JP2023006005A - モータの始動方法 - Google Patents

モータの始動方法 Download PDF

Info

Publication number
JP2023006005A
JP2023006005A JP2021108361A JP2021108361A JP2023006005A JP 2023006005 A JP2023006005 A JP 2023006005A JP 2021108361 A JP2021108361 A JP 2021108361A JP 2021108361 A JP2021108361 A JP 2021108361A JP 2023006005 A JP2023006005 A JP 2023006005A
Authority
JP
Japan
Prior art keywords
motor
starting
connection
speed
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021108361A
Other languages
English (en)
Inventor
佩均 施
Pei-Chun Shih
信男 林
Nobuo Hayashi
豫偉 徐
Yu-Wei Hsu
大殷 羅
Ta-Yin Luo
寛 楊
Kuan Yang
國智 顔
Guo-Jhih Yan
聖展 顔
Sheng-Chan Yen
承宗 劉
Cheng-Tsung Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2021108361A priority Critical patent/JP2023006005A/ja
Priority to CN202210552041.6A priority patent/CN115566935A/zh
Priority to DE102022113050.9A priority patent/DE102022113050A1/de
Priority to US17/837,043 priority patent/US20230006588A1/en
Publication of JP2023006005A publication Critical patent/JP2023006005A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/163Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual reluctance motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/32Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by star/delta switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】慣性が大きい場合であっても始動の確実性を向上させることができるモータの始動方法を提供する。【解決手段】ステータとロータを有するモータの始動方法であって、前記ステータの界磁コイルをY接続として始動し、所定時間(t2)内に前記ロータの速度が定格から所定の範囲内にならない場合に、前記界磁コイルをΔ接続に切り替え、前記ロータの回転速度が定格から所定の範囲内になった場合に、前記界磁コイルをY接続に切り替える。【選択図】図4

Description

本発明は、同期リラクタンスモータの始動に用いられるモータの始動方法に関する。
始動時に誘導電動機のコイルをスター結線として電圧を印加し、始動後にコイルをデルタ結線として電圧を印加する技術が知られている(特許文献1)。
特開2010-193702号公報
しかしながら、特許文献1に開示された技術を同期リラクタンスモータの始動に用いた場合には、モータや負荷等の慣性が大きいと、始動が失敗する場合があった。
上述の課題に鑑み、本発明は、慣性が大きい場合であっても始動の確実性を向上させることができるモータの始動方法を提供することを目的とする。
上記課題を解決するため、本発明に係るモータの始動方法のある態様によれば、ステータとロータを有するモータの始動方法であって、前記ステータの界磁コイルをY接続として始動し、所定時間(t2)内に前記ロータの速度が定格から所定の範囲内にならない場合に、前記界磁コイルをΔ接続に切り替え、前記ロータの回転速度が定格から所定の範囲内になった場合に、前記界磁コイルをY接続に切り替える、ことを特徴とするモータの始動方法が提供される。
以上の構成を有する本発明によれば、慣性が大きい場合であってもモータの始動の確実性を向上させることができる。
実施形態1のモータ駆動システムの構成を示すブロック図である。 モータの構成例を示す断面図である。 モータのロータコアの詳細な構成例を示す断面図である。 始動処理の例を示すフローチャートである。 各部の動作の例を示す図である。 各部の動作の例を示す図である。 各部の動作の例を示す図である。 慣性と負荷と始動の成否の例を示す図である。
以下、添付図面を参照して、本発明を実施するための実施形態について詳細に説明する。
<実施形態1>
実施形態1は、同期リラクタンスモータを駆動するモータ駆動システムに本発明を適用したものであり、図1は、本実施形態のモータ駆動システムの構成例を示すブロック図である。
このモータ駆動システムは、駆動対象となる同期リラクタンスモータ(モータ)1と、モータ1の回転速度を検出する速度センサ2と、所定の時間を計測するタイマ3と、速度センサ2が検出した回転速度と所定の速度とを比較する速度比較部4とを備えている。また、このモータ駆動システムは、スイッチ6、7、8の制御を行うスイッチコントローラ5と、外部から供給される3相(U相,V相、W相)の電源電圧の供給を切り替えるスイッチ(SW)6と、モータ1のコイルをY接続に切り替えるスイッチ(SW)7と、モータ1のコイルをΔ接続に切り替えるスイッチ(SWΔ)8とを備えている。
図2は、モータ1の構成例を示す断面図である。なお、この図2は、4極のモータ1の例を示している。また、図2はモータ1のシャフトに垂直な断面を示している。
このモータ1は、インナーロータ型のモータであり、界磁(回転界磁)を発生させる環状のステータ11と、当該ステータ11の内側に設けられたロータ12とを備えている。ステータ11には、界磁を発生する複数、例えば3相、のコイルが設けられている。コイルの巻き方は、本実施形態では分散巻として示しているが、集中巻きであってもよい。また、ロータ12は、シャフト13と、ロータコア20とを備えている。ロータ12はシャフト13と共に回転する。
図3は、ロータコア20の詳細な構成例を示す断面図である。なお、この図3も、同期リラクタンスモータのシャフト13に垂直な断面を示している。
ロータコア20は、図3に示す形状の珪素鋼板等の薄い板状の磁性体を筒状に積層して構成されており、シャフト13に取り付けられている。ロータコア20には、各極毎に、q軸方向(この場合では、ロータコア20の半径方向)に配置された複数のフラックスバリア21、22、23、24が設けられている。
ロータコア20の強度確保のため、フラックスバリア22、23には、q軸方向にリブ状のブリッジ31、32が設けられている。各ブリッジ31、32のq軸に垂直な方向の幅は、後述のように、フラックスバリアに溶融したアルミ、銅等の非磁性の導体を注入する際の強度を考慮し、1~2mm、若しくはそれより大きくすることが好ましい。また、夫々のブリッジ31,32は、各フラックスバリア22、23の中心(q軸上)に1つ設けられているが、複数のブリッジを1つのフラックスバリアに設けてもよい。
ロータコア20を構成する薄い板状の磁性材料は、プレスによる打ち抜き加工により容易に製造することができる。また、ロータコア20は、薄い板状の磁性材料を筒状に積層した後、フラックスバリア部分に、溶融したアルミ、銅等の非磁性の導体を注入して形成されている。これにより、ロータコア20の機械的強度を増加させている。
また、ロータコア20の軸方向の両端には、リング状の導体が設けられている。この導体は、フラックスバリア部分に注入する導体と一緒に形成してもよい。
上述のように構成されたフラックスバリア部分の導体とリング状の導体は、誘導かご型誘導機のロータと同様に機能し、回転磁界中において、誘導トルクを発生する。
このような構成のロータを備えるリラクタンスモータは、直接オンライン同期リラクタンスモータ(direct-on-line synchronous reluctance motor)と称されることがあるが、本実施形態では、単に同期リラクタンスモータと称する。
以下、上述のように構成されたモータ駆動システムにおける始動処理について説明する。
図4は、本実施形態におけるモータを始動する始動処理の例を示すフローチャートである。
モータ1の始動を行う際には、スイッチコントローラ5は、まず、S1において、スイッチ7を閉じた状態とし、スイッチ8を開放した状態として、モータ1のコイルをY接続に切り替え、スイッチ6を閉じてモータ1に電源電圧を供給し、モータ1を始動する。
続くS2において、スイッチコントローラ5は、モータ1のコイルが現在Y接続であるか否かを判定し、Y接続であればS3に進み、Y接続でなければS8に進む。
S3において、スイッチコントローラ5は、速度比較部4から比較結果(速度情報)を取得する。
続くS4において、スイッチコントローラ5は、速度比較部4からの比較結果に応じて、モータ1の現在の速度が定格の所定の範囲外(例えば±5%外)か否かを判定し、定格の±5%外であればS6に進み、定格の±5%外でなければS5に進む。
S5において、スイッチコントローラ5は、Y接続になってからの時間が所定の時間(例えばt1)を経過しているか否かを判定し、経過していれば始動が成功したとして始動処理を終了し、経過していなければS3に戻る。
一方、S4においてモータ1の現在の速度が定格の±5%外であると判定された場合にはS6に進み、スイッチコントローラ5は、Y接続になってからの時間が所定の時間(例えばt2)を経過しているか否かを判定する。このt2の値は、例えば0より大きく、モータの予測始動時間の1/3以内程度とすることができる。また、t2の値は、例えばモータ1等の慣性と負荷の大きさの少なくとも一方に応じて設定する。
Y接続になってからの時間がt2を経過していれば、スイッチコントローラ5は、S7に進み、スイッチ7を開放した状態とし、スイッチ8を閉じた状態として、モータ1のコイルをΔ接続に切り替え、S2に戻る。Y接続になってからの時間がt2を経過していなければ、スイッチコントローラ5は、S3に戻る。
ここまでの処理により、本実施形態では、モータ1のコイルをY接続として始動した後、所定時間(t2)以内にモータ1の速度が定格の±5%以内にならない場合に、モータ1のコイルをΔ接続に切り替えるようになっている。
モータ1のコイルをΔ接続に切り替えた後に実行されるS2では、スイッチコントローラ5は、Y接続でないとしてS8に進む。
S8において、スイッチコントローラ5は、速度比較部4から比較結果(速度情報)を取得する。
続くS9において、スイッチコントローラ5は、速度比較部4からの比較結果に応じて、モータ1の現在の速度が定格の±5%内か否かを判定し、定格の±5%内であればS10に進み、定格の±5%内でなければS12に進む。
S10において、スイッチコントローラ5は、Δ接続になってからの時間がt1を経過しているか否かを判定し、経過していれば、S11に進む。
S11において、スイッチコントローラ5は、スイッチ7を閉じた状態とし、スイッチ8を開放した状態とし、モータ1のコイルをY接続に切り替え、S2に戻る。Δ接続になってからの時間がt1を経過していなければ、スイッチコントローラ5は、S8に戻る。
ここまでの動作により、モータ1のコイルをΔ結線に切り替えた後、モータ1の現在の速度が定格の±5%内になってからt1が経過した場合には、スイッチコントローラ5は、モータ1のコイルをY接続に切り替える。
上述のように、S9において、モータ1の現在の速度が定格の±5%内でない場合には、スイッチコントローラ5は、S12に進み、Δ接続になってからの時間がt2を経過しているか否かを判定し、経過していなければS8に戻る。Δ接続になってからの時間がt2を経過していれば、スイッチコントローラ5は、始動が失敗したと判定し、スイッチ6とスイッチ8を開放させ、始動処理を終了する。
これにより、始動が失敗した場合に、モータ1の駆動を停止させることができる。
図5は、慣性が比較的小さい場合の、本実施形態のモータ駆動システムの各部の動作の例を示す図である。図5では、スイッチ6とスイッチ7がt0でON(接続)にされ、t1が経過してもON状態が維持されている。また、スイッチ8はt0でOFFであり、OFFの状態がt1を経過しても続いている。モータ1のコイルはt0からY接続になっている。
この場合では、モータ1のコイルをY接続にしてからt1が経過する前に、モータ1の回転速度が定格の±5%内になるため、Δ接続への切り替えは行わず、t1経過後に、始動処理を終了し、定常運転に移行する。
図6は、慣性が中程度の場合の、本実施形態のモータ駆動システムの各部の動作の例を示す図である。図6では、スイッチ6はt0でON(接続)にされ、t2及びt2+t1が経過してもON状態が維持されている。スイッチ7はt0でONにされ、t2でOFFにされ、t2+t1でONにされる。スイッチ8はt0でOFFであり、t2でONにされ、t2+t1でOFFにされる。モータ1のコイルはt0からt2までY接続であり、t2からt2+t1までΔ接続になっている。
この場合では、モータ1のコイルをY接続にしてからt2が経過するまで、モータ1の回転速度が定格の±5%外であるため、t2経過後に、Δ接続に切り替え、この後、t1経過するまで(t2+t1になるまで)の間に、回転速度が定格の±5%内になるので、t1経過時に(t2+t1になると)Y接続に切り替える。さらに、t1経過後に(t2+2t1になると)、始動処理を終了し、定常運転に移行する。
図7は、慣性が比較的大きい場合の、本実施形態のモータ駆動システムの各部の動作の例を示す図である。図7では、スイッチ6はt0でONにされ、2t2になるとOFFにされる。スイッチ7はt0でONにされ、t2でOFFにされ、2t2が過ぎてもOFFが維持されている。スイッチ8はt0でOFFであり、t2でONにされ、2t2でOFFにされる。モータ1のコイルはt0からt2までY接続であり、t2から2t2までΔ接続になっている。
この場合は、モータ1のコイルをY接続にしてからt2が経過するまで、モータ1の回転速度が定格の±5%外であるため、t2経過後に、Δ接続に切り替えるが、この後、t2経過しても(2t2になっても)回転速度が定格の±5%内にならないため、始動が失敗したと判定し、始動処理を終了して、モータ1を停止させる。
図8は、従来のモータ駆動システムと本実施形態のモータ駆動システムにおける慣性と負荷と始動の成否の例を示す図である。
実線で示したものが従来のモータ駆動システムにおける慣性と負荷と始動の成否の例であり、破線で示したものが本実施形態のモータ駆動システムにおける慣性と負荷と始動の成否の例である。
従来のモータ駆動システムでは、領域1の範囲でモータの始動が成功する。このため、領域2と領域3の範囲では起動が失敗する。
これに対し、本実施形態のモータ駆動システムでは、領域1と領域2の範囲でモータの始動が成功する。
したがって、本実施形態では、モータや負荷等の慣性が大きい場合であっても始動の確実性を向上させることができる。
<変形例>
また、上述のS3において、モータ1の回転速度の上昇率を算出し、上昇率が所定の閾値以上である場合には、Δ接続に切り替えないようにしてもよい。上昇率が所定の閾値以上である場合、すなわち、慣性が比較的小さく、モータ1の立ち上がりが早い場合には、上述の図5に示す状態となるため、Δ接続に切り替える判断を行わないことにより、処理負荷を低減させることができる。
1…モータ、2…速度センサ、3…タイマ、4…速度比較部、5…スイッチコントローラ、6、7、8…スイッチ、11…ステータ、12…ロータ、13…シャフト、20…ロータコア、21、22、23、24…フラックスバリア、31、32…ブリッジ

Claims (6)

  1. ステータとロータを有するモータの始動方法であって、
    前記ステータの界磁コイルをY接続として始動し、
    所定時間(t2)内に前記ロータの速度が定格から所定の範囲内にならない場合に、前記界磁コイルをΔ接続に切り替え、
    前記ロータの回転速度が定格から所定の範囲内になった場合に、前記界磁コイルをY接続に切り替える、
    ことを特徴とするモータの始動方法。
  2. 前記モータはリラクタンスモータであることを特徴とする請求項1に記載のモータの始動方法。
  3. 前記界磁コイルをΔ接続に切り替えた後、所定時間(t2)内に前記ロータの速度が定格から所定の範囲内にならない場合に、前記モータの始動が失敗したと判定することを特徴とする請求項1または2に記載のモータの始動方法。
  4. 前記所定の範囲が、前記モータの定格回転数(速度)のプラスマイナス5%の範囲であることを特徴とする請求項3に記載のモータの始動方法。
  5. 前記所定時間(t2)を、前記モータの慣性と負荷の大きさの少なくとも一方に応じて設定することを特徴とする請求項3または4に記載のモータの始動方法。
  6. 前記所定時間(t2)が、0より大きく、且つ、前記モータの予測始動時間の1/3以内であることを特徴とする請求項3~5のいずれか1項に記載のモータの始動方法。
JP2021108361A 2021-06-30 2021-06-30 モータの始動方法 Pending JP2023006005A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021108361A JP2023006005A (ja) 2021-06-30 2021-06-30 モータの始動方法
CN202210552041.6A CN115566935A (zh) 2021-06-30 2022-05-18 马达的起动方法
DE102022113050.9A DE102022113050A1 (de) 2021-06-30 2022-05-24 Verfahren zum starten eines motors
US17/837,043 US20230006588A1 (en) 2021-06-30 2022-06-10 Method for starting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021108361A JP2023006005A (ja) 2021-06-30 2021-06-30 モータの始動方法

Publications (1)

Publication Number Publication Date
JP2023006005A true JP2023006005A (ja) 2023-01-18

Family

ID=84492265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021108361A Pending JP2023006005A (ja) 2021-06-30 2021-06-30 モータの始動方法

Country Status (4)

Country Link
US (1) US20230006588A1 (ja)
JP (1) JP2023006005A (ja)
CN (1) CN115566935A (ja)
DE (1) DE102022113050A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193702A (ja) 2009-01-21 2010-09-02 Kazuo Kawabe 誘導電動機制御装置、誘導電動機制御方法

Also Published As

Publication number Publication date
US20230006588A1 (en) 2023-01-05
DE102022113050A1 (de) 2023-01-05
CN115566935A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
EP1375907B1 (en) Engine starting device
KR100725758B1 (ko) 전동 송풍기 및 이를 이용한 자동차용 전동 과급기
TW575718B (en) Method of starting an electric brushless rotating machine for driving an internal combustion engine
US6091170A (en) Starting of single-phase motors
CA2784977C (en) Rotor having a squirrel cage
JP2003189672A (ja) ブラシレス回転電機の始動方法
EP1075080B1 (en) Electronic power supply for a synchronous motor with permanent-magnet rotor having two pairs of poles
JP2023006005A (ja) モータの始動方法
TW202010236A (zh) 單相無感測器直流無刷馬達之固定旋轉方向啟動方法
JP5298476B2 (ja) 誘導同期モータ
JP3742291B2 (ja) ブラシレスモータ装置
JP2001314051A (ja) 永久磁石形同期電動機の回転子構造
US10931215B2 (en) Motor control apparatus and motor control method
JP2017022867A (ja) モータ駆動方法
JPH10262359A (ja) 永久磁石回転電機装置
JP4046266B2 (ja) 内燃機関駆動用ブラシレス回転電機の始動方法
JP3448206B2 (ja) リラクタンスモータ並びに該モータの駆動装置および駆動方法
EP0494611B1 (en) Rotor of rotary electric-machine
JP3531563B2 (ja) ブラシレスモータ制御装置およびブラシレスモータ制御方法並びに圧縮機
JP2004187487A (ja) 永久磁石内蔵形同期電動機の駆動システム
CA2544557C (en) Electrical machine and method of controlling the same
KR100359566B1 (ko) 단상구동방식 bldc모터의 회전자 착자구조
JPH06335271A (ja) 同期電動機
JPH05316777A (ja) リラクタンスモータの起動方法
JP2975400B2 (ja) 2固定子誘導同期電動機