の粉末で代表される金属粉末の強固な成型体(プリフォーム)を作製し、目標性能に応じて金属粉末の充填率を高くでき、しかも、内部に欠陥が極めて少なく、均一なプリフォームを作製する技術を確立し、得られたプリフォームに、アルミニュウム又はアルミニュウム合金(Al合金等)を、高圧含浸させた場合も、非加圧浸透させた場合も、亀裂や欠陥の発生が極めて少ない、金属含有率が高い、高金属粉末含有アルミニュウム複合体の製造方法及び該製造方法で得られる高金属粉末含有アルミニュウム複合体を提供することにある。 Accordingly, an object of the present invention is to produce a strong molded body (preform) of metal powders represented by powders such as silicon, silicon aluminum alloy, iron, titanium, copper, nickel, ferrosilicon, etc., and achieve target performance. The filling rate of the metal powder can be increased according to the condition, and there are extremely few internal defects, and a technology for producing uniform preforms has been established. , a method for producing an aluminum composite containing a high metal powder, which has a high metal content, which has extremely low cracks and defects, both when impregnated under high pressure and when impregnated without pressure, and the high metal content obtained by the method An object of the present invention is to provide an aluminum composite containing metal powder.
上記の目的は、以下の、金属含有率が高い、高金属粉末含有アルミニュウム複合体を製造する技術によって達成される。すなわち、本発明は、以下の高金属粉末含有アルミニュウム複合体の製造方法を提供する。
第1の発明として、Al合金等を高圧含浸させて高金属粉末含有アルミニュウム複合体を得る下記の製造方法を提供する。
[1]金属含有率が高い金属粉末成型体(プリフォーム)を得るためのプリフォームの作製工程と、得られたプリフォームに溶融したアルミニュウム又はアルミニュウム合金を含浸或いは浸透させるアルミニュウム等の含浸工程を有する高金属粉末含有アルミニュウム複合体の製造方法であって、
前記プリフォームの作製工程で、平均粒子径が1μm以上200μm以下の金属粉末材料から、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料に、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を、300℃以上800℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得、
前記アルミニュウム等の含浸工程で、前記プリフォームの作製工程で得た金属粉末成型体に、アルミニュウム又はアルミニュウム合金の溶湯を、10MPa~200MPaの高圧で含浸させることを特徴とする高金属粉末含有アルミニュウム複合体の製造方法。
The above objects are achieved by the following technique for producing high metal content, high metal powder content aluminum composites. That is, the present invention provides the following method for producing an aluminum composite containing high metal powder.
As a first invention, the following manufacturing method for obtaining an aluminum composite containing a high metal powder by impregnating an Al alloy or the like under high pressure is provided.
[1] A preform manufacturing process for obtaining a metal powder molded body (preform) having a high metal content, and an aluminum impregnation process for impregnating or permeating the obtained preform with molten aluminum or aluminum alloy. A method for producing a high metal powder-containing aluminum composite having
In the preform manufacturing process, two or more kinds of metal powder materials having different average particle sizes are selected from metal powder materials having an average particle size of 1 μm or more and 200 μm or less as metal raw materials for preforms, and the metal raw materials Then, the mixture obtained by adding and mixing an organic and inorganic binder is molded, and the obtained molded product is fired at a temperature of 300 ° C. or higher and 800 ° C. or lower, and the content (volume ratio) of the metal raw material is 55 v% or more to obtain a metal powder compact,
A high-metal-powder-containing aluminum composite characterized in that, in the step of impregnating aluminum or the like, the metal powder molded body obtained in the step of making the preform is impregnated with molten aluminum or aluminum alloy at a high pressure of 10 MPa to 200 MPa. body manufacturing method.
第2の発明として、Al合金等を非加圧浸透させて高金属粉末含有アルミニュウム複合体を得る下記の製造方法を提供する。
[2]金属含有率が高い金属粉末成型体(プリフォーム)を得るためのプリフォームの作製工程と、得られたプリフォームに溶融したアルミニュウム又はアルミニュウム合金を含浸或いは浸透させるアルミニュウム等の含浸工程を有する高金属粉末含有アルミニュウム複合体の製造方法であって、
前記プリフォームの作製工程で、平均粒子径が1μm以上200μm以下の金属粉末材料(但し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末の各粉末材料を除く)から、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料100質量部に対し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末からなる群から選ばれる1種以上の粉末を、0.2~5質量部の範囲内の量で添加し、さらに、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を500℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得、
前記アルミニュウム等の含浸工程で、前記プリフォームの作製工程で得た金属粉末成型体に、アルミニュウム又はアルミニュウム合金を、非加圧で浸透させることを特徴とする高金属粉末含有アルミニュウム複合体の製造方法。
As a second invention, there is provided the following manufacturing method for obtaining an aluminum composite containing high metal powder by impregnating an Al alloy or the like without pressure.
[2] A preform manufacturing process for obtaining a metal powder compact (preform) with a high metal content, and an aluminum impregnation process for impregnating or permeating the obtained preform with molten aluminum or aluminum alloy. A method for producing a high metal powder-containing aluminum composite having
In the preform manufacturing process, a metal powder material having an average particle size of 1 μm or more and 200 μm or less (excluding each powder material of Mg powder, AlMg powder, ZnMg powder, ZnAl powder, and Mg 2 Si powder), average particles Two or more kinds of metal powder materials having different diameters are selected as a metal raw material for a preform, and 100 parts by mass of the metal raw material is composed of Mg powder, AlMg powder, ZnMg powder, ZnAl powder and Mg 2 Si powder. One or more powders selected from the group are added in an amount within the range of 0.2 to 5 parts by mass, and an organic and inorganic binder is added and mixed to form a mixture. sintering the molding at a temperature of 500° C. or less to obtain a metal powder molding having a content (volume ratio) of the metal raw material of 55 v % or more;
A method for producing a high-metal-powder-containing aluminum composite, characterized in that, in the step of impregnating aluminum or the like, aluminum or an aluminum alloy is impregnated into the metal powder molded body obtained in the step of making the preform without pressure. .
上記した本発明の高金属粉末含有アルミニュウム複合体の製造方法の好ましい形態としては、下記が挙げられる。
[3]前記金属粉末が、シリコン粉末又はシリコンを含むシリコン系合金粉末、チタン粉末、鉄粉末又は鉄を含む鉄系合金粉末及びニッケル粉末又はニッケルを含むニッケル系合金粉末から選ばれる上記[1]又は[2]に記載の高金属粉末含有アルミニュウム複合体の製造方法。
[4]高金属粉末含有アルミニュウム複合体の金属粉末の体積含有率が、55v%以上、85v%以下である上記[1]~[3]のいずれかに記載の高金属粉末含有アルミニュウム複合体の製造方法。
[5]前記平均粒子径が互いに異なる2種以上の金属粉末は、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含む上記[1]~[4]のいずれかに記載の高金属粉末含有アルミニュウム複合体の製造方法。
[6]前記有機無機バインダーが、シリコーン樹脂、Siアルコキシド及びAlアルコキシドからなる群から選ばれる少なくともいずれかである上記[1]~[5]のいずれかに記載の高金属粉末含有アルミニュウム複合体の製造方法。
Preferred embodiments of the method for producing the high-metal-powder-containing aluminum composite of the present invention are as follows.
[3] The above [1], wherein the metal powder is selected from silicon powder or a silicon-based alloy powder containing silicon, titanium powder, iron powder or an iron-based alloy powder containing iron, and nickel powder or a nickel-based alloy powder containing nickel. Or the method for producing a high metal powder-containing aluminum composite according to [2].
[4] The high metal powder-containing aluminum composite according to any one of the above [1] to [3], wherein the volume content of the metal powder in the high metal powder-containing aluminum composite is 55 v% or more and 85 v% or less. Production method.
[5] The two or more types of metal powders having different average particle sizes include at least a metal powder A having an average particle size of 10 μm or less and a metal powder B having an average particle size of 40 μm or more. , Production of a high metal powder-containing aluminum composite according to any one of the above [1] to [4], which contains at least 3% in the total amount of the metal powder and contains 50% or more of the metal powder B on a mass basis. Method.
[6] The high metal powder-containing aluminum composite according to any one of [1] to [5] above, wherein the organic/inorganic binder is at least one selected from the group consisting of silicone resin, Si alkoxide and Al alkoxide. Production method.
また、本発明は、別の実施形態として、前記第1の発明の高金属粉末含有アルミニュウム複合体の製造方法に好適に用いられる、下記のプリフォームの作製方法を提供する。
[7]溶融したアルミニュウム又はアルミニュウム合金を高圧で含浸させて高金属粉末含有アルミニュウム複合体金属を得る際に用いる、金属粉末の含有率が高い金属粉末成型体(プリフォーム)を得るためのプリフォームの作製方法であって、
平均粒子径が1μm以上200μm以下の金属粉末材料から、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含む、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料に、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を、300℃以上800℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得ることを特徴とするプリフォームの作製方法。
Moreover, the present invention provides, as another embodiment, the following method for producing a preform, which is preferably used in the method for producing an aluminum composite containing high metal powder according to the first invention.
[7] A preform for obtaining a metal powder molded body (preform) with a high metal powder content, used for obtaining an aluminum composite metal containing a high metal powder content by impregnating molten aluminum or aluminum alloy at high pressure A method for producing the
A metal powder material having an average particle size of 1 μm or more and 200 μm or less includes at least a metal powder A having an average particle size of 10 μm or less and a metal powder B having an average particle size of 40 μm or more. , at least 3% of the total amount of the metal powder and containing 50% or more of the metal powder B, and selecting two or more kinds of metal powder materials having different average particle sizes as a metal raw material for a preform, A mixture obtained by adding and mixing an organic and inorganic binder to a metal raw material is molded, and the obtained molded product is fired at a temperature of 300 ° C. or higher and 800 ° C. or lower, and the content of the metal raw material (volume A method for producing a preform, characterized by obtaining a metal powder compact having a ratio) of 55 v% or more.
また、本発明は、別の実施形態として、前記第2の発明の高金属粉末含有アルミニュウム複合体の製造方法に好適に用いられる、下記のプリフォームの作製方法を提供する。
[8]溶融したアルミニュウム又はアルミニュウム合金を非加圧で浸透させて高金属粉末含有アルミニュウム複合体金属を得る際に用いる、金属粉末の含有率が高い金属粉末成型体(プリフォーム)を得るためのプリフォームの作製方法であって、
平均粒子径が1μm以上200μm以下の金属粉末材料(但し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末の各粉末材料を除く)から、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含む、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料100質量部に対し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末からなる群から選ばれる1種以上の粉末を、0.2~5質量部の範囲内の量で添加し、さらに、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を500℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得ることを特徴とするプリフォームの作製方法。
In addition, the present invention provides, as another embodiment, the following method for producing a preform that is preferably used in the method for producing an aluminum composite containing high metal powder of the second invention.
[8] For obtaining a metal powder molded body (preform) with a high metal powder content, which is used when obtaining an aluminum composite metal containing a high metal powder content by infiltrating molten aluminum or aluminum alloy without pressure A method of making a preform, comprising:
At least metal with an average particle size of 10 μm or less from metal powder materials with an average particle size of 1 μm or more and 200 μm or less (excluding each powder material of Mg powder, AlMg powder, ZnMg powder, ZnAl powder, and Mg 2 Si powder) Powder A and metal powder B having an average particle size of 40 μm or more, containing at least 3% by mass of the metal powder A in the total amount of the metal powder, and containing 50% or more of the metal powder B, Two or more kinds of metal powder materials having different average particle sizes are selected as metal raw materials for preforms, and Mg powder, AlMg powder, ZnMg powder, ZnAl powder and Mg 2 Si powder are added to 100 parts by mass of the metal raw materials. One or more powders selected from the group consisting of are added in an amount within the range of 0.2 to 5 parts by mass, and an organic and inorganic binder is added and mixed. A method for producing a preform, characterized in that the molded product thus obtained is fired at a temperature of 500° C. or less to obtain a metal powder molded product having a content (volume ratio) of the metal raw material of 55 v % or more.
また、本発明は、別の実施形態として、下記の高金属粉末含有アルミニュウム複合体を提供する。
[9]鋳巣などの内部欠陥が極めて少ない高金属粉末含有アルミニュウム複合体であって、上記[1]、[3]~[6]のいずれかに記載の、高圧含浸を利用する高金属粉末含有アルミニュウム複合体の製造方法で得られたことを特徴とする高金属粉末含有アルミニュウム複合体。
[10]製品形状に近いニアネットの高金属粉末含有アルミニュウム複合体であって、上記[2]~[6]のいずれかに記載の、非加圧浸透を利用する高金属粉末含有アルミニュウム複合体の製造方法で得られたことを特徴とする高金属粉末含有アルミニュウム複合体。
Moreover, the present invention provides, as another embodiment, the following high metal powder-containing aluminum composite.
[9] A high metal powder-containing aluminum composite with extremely few internal defects such as blowholes, the high metal powder using high pressure impregnation according to any one of the above [1], [3] to [6]. An aluminum composite containing a high metal powder obtained by a method for producing an aluminum containing composite.
[10] A near-net high-metal-powder-containing aluminum composite close to the shape of the product, the high-metal-powder-containing aluminum composite utilizing non-pressure infiltration according to any one of [2] to [6] above. A high metal powder-containing aluminum composite obtained by the manufacturing method of.
本発明によれば、例えば、シリコン、シリコンアルミ合金、鉄、チタン、銅、ニッケル及びフェロシリコン等の粉末で代表される金属粉末の成型体(プリフォーム)の作製において、目標性能に応じて金属粉末の体積充填率を55v%以上に高くすることができ、しかも、得られるプリフォームを、内部に欠陥が極めて少なく、均一なものにすることが実現でき、その結果、当該プリフォームに、Al合金等を、高圧含浸させた場合も、非加圧浸透させた場合も、いずれも、亀裂や欠陥の発生が低減した、金属の体積含有率が高い、高品質の高金属粉末含有アルミニュウム複合体が得られる優れた、高金属粉末含有アルミニュウム複合体の製造方法が提供される。また、本発明によれば、鋳巣等の内部欠陥が極めて少ない高品位の高金属粉末含有アルミニュウム複合体が提供される。これらの複合体は、例えば、半導体、液晶製造装置、電子顕微鏡、光通信用パッケージ等における真空部品として利用できる。また、本発明によれば、製品形状に近いニアネットの高金属粉末含有アルミニュウム複合体を製造することができるので、その後に必要になる機械加工工程及び該工程にかかるコストの低減、さらに複合体の大型化が可能であることから、例えば、ロボットアーム、形状測定装置架台、XYテーブルなど大型構造部品としての使用が期待される。 According to the present invention, for example, in the production of molded bodies (preforms) of metal powders typified by powders of silicon, silicon aluminum alloys, iron, titanium, copper, nickel, ferrosilicon, etc., metals are used according to the target performance. The volume filling rate of the powder can be increased to 55 v% or more, and the preform obtained can be made uniform with extremely few internal defects. High-quality metal powder-containing aluminum composites with high metal volume content and reduced occurrence of cracks and defects in both cases of high-pressure impregnation and non-pressure infiltration of alloys, etc. Provided is a method for producing an excellent high-metal-powder-containing aluminum composite. Further, according to the present invention, there is provided a high-quality aluminum composite containing high metal powder, which has extremely few internal defects such as blowholes. These composites can be used, for example, as vacuum components in semiconductors, liquid crystal manufacturing equipment, electron microscopes, optical communication packages, and the like. In addition, according to the present invention, it is possible to produce a near-net high metal powder-containing aluminum composite that is close to the shape of the product. can be increased in size, it is expected to be used as a large-sized structural part such as a robot arm, a shape measuring device stand, and an XY table.
以下、好ましい実施形態を挙げて本発明の説明をするが、本発明はこれらの実施形態に限定されるものではない。 The present invention will be described below with reference to preferred embodiments, but the present invention is not limited to these embodiments.
[金属粉末成型体(プリフォーム)の作製]
上記した従来技術に鑑み、本発明者らは、金属の体積含有率が高く、内部に欠陥が少ない均一な、多様な用途への利用が期待できる高金属粉末含有アルミニュウム複合体の製造方法を鋭意検討した結果、金属の体積含有率が高く、しかも、内部に空隙の少ない金属粉末成型体(プリフォーム)を簡便に作製することができる方法を確立することが重要であるとの結論に至った。そして、まず、本発明者らは、最終的に得られる複合体材料の欠陥の原因となる空隙の少ない金属製のプリフォームを得るには、粒子径が同じ群の金属粉体を材料とするのではなく、平均粒子径が互いに異なる金属粉末を、2種類又は3種類以上組合わせて混合した材料を用いて作製することが有効であることを見出した。すなわち、このように構成すれば、平均粒子径が大きな粒子の間に、平均粒子径が小さい細かい粒子が入り、その結果、本発明の効果が得られることがわかった。本発明では、平均粒子径が互いに異なる金属粉末を2種類以上選定し、これらを混合してなる混合物を、プリフォーム用の金属原料として用いる。
[Preparation of metal powder compact (preform)]
In view of the above-mentioned prior art, the present inventors are earnestly developing a method for producing an aluminum composite containing a high metal powder content, which has a high metal volume content, is uniform with few internal defects, and can be expected to be used in a variety of applications. As a result of the investigation, we came to the conclusion that it is important to establish a method for easily producing a metal powder compact (preform) with a high metal volume content and few internal voids. . First, the inventors of the present invention have found that in order to obtain a metal preform with few voids that cause defects in the finally obtained composite material, metal powders having the same particle size are used as materials. Instead, it has been found that it is effective to use a material in which two or more kinds of metal powders having different average particle sizes are mixed together. In other words, it was found that with such a configuration, fine particles with a small average particle size enter between particles with a large average particle size, and as a result, the effects of the present invention can be obtained. In the present invention, two or more types of metal powders having different average particle sizes are selected, and a mixture obtained by mixing these powders is used as the metal raw material for the preform.
(金属粉末材料)
本発明では、プリフォームを作製するための金属粉体材料として、平均粒子径が1μm以上200μm以下の範囲内の材料を用いる。好ましくは3μ以上180μm以下の範囲内、より好ましくは3μm以上100μm以下の範囲内の金属粉末を用いる。本発明を構成するプリフォームは、このような範囲内の平均粒子径を有する金属粉末の中から、平均粒子径が互いに異なる2種以上の金属粉末を選択して混合してなる混合物で作製することを要する。平均粒子径が1μm未満の材料のみでは、粒子が細かすぎて、金属粉末の表面酸化相が多くなってしまい、金属粉末としての性能が落ちる恐れがある。一方、使用する金属粉末が200μm超のみであると、粒子径が大きすぎて、プレス成形、CIP成形型、沈降成形等を行うための粒子充填性が悪くなり、好ましくない。
(Metal powder material)
In the present invention, a material having an average particle size of 1 μm or more and 200 μm or less is used as a metal powder material for producing a preform. A metal powder having a particle diameter of preferably 3 μm or more and 180 μm or less, more preferably 3 μm or more and 100 μm or less is used. The preform constituting the present invention is produced from a mixture obtained by selecting and mixing two or more kinds of metal powders having different average particle sizes from among the metal powders having an average particle size within this range. It requires If only a material having an average particle size of less than 1 μm is used, the particles are too fine, the surface oxidation phase of the metal powder increases, and there is a possibility that the performance as the metal powder may deteriorate. On the other hand, if the metal powder to be used is only over 200 μm, the particle diameter is too large, and the particle filling property for performing press molding, CIP molding, sedimentation molding, etc. deteriorates, which is not preferable.
本発明において、プリフォームを作製するための平均粒子径が互いに異なる2種以上の金属粉末材料を選択する場合、大きい粒子径の金属粉末と、小さい粒子径の金属粉末を組合わせてなる混合物を用いることが好ましい。例えば、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含むようにすることが好ましい。 In the present invention, when selecting two or more kinds of metal powder materials having different average particle sizes for producing a preform, a mixture of a metal powder having a large particle size and a metal powder having a small particle size is used. It is preferable to use For example, at least a metal powder A having an average particle size of 10 μm or less and a metal powder B having an average particle size of 40 μm or more are included, and the metal powder A is contained at least 3% in the total amount of the metal powder on a mass basis, Moreover, it is preferable that the metal powder B is contained in an amount of 50% or more.
例えば、平均粒子径が互いに異なる45μm、5μmのシリコン粉末を、それぞれ単独でプレス成形した場合、その体積充填率(v%:Vf)は、それぞれ47%、52%である。本発明者らの検討によれば、45μm、5μmの各シリコン粉末を、質量基準で70:30の割合で混合して、該混合物物を用いてプレス成形等することにより、最終的にはVf=73v%の成形体を得ることができる。同様に、70μm、25μm、5μmのシリコン粉末を、質量基準で、70:25:5の割合で混合して、該混合物物を用いてプレス成形等することにより、Vf=78v%(体積%)のシリコン成形体を得ることができる。 For example, when silicon powders having different average particle sizes of 45 μm and 5 μm are separately press-molded, the volume filling rates (v%: Vf) are 47% and 52%, respectively. According to the studies of the present inventors, by mixing silicon powders of 45 μm and 5 μm in a mass ratio of 70:30 and using the mixture for press molding, etc., finally Vf = 73 v% molded body can be obtained. Similarly, silicon powders of 70 µm, 25 µm, and 5 µm are mixed at a ratio of 70:25:5 on a mass basis, and the mixture is press-molded or the like to obtain Vf = 78 v% (% by volume). can be obtained.
シリコン粉末等の金属粉末は、その平均粒子径、粒子形状、粒度分布等によって充填率が変わるので、所望の高い体積充填率(v%)を得る方法として、例えば、カーボンベッセル等に入れ、できるだけ高充填率になるように、入念に振動を加えて、できるだけ空隙がないように詰めた充填物とする方法もある。しかし、本発明者らの検討によれば、この振動を利用した方法では、金属粉末原料の含有率が55v%以上の充填物を得ることが容易ではなく、また、得られたとしても、その後に充填物にAl合金等の溶湯を高圧含浸させた場合に、亀裂が生じたり、筋状の欠陥が生じたりして、高品質の高金属粉末含有アルミニュウム複合体を得ることができないことがわかった。 Metal powder such as silicon powder has a filling rate that varies depending on its average particle size, particle shape, particle size distribution, etc. Therefore, as a method of obtaining a desired high volume filling rate (v%), for example, it is placed in a carbon vessel or the like, and In order to achieve a high filling rate, there is also a method of carefully applying vibrations to obtain a filling that is filled with as few voids as possible. However, according to the studies of the present inventors, it is not easy to obtain a filling with a metal powder raw material content of 55 v% or more by this method using vibration, and even if it is obtained, When the filler is impregnated with a molten metal such as an Al alloy at high pressure, cracks or streak-like defects occur, and it is not possible to obtain a high-quality aluminum composite containing metal powder. rice field.
本発明者らは、上記した知見から鋭意検討した結果、平均粒子径が互いに異なる金属粉末材料を2種以上用いて、配合した混合粉末を、プレス成形、CIP成形、沈降法等の成形方法を採用して、できるだけ金属粉末が隙間なく詰まるようにして成形することで、金属原料の含有率が55v%以上と、より高充填率で、Al合金等の溶湯を高圧含浸した場合にも耐え得る強固なプリフォームの作製が可能になることを見出した。さらに、プリフォームの強度をより高めるため、上記のようにして構成した金属粉末の混合物に有機無機バインダーを添加混合し、得られた混合物からなる成形物を300℃以上800℃以下の温度で焼成することが有効であることを見出した。これらの点については後述する。 As a result of intensive studies based on the above findings, the present inventors have found that two or more kinds of metal powder materials having different average particle sizes are used, and the mixed powder is subjected to molding methods such as press molding, CIP molding, and sedimentation. By adopting and molding so that the metal powder is packed as tightly as possible, the content of the metal raw material is 55 v% or more, and the filling rate is higher, and it can withstand even when impregnated with a molten metal such as an Al alloy at high pressure. We have found that it is possible to produce a strong preform. Furthermore, in order to further increase the strength of the preform, an organic/inorganic binder is added to and mixed with the mixture of metal powders composed as described above, and the molded article made of the obtained mixture is fired at a temperature of 300 ° C. or more and 800 ° C. or less. It was found that it is effective to These points will be described later.
また、本発明者らは、非加圧でAl合金等の溶湯を浸透させることが可能な、金属粉末原料の含有率が55v%以上のプリフォームの作製について鋭意検討した。その結果、質量基準で、金属粉末材料100質量部に対して、金属Mg粉末や、Al-Mg系合金粉末、Zn-Mg系合金粉末及びZn-Al系合金粉末等のマグネシウム系合金や、マグネシウムの含有量が高いMg2Si粉末等の化合物から選ばれる1種以上の粉末(これらをMg成分含有金属粉末等とも呼ぶ、また、Mg成分として説明する場合もある)を、0.2~5質量部を添加した混合物を用い、該混合物に特有の有機無機バインダーを添加し、これらの混合物からなる成形物を500℃以下の温度で焼成して得られるプリフォームを用いることで、Al合金等の溶湯を、非加圧で良好な状態に浸透させることができ、高品質の高金属粉末含有アルミニュウム複合体が得られることを見出した。すなわち、例えば、プリフォーム中に存在させたMg成分は、後述する、非加圧浸透を行う際の窒素雰囲気内でMg3N2を生成し、また、金属粉末表面の金属酸化物をMgのテルミット反応により還元金属化して、金属粉末とAl合金等の溶湯との濡れ性を向上させる。本発明によれば、これらのMg成分の働きによって、作製したプリフォーム内に、非加圧で良好な状態にAl合金等の溶湯を浸透させることが実現できたものと考えられる。 In addition, the present inventors diligently studied the production of a preform having a metal powder raw material content of 55 v% or more, which is capable of infiltrating a molten metal such as an Al alloy without pressurization. As a result, on a mass basis, for 100 parts by mass of the metal powder material, metal Mg powder, Al--Mg alloy powder, Zn--Mg alloy powder, magnesium-based alloy such as Zn--Al alloy powder, magnesium One or more powders selected from compounds such as Mg 2 Si powder having a high content of Using a mixture to which parts by mass are added, adding an organic and inorganic binder specific to the mixture, and using a preform obtained by firing a molded product made of the mixture at a temperature of 500 ° C. or less, Al alloy etc. can be infiltrated in a good state without pressure, and a high-quality, high-metal-powder-containing aluminum composite can be obtained. That is, for example, the Mg component present in the preform generates Mg 3 N 2 in a nitrogen atmosphere during non-pressure infiltration, which will be described later, and also converts the metal oxide on the metal powder surface to Mg. It is reduced and metallized by a thermite reaction to improve the wettability between the metal powder and the molten metal such as an Al alloy. According to the present invention, it is believed that the function of these Mg components enabled the molten metal such as an Al alloy to permeate the manufactured preform in a good state without pressure.
上記に挙げたMg成分含有金属粉末等は、平均粒子径が、0.5μm以上、150μm以下の粉末を使用することが好ましい。150μm超の粉末では粗すぎて、先に述べた金属粉末材料と均一に混合できない場合があるので、好ましくない。更に、粒子径が粗いとMg成分の表面積が小さくなり、プリフォーム内に含有させたMgが雰囲気内の窒素と反応して窒化された後のMg3N2の生成量が少なくなる。ここでMg3N2の生成量が少ないと、プリフォームへのAl合金等の浸透速度が遅くなるので好ましくない。一方、Mg成分は、細かい程表面積が大きくなり、空気中の酸素で酸化され易くなってMgOとなり、Mg量が少なくなるので好ましくない。このため、平均粒子径が0.5μm以上のMg成分含有金属粉末等を用いることが望ましい。また、平均粒子径が150μm超では、全体の表面積が小さくなり、先に述べたように、Mg3N2の生成量が少なくなるので好ましくない。 It is preferable to use a powder having an average particle size of 0.5 μm or more and 150 μm or less as the above-mentioned Mg component-containing metal powder or the like. A powder of more than 150 μm is not preferred because it is too coarse and may not be uniformly mixed with the metal powder material described above. Furthermore, when the particle size is coarse, the surface area of the Mg component becomes small, and the amount of Mg 3 N 2 produced after the Mg contained in the preform reacts with nitrogen in the atmosphere and is nitrided becomes small. Here, if the amount of Mg 3 N 2 produced is small, the permeation rate of the Al alloy or the like into the preform becomes slow, which is not preferable. On the other hand, the finer the Mg component, the larger the surface area, and the more easily it is oxidized by oxygen in the air to form MgO, which is not preferable because the amount of Mg decreases. Therefore, it is desirable to use Mg component-containing metal powder or the like having an average particle size of 0.5 μm or more. On the other hand, if the average particle size exceeds 150 μm, the surface area of the whole becomes small, and as described above, the production amount of Mg 3 N 2 becomes small, which is not preferable.
Mg成分含有金属粉末等の添加混合量としては、質量基準で、金属粉末100質量部に対し、Mg換算で、0.2~5質量部の範囲内で使用する。より好ましくは、0.5~5質量部の範囲内で使用する。Mg成分含有金属粉末等の量が0.2質量部未満と少ないと、Mg3N2の生成量が少なくなり、Al合金等の溶湯の浸透速度が十分に促進されないので好ましくない。一方、Mg成分含有金属粉末等の量が5質量部超であると、これらの原料で作製したプリフォーム中におけるMg成分の分布状態が局部的に多くなり、このことに起因して浸透したAl合金等の量が不均一になる恐れがあるので、好ましくない。先に挙げたようなMg系合金やMg含有化合物を用いる場合は、これらに含まれるMgに換算して、混合量を決定すればよい。 The amount of the Mg component-containing metal powder or the like to be added and mixed is in the range of 0.2 to 5 parts by mass in terms of Mg per 100 parts by mass of the metal powder. More preferably, it is used within the range of 0.5 to 5 parts by mass. If the amount of the Mg component-containing metal powder is less than 0.2 parts by mass, the amount of Mg 3 N 2 produced will be small, and the permeation rate of molten metal such as Al alloy will not be sufficiently accelerated, which is not preferable. On the other hand, if the amount of the Mg component-containing metal powder or the like is more than 5 parts by mass, the distribution state of the Mg component in the preform produced from these raw materials is locally increased, and this causes Al to permeate. This is not preferable because the amount of the alloy, etc. may become non-uniform. When using the Mg-based alloy or the Mg-containing compound as described above, the amount to be mixed may be determined by converting to the Mg contained therein.
本発明で使用する金属粉末としては、特に限定されず、例えば、シリコン粉末、シリコンアルミ合金粉末、フェロシリコン合金粉末、鉄又は鉄系粉末、チタン粉末、ニッケル又はニッケル系粉末等に代表される金属粉末が挙げられる。先に述べたように、非加圧で、プリフォーム内に良好な状態にAl合金等の溶湯を含浸させるようにするためには、プリフォーム内にMg成分を存在させるようにすることが好ましい。このため、非加圧浸透に用いられるプリフォームを作製する際の混合物は、上記に挙げた金属粉末に加え、1種以上のMg成分含有金属粉末等を、0.2~5質量部の範囲内の量で添加することを要し、さらに、成形物を500℃以下の温度で焼成する。このため、非加圧浸透に用いるプリフォームを作製する際は、平均粒子径が互いに異なる2種以上の金属粉末材料として、Mg成分含有金属粉末等のいずれについても使用しないようにする必要がある。 The metal powder used in the present invention is not particularly limited, and examples thereof include metals such as silicon powder, silicon aluminum alloy powder, ferrosilicon alloy powder, iron or iron-based powder, titanium powder, nickel or nickel-based powder, and the like. powder. As described above, in order to impregnate the preform with the molten metal such as an Al alloy in a good state without applying pressure, it is preferable to allow the Mg component to exist in the preform. . Therefore, in addition to the above-mentioned metal powders, the mixture for producing the preform used for non-pressure infiltration contains one or more Mg component-containing metal powders, etc. in an amount of 0.2 to 5 parts by mass. In addition, the molding is fired at a temperature of 500° C. or less. Therefore, when producing a preform used for non-pressure infiltration, it is necessary not to use any of two or more metal powder materials having different average particle sizes, such as a metal powder containing a Mg component. .
上記に対し、プリフォームが、高圧含浸に用いるためのものである場合は、プリフォームを作製する際における、平均粒子径が互いに異なる2種以上の金属粉末材料として、Mg成分含有金属粉末等を用いても問題ない。なお、この場合は、混合物を成形した成形物を300℃以上800℃以下の温度で焼成してプリフォームを作製するので、500℃を超える温度で焼成した場合は、Mg成分含有金属粉末等の中の、例えばMgは、酸化されてMgOになり、プリフォーム内に、非加圧浸透の際に重要になるMg成分が存在しないものになる。また、800℃を超える温度では、金属粉末が酸化され金属本来の性質が損なわれることが生じる。 On the other hand, when the preform is used for high-pressure impregnation, two or more kinds of metal powder materials having different average particle sizes are used in the preparation of the preform, such as Mg component-containing metal powder. You can use it without any problem. In this case, the molded product obtained by molding the mixture is fired at a temperature of 300° C. or higher and 800° C. or lower to prepare the preform. The Mg in it, for example, is oxidized to MgO, leaving the preform free of the Mg component, which is important during non-pressure infiltration. Moreover, at a temperature exceeding 800° C., the metal powder is oxidized and the original properties of the metal are damaged.
(有機無機バインダー)
Al合金等の溶湯をプリフォーム内に高圧で含浸、或いは、非加圧で浸透させることから、使用するプリフォームは、Al合金等の溶湯の含浸・浸透で生じる応力に耐えるための強度が必要である。本発明の第1の発明では、Al合金等の溶湯を高圧含浸することを要し、具体的には、溶融Al合金等を数十MPaで含浸するので、特に、この場合に使用するプリフォームは、高圧に耐え得るだけのより高い強度が必要になる。また、本発明の第2の発明のプリフォームに非加圧浸透で溶融Al合金等を浸透させる場合であっても、Al合金等の溶湯がプリフォームと接触する面には応力が発生する。本発明者らの検討によれば、単に振動等の方法で充填させた金属粉末の充填相に、Al合金等の溶湯を高圧で、或いは、非加圧で浸透すると、亀裂や欠陥が発生することがある。このため、Al合金等の溶湯をいずれの方法で含浸・浸透させる場合も、より強固なプリフォームを作製して、該プリフォームにAl合金等を含浸するように構成することが望まれる。
(organic/inorganic binder)
Molten metal such as Al alloy is impregnated into the preform under high pressure or permeates without pressure, so the preform used must be strong enough to withstand the stress generated by the impregnation and permeation of molten metal such as Al alloy. is. In the first aspect of the present invention, it is necessary to impregnate a molten Al alloy or the like under high pressure. requires higher strength to withstand high pressures. Moreover, even when the molten Al alloy or the like is impregnated into the preform of the second aspect of the present invention without pressure, stress is generated on the surface where the molten Al alloy or the like contacts the preform. According to the studies of the present inventors, cracks and defects occur when a molten metal such as an Al alloy is infiltrated under high pressure or without pressure into the packed phase of the metal powder filled by a method such as vibration. Sometimes. For this reason, it is desirable to fabricate a stronger preform and to impregnate the preform with the Al alloy or the like, regardless of which method is used to impregnate or infiltrate the molten metal such as the Al alloy.
通常、セラミックス粉末等から強度の高いプリフォームを作製して、セラッミクス-Al合金等の複合体を得るためには、セラッミクスにコロイダルシリカ等の無機バインダーを添加混合して成形し、得られた成形体を約1000℃以上の温度で焼成してプリフォームを作製する必要がある。しかし、本発明の複合体は、金属粉末とAl合金等との複合体であり、上記した従来技術を利用することはできない。すなわち、強度の高いプリフォームを得る目的で、金属粉末に無機バインダーを添加混合して得た成形体を1000℃の温度で焼成すると、金属粉末が酸化され、金属としての性能が損なわれるので、従来方法は採用できなかった。これに対し、本発明では、本発明で規定するように、金属粉末に有機無機バイダーを添加混合して成形体を得ることで、300℃~800℃の低い温度域での焼成で、強固な、高含有率で金属粉末を含むプリフォームを作製できるようになり、その結果、本発明の顕著な効果を得ている。 Normally, in order to produce a high-strength preform from ceramics powder or the like and obtain a composite such as a ceramics-Al alloy, an inorganic binder such as colloidal silica is added to the ceramics and mixed and molded, and the obtained molding is The body must be fired at temperatures above about 1000° C. to make the preform. However, the composite of the present invention is a composite of metal powder and an Al alloy or the like, and the above-described prior art cannot be used. That is, if a compact obtained by adding and mixing an inorganic binder to metal powder is fired at a temperature of 1000° C. for the purpose of obtaining a high-strength preform, the metal powder is oxidized and its performance as a metal is impaired. The conventional method could not be adopted. On the other hand, in the present invention, as defined in the present invention, by adding and mixing an organic/inorganic binder to metal powder to obtain a molded body, it is possible to obtain a solid body by firing in a low temperature range of 300 to 800 ° C. , it has become possible to produce a preform containing metal powder at a high content rate, and as a result, a remarkable effect of the present invention is obtained.
上記要望に対し、本発明者らは鋭意開発を進めた結果、先述した平均粒子径が互いに異なる2種以上の金属粉末材料に、有機無機バインダーを添加混合してなる混合物を用いることが、より強固なプリフォームを得るための手段として効果的であることを見出した。その経緯について説明する。 As a result of intensive development by the present inventors in response to the above demand, it is more advantageous to use a mixture obtained by adding and mixing an organic-inorganic binder to two or more kinds of metal powder materials having different average particle sizes as described above. It was found to be effective as a means for obtaining a strong preform. I will explain the background to this.
プリフォームを強固にするには、先に説明したプレス、CIP、沈降法等で、金属粉末をできるだけ密に詰めて圧力をかけて成形すると共に、原料の金属混合粉末にバインダーを添加することが望まれる。一般的に、セラミックス等の成形に使用するバインダーとしてはポリビニルアルコール(PVA)やポリビニルブチラール(PVB)で代表される有機物が使用されている。しかし、これらの有機バインダーを使用して作製したプリフォームに、溶融したAl合金等を高圧で含浸又は非加圧で浸透するとガスが発生し、Al合金等の含浸が阻害される恐れがある。この問題を防止するためには、プリフォームを予め焼成し、ガス発生源となる有機物を焼成除去しなければならない。このことは、PVAやPVB等の有機バインダーは、焼成後のプリフォームを強固にするためのバインダーとしては機能し得ないので、使用できないことを意味する。一方、金属粉末材料に、コロイダルシリカ、コロイダルアルミナ等の無機バインダーを添加し、プレス、CIP等で成形後、焼成してプリフォームを強固にすることが考えられる。そして、これらの無機バインダーによって強度を発現したプリフォームを得るためには、プリフォームを1000℃以上で焼成する必要がある。しかし、この温度で焼成した場合は、主原料である金属粉末が酸化されて金属としての機能が阻害される。したがって、コロイダルシリカや、コロイダルアルミナ等の一般的無機バインダーは使用できない。 In order to strengthen the preform, it is possible to pack the metal powder as densely as possible and pressurize it by the above-described press, CIP, sedimentation method, etc., and add a binder to the raw metal mixed powder. desired. Generally, organic substances such as polyvinyl alcohol (PVA) and polyvinyl butyral (PVB) are used as binders for molding ceramics. However, if a preform prepared using these organic binders is impregnated with a molten Al alloy or the like under high pressure or impregnated with no pressure, gas is generated, which may hinder the impregnation of the Al alloy or the like. In order to prevent this problem, the preform must be baked in advance to remove the organic matter that is the source of gas generation. This means that organic binders such as PVA and PVB cannot be used because they cannot function as binders for strengthening preforms after firing. On the other hand, it is conceivable to add an inorganic binder such as colloidal silica or colloidal alumina to the metal powder material, press, CIP, or the like, and then bake to strengthen the preform. In order to obtain a preform exhibiting strength with these inorganic binders, it is necessary to bake the preform at 1000° C. or higher. However, when fired at this temperature, the metal powder, which is the main raw material, is oxidized and its function as a metal is impaired. Therefore, general inorganic binders such as colloidal silica and colloidal alumina cannot be used.
上記に対し、本発明者らは、鋭意検討した結果、2種以上の金属粉末材料に、有機無機バインダーを添加混合した混合物を用いて成形し、得られた成形物を、溶融したAl合金等の含浸方法に応じて、特定の温度で焼成してプリフォームを作製することで、Al合金等の溶湯の加圧或いは非加圧での含浸がいずれも良好な状態で実現可能になる、強固なプリフォームを得ることができることを見出した。 In response to the above, the present inventors have made intensive studies, and have found that a mixture obtained by adding and mixing two or more kinds of metal powder materials with an organic and inorganic binder is used for molding, and the obtained molded product is a molten Al alloy or the like. Depending on the impregnation method, by baking at a specific temperature to produce a preform, impregnation of molten metal such as Al alloy under pressure or without pressure can be realized in a good state. It has been found that a good preform can be obtained.
本発明で用いる有機無機バインダーとしては、シリコーン樹脂や、Si-O-R(R:有機物)の化学構造を持つSiアルキシド等のシリコン有機誘導体や、或いは、Al-O-R(R:有機物)の化学構造を持つアルミニュウムアルコキシド等のアルミニュウム有機誘導体を使用することができる。本発明者らの検討によれば、まず、上記に挙げたような有機無機化合物をバインダーとして添加した金属粉体の混合物を使用することで、常温で強固な成形物を作製することができる。そして、本発明者らの検討によれば、その後、得られた成形物を、金属粉末が酸化されない800℃以下の、300℃以上800℃以下の温度で焼成してプリフォームを作製することで、前記成形物中の有機物分が焼成除去されるにもかかわらず、焼成後に強固な金属粉末成型体(プリフォーム)が得られることがわかった。本発明者らは、このような効果が得られた理由について、下記のように考えている。まず、上記に挙げたような有機無機化合物は、金属粉末に添加して成形すると、常温では一般的な有機バインダーと同様に、いわゆる糊剤として強度を発揮する。さらに、300℃以上で加熱すると、有機無機化合物の有機物分は燃焼除去されるが、有機無機化合物の構造中の無機物分が、無機バインダーとして働き、焼成後に得られるプリフォームを強固にする。下記に、有機無機バインダーを用いたことによって得られる効果をより具体的に説明する。 Examples of the organic/inorganic binder used in the present invention include silicone resins, silicon organic derivatives such as Si alkoxides having a chemical structure of Si—O—R (R: organic matter), and Al—O—R (R: organic matter). Aluminum organic derivatives such as aluminum alkoxides having the chemical structure of can be used. According to the studies of the present inventors, first, by using a mixture of metal powders to which the above-mentioned organic and inorganic compounds are added as a binder, it is possible to produce a strong molding at room temperature. Then, according to the studies of the present inventors, after that, the obtained molding is fired at a temperature of 300° C. or more and 800° C. or less, which is 800° C. or less at which the metal powder is not oxidized, to produce a preform. It has been found that a strong metal powder compact (preform) can be obtained after sintering, although the organic matter in the compact is removed by sintering. The inventors consider the reason why such an effect was obtained as follows. First, when the organic/inorganic compounds listed above are added to metal powder and molded, they exhibit strength as a so-called glue at room temperature, like a general organic binder. Furthermore, when heated at 300° C. or higher, the organic matter of the organic-inorganic compound is burned off, but the inorganic matter in the structure of the organic-inorganic compound acts as an inorganic binder to strengthen the preform obtained after firing. The effect obtained by using the organic/inorganic binder will be described in more detail below.
先述したように、一般的な、コロイダルシリカや、コロイダルアルミナ等の無機バインダーは、1000℃以上の温度で焼成しないと、プリフォームの強度の発現に寄与できない。一方、本発明で使用する有機無機バインダーは、焼成した場合、300℃以上の焼成温度で、有機物分が焼成除去され、焼成後に残ったSiO2成分やAl2O3成分等がアモルファス(無定形)のまま、金属粉末と結合する。このため、例えば、300℃程度の低い温度でも焼成後のプリフォームは、強度を発現したものになる。また、本発明者らの検討によれば、800℃以下の高い温度で焼成した場合でも金属粉末は酸化されないので、十分強固なプリフォームが製造できる。また、上記に挙げたような有機無機バインダーは、300℃の温度で、有機物分が分解除去されるので、Al合金等の溶湯の含浸時に、有機物による有機ガスの発生がないのも長所である。上記した効果が得られた理由は、本発明で使用する有機無機バインダーの、例えば、Siアルキシド等は、その分子構造がSi-O-R(R:有機物)であるので、一般的な有機バイダーに比べ、300~800℃の温度でも有機物分が炭化残留しにくく、有機物分が燃焼除去され易いため、焼成後の成形体においてSiO2の無機バインダーとして機能し、この結果、得られるプリフォームが強度を発揮したものになったと思われる。また、本発明で使用することを要する無機有機バインダーは、エタノール、IPA、トルエン等の有機性溶媒で使用できるので、金属粉末と水との反応による劣化が抑えられるといった利点もある。 As described above, common inorganic binders such as colloidal silica and colloidal alumina cannot contribute to development of preform strength unless they are fired at a temperature of 1000° C. or higher. On the other hand, when the organic inorganic binder used in the present invention is fired, the organic matter is removed by firing at a firing temperature of 300° C. or higher, and the SiO 2 component, Al 2 O 3 component, etc. remaining after firing are amorphous (amorphous). ) remains, and is combined with the metal powder. Therefore, even at a low temperature of about 300° C., for example, the preform after sintering exhibits strength. Further, according to the studies of the present inventors, the metal powder is not oxidized even when fired at a high temperature of 800° C. or less, so that a sufficiently strong preform can be manufactured. In addition, the above-mentioned organic/inorganic binders have the advantage that the organic matter is decomposed and removed at a temperature of 300° C., so that the organic matter does not generate organic gas when impregnated with a molten Al alloy or the like. . The reason why the above effect was obtained is that the organic/inorganic binder used in the present invention, such as Si aloxide, has a molecular structure of Si—O—R (R: organic substance), and therefore, a general organic binder Compared to , even at a temperature of 300 to 800 ° C., the organic matter is less likely to remain carbonized and is easily removed by burning, so it functions as an inorganic binder for SiO 2 in the molded body after firing. It seems that the strength has been demonstrated. Moreover, the inorganic-organic binder required to be used in the present invention can be used in organic solvents such as ethanol, IPA, toluene, etc., and thus has the advantage of suppressing deterioration due to reaction between metal powder and water.
上記したように、本発明の第1の発明及び第2の発明のいずれの場合も、比較的に低温度で有機物分が分解除去されて、強固なプリフォームが得られる。下記に述べるように、このことは、得られたプリフォームが、高圧又は非加圧でAl合金等の溶湯を良好な状態に含浸されるための重要な要素となる。すなわち、本発明の第1の発明で行う高圧含浸の場合、具体的には、プリフォームを800℃以下の温度で予熱後、該プリフォームに、700℃~800℃の温度のAl合金等の溶湯を高圧で含浸するが、その際に、このような高い温度の溶湯に対してもプリフォームは十分な強度を発揮できる。さらに、除去しにくいプリフォーム内部からの発生ガスがないので、Al合金等の溶湯が内部まで含浸することができる。 As described above, in both the first invention and the second invention of the present invention, the organic matter is decomposed and removed at a relatively low temperature to obtain a strong preform. As will be described below, this is an important factor for the obtained preform to be impregnated with molten metal such as Al alloy under high pressure or without pressure in good condition. That is, in the case of high pressure impregnation performed in the first aspect of the present invention, specifically, after preheating the preform at a temperature of 800 ° C. or less, the preform is coated with an Al alloy or the like at a temperature of 700 ° C. to 800 ° C. The molten metal is impregnated under high pressure, and at that time, the preform can exhibit sufficient strength against such a high-temperature molten metal. Furthermore, since there is no gas generated from the inside of the preform, which is difficult to remove, molten metal such as Al alloy can be impregnated to the inside.
一方、本発明の第2の発明で行う非加圧浸透の場合、先に述べたように、Mg成分含有金属粉末等をプリフォーム内に所定量混合されるように構成するが、これらのMg成分含有金属粉末等は、例えば、金属Mg粉末やMg含有合金粉末であれば、500℃超でMgOに酸化されてしまうので、プリフォームを500℃以下の温度で焼成する必要がある。本発明者らの検討によれば、プリフォームを500℃以下の低い温度で焼成することに加えて、金属粉末材料を混合して成形物を得る際に先に説明した有機無機バインダーを所望の量添加することで、成形物を焼成した場合にMg成分含有金属粉末等が酸化されず、しかも、Al合金等の溶湯を非加圧浸透させた際に時くずれない強固なプリフォームを製造することができる。 On the other hand, in the case of non-pressure infiltration performed in the second aspect of the present invention, as described above, a predetermined amount of Mg component-containing metal powder or the like is mixed in the preform. If the component-containing metal powder or the like is, for example, metal Mg powder or Mg-containing alloy powder, it will be oxidized to MgO at a temperature exceeding 500°C, so the preform must be fired at a temperature of 500°C or less. According to the studies of the present inventors, in addition to firing the preform at a low temperature of 500° C. or less, the desired organic/inorganic binder is used when the metal powder material is mixed to obtain the molding. By adding a large amount, the Mg component-containing metal powder is not oxidized when the molded product is fired, and a strong preform that does not collapse when a molten metal such as an Al alloy is impregnated without pressure can be manufactured. be able to.
本発明で用いる有機無機バインダーは、固体状のものの場合は、エタノールやIPA等の有機溶媒に溶かして添加するとよい。また、液状のものの場合は、そのまま、或いは、エタノールやIPA等の有機溶媒で希釈して添加することができる。金属粉末原料と有機無機バインダーとを混合しやすいように、エタノールやIPA等の有機溶剤を適当量添加して混合してもよい。本発明で用いる有機無機バインダーは、その添加量を、SiO2やAl2O3に換算して、金属粉末原料100質量部に対して、例えば、0.3~5.0質量部程度となる範囲で添加して混合することが好ましい。上記した範囲よりも少ない添加量であると、少な過ぎて所望するプリフォームの強度が十分に得られない場合がある。上記した範囲内よりも多い添加量の場合は、最終的に得られるアルミニュウム複合体が、SiO2やAl2O3等の無機物量が多いものになってしまい、本発明が目的とする金属含有率が高い高金属粉末含有アルミニュウム複合体が得られないことが懸念され、製品の性能が低下するので好ましくない。 If the organic/inorganic binder used in the present invention is in a solid state, it may be added after being dissolved in an organic solvent such as ethanol or IPA. Moreover, in the case of a liquid one, it can be added as it is or after being diluted with an organic solvent such as ethanol or IPA. An appropriate amount of an organic solvent such as ethanol or IPA may be added and mixed so that the metal powder raw material and the organic/inorganic binder can be easily mixed. The amount of the organic/inorganic binder used in the present invention is, for example, about 0.3 to 5.0 parts by mass in terms of SiO 2 or Al 2 O 3 with respect to 100 parts by mass of the metal powder raw material. It is preferable to add and mix in the range. If the addition amount is less than the above range, it may be too small to obtain the desired strength of the preform. If the addition amount is larger than the above range, the finally obtained aluminum composite will have a large amount of inorganic substances such as SiO 2 and Al 2 O 3 , and the metal content that is the object of the present invention will be high. It is not preferable because there is concern that an aluminum composite containing a high metal powder content with a high modulus cannot be obtained, and the performance of the product is lowered.
(成形物の調製方法)
本発明では、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料に、上記に挙げたような有機無機バインダーを添加混合してなる混合物を用いて成形して成形物を得、得られた成形物を特定の温度で焼成することで、強度の高いプリフォームを作製する。具体的には、平均粒子径が互いに異なる2種以上の金属粉末材料に、上記したような有機無機バインダーを混合した金属粉末混合物を成形して成形物を得る。
(Method for preparing molding)
In the present invention, a mixture obtained by selecting two or more kinds of metal powder materials having mutually different average particle sizes as a metal raw material for a preform, and adding and mixing an organic/inorganic binder such as those listed above to the metal raw material. is molded to obtain a molded product, and the obtained molded product is fired at a specific temperature to produce a preform with high strength. Specifically, a molded product is obtained by molding a metal powder mixture in which two or more kinds of metal powder materials having different average particle sizes are mixed with an organic-inorganic binder as described above.
成形物の成形方法は、特に限定されないが、例えば、下記の方法が挙げられる。金属粉末混合物を乾燥して、プレス成形やCIP等の乾式成形をして成形体を得る方法や、有機溶媒を用いて金属粉末混合物をスラリー状にして振動沈降成形や、石膏型で鋳込み成形して成形体を得る方法等が挙げられる。金属粉末混合物をスラリー状にする場合は、水の使用量を低減して有機溶媒でスラリーを作成することが好ましい。水分が多いと、金属粉末と水が反応して、金属粉末が水酸化物等に変化して劣化する恐れがあるためである。例えば、金属粉末がシリコン粉末である場合は、下記の反応が進みシリコンが劣化する恐れがある。
Si+4H2O⇒Si(OH)4+2H2
The molding method of the molded product is not particularly limited, and examples thereof include the following methods. The metal powder mixture is dried and then dry-molded by press molding or CIP to obtain a compact, or the metal powder mixture is slurried using an organic solvent and vibration sedimentation molding is performed. and a method of obtaining a molded product. When the metal powder mixture is slurried, it is preferable to reduce the amount of water used and prepare the slurry with an organic solvent. This is because if there is a large amount of water, the metal powder and water may react with each other, and the metal powder may change into hydroxide or the like, resulting in deterioration. For example, if the metal powder is silicon powder, the following reaction may progress and silicon may deteriorate.
Si + 4H2O⇒Si(OH) 4 + 2H2
また、金属粉末がチタン粉末の場合も、下記の反応が進み、チタンが劣化する恐れがある。すなわち、Ti+2H2O→TiO2+2H2の反応で、チタンが酸化物となる。他の金属粉末の場合も水と反応して酸化物となるので、基本的に水を使用するのは好ましくない。この問題を抑えるには、アルコール等の有機溶媒を用いるか、水と、アルコール等の親水性の有機溶媒との混合溶媒を使用するようにする。この場合も、上記反応を抑えるため、混合溶媒中の水分量を少なくすることが好ましい。本発明者らの検討によれば、有機溶媒100重量部に対して水分が30重量部以下で有れば、上記のような反応は起こらない。 Also, when the metal powder is titanium powder, the following reaction may progress and titanium may deteriorate. That is, the reaction of Ti+2H 2 O→TiO 2 +2H 2 turns titanium into an oxide. Other metal powders also react with water to form oxides, so it is basically not preferable to use water. To suppress this problem, an organic solvent such as alcohol is used, or a mixed solvent of water and a hydrophilic organic solvent such as alcohol is used. Also in this case, in order to suppress the above reaction, it is preferable to reduce the water content in the mixed solvent. According to the studies of the present inventors, the above reaction does not occur if the water content is 30 parts by weight or less with respect to 100 parts by weight of the organic solvent.
金属粉末混合物を乾燥して、プレス成形やCIP等の乾式成形することで成形物を得た場合は、上記したような問題は生じない。粉末材料の成形物を得る方法として汎用されているプレス成形を利用することで、容易に本発明で所望する成形物を得ることができる。また、CIP成形を利用することで、得られる成形体の密度を均質化することができるので、CIP成形を利用して成形物を得ることも好ましい。例えば、プレス成形で仮成形をし、その後にCIP成形することも好ましい方法である。 When the metal powder mixture is dried and dry-molded such as press molding or CIP to obtain a molded product, the above problems do not occur. By using press molding, which is widely used as a method for obtaining molded articles of powder materials, the desired molded article can be easily obtained in the present invention. In addition, it is also preferable to obtain a molded product by using CIP molding, because the density of the obtained molded product can be homogenized by using CIP molding. For example, it is also a preferable method to perform temporary molding by press molding and then perform CIP molding.
(成形物の焼成)
本発明では、上記のようにして得た成形物を焼成(仮焼)して、金属含有率が高い金属粉末成型体(プリフォーム)を得る。その場合に、プリフォームに、Al合金等の溶湯を、10MPa~200MPaの高圧で含浸させる場合は、300℃以上800℃以下の温度で焼成する。また、プリフォームに、Al合金等の溶湯を非加圧で浸透させる場合は、500℃以下の温度で、例えば、300℃以上500℃以下の温度で焼成する。まず、成形物を上記した温度で焼成することで、成形物に含まれる有機無機バインダー等に由来する有機物分が除かれる。成形物に有機物分が残っていると、成形物にAl合金等を浸透させると、高温のAl合金等の湯と有機物分が接触してガスが発生し、Al合金等の浸透が阻害されることがあるので、焼成することにより有機物分を除去する必要がある。
(Firing of molding)
In the present invention, the molded product obtained as described above is fired (calcined) to obtain a metal powder molded body (preform) having a high metal content. In that case, when the preform is impregnated with a molten metal such as an Al alloy at a high pressure of 10 MPa to 200 MPa, the preform is fired at a temperature of 300° C. or higher and 800° C. or lower. Further, when a molten metal such as an Al alloy is impregnated into the preform without pressure, the preform is fired at a temperature of 500° C. or less, for example, 300° C. or more and 500° C. or less. First, by firing the molded article at the temperature described above, the organic substances derived from the organic/inorganic binders and the like contained in the molded article are removed. If organic matter remains in the molding, when the Al alloy or the like is permeated into the molding, the high-temperature hot water of the Al alloy or the like and the organic matter come into contact with each other to generate gas, which hinders the permeation of the Al alloy or the like. Therefore, it is necessary to remove the organic matter by firing.
さらに、成形物を上記した温度で焼成してプリフォームを作製することで、本発明が本来目的とする、プリフォームに、溶解したAl合金等を高圧或いは非加圧のいずれの条件で含浸させた場合においても十分な強度を与えることが可能になる。また、先に述べたように、本発明によって、製品形状に近いニアネットの高金属粉末含有アルミニュウム複合体を製造することができれば、加工コストを大幅に低減でき、非常に有用である。この目的を達成するためには、溶解したAl合金等を含浸する前に、プリフォームを、機械加工が可能な強度を有するものにする必要があり、この目的を実現させるためにも成形物を焼成してプリフォームを作製することは重要である。 Furthermore, by baking the molded product at the above-described temperature to produce a preform, the preform, which is the original object of the present invention, can be impregnated with a molten Al alloy or the like under either high pressure or non-pressure conditions. It is possible to provide sufficient strength even in the case of Moreover, as described above, if the present invention can produce a near-net high-metal-powder-containing aluminum composite having a shape close to that of the product, the processing cost can be greatly reduced, which is very useful. In order to achieve this purpose, it is necessary to make the preform strong enough to be machined before being impregnated with the molten Al alloy or the like. Firing to produce a preform is important.
金属含有率が高い金属粉末成型体(プリフォーム)を得る際の温度条件は、この後の工程における、プリフォームに溶融したAl合金等を含浸する際の方法として、高圧含浸を行うか、非加圧浸透を行うかによって異なる。高圧含浸に供するプリフォームを得る場合は、Al合金等の溶湯を10MPa~100MPa程度の比較的大きな圧力で含浸するので、使用するプリフォームは、これに耐える強度が必要である。しかし、本発明者らの検討によれば、焼成温度が高すぎると、プリフォームの原料である金属粉末が酸化するので、酸化を抑えるため、800℃以下の温度で焼成する必要がある。また、金属粉末に添加した有機無機バインダー等に由来する有機物分を十分に除くためには、300℃以上の温度で焼成することを要する。本発明者らの検討によれば、高圧含浸に供するプリフォームを得る場合は、500℃超で800℃以下の温度で焼成することが好ましい。より好ましくは、700℃以上800℃以下の温度で焼成するとよい。 The temperature conditions for obtaining a metal powder molded body (preform) with a high metal content are as follows. It depends on whether pressurized infiltration is performed. When obtaining a preform for high-pressure impregnation, molten metal such as an Al alloy is impregnated at a relatively high pressure of about 10 MPa to 100 MPa, so the preform to be used must have strength to withstand this pressure. However, according to the studies of the present inventors, if the firing temperature is too high, the metal powder, which is the raw material of the preform, is oxidized. Further, in order to sufficiently remove the organic matter derived from the organic/inorganic binder added to the metal powder, it is necessary to bake at a temperature of 300° C. or higher. According to studies by the present inventors, when obtaining a preform to be subjected to high-pressure impregnation, it is preferable to bake at a temperature higher than 500° C. and 800° C. or lower. More preferably, it is fired at a temperature of 700° C. or higher and 800° C. or lower.
本発明者らの検討によれば、非加圧浸透に供するプリフォームを得る場合は、非加圧浸透で、プリフォームのAl合金等の溶湯が接触する部分に応力が発生するので、これに耐え得るプリフォーム強度のものが必要になる。このため、高圧含浸に供するプリフォームと同様に、焼成することで、成形物中の有機物分の除去と、得られるプリフォーム強度を向上させる。しかし、非加圧浸透の場合は、先に説明したように、非加圧でAl合金等の溶湯を良好な状態に浸透させるためには、浸透に供するプリフォームが、先に説明したMg金属粉末等のMg成分含有金属粉末等が添加された状態であることを要する。これに対し、例えば、Mg金属粉末は500℃超になると空気中の酸素と反応し、MgOとなり、非加圧浸透に必要なMg成分が不足することになる。このため、焼成温度は500℃以下で実施する必要がある。本発明者らの検討によれば、非加圧浸透に供する場合、300℃以上450℃以下の温度での焼成で、有機物分を十分に焼成除去でき、且つ、金属含有率が高いプリフォームを非加圧浸透に耐え得る強固なものにすることが可能になる。 According to the studies of the present inventors, when obtaining a preform subjected to non-pressurized infiltration, stress is generated in the part of the preform that is in contact with molten metal such as an Al alloy. A durable preform strength is required. Therefore, similar to preforms subjected to high-pressure impregnation, sintering removes the organic matter from the molding and improves the strength of the resulting preform. However, in the case of non-pressurized infiltration, as described above, in order to infiltrate molten metal such as an Al alloy in a good state without pressure, the preform to be subjected to infiltration must be the Mg metal described above. It is required to be in a state in which Mg component-containing metal powder such as powder is added. On the other hand, for example, when the temperature exceeds 500° C., Mg metal powder reacts with oxygen in the air to become MgO, resulting in a shortage of the Mg component necessary for non-pressure penetration. Therefore, the firing temperature must be 500° C. or lower. According to the studies of the present inventors, when subjected to non-pressure infiltration, a preform having a high metal content can be obtained by firing at a temperature of 300° C. or more and 450° C. or less, and the organic matter can be sufficiently removed by firing. It becomes possible to make it strong enough to withstand non-pressurized penetration.
[高金属粉末含有アルミニュウム複合体の作製]
次に、本発明の高金属粉末含有アルミニュウム複合体を得る際に行う、アルミニュウム等の含浸工程について説明する。該工程では、上記で説明した構成によって得られる、金属含有率が高い、強度に優れるプリフォームに、溶融したアルミニュウム又はアルミニュウム合金(Al合金等)を含浸或いは浸透させる。以下、高圧含浸による方法と、非加圧浸透による方法について、それぞれ説明する。
[Preparation of aluminum composite containing high metal powder]
Next, the step of impregnating aluminum or the like, which is performed when obtaining the high-metal-powder-containing aluminum composite of the present invention, will be described. In this step, a preform having a high metal content and excellent strength obtained by the structure described above is impregnated or permeated with molten aluminum or an aluminum alloy (such as an Al alloy). A method by high-pressure impregnation and a method by non-pressure impregnation will be described below.
(プリフォームへのAl合金等の高圧含浸方法)
図1に、高圧含浸の概念図を模式的に示した。図1(A)に示したように、金属含有率が高いプリフォームを、300℃~800℃に加熱して予熱したプレス機の枠型に装填する。プリフォームを予熱した状態にして装填する理由は、プリフォームにAl合金等の溶湯を高圧含浸する場合、プリフォームの温度が低いと、高圧含浸の途中でAl合金等が冷却固化してプリフォーム内部まで含浸しないことが起こり得るので、これを防止するためである。枠型は、同じくAl合金等が含浸途中で冷却固化しないように、200~400℃にバーナー等で加温(予熱)しておくとよい。
(Method for high-pressure impregnation of Al alloy or the like into preform)
FIG. 1 schematically shows a conceptual diagram of high-pressure impregnation. As shown in FIG. 1(A), a preform having a high metal content is heated to 300° C. to 800° C. and loaded into a preheated press frame. The reason for loading the preform in a preheated state is that when the preform is impregnated with a molten metal such as an Al alloy under high pressure, if the temperature of the preform is low, the Al alloy or the like cools and solidifies during the high pressure impregnation, and the preform is damaged. This is to prevent impregnation to the inside, which may occur. Similarly, the frame mold should be heated (preheated) to 200 to 400° C. with a burner or the like so that the Al alloy or the like does not cool and solidify during the impregnation.
上記のようにしてプリフォームを装填した容器に、600℃~800℃に溶融したAl合金等を注湯し、図1(B)に示したように、上パンチで荷重をかけプレスし、等方的にAl合金等の溶湯をプリフォーム内に含浸させる。プレス圧は、10Mpa~200Mpaで行う。10MPa未満では圧力が低過ぎて、プリフォームにAl合金等の溶湯が含浸しない場合があるので好ましくはない。200Mpa超の、より高圧で含浸させても構わないが、本発明の複合体を得るための装置の能力としては、上記した範囲のプレス圧が得られれば十分である。このようにして得たプレス含浸体を冷却し、プリフォーム周囲のアルミニュウムを除去して、本発明が目的とする高金属粉末含有アルミニュウム複合体とする。 An Al alloy or the like melted at 600° C. to 800° C. is poured into the container loaded with the preform as described above, and as shown in FIG. The preform is impregnated with molten metal such as Al alloy. The pressing pressure is 10Mpa to 200Mpa. If the pressure is less than 10 MPa, the pressure is too low and the preform may not be impregnated with molten metal such as Al alloy, which is not preferable. Although the impregnation may be carried out at a higher pressure of over 200 MPa, the pressing pressure within the range described above is sufficient for the ability of the apparatus to obtain the composite of the present invention. The press-impregnated body thus obtained is cooled and the aluminum around the preform is removed to obtain the high-metal-powder-containing aluminum composite which is the object of the present invention.
(プリフォームへのAl合金等の非加圧浸透方法)
図2に、非加圧浸透の段階的な概念図を模式的に示した。まず、Mg金属粉末などの、Mg成分含有金属粉末等を含んでなる、金属含有率が高いプリフォームを、下記に説明するようにして窒素雰囲気が確保できる電気炉に装填する。プリフォームの下部には、好ましくは、プリフォームと同材の小片を浸透道として配置する。浸透に供する固体のAl合金等をプリフォームに接触しないようにして近傍に設置する。プリフォームとAl合金等は電気炉内部の部材と反応しないように、図2に示したように、カーボン製ベッセル等に設置する。
(Non-pressure infiltration method of Al alloy etc. into preform)
FIG. 2 schematically shows a step-by-step conceptual diagram of non-pressure infiltration. First, a preform containing Mg component-containing metal powder such as Mg metal powder and having a high metal content is loaded into an electric furnace in which a nitrogen atmosphere can be secured as described below. A small piece of the same material as the preform is preferably placed in the lower part of the preform as an infiltration channel. A solid Al alloy or the like to be permeated is placed near the preform so as not to come into contact with the preform. The preform, Al alloy, etc. are placed in a carbon vessel or the like as shown in FIG. 2 so as not to react with the members inside the electric furnace.
上記のようにプリフォームと固体のAl合金等を上記したように配置した後、電気炉内部の窒素雰囲気を保ちながら徐々に昇温して、700~900℃で2時間~5時間保持する。この間に、図2に段階的に示したように、溶けたAl合金等が浸透道を介してプリフォームに非加圧で浸透し、高金属粉末含有アルミニュウム複合体が得られる。 After arranging the preform and the solid Al alloy, etc. as described above, the temperature is gradually raised while maintaining the nitrogen atmosphere inside the electric furnace, and the temperature is maintained at 700 to 900° C. for 2 to 5 hours. During this time, as shown step by step in FIG. 2, the molten Al alloy or the like permeates the preform through the permeation channel without pressure, thereby obtaining an aluminum composite containing a high amount of metal powder.
以下、Mg成分含有金属粉末等がMg粉末である場合を例にとって説明する。上記した非加圧浸透の原理は、Mgと窒素が反応し、Mg3N2が生成し、プリフォーム内に析出して、Al合金等との濡れ性が向上するか、または、Mgがテルミット反応を起こし、プリフォームを構成している金属粉末の表面酸化物を還元して、金属粉末とAl合金等の濡れ性が向上したためと思われる。先に説明したように、従来技術では、プレス成形等して得た成形物を焼成せずに非加圧浸透に用いており、また、Al合金等を非加圧浸透させる場合、Mg粉末を含まない成形物を用い、これを、マグネシウム蒸気を含む窒素雰囲気に置きAl金属を浸透させる方法が行われている。しかし、本発明者らの検討によれば、この方法であると、雰囲気中のMg蒸気と窒素で反応して、プリフォームの表面にMg3N2が生成し、この状態でAl合金等が浸透していくことになるので、プリフォーム全体にアルミニュウムを含浸させるには長時間が必要である。また、プリフォームの表面に均一にMg3N2が生成しないので、不均一にAl合金等が浸透し、プリフォーム全体に均一に含浸しないことが起こる場合があった。 A case where the Mg component-containing metal powder or the like is Mg powder will be described below as an example. The principle of non-pressure infiltration described above is that Mg reacts with nitrogen to form Mg 3 N 2 and precipitate in the preform to improve wettability with Al alloys or the like, or Mg forms thermite It is believed that this is because a reaction occurs to reduce the surface oxide of the metal powder constituting the preform, thereby improving the wettability between the metal powder and the Al alloy or the like. As described above, in the prior art, a molded product obtained by press molding or the like is used for non-pressure infiltration without firing, and when Al alloy or the like is non-pressure infiltration, Mg powder is used. A method of using a molding that does not contain magnesium and placing it in a nitrogen atmosphere containing magnesium vapor to allow Al metal to permeate is performed. However, according to the studies of the present inventors, with this method, Mg vapor and nitrogen in the atmosphere react to form Mg 3 N 2 on the surface of the preform, and in this state, Al alloys and the like are formed. Since it will permeate, it takes a long time to impregnate the entire preform with aluminum. In addition, since Mg 3 N 2 is not generated uniformly on the surface of the preform, there have been cases where the Al alloy or the like permeates unevenly and the entire preform is not uniformly impregnated.
本発明の技術によれば、上記した従来技術の場合と異なり、プリフォーム内にMg粉末を均一に混合することができるのでMg3N2がプリフォーム全体に生成するので、Al合金等の含浸速度は飛躍的に早くなると共に、プリフォーム全体均一に含浸することができる。また、非加圧浸透を利用した場合、プリフォームの形状のままAl合金等を浸透させることができるので、製品形状に近いニアネットで、高金属粉末含有アルミニュウム複合体を製造できるという、二次加工を低減できるという大きなメリットがある。 According to the technique of the present invention, unlike the above-described conventional technique, Mg powder can be uniformly mixed in the preform, so that Mg 3 N 2 is generated throughout the preform. The speed is dramatically increased, and the entire preform can be uniformly impregnated. In addition, when non-pressurized infiltration is used, it is possible to infiltrate an Al alloy or the like while maintaining the shape of the preform. There is a big merit that processing can be reduced.
以下、実施例及び比較例を挙げて、前述の一実施形態のさらなる具体例を説明するが、本発明は以下の実施例に限定されるものではない。文中、w%とあるのは質量基準であり、v%とあるのは容積基準である。本明細書中における平均粒子径は、レーザー回折式粒度分布測定器で測定した値である。 Examples and comparative examples are given below to describe further specific examples of the above-described embodiment, but the present invention is not limited to the following examples. In the text, w% is based on mass, and v% is based on volume. The average particle size in this specification is a value measured with a laser diffraction particle size distribution analyzer.
[実施例1](高圧含浸法を利用)
まず、下記の手順で、金属含有率が高い金属粉末成型体(プリフォーム)を作製した。本実施例では、プリフォームを作製するため、平均粒子径が異なる3種のシリコン(ケイ素)粉末を下記の配合で組合わせて、撹拌混合して使用した。具体的には、平均粒子径が45μmのシリコン粉末を1820g、平均粒子径が25μmのシリコン粉末を780g、平均粒子径が5μmのシリコン粉末を100g、で配合した合計2700gの、平均粒子径が互いに異なる3種のシリコン粉末の混合物を用いた。この混合物に、SiO2換算でケイ素分(シリコン)を40w%含む、有機無機バインダーであるエチルシリケートを130g添加して、更に、撹拌機で15分間撹拌混合して、本実施例で用いる混合粉体を得た。
[Example 1] (using high-pressure impregnation method)
First, a metal powder compact (preform) having a high metal content was produced by the following procedure. In this example, three types of silicon (silicon) powders having different average particle sizes were combined according to the following formulations and mixed by stirring to produce a preform. Specifically, 1820 g of silicon powder with an average particle size of 45 μm, 780 g of silicon powder with an average particle size of 25 μm, and 100 g of silicon powder with an average particle size of 5 μm are blended, and a total of 2700 g of the average particle size is mixed with each other. A mixture of three different silicon powders was used. To this mixture, 130 g of ethyl silicate, which is an organic/inorganic binder containing 40 wt% of silicon in terms of SiO 2 , is added, and further stirred and mixed with a stirrer for 15 minutes to obtain the mixed powder used in this example. got a body
上記で得た混合粉末を、内寸が、200mm×200mm×150mm(深さ)のプレス金型に全量入れ、300kg/cm2全圧120tで、プレス成形を行った。そして、得られたプレス成形品を電気炉内に入れ、昇温速度50℃/hrで700℃まで昇温し、この温度で3時間保持し、その後、室温まで冷却して、シリコン金属製のプリフォームを作製した。このプリフォームの重量と外形寸法を測定し、嵩密度を算出したところ、体積充填率(Vf)が77%であるシリコンプリフォームあった。 The entire mixed powder obtained above was placed in a press mold having internal dimensions of 200 mm×200 mm×150 mm (depth), and press molding was performed at a total pressure of 120 tons of 300 kg/cm 2 . Then, the obtained press-molded product was placed in an electric furnace, heated to 700° C. at a temperature increase rate of 50° C./hr, held at this temperature for 3 hours, and then cooled to room temperature to form a silicon metal. A preform was produced. The weight and outer dimensions of this preform were measured, and the bulk density was calculated.
上記で得たプリフォームを電気炉で500℃に予熱し、予熱したプリフォームを、高圧含浸を行うための、高圧含浸用プレス機のバーナーで250℃に加熱した300mmΦ×250mm深さの金型に、装填した。この金型に、750℃で溶解したアルミニュウム合金(AC4C)を、該金型の上20mm程度まで入れ、上側からプレスパンチを金型に押し込み、100Mpaの圧力で10分保持して、先に得たシリコンプリフォームに、溶解したアルミニュウムを高圧含浸させた(図1参照)。 The preform obtained above is preheated to 500°C in an electric furnace, and the preheated preform is heated to 250°C by a burner of a high pressure impregnation press for high pressure impregnation. , loaded. An aluminum alloy (AC4C) melted at 750 ° C. is put into this mold up to about 20 mm above the mold, a press punch is pushed into the mold from above, and a pressure of 100 Mpa is held for 10 minutes to obtain it first. A silicon preform was high pressure impregnated with molten aluminum (see FIG. 1).
冷却した後、前記プリフォームの周囲のアルミニュウムを加工除去して、シリコン-アルミニュウム複合体の製品部を取り出した。該製品部は、小さなポア(鋳巣)や、亀裂もなく、アルミニュウムが均一に含浸したシリコン-アルミニュウム複合体(以下、シリコンアルミ複合体とも呼ぶ)であった。重量測定と外形寸法測定から嵩比重を算出したところ、シリコンが78v%、アルミ合金が22v%のシリコンアルミ複合体であった。 After cooling, the aluminum around the preform was removed by machining, and the product portion of the silicon-aluminum composite was taken out. The product part was a silicon-aluminum composite (hereinafter also referred to as a silicon-aluminum composite) uniformly impregnated with aluminum without small pores (blowholes) or cracks. When the bulk specific gravity was calculated from weight measurement and external dimension measurement, it was found to be a silicon-aluminum composite containing 78 v% silicon and 22 v% aluminum alloy.
[実施例2](非加圧浸透法を利用)
以下の手順で、本実施例で使用する金属含有率が高い金属粉末成型体(プリフォーム)を作製した。実施例1で用いたと同様の配合になるように秤取った、平均粒子径が互いに異なる3種類のシリコン粉末の合計2700gに、平均粒子径が80μmのMg粉末を50g加えた。更に、この混合物に、実施例1と同じくエチルシリケートを130g添加して、撹拌機で10分間混合した。
[Example 2] (Using a non-pressure permeation method)
A metal powder compact (preform) having a high metal content used in this example was produced by the following procedure. 50 g of Mg powder with an average particle size of 80 μm was added to a total of 2700 g of three kinds of silicon powders with different average particle sizes weighed so as to have the same formulation as used in Example 1. Furthermore, 130 g of ethyl silicate was added to this mixture in the same manner as in Example 1, and mixed with a stirrer for 10 minutes.
上記で得た混合粉末を、内寸が、200mm×200mm×150mm(深さ)のプレス金型に全量入れ、150kg/cm2全圧60tで、プレス成形を行った。これを金型から外し、得られたプレス品を、通常の空気雰囲気電気炉に入れ、昇温速度50℃/hrで450℃まで昇温し、この温度で3時間保持し、その後、冷却してプリフォームを作製した。実施例1と同様にして、嵩密度を算出したところ、体積充填率(Vf)は73%であった。 The entire mixed powder obtained above was placed in a press mold having internal dimensions of 200 mm×200 mm×150 mm (depth), and press molding was performed at a total pressure of 60 tons of 150 kg/cm 2 . This was removed from the mold, and the obtained pressed product was placed in a normal air atmosphere electric furnace, heated to 450°C at a heating rate of 50°C/hr, held at this temperature for 3 hours, and then cooled. A preform was produced by When the bulk density was calculated in the same manner as in Example 1, the volume filling factor (Vf) was 73%.
上記で得たプリフォームを、図2に模式的に示した「非加圧浸透原理図」となるようにカーボン製のベッセル内に配置した。具体的には、上記で得たプリフォームと同じ材質で調製してなる、30mm×30mm×30mmの大きさの浸透道を、上記プリフォームの下に接地させた状態で4個置き、さらに、プリフォームの横に、2500gの固体のアルミニュウム合金(AC4A)を配置した。そして、プリフォーム等を上記のように配置させたカーボンベッセル全体を窒素雰囲気炉に入れ、50℃/hrで昇温し、800℃で5時間保持した後、冷却した。 The preform obtained above was placed in a vessel made of carbon so as to form a "non-pressurized permeation principle diagram" schematically shown in FIG. Specifically, four infiltration channels each having a size of 30 mm x 30 mm x 30 mm, which are prepared from the same material as the preform obtained above, are placed under the preform in a state of being grounded, and further, 2500 g of solid aluminum alloy (AC4A) was placed next to the preform. Then, the entire carbon vessel in which the preform and the like were arranged as described above was placed in a nitrogen atmosphere furnace, heated at a rate of 50° C./hr, held at 800° C. for 5 hours, and then cooled.
冷却後、浸透道を外して、プリフォームの表面及び内部を加工して観察したところ、プリフォーム内に、アルミニュウムが完全に含浸された状態のシリコンアルミ複合体であることを確認した。得られたシリコンアルミ複合体の重量と、外形の測定値から算出した嵩比重から、該複合体は、シリコンが73v%、アルミニュウム合金が26v%で、ポアや亀裂がないシリコンアルミ複合体であった。 After cooling, the infiltration path was removed and the surface and interior of the preform were processed and observed. From the weight of the obtained silicon-aluminum composite and the bulk specific gravity calculated from the measured value of the outer shape, the composite was 73 v% silicon, 26 v% aluminum alloy, and had no pores or cracks. rice field.
[実施例3](高圧含浸法を利用)
以下の手順で、本実施例で使用する金属含有率が高い金属粉末成型体(プリフォーム)を作製した。平均粒子径が80μmのシリコン粉末を1820gと、平均粒子径が25μmのシリコン粉末を780gと、平均粒子径が3μmのシリコン粉末を100gで配合した合計2700gの、平均粒子径が互いに異なる3種のシリコン粉末の混合物を用いた。この混合物に、シリコーン樹脂(信越化学社製、商品名:KR-220L)を30w%となるように溶解したイソプロピルアルコール溶液180gを加え、撹拌機で15分撹拌した後、実施例1と同じようにプレス金型に全量を装填し、実施例1と同じ条件でプレス成形した。そして、得られたプレス成形品を電気炉内に入れ、昇温速度70℃/hrで750℃まで昇温し、この温度で焼成して、体積充填率が78v%のプリフォームを得た。なお、体積充填率は、実施例1と同様にして得た。
[Example 3] (using high-pressure impregnation method)
A metal powder compact (preform) having a high metal content used in this example was produced by the following procedure. 1,820 g of silicon powder with an average particle size of 80 μm, 780 g of silicon powder with an average particle size of 25 μm, and 100 g of silicon powder with an average particle size of 3 μm, totaling 2,700 g. A mixture of silicon powders was used. To this mixture, 180 g of an isopropyl alcohol solution in which a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KR-220L) was dissolved so as to be 30 w% was added, and after stirring with a stirrer for 15 minutes, the same procedure as in Example 1 was performed. The entire amount was charged into a press mold and press-molded under the same conditions as in Example 1. Then, the obtained press-molded product was placed in an electric furnace, heated to 750° C. at a heating rate of 70° C./hr, and fired at this temperature to obtain a preform having a volumetric filling rate of 78 v %. The volume filling factor was obtained in the same manner as in Example 1.
上記で得たプリフォームに、実施例1で行ったと同じ条件と手順で、高圧含浸用プレス機で、溶解したアルミニュム合金の含浸を行った。冷却後、周りのアルミニュウムを加工除去し、製品部を取り出して、その重量と外形測定を行って、嵩比重を算出した。その結果、得られた複合体は、シリコン78v%、アルミ合金22v%で、ポア(鋳巣)や亀裂がないシリコンアルミ複合体であることを確認した。 The preform obtained above was impregnated with a molten aluminum alloy using a high-pressure impregnation press under the same conditions and procedures as in Example 1. After cooling, the surrounding aluminum was removed by machining, the product part was taken out, its weight and outer shape were measured, and the bulk specific gravity was calculated. As a result, it was confirmed that the obtained composite was a silicon-aluminum composite containing 78 v% silicon and 22 v% aluminum alloy, and free of pores (blowholes) and cracks.
[実施例4](非加圧浸透法を利用)
以下の手順で、本実施例で使用する金属含有率が高い金属粉末成型体(プリフォーム)を作製した。実施例2で行ったのと同じ手順で作製した、Mg粉末を含有してなる、形状が200mm×200mm×40mmのプリフォームに、フライスによる機械加工を行って、この成型体に、75mm×75mm×25mm(深さ)のキャビティーが4個均等に配された、リブ構造のプリフォームを得た。得られたプリフォームは、機械加工可能な強度を持つ強固なプリフォームであった。
[Example 4] (Using a non-pressure permeation method)
A metal powder compact (preform) having a high metal content used in this example was produced by the following procedure. A preform containing Mg powder and having a shape of 200 mm × 200 mm × 40 mm and having a shape of 200 mm × 200 mm × 40 mm was produced by the same procedure as in Example 2. A preform having a rib structure in which four cavities of 25 mm (depth) were evenly arranged was obtained. The resulting preform was a strong preform with machinable strength.
上記で得たプリフォームを用い、実施例2と同じようにして、カーボン製のベッセル内に配置したプリフォームの下の浸透道から、アルミニュウム合金(AC4A)の非加圧浸透を行った。そして、実施例2で行ったと同じように、浸透道を除去して、かさ比重を測定した結果、シリコンが73v%、アルミ合金が27v%で、ポアや、亀裂がない、シリコンアルミ複合体が得られたことを確認した。また、キャビティー内部には、アルミ合金の染み出しもなく、プリフォームの形状のままニアネットで、シリコンアルミ複合体が製造できていた。 Using the preform obtained above, in the same manner as in Example 2, non-pressure infiltration of the aluminum alloy (AC4A) was performed from the infiltration path under the preform placed in the carbon vessel. Then, in the same manner as in Example 2, the permeation channel was removed and the bulk specific gravity was measured. Confirmed that it was obtained. In addition, there was no exudation of the aluminum alloy inside the cavity, and the silicon-aluminum composite could be manufactured in a near-net state in the shape of the preform.
[実施例5](高圧含浸法を利用)
以下の手順で、本実施例で使用する金属含有率が高い金属粉末成型体(プリフォーム)を作製した。平均粒子径が80μmの鉄粉1400gと、10μmの鉄粉600gに、SiO2換算で、ケイ素分(シリコン)を40w%含むエチルシリケート80gを添加して、15分間撹拌混合した。この混合粉末を、内寸が200mm×200mm×150mm(深さ)のプレス金型に入れ、150kg/cm2全圧60tでプレス成形を行った。そして、該プレス成形品を電気炉に入れ、昇温速度50℃/hrで700℃まで昇温し、この温度を3時間保持し、その後、室温まで冷却して、鉄金属製のプリフォームを作製した。得られたプリフォームの重量と外形寸法を測定し、嵩密度を算出したところ、体積充填率(Vf)が73%の鉄粉末プリフォームあった。
[Example 5] (using high-pressure impregnation method)
A metal powder compact (preform) having a high metal content used in this example was produced by the following procedure. To 1400 g of iron powder having an average particle size of 80 μm and 600 g of iron powder having an average particle size of 10 μm, 80 g of ethyl silicate containing 40 wt % of silicon (calculated as SiO 2 ) was added and mixed with stirring for 15 minutes. This mixed powder was placed in a press mold having internal dimensions of 200 mm×200 mm×150 mm (depth), and press molding was performed at a total pressure of 60 tons of 150 kg/cm 2 . Then, the press-formed product is placed in an electric furnace, heated to 700° C. at a temperature increase rate of 50° C./hr, held at this temperature for 3 hours, and then cooled to room temperature to obtain a preform made of iron metal. made. The weight and outer dimensions of the obtained preform were measured, and the bulk density was calculated.
上記で得たプリフォームを電気炉で500℃に予熱して、高圧含浸を行うために、高圧含浸用プレス機のバーナーで250℃に加熱した、300mmΦ×250mm深さの金型に装填した。この金型に750℃で溶解したアルミニュウム合金(AC4C)を金型の上20mm程度まで入れ、上側からプレスパンチを金型に押し込み、100Mpaの圧力で10分保持して高圧含浸を行った。 The preform obtained above was preheated to 500° C. in an electric furnace and charged into a mold of 300 mmΦ×250 mm depth heated to 250° C. by a burner of a high pressure impregnation press for high pressure impregnation. An aluminum alloy (AC4C) melted at 750° C. was put into the mold up to about 20 mm above the mold, a press punch was pushed into the mold from above, and the pressure was maintained at 100 MPa for 10 minutes to perform high-pressure impregnation.
冷却した後、周囲のアルミニュウムを加工除去して、鉄アルミニュウム合金複合体(以下、鉄アルミ複合体とも呼ぶ)の製品部を取り出した。製品部は、小さなポア(鋳巣)や、亀裂もなく、鉄粉末製のプリフォームに、アルミニュウムが均一に含浸した鉄アルミ複合体であった。重量測定と外形寸法測定から嵩比重を算出したところ、鉄が73v%、アルミ合金が27v%の、鉄アルミ複合体であった。 After cooling, the surrounding aluminum was removed by processing, and the product part of the iron-aluminum alloy composite (hereinafter also referred to as the iron-aluminum composite) was taken out. The product part was an iron-aluminum composite with no small pores (blowholes) or cracks, in which a preform made of iron powder was uniformly impregnated with aluminum. When the bulk specific gravity was calculated from weight measurement and external dimension measurement, it was found to be an iron-aluminum composite containing 73 v% iron and 27 v% aluminum alloy.
[比較例1](バインダー不使用、高圧含浸法を利用)
実施例1と同じ配合及び重量のシリコン混合粉末を、シリコーン樹脂やエチルシリケート等のバインダーを添加せず、粉末のまま200mm×200mm×100mmの鉄箱に入れ、箱全体を振動機に乗せ、20分振動をかけて充填を行った。そして、この箱ごと、実施例1と同じようにアルミニュウムの高圧含浸を行い、冷却後、複合体を切り出した。
[Comparative Example 1] (Binder not used, high pressure impregnation method used)
The silicon mixed powder having the same composition and weight as in Example 1 was put into a 200 mm × 200 mm × 100 mm iron box as it was without adding a binder such as silicone resin or ethyl silicate. The filling was performed by vibrating for a minute. Then, the entire box was impregnated with aluminum at high pressure in the same manner as in Example 1, and after cooling, the composite was cut out.
切り出した複合体の加工面を観察したところ、筋状のアルミニュウム欠陥が多数見られた。これは、高圧含浸途中に金属粉末充填体に亀裂が生じ、この亀裂にアルミニュウム合金が侵入したためと思われる。亀裂のない部分を切り出し、嵩比重を算出した結果、シリコンの充填率は62v%であり、実施例1のプリフォームを作製したものと比較してシリコンの充填率が低かった。上記の結果は、シリコン粉末の粒子をそのまま充填しただけでは、シリコンの充填率が低く、また、シリコン充填相の強度が十分なものにならず、アルミニュウム溶湯を高圧含浸する途中で充填相が割れ、アルミニュウムが侵入した欠陥が生じたことを示している。 Observation of the machined surface of the cut out composite revealed many streak-like aluminum defects. This is presumably because cracks were generated in the metal powder packing during high-pressure impregnation, and the aluminum alloy penetrated into the cracks. A crack-free portion was cut out and the bulk specific gravity was calculated. The above results show that if silicon powder particles are simply filled as they are, the silicon filling rate is low, and the strength of the silicon filling phase is not sufficient, and the filling phase cracks during high-pressure impregnation with molten aluminum. , indicating that aluminum has penetrated into the defect.
[比較例2](バインダー不使用、プレス成形でプリフォーム作製)
実施例1と同じ配合及び重量のシリコン混合粉末に、エチルシリケートを添加することなく、該混合粉末を用いて、同じ手順でプレス成形を行った。しかし、得られた成形体は強度が不足しており、金型から取り外す際にくずれてしまい、複合体の製造に使用可能なプリフォームを作製することはできなかった。上記の結果から、シリコン混合粉末材料を用いてプレス成形する場合には、粉体材料中へのバイダーの添加が必須であることが分かった。
[Comparative Example 2] (Binder not used, preform produced by press molding)
Press molding was performed using the mixed powder of silicon having the same composition and weight as in Example 1 without adding ethyl silicate, and using the same procedure. However, the resulting molded article lacked strength and collapsed when removed from the mold, making it impossible to produce a preform that could be used for manufacturing a composite. From the above results, it was found that it is essential to add a binder to the powder material when the silicon mixed powder material is used for press molding.
[比較例3](バインダー不使用、沈降成形でプリフォーム作製)
実施例3と同じ配合及び重量のシリコン混合粉末を使用し、シリコーン樹脂やエチルシリケート等のバインダーを添加せずにスラリーを調製し、該スラリーを用いて沈降成型を行った。これを乾燥したところ、得られた成型体は、強度不足であり、手で触るとすぐに崩れるような脆弱な成型体であった。また、成型体の一部を実施例1と同様に、700℃に昇温加熱したところ、強度がほとんどなく、すぐに崩れる程脆弱であり、当然のことながら、高圧含浸や非加圧浸透に使用できるようなものではなかった。
[Comparative Example 3] (Binder not used, preform produced by sedimentation molding)
A slurry was prepared using the mixed powder of silicon having the same composition and weight as in Example 3 without adding a binder such as a silicone resin or ethyl silicate, and the slurry was subjected to sedimentation molding. When this was dried, the resulting molded body was found to be weak and brittle, such that it would crumble when touched by hand. In addition, when a part of the molded body was heated to 700 ° C. in the same manner as in Example 1, it had almost no strength and was so fragile that it collapsed immediately. It wasn't something you could use.
[比較例4](有機物のバインダー使用、プレス成形及び仮焼でプリフォーム作製)
実施例1の配合及び重量のシリコン混合粉末に、固形分20w%のポリビニルブチラール(以下、PVBと略記)のエタノール溶液を用い、シリコン混合粉末に対して、PVBが2w%の割合になるように添加した後、実施例1で行ったと同じ操作で、プレス成形により成形体を作製した。得られた成形体を750℃で仮焼したところ、触ると崩れる程脆弱になった。この理由は、PVBは、常温ではシリコン混合粉末のバインダーとして機能するものの、仮焼したことで焼失してしまったためと思われる。上記の結果から、有機物のバインダーは、プレス成形品の形状保持には使用できるが、それ以降の工程の焼成でプリフォームの強度が保てなくなることを確認した。
[Comparative Example 4] (Use of organic binder, preform production by press molding and calcination)
An ethanol solution of polyvinyl butyral (hereinafter abbreviated as PVB) with a solid content of 20 wt% is used for the silicon mixed powder having the composition and weight of Example 1, and PVB is added to the silicon mixed powder at a ratio of 2 wt%. After the addition, the same operation as in Example 1 was performed to produce a compact by press molding. When the obtained compact was calcined at 750° C., it became so brittle that it collapsed when touched. The reason for this is thought to be that although PVB functions as a binder for the mixed powder of silicon at room temperature, it was destroyed by calcination. From the above results, it was confirmed that although the organic binder can be used to retain the shape of the press-molded product, the strength of the preform cannot be maintained in subsequent firing steps.
[比較例5](有機無機バインダー使用、850℃で仮焼してプリフォーム作製、非加圧浸透法を利用)
実施例1で使用した、平均粒子径が互いに異なる3種のシリコン粉末の混合物に、有機無機バインダーのエチルシリケートを同じ量添加して撹拌混合して調製したシリコン混合粉末を同じ量用いて、実施例1と同じ方法でプレス成形を行った。得られたプレス成形品を電気炉内に入れ、昇温速度50℃/hrで850℃まで昇温し、この温度で3時間保持して焼成し、その後、室温まで冷却してシリコンプリフォームを作製した。
[Comparative Example 5] (Using an organic/inorganic binder, calcining at 850°C to prepare a preform, and using a non-pressure permeation method)
The same amount of mixed silicon powder prepared by adding the same amount of ethyl silicate as an organic/inorganic binder to the mixture of three kinds of silicon powders having different average particle sizes and mixing them with stirring was used in Example 1. Press molding was performed in the same manner as in Example 1. The obtained press-molded product is placed in an electric furnace, heated to 850° C. at a heating rate of 50° C./hr, held at this temperature for 3 hours to be fired, and then cooled to room temperature to obtain a silicon preform. made.
上記で得た焼成体の表面を観察したとところ、シリコンが酸化されてSiO2となり白っぽく変色していた。また、シリコンがSiO2となり体積が増えたため、応力が表面に発生して微小なクラック生成し、欠陥のないプリフォームを得ることができなかった。 When the surface of the fired body obtained above was observed, it was found that the silicon had been oxidized to SiO 2 and discolored whitish. In addition, since the silicon becomes SiO 2 and the volume increases, stress is generated on the surface and microcracks are generated, making it impossible to obtain a defect-free preform.
[比較例6](Mg粉末と有機無機バインダーを使用、570℃で仮焼してプリフォーム作製)
実施例2で使用したと同様の、平均粒子径が互いに異なる3種のシリコン粉末に、平均粒子径が80μmのMg粉末を加え、この混合物にエチルシリケートを添加して撹拌機で混合した混合物を用い、実施例2と同様にプレス成形を行ってプレス品を得た。そして、上記で得たプレス成形品を、570℃で、3時間焼成脱脂して、プリフォーム(焼成体)を作製した。
[Comparative Example 6] (Using Mg powder and an organic/inorganic binder, calcining at 570°C to produce a preform)
Mg powder with an average particle size of 80 μm was added to the same three types of silicon powders with different average particle sizes as used in Example 2, ethyl silicate was added to this mixture, and the mixture was mixed with a stirrer. was used, and press molding was performed in the same manner as in Example 2 to obtain a pressed product. Then, the press-molded product obtained above was baked and degreased at 570° C. for 3 hours to prepare a preform (baked body).
上記で得たプリフォーム(焼成体)に、実施例2と同じ方法で、アルミニュウム合金の溶湯で非加圧浸透を試みた。しかし、アルミニュウム合金は、プリフォーム(焼成体)に非加圧では浸透しなかった。その理由は、570℃での焼成によって、プレス品内に添加したMgが酸化してMgOとなり、非加圧浸透に寄与できなかったためと思われる。 In the same manner as in Example 2, the preform (fired body) obtained above was tried to be impregnated with molten aluminum alloy without pressure. However, the aluminum alloy did not permeate the preform (fired body) without pressure. The reason for this is thought to be that the Mg added to the pressed product was oxidized to MgO by firing at 570° C., and could not contribute to non-pressure penetration.
[比較例7~9](各平均粒子径のシリコン粉末を単独で使用してプリフォーム作製)
実施例1でシリコン粉末の混合物に使用した、平均粒子径が45μm、25μm、5μmの各シリコン粉末を、それぞれ単味で2700g使用したこと以外は実施例1と同様の手順でプレス成形し、プレス成形品を焼成してプリフォームを作製した。そして、得られた45μm、25μm、5μmの各平均粒子径のシリコン粉末を単味で用いて得られたプリフォームについて、実施例1で行ったと同様にして、体積充填率(Vf)を算出した。その結果、45μmのシリコン粉末を用いた場合のプリフォームでは充填率が50v%、25μmのシリコン粉末を用いた場合のプリフォームでは充填率が52v%、5μmのシリコン粉末を用いた場合のプリフォームでは充填率が53v%であった。このように、各平均粒子径のシリコン粉末を単味で用いて得たいずれのプリフォームの場合も、実施例のプリフォームの場合と比べて充填率が低くなることが確認され、高含有率のプリフォームを作製するためには、平均粒子径が互いに異なるシリコン等の金属粉末を混合して使用する必要あることが分かった。
[Comparative Examples 7 to 9] (preform preparation using silicon powder with each average particle size alone)
Press-molded and pressed in the same procedure as in Example 1 except that 2700 g of each of the silicon powders having an average particle size of 45 μm, 25 μm, and 5 μm used in the mixture of silicon powders in Example 1 was used alone. A preform was produced by firing the molded article. Then, the volume filling factor (Vf) was calculated in the same manner as in Example 1 for the preforms obtained by using the obtained silicon powders having average particle sizes of 45 μm, 25 μm, and 5 μm alone. . As a result, the preform using 45 µm silicon powder had a filling rate of 50 v%, the preform using 25 µm silicon powder had a filling rate of 52 v%, and the preform using 5 µm silicon powder had a filling rate of 52 v%. The filling rate was 53 v%. As described above, it was confirmed that the filling rate of each preform obtained by using the silicon powder of each average particle size alone was lower than that of the preforms of the examples, and the content rate was high. It has been found that it is necessary to mix and use metal powders such as silicon having different average particle sizes in order to produce a preform of the above.
表1に、実施例と比較例において行ったプリフォームの製造条件と、Al合金等の含浸方法及び得られた高金属粉末含有アルミニュウム複合体の性状等をまとめて示した。 Table 1 summarizes the preform manufacturing conditions, the method of impregnating the Al alloy, etc., and the properties of the obtained high-metal powder-containing aluminum composites, which were carried out in Examples and Comparative Examples.
Claims (10)
前記プリフォームの作製工程で、平均粒子径が1μm以上200μm以下の金属粉末材料から、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料に、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を、300℃以上800℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得、
前記アルミニュウム等の含浸工程で、前記プリフォームの作製工程で得た金属粉末成型体に、アルミニュウム又はアルミニュウム合金の溶湯を、10MPa~200MPaの高圧で含浸させることを特徴とする高金属粉末含有アルミニュウム複合体の製造方法。 High metals having a preform manufacturing process for obtaining a metal powder molded body (preform) with a high metal content, and an aluminum impregnation process for impregnating or permeating the obtained preform with molten aluminum or aluminum alloy. A method for producing a powder-containing aluminum composite, comprising:
In the preform manufacturing process, two or more kinds of metal powder materials having different average particle sizes are selected from metal powder materials having an average particle size of 1 μm or more and 200 μm or less as metal raw materials for preforms, and the metal raw materials Then, the mixture obtained by adding and mixing an organic and inorganic binder is molded, and the obtained molded product is fired at a temperature of 300 ° C. or higher and 800 ° C. or lower, and the content (volume ratio) of the metal raw material is 55 v% or more to obtain a metal powder compact,
A high-metal-powder-containing aluminum composite characterized in that, in the step of impregnating aluminum or the like, the metal powder molded body obtained in the step of making the preform is impregnated with molten aluminum or aluminum alloy at a high pressure of 10 MPa to 200 MPa. body manufacturing method.
前記プリフォームの作製工程で、平均粒子径が1μm以上200μm以下の金属粉末材料(但し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末の各粉末材料を除く)から、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料100質量部に対し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末からなる群から選ばれる1種以上の粉末を、0.2~5質量部の範囲内の量で添加し、さらに、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を500℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得、
前記アルミニュウム等の含浸工程で、前記プリフォームの作製工程で得た金属粉末成型体に、アルミニュウム又はアルミニュウム合金を、非加圧で浸透させることを特徴とする高金属粉末含有アルミニュウム複合体の製造方法。 High metals having a preform manufacturing process for obtaining a metal powder molded body (preform) with a high metal content, and an aluminum impregnation process for impregnating or permeating the obtained preform with molten aluminum or aluminum alloy. A method for producing a powder-containing aluminum composite, comprising:
In the preform manufacturing process, a metal powder material having an average particle size of 1 μm or more and 200 μm or less (excluding each powder material of Mg powder, AlMg powder, ZnMg powder, ZnAl powder, and Mg 2 Si powder), average particles Two or more kinds of metal powder materials having different diameters are selected as a metal raw material for a preform, and 100 parts by mass of the metal raw material is composed of Mg powder, AlMg powder, ZnMg powder, ZnAl powder and Mg 2 Si powder. One or more powders selected from the group are added in an amount within the range of 0.2 to 5 parts by mass, and an organic and inorganic binder is added and mixed to form a mixture. sintering the molding at a temperature of 500° C. or less to obtain a metal powder molding having a content (volume ratio) of the metal raw material of 55 v % or more;
A method for producing a high-metal-powder-containing aluminum composite, characterized in that, in the step of impregnating aluminum or the like, aluminum or an aluminum alloy is impregnated into the metal powder molded body obtained in the step of making the preform without pressure. .
The method for producing a high metal powder-containing aluminum composite according to any one of claims 1 to 5, wherein the organic/inorganic binder is at least one selected from the group consisting of silicone resin, Si alkoxide and Al alkoxide.
平均粒子径が1μm以上200μm以下の金属粉末材料から、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含む、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料に、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を、300℃以上800℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得ることを特徴とするプリフォームの作製方法。 A method for producing a preform for obtaining a metal powder molded body (preform) with a high metal powder content, which is used when obtaining an aluminum composite metal containing a high metal powder content by impregnating molten aluminum or aluminum alloy at high pressure and
A metal powder material having an average particle size of 1 μm or more and 200 μm or less includes at least a metal powder A having an average particle size of 10 μm or less and a metal powder B having an average particle size of 40 μm or more. , at least 3% of the total amount of the metal powder and containing 50% or more of the metal powder B, and selecting two or more kinds of metal powder materials having different average particle sizes as a metal raw material for a preform, A mixture obtained by adding and mixing an organic and inorganic binder to a metal raw material is molded, and the obtained molded product is fired at a temperature of 300 ° C. or higher and 800 ° C. or lower, and the content of the metal raw material (volume A method for producing a preform, characterized by obtaining a metal powder compact having a ratio) of 55 v% or more.
平均粒子径が1μm以上200μm以下の金属粉末材料(但し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末の各粉末材料を除く)から、少なくとも、平均粒子径が10μm以下の金属粉末Aと、平均粒子径が40μm以上の金属粉末Bを含み、前記金属粉末Aを、質量基準で、金属粉末の総量中に少なくとも3%含み、且つ、前記金属粉末Bを50%以上含む、平均粒子径が互いに異なる2種以上の金属粉末材料を選択してプリフォーム用の金属原料とし、該金属原料100質量部に対し、Mg粉末、AlMg粉末、ZnMg粉末、ZnAl粉末及びMg2Si粉末からなる群から選ばれる1種以上の粉末を、0.2~5質量部の範囲内の量で添加し、さらに、有機無機バインダーを添加混合してなる混合物を用いて成形し、且つ、得られた成形物を500℃以下の温度で焼成して、前記金属原料の含有率(体積率)が55v%以上である金属粉末成型体を得ることを特徴とするプリフォームの作製方法。 A preform for obtaining a metal powder compact (preform) with a high metal powder content, which is used when obtaining an aluminum composite metal containing a high metal powder content by infiltrating molten aluminum or aluminum alloy without pressure. A method of making,
At least metal with an average particle size of 10 μm or less from metal powder materials with an average particle size of 1 μm or more and 200 μm or less (excluding each powder material of Mg powder, AlMg powder, ZnMg powder, ZnAl powder, and Mg 2 Si powder) Powder A and metal powder B having an average particle size of 40 μm or more, containing at least 3% by mass of the metal powder A in the total amount of the metal powder, and containing 50% or more of the metal powder B, Two or more kinds of metal powder materials having different average particle sizes are selected as metal raw materials for preforms, and Mg powder, AlMg powder, ZnMg powder, ZnAl powder and Mg 2 Si powder are added to 100 parts by mass of the metal raw materials. One or more powders selected from the group consisting of are added in an amount within the range of 0.2 to 5 parts by mass, and an organic and inorganic binder is added and mixed. A method for producing a preform, characterized in that the molded product thus obtained is fired at a temperature of 500° C. or less to obtain a metal powder molded product having a content (volume ratio) of the metal raw material of 55 v % or more.
A near-net high-metal-powder-containing aluminum composite close to the product shape, wherein the method for producing a high-metal-powder-containing aluminum composite using non-pressure infiltration according to any one of claims 2 to 6 A high metal powder-containing aluminum composite, characterized in that it is obtained.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021116133A JP7037848B1 (en) | 2021-07-14 | 2021-07-14 | Method for manufacturing high metal powder-containing aluminum complex, method for producing preform, and method for producing high metal powder-containing aluminum complex |
CN202280004772.5A CN115812011A (en) | 2021-07-14 | 2022-04-13 | Method for manufacturing aluminum composite containing high metal powder, method for manufacturing preform, and aluminum composite containing high metal powder |
US18/000,488 US20240216989A1 (en) | 2021-07-14 | 2022-04-13 | Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body |
EP22792730.8A EP4144461A4 (en) | 2021-07-14 | 2022-04-13 | Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body |
PCT/JP2022/017719 WO2023286407A1 (en) | 2021-07-14 | 2022-04-13 | Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021116133A JP7037848B1 (en) | 2021-07-14 | 2021-07-14 | Method for manufacturing high metal powder-containing aluminum complex, method for producing preform, and method for producing high metal powder-containing aluminum complex |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7037848B1 JP7037848B1 (en) | 2022-03-17 |
JP2023012613A true JP2023012613A (en) | 2023-01-26 |
Family
ID=81213612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021116133A Active JP7037848B1 (en) | 2021-07-14 | 2021-07-14 | Method for manufacturing high metal powder-containing aluminum complex, method for producing preform, and method for producing high metal powder-containing aluminum complex |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240216989A1 (en) |
EP (1) | EP4144461A4 (en) |
JP (1) | JP7037848B1 (en) |
CN (1) | CN115812011A (en) |
WO (1) | WO2023286407A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960023161A (en) * | 1994-12-05 | 1996-07-18 | 전성원 | Manufacturing method of high wear resistant aluminum alloy |
JP4071843B2 (en) * | 1997-04-11 | 2008-04-02 | 住友電気工業株式会社 | Method for producing composite alloy member |
JP4318814B2 (en) * | 1999-10-21 | 2009-08-26 | 太平洋セメント株式会社 | Method for producing metal-ceramic composite material |
JP4183361B2 (en) * | 2000-03-14 | 2008-11-19 | 太平洋セメント株式会社 | Method for producing metal-ceramic composite material |
KR100453518B1 (en) * | 2001-11-01 | 2004-10-20 | 한국과학기술연구원 | Method for fabrication of si-al alloy structural material |
JP2004052011A (en) | 2002-07-17 | 2004-02-19 | Taiheiyo Cement Corp | Manufacturing method of composite metal and manufacturing method of composite material of composite metal-ceramic |
JP4018488B2 (en) * | 2002-08-30 | 2007-12-05 | 株式会社荏原製作所 | INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING |
US6848494B2 (en) * | 2002-09-27 | 2005-02-01 | 3D Systems, Inc. | Wetting agent for infiltrated aluminum preforms |
JP2005036253A (en) | 2003-07-16 | 2005-02-10 | Taiheiyo Cement Corp | Silicon-aluminum composite metal, and its plated body |
JP2010133029A (en) * | 2010-03-03 | 2010-06-17 | Toyota Industries Corp | Metal composite material and method for producing the same |
JP6837685B2 (en) * | 2019-06-04 | 2021-03-03 | アドバンスコンポジット株式会社 | Manufacturing method of aluminum alloy-based composite material |
-
2021
- 2021-07-14 JP JP2021116133A patent/JP7037848B1/en active Active
-
2022
- 2022-04-13 CN CN202280004772.5A patent/CN115812011A/en active Pending
- 2022-04-13 US US18/000,488 patent/US20240216989A1/en active Pending
- 2022-04-13 EP EP22792730.8A patent/EP4144461A4/en active Pending
- 2022-04-13 WO PCT/JP2022/017719 patent/WO2023286407A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20240216989A1 (en) | 2024-07-04 |
EP4144461A1 (en) | 2023-03-08 |
EP4144461A4 (en) | 2024-08-14 |
WO2023286407A1 (en) | 2023-01-19 |
JP7037848B1 (en) | 2022-03-17 |
CN115812011A (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101594954A (en) | Metal injection moulding method | |
US10919811B2 (en) | Aluminum-silicon-carbide composite and method of manufacturing same | |
US4104782A (en) | Method for consolidating precision shapes | |
JPH01201082A (en) | Production of powder molded article by isostactic press | |
CN109778018B (en) | Preparation method of aluminum silicon carbide material and prepared aluminum silicon carbide material | |
JP6837685B2 (en) | Manufacturing method of aluminum alloy-based composite material | |
WO2023286407A1 (en) | Method for producing high metal powder content aluminum composite body, method for preparing preform, and high metal powder content aluminum composite body | |
US8051892B2 (en) | Method of manufacturing metal-carbon nanocomposite material | |
JP2007521389A (en) | Method for sintering aluminum material and aluminum alloy material | |
JP2849710B2 (en) | Powder forming method of titanium alloy | |
CN116573952A (en) | Adhesive jet printing silicon carbide-aluminum composite material and preparation method thereof | |
KR101635792B1 (en) | The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby | |
JP5117085B2 (en) | Metal-ceramic composite material and manufacturing method thereof | |
KR102130490B1 (en) | Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel | |
JP3176920B2 (en) | True or pseudo equilibrium pressurization | |
CN107805071B (en) | Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability | |
JP2002249832A (en) | Ceramics/metal composite material and its manufacturing method | |
JP7382105B1 (en) | High-strength metal matrix composite and method for producing high-strength metal matrix composite | |
WO2023136101A1 (en) | Method for manufacturing metal matrix composite material | |
RU2730092C1 (en) | Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics | |
JP2004353087A (en) | Method for producing composite material | |
RU2398037C2 (en) | METHOD OF PRODUCING Al2O3-Al COMPOSITE MATERIAL | |
JP2016007634A (en) | Aluminum-silicon carbide composite body and production method of the same | |
JPS6115902A (en) | Manufacture of sintered machine parts | |
CN115917022A (en) | Method for manufacturing metal-based composite material and method for manufacturing prefabricated part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211029 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211029 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20211029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7037848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |