JP2022547252A - 磁場駆動の液晶パターン化制御システム - Google Patents

磁場駆動の液晶パターン化制御システム Download PDF

Info

Publication number
JP2022547252A
JP2022547252A JP2022500567A JP2022500567A JP2022547252A JP 2022547252 A JP2022547252 A JP 2022547252A JP 2022500567 A JP2022500567 A JP 2022500567A JP 2022500567 A JP2022500567 A JP 2022500567A JP 2022547252 A JP2022547252 A JP 2022547252A
Authority
JP
Japan
Prior art keywords
liquid crystal
control system
light
magnet
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022500567A
Other languages
English (en)
Inventor
エリク シプトン,
オレグ ヤロシュチュク,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Meta Platforms Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meta Platforms Technologies LLC filed Critical Meta Platforms Technologies LLC
Publication of JP2022547252A publication Critical patent/JP2022547252A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13768Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on magneto-optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

様々な実施形態は、液晶(LC)が局所的に印加された磁場を用いて揃えられるLCパターン化制御システムを説明する。異方性のLCを通って伝播する光が経る屈折率は、配向に依存する。結果として、配向が局所的に印加された磁場により制御されるLCのアレイを通る、またはそのようなLCのアレイから反射される光学的なビームには位相差が生じ得る。いくつかの実施形態では、局所的に印加された磁場は、マイクロもしくはナノ磁性粒子または磁力ドメインで交差する配線を通る駆動電流によって、あるいは、とりわけ高透磁性コアに巻き付けられたマイクロまたはナノコイルに電圧を印加することによって生成することができる。【選択図】図1B

Description

本開示の実施形態は、一般的に光学システムに関し、より詳細には液晶パターン化制御システムに関する。
様々な液晶(LC)デバイスは、電場を使用して異方性のLC分子を再配向する。そのようなデバイスでは、ピクセルに対応する各LCセル中のLCは、局所的に印加される電場によって制御される。
従来型のLCデバイスでは、電子機器からの浮遊電場は、LCのアラインメントを歪ませる傾向があり、そのようなデバイスの最小ピクセルサイズを限定するものである。従来型のLCデバイスの性能はまた、LC分子を再配向するよう印加された電場がLCそれ自体の中のイオン不純物からの電場の蓄積に影響されるイオンシールドにより、時間とともに劣化する可能性がある。そのようなイオン不純物は、例えば紫外光がLCをイオンに分解することによって作り出される場合がある。加えて、従来型のLCデバイスでは、LC分子を揃えるために必要な電場を維持するために連続的な電力消費が必要とされる。
本発明の第1の態様によれば、複数のピクセルを備え、ピクセルのそれぞれが液晶と磁石とを備え、磁石の切り替えに応答して、液晶の分子が、磁石によって生成された磁場に実質的に揃うように再配向する、液晶パターン化制御システムが提供される。
液晶パターン化制御システムは、ピクセルのそれぞれに含まれる液晶と磁石との間に配設された反射層をさらに含んでもよい。反射層は、液晶パターン化制御システムに入射し、ピクセルに含まれる液晶によって変調される光を反射するように構成されてもよい。
ピクセルのそれぞれに含まれる磁石は、マイクロ粒子、ナノ粒子、および/または複数の磁力ドメインを含んでもよい。
液晶パターン化制御システムは、ピクセルに含まれる磁石の下で、交差配線で配設される複数の配線をさらに含んでもよい。ピクセルに含まれる磁石のそれぞれは、対応する配線を通じて電流を駆動することにより切り替えることができる。
ピクセルのそれぞれに含まれる磁石は、高透磁性コアに巻き付けられた様々なマイクロコイルまたはナノコイルを含んでもよい。ピクセルに含まれるそれぞれのマイクロコイルまたはナノコイルは、対応する電圧源および共通のグラウンドに接続されてもよい。
ピクセルのそれぞれに含まれる磁石は、ピクセルに含まれる液晶に巻き付けられてもよい。
ピクセルのそれぞれは、ピクセルに含まれる液晶に隣接して配設される少なくとも1つのアラインメント層をさらに含んでもよい。ピクセルのそれぞれに含まれる少なくとも1つのアラインメント層は、液晶に関連付けられる磁石の切り替え前に、ピクセルに含まれる液晶の分子を実質的に揃える。
液晶パターン化制御システムは、空間光変調器、パンチャラトナム-ベリー位相レンズ、液晶ディスプレイ画面、または可変焦点レンズのうちの1つを含んでもよい。
液晶パターン化制御システムは、コンピュータ生成ホログラフィで使用されてもよい。
液晶パターン化制御システムは、ニアアイディスプレイデバイスに含まれてもよい。
本発明の第2の態様によれば、複屈折材料と、複屈折材料に隣接して配設される少なくとも1つのアラインメント層とを備えるセルであって、複屈折材料内の分子の再配向が、磁石によって駆動される、セルが提供される。
複屈折材料と磁石との間に、反射層が配設されてもよい。
セルは、ガラス基板層または偏光層のうちの少なくとも1つをさらに含んでもよい。
複屈折材料は、平面的またはホメオトロピックなアラインメントにある液晶分子を含んでもよい。磁石の切り替えに応答して、複屈折材料に含まれる液晶分子は、磁石によって生成された磁場に実質的に揃うように再配向することができる。
磁石は、マイクロ粒子、ナノ粒子、複数の磁力ドメイン、または高透磁性コアに巻き付けられたマイクロコイルもしくはナノコイルを含んでもよい。
磁石は、複屈折材料に巻き付けられてもよい。
本発明の第3の態様によれば、光を変調するためのコンピュータ実装方法であって、少なくとも1つの時点について複数のピクセルの状態を判定することと、ピクセルの判定された状態に基づいて、ピクセルに関連付けられる液晶を磁場を用いて駆動することと、液晶を通過する光を投影することとを含む、方法が提供される。
方法は、液晶を通過する光を反射することをさらに含んでもよい。
液晶を駆動することは、液晶に関連付けられる磁石において交差する配線を通って電流を駆動させること、または液晶に関連付けられる磁石に電圧を印加すること、のいずれかを含んでもよい。
光は、人工現実用途に関連付けられてもよい。
本明細書において開示される液晶パターン化制御システムの1つの利点は、液晶を揃えるために電場ではなく磁場を使用することが、ピクセルサイズを従来型の液晶デバイスの限界を下回るよう低減できることである。例えば、実施形態のピクセルサイズは、約1μmより小さくてもよく、約100nmなどであってもよい。本明細書において開示される液晶パターン化制御システムはまた、イオンシールドによって影響されない。加えて、異方性磁石の磁化は、そのような磁石が切り替わった後に固定することができ、電力消費を伴わずにそのような磁石によって作り出された磁場に液晶が揃ったままにすることができる。これらの技術上の利点は、従来技術の手法に優る1つまたは複数の技術的な進歩を表している。
様々な実施形態の上述の特徴が詳細に理解され得るやり方、上で簡略に要約された開示される概念のさらに特定の説明は、様々な実施形態を参照することによって得ることができ、それらの一部は添付の図面に図示される。しかしながら、添付の図面は、開示される概念の典型的な実施形態のみを図示しており、故にいかなる範囲の限定と解釈されてはならず、他に同様の効果的な実施形態があることに留意されたい。
様々な実施形態による、ニアアイディスプレイ(NED)の図である。 図1Aに示されるNEDの実施形態の前方剛体の断面図である。 様々な実施形態による、NEDとして実装されるヘッドマウントディスプレイ(HMD)の図である。 様々な実施形態による、ニアアイディスプレイとして実装される図2AのHMDの断面図である。 様々な実施形態による、NEDシステムのブロック図である。 様々な実施形態による、磁場を用いて液晶(LC)を再配向するための手法を図示する概略図である。 様々な実施形態による、LCパターン化制御システムの断面図を図示する概略図である。 様々な実施形態による、図5Aに示したLCパターン化制御システムの上から見下ろす視点を図示する概略図である。 様々な実施形態による、別のLCパターン化制御システムの断面図を図示する概略図である。 様々な実施形態による、図6Aに示したLCパターン化制御システムの上から見下ろす視点を図示する概略図である。 様々な実施形態による、別のLCパターン化制御システムの断面図を図示する概略図である。 様々な実施形態による、図7Aに示したLCパターン化制御システムの上から見下ろす視点を図示する概略図である。 様々な実施形態による、別のLCパターン化制御システムの断面図を図示する概略図である。 様々な実施形態による、図8Aに示したLCパターン化制御システムの上から見下ろす視点を図示する概略図である。 様々な実施形態による、LCパターン化制御システムを含む仮想現実光学システムの一部を図示する概略図である。 様々な実施形態による、LCパターン化制御システムを含む別の仮想現実光学システムの一部を図示する概略図である。 様々な実施形態による、LCパターン化制御システムを含む拡張現実光学システムの一部を図示する概略図である。 様々な実施形態による、パンチャラトナム-ベリー位相(PBP)格子の図である。 様々な実施形態による、例示的なPBPレンズの上から見下ろした図である。 様々な実施形態による、光のビームを変調するための方法を図示するフロー図である。
以下の説明では、様々な実施形態のさらなる理解を与えるために、数多くの具体的な詳細が説明される。しかしながら、当業者には、開示される概念は、これらの具体的な詳細のうちの1つまたは複数を伴わずに実践され得ることが明らかである。
構成概要
本明細書で開示される1つまたは複数の実施形態は、液晶(LC)が局所的に印加された磁場を用いて揃えられるLCパターン化制御システムに関する。異方性のLCを通って伝播する光が経る屈折率は、配向に依存する。結果として、配向が局所的に印加された磁場により制御されるLCのアレイを通る、またはそのようなLCのアレイから反射される光学的なビームには位相差が生じ得る。いくつかの実施形態では、局所的に印加された磁場は、例えばマイクロもしくはナノ磁性粒子または磁力ドメインで交差する配線を通じて電流を駆動することによって、あるいは高透磁性コアに巻き付けられたマイクロまたはナノコイルに電圧を印加することによって生成することができる。さらには、本明細書で開示されるLCパターン化制御システムは、空間光変調器、パンチャラトナム-ベリー位相(PBP)レンズ、液晶ディスプレイ(LCD)画面、可変焦点レンズとして、とりわけホログラフィ(例えば、偏光体積ホログラム、点光源ホログラム、フーリエ変換ホログラム、または他のコンピュータ生成ホログラム)において使用することができる。
本開示の実施形態はまた、人工現実システムを含むか、人工現実システムと併せて実装されてもよい。人工現実は、例えば、仮想現実(VR)システム、拡張現実(AR)システム、複合現実(MR)システム、ハイブリッド現実システム、またはそれらの何らかの組み合わせおよび/もしくは派生物を含み得る、ユーザへの提示前に何らかの様式で調節されてある現実の形態である。人工現実コンテンツは、限定はしないが、完全に生成されたコンテンツ、またはキャプチャした(例えば、現実世界)コンテンツと組み合わせた生成コンテンツを含み得る。人工現実コンテンツは、限定はしないが、動画、音声、触覚フィードバック、またはそれらの何らかの組み合わせを含み得る。人工現実コンテンツは、単一のチャネルまたは複数のチャネルにおいて提示され得る(視聴者に三次元効果を作り出すステレオ動画像など)。加えて、いくつかの実施形態において、人工現実システムはまた、例えば、人工現実システムにおいてコンテンツを作成するために使用される、および/または人工現実システムにおいて別途使用される(例えば、人工現実においてアクティビティを実施する)、アプリケーション、製品、アクセサリ、サービス、またはそれらの何らかの組み合わせと関連付けられ得る。人工現実システムは、ホストコンピュータシステムに接続されたヘッドマウントディスプレイ(HMD)、スタンドアローンHMD、モバイルデバイスもしくはコンピューティングシステム、または1もしくは複数の視聴者に人工現実コンテンツを提供することができる任意の他のハードウェアプラットフォームを含む、様々なプラットフォームに実装され得る。
システム概要
図1Aは、様々な実施形態による、ニアアイディスプレイ(NED)100の配線図である。NEDおよびヘッドマウントディスプレイ(HMD)は本明細書では参照例として開示されるが、液晶(LC)が局所的に印加された磁場を用いて揃えられるLCパターン化制御システムを含むディスプレイデバイスはまた、ヘッドマウントにせず、ユーザの片目または両目に近接して固定位置で配置するために構成されてもよい(例えば、ディスプレイデバイスは、ユーザの片目または両目の前方に配置するために、車や航空機などの乗り物に搭載されてもよい)。
示されるように、NED100は、前方剛体105およびバンド110を含む。前方剛体105は、電子ディスプレイ(図示せず)の1つまたは複数の電子ディスプレイ素子、慣性測定ユニット(IMU)115、1つまたは複数の位置センサ120、およびロケータ125を含む。図1Aに図示されるように、位置センサ120はIMU115内に配置され、IMU115と位置センサ120のいずれもユーザには見えない。NED100がARまたはMRデバイスとして機能する様々な実施形態において、NED100の一部および/またはその内部コンポーネントは、少なくとも部分的に透明である。
図1Bは、図1Aに示されるNED100の実施形態の前方剛体105の断面図160である。示されるように、前方剛体105は、電子ディスプレイ130および光学系ブロック135を含み、これらは共に射出瞳145へ画像光を提供する。射出瞳145は、ユーザの目140が位置し得る前方剛体105の場所である。説明のため、図1Bは片目140に関する断面図160を図示しているが、光学系ブロック135とは別個の別の光学系ブロックは、ユーザのもう片方の目に改変した画像光を提供することができる。追加的に、NED100は、視線追跡システム(図1Bには図示せず)を含む。視線追跡システムは、ユーザの片目または両目を照射する1つまたは複数の光源を含んでもよい。視線追跡システムはまた、目の位置を追跡するためにユーザの片目または両目を撮像する1つまたは複数のカメラを含んでもよい。
電子ディスプレイ130は、ユーザに対して画像を表示する。様々な実施形態において、電子ディスプレイ130は、単一の電子ディスプレイまたは複数の電子ディスプレイ(例えば、ユーザの片目ごとに1つのディスプレイ)を含み得る。電子ディスプレイ130の例としては、以下が挙げられる:液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、アクティブマトリクス式有機発光ダイオードディスプレイ(AMOLED)、QOLED、QLED、何らかの他のディスプレイ、またはそれらの何らかの組み合わせ。
光学系ブロック135は、電子ディスプレイ130から発せられた画像光の配向を、ユーザから特定の仮想画像距離に電子ディスプレイ130が現れるように調節する。光学系ブロック135は、電子ディスプレイ130から発せられた画像光を受け取り、画像光を射出瞳145に関連付けられたアイボックスに導くように構成される。アイボックスに導かれる画像光は、目140の網膜に像を結ぶ。アイボックスは、目140が著しい画質の劣化を伴わずに上下左右にどれくらい動くかを定義する領域である。図1Bの図では、視野(FOV)150は、任意の所与の瞬間に目140によって見られる観察可能な世界の範囲である。
追加的に、いくつかの実施形態では、光学系ブロック135は、受け取った光を拡大し、画像光に関する光学誤差を補正し、補正画像光を目140に提示する。光学系ブロック135は、1つまたは複数の光学素子155を光学直列に含んでもよい。光学素子155は、開口、フレネルレンズ、凸レンズ、凹レンズ、フィルタ、導波路、PBPレンズもしくは格子、色選択フィルタ、波長板、Cプレート、または画像光に影響を与えるあらゆる他の適切な光学素子155であってもよい。その上、光学系ブロック135は、異なる光学素子の組み合わせを含んでもよい。光学系ブロック135における光学素子のうちの1つまたは複数は、反射防止コーティングなどの1つまたは複数のコーティングを有してもよい。いくつかの実施形態では、光学系ブロック135は、図4~図12と併せて以下で詳細に考察されるLCパターン化制御システムのうちの1つまたは複数を含んでもよい。
図2Aは、様々な実施形態による、NEDとして実装されるHMD162の図である。示されるように、HMD162は、拡張現実眼鏡の形態である。HMD162は、コンピュータ生成メディアをユーザに提示し、物理的で、現実世界の環境のビューをコンピュータ生成メディアで拡張する。HMD162によって提示されるコンピュータ生成メディアの例としては、1つまたは複数の画像、動画、音声、またはそれらのいくつかの組み合わせが挙げられる。いくつかの実施形態において、音声は、HMD162、コンソール(図示せず)または両方から音声情報を受信し、音声情報に基づいて音声データを提示する外部デバイス(例えば、スピーカおよびヘッドフォン)を介して提示される。いくつかの実施形態では、HMD162は、仮想現実(VR)HMD、複合現実(MR)HMD、またはそれらのいくつかの組み合わせとしても動作するように修正されてもよい。HMD162は、フレーム175およびディスプレイ164を含む。示されるように、フレーム175は、ニアアイディスプレイをユーザの頭部に搭載し、一方でディスプレイ164は画像光をユーザに提供する。ディスプレイ164は、異なるスタイルの眼鏡フレームに適合するよう多様な形状およびサイズにカスタマイズしてもよい。
図2Bは、様々な実施形態による、NEDとして実装される図2AのHMD162の断面図である。この視点には、フレーム175、ディスプレイ164(ディスプレイアセンブリ180およびディスプレイブロック185を含む)、および目170が含まれる。ディスプレイアセンブリ180は、画像光を、目170に与える。ディスプレイアセンブリ180は、異なる実施形態では異なるタイプの撮像光学系およびリダイレクト構造を包み込む、ディスプレイブロック185を収容する。説明のため、図2Bは単一のディスプレイブロック185および片方の目170に関する断面図を示しているが、図示されていない代替的な実施形態では、図2Bに示されるディスプレイブロック185とは別個の別のディスプレイブロックが、ユーザのもう片方の目に対して画像光を提供する。
ディスプレイブロック185は、図示されるように、局所的エリアからの光をコンピュータ生成の画像からの光と組み合わせて、拡張されたシーンを形成するように構成される。ディスプレイブロック185はまた、拡張されたシーンをユーザの目170の位置に対応するアイボックス165に提供するように構成される。ディスプレイブロック185は、例えば導波路ディスプレイ、フォーカスアセンブリ、補償アセンブリ、またはそれらのいくつかの組み合わせを含んでもよい。
HMD162は、ディスプレイブロック185と目170との間に、1つまたは複数の他の光学素子を含んでもよい。光学素子は、例えば、ディスプレイブロック185から発せられた画像光の収差を補正するように、ディスプレイブロック185から発せられた画像光を拡大するように、ディスプレイブロック185から発せられた画像光の何らかの他の光学的な調節のため、またはそれらのいくつかの組み合わせのために機能してもよい。光学素子の例としては、開口、フレネルレンズ、凸レンズ、凹レンズ、フィルタ、または画像光に影響を与えるあらゆる他の適切な光学素子を挙げることができる。いくつかの実施形態では、光学素子は、図4~図12と併せて以下で詳細に考察されるLCパターン化制御システムのうちの1つまたは複数を有してもよい。ディスプレイブロック185はまた、重量を効果的に最小化してHMD162の視野を広げる1つまたは複数の屈折率を有する1つまたは複数の材料(例えば、プラスチック、ガラスなど)を含んでもよい。
図3は、コンソール310が動作するニアアイディスプレイシステム300の実施形態のブロック図である。いくつかの実施形態では、NEDシステム300は、NED100またはHMD162に対応する。NEDシステム300は、仮想現実(VR)システム環境、拡張現実(AR)システム環境、複合現実(MR)システム環境、またはそれらのいくつかの組み合わせにおいて、動作してもよい。図3に示されるNEDシステム300は、NED305およびコンソール310に結合された入力/出力(I/O)インターフェース315を含む。
図3は、1つのNED305、および1つのI/Oインターフェース315を含む例示的なNEDシステム300の例を示しているが、他の実施形態では、あらゆる数のこれらのコンポーネントがNEDシステム300に含まれてもよい。例えば、それぞれが関連するI/Oインターフェース315を有し、各NED305とI/Oインターフェース315がコンソール310と通信する、複数のNED305があってもよい。代替の構成において、異なるおよび/または追加のコンポーネントが、NEDシステム300に含まれてもよい。追加的に、NED305、コンソール310、およびI/Oインターフェース315に含まれる様々なコンポーネントは、いくつかの実施形態において図3に関連して説明されるやり方以外の様々なやり方で分散されてもよい。例えば、コンソール310の機能性の一部またはすべては、NED305によって実現されてもよい。
NED305は、ユーザにコンテンツを提示するヘッドマウントディスプレイであってもよい。コンテンツは、コンピュータ生成の要素(例えば、二次元または三次元画像、二次元または三次元動画、音声など)を含む物理的で現実世界環境の仮想的および/または拡張的なビューを含んでもよい。いくつかの実施形態では、NED305はまた、音声コンテンツをユーザに提示してもよい。NED305および/またはコンソール310は、音声コンテンツをI/Oインターフェース315を通じて外部デバイスに送信してもよい。外部デバイスとしては、様々な形態のスピーカシステム、および/またはヘッドフォンを挙げることができる。様々な実施形態では、音声コンテンツは、NED305によって表示されている視覚的コンテンツと同期される。
NED305は、共に剛結合または非剛結合され得る1つまたは複数の剛体を含み得る。剛体同士の剛結合は、結合した剛体を単一の剛実体として作用させる。それとは対照的に、剛体同士の非剛結合は、剛体が互いに対して移動することを可能にする。
図3に示されるように、NED305は、深度カメラアセンブリ(DCA)320、ディスプレイ325、光学アセンブリ330、1つまたは複数の位置センサ335、慣性測定ユニット(IMU)340、視線追跡システム345、および可変焦点モジュール350を含んでもよい。いくつかの実施形態では、ディスプレイ325および光学アセンブリ330は、共に投影アセンブリに一体化することが可能である。NED305の様々な実施形態は、上に列挙したコンポーネントに加えて、それらより少ない、またはそれらとは異なるコンポーネントを有してもよい。追加的に、それぞれのコンポーネントの機能性は、部分的にまたは完全に、様々な実施形態における1つまたは複数の他のコンポーネントの機能性によって包含されてもよい。
DCA320は、NED305の周囲のエリアの深度情報を記述するセンサデータをキャプチャする。センサデータは、三角法、構造化光イメージング、time-of-flightイメージング、レーザスキャンなど深度イメージング技法のうちの1つまたは組み合わせによって生成されてもよい。DCA320は、センサデータを用いてNED305の周囲のエリアの様々な深度プロパティを計算することができる。追加的に、または代替的に、DCA320は、処理するためにセンサデータをコンソール310に送信してもよい。
DCA320は、照明光源、撮像デバイス、およびコントローラを含む。照明光源は、NED305の周囲のエリアに向けて光を発する。一実施形態では、発せられた光は、構造化光である。照明光源は、ある特性(例えば、波長、偏光、コヒーレンス、時間的挙動など)を有する光をそれぞれが発する複数のエミッタを含む。特性は、エミッタ同士で同じであってもよく、または異なっていてもよく、エミッタは同時的にまたは個別に動作してもよい。一実施形態において、複数のエミッタは、例えば、レーザダイオード(エッジエミッタなど)、無機もしくは有機発光ダイオード(LED)、垂直共振器型面発光レーザ(VCSEL)、または何らかの他の光源であってもよい。いくつかの実施形態では、照明光源における単一のエミッタまたは複数のエミッタは、構造化光パターンを有する光を発することができる。撮像デバイスは、複数のエミッタから生成された環境内の物体から反射された光に加えて、NED305の周りの環境における周囲光をキャプチャする。様々な実施形態では、撮像デバイスは、赤外カメラ、または可視スペクトルで動作するように構成されたカメラであってもよい。コントローラは、照明光源がどのように発光するか、および撮像デバイスがどのように光をキャプチャするかを調整する。例えば、コントローラは、発光の明るさを決定することができる。いくつかの実施形態では、コントローラはまた、検出された光を分析して、環境内の物体およびそのような物体に関連する位置情報を検出する。
ディスプレイ325は、コンソール310から受信したピクセルデータに従って、二次元または三次元画像をユーザに対して表示する。様々な実施形態において、ディスプレイ325は、単一のディスプレイまたは複数のディスプレイ(例えば、ユーザの片目ごとに別個のディスプレイ)を含む。いくつかの実施形態では、ディスプレイ325は、単一または複数の導波路ディスプレイを含む。光は、例えば、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、無機発光ダイオード(ILED)ディスプレイ、アクティブマトリクス式有機発光ダイオード(AMOLED)ディスプレイ、透明有機発光ダイオード(TOLED)ディスプレイ、レーザベースディスプレイ、1つまたは複数の導波路、他のタイプのディスプレイ、スキャナ、一次元アレイなどを通じて、単一または複数の導波路ディスプレイにカップリングすることができる。加えて、複数のディスプレイのタイプの組み合わせが、ディスプレイ325に組み込まれて、別個に、並行して、および/または組み合わせて使用されてもよい。
光学アセンブリ330は、ディスプレイ325から受け取った画像光を拡大し、画像光に関する光学誤差を補正し、補正画像光をNED305のユーザに提示する。光学アセンブリ330は、複数の光学素子を含む。例えば、以下の光学素子のうちの1つまたは複数が、光学アセンブリ330に含まれてもよい:開口、フレネルレンズ、凸レンズ、凹レンズ、フィルタ、反射面、または画像光を偏向、反射、屈折する、および/もしくは何らかのやり方で改変するあらゆる他の適切な光学素子。その上、光学アセンブリ330は、異なる光学素子の組み合わせを含んでもよい。いくつかの実施形態では、光学アセンブリ330における光学素子のうちの1つまたは複数は、部分的反射コーティングまたは反射防止コーティングなどの1つまたは複数のコーティングを有してもよい。光学アセンブリ330は、例えば、投影アセンブリなどの投影アセンブリに一体化することが可能である。一実施形態において、光学アセンブリ330は、光学系ブロック155を含む。
動作中、光学アセンブリ330は、ディスプレイ325によって生成された画像光を、拡大したり、フォーカスしたりする。そのようにしながら、光学アセンブリ330は、光学アセンブリ330を使用しないディスプレイよりも、ディスプレイ325が物理的に小型で、より軽量で、より少ない電力消費となるようにすることができる。加えて、拡大は、ディスプレイ325によって提示されるコンテンツの視野を大きくし得る。例えば、いくつかの実施形態では、表示されるコンテンツの視野は、ユーザの視野を部分的にまたは完全に使用する。例えば、表示される画像の視野は、310度を満たすか、310度を越える場合がある。様々な実施形態では、拡大の大きさは、光学素子を追加すること、または除去することによって調節することができる。
いくつかの実施形態では、光学アセンブリ330は、1つまたは複数のタイプの光学誤差を補正するように設計されてもよい。光学誤差の例としては、たる形もしくは糸巻形ひずみ、軸上色収差、または倍率色収差が挙げられる。他のタイプの光学誤差としては、他のタイプの光学誤差に加えて、球面収差、レンズ像面湾曲による色収差または誤差、非点収差をさらに挙げることができる。いくつかの実施形態では、ディスプレイ325に送られる視覚的コンテンツは、予め歪めてあり、ディスプレイ325からの画像光が光学アセンブリ330の様々な光学素子を通過すると、光学アセンブリ330は、その歪みを補正する。いくつかの実施形態では、光学アセンブリ330の光学素子は、1つまたは複数の光学素子と結合された少なくとも1つの導波路を含む投影アセンブリとしてディスプレイ325に一体化される。
IMU340は、位置センサ335のうちの1つまたは複数から受信した測定信号に基づいて、およびDCA320から受信した深度情報から、NED305の位置を示すデータを生成する電子デバイスである。NED305のいくつかの実施形態では、IMU340は、専用のハードウェアコンポーネントであってもよい。他の実施形態では、IMU340は、1つまたは複数のプロセッサに実装されたソフトウェアコンポーネントであってもよい。
動作中、位置センサ335は、NED305の動きに応答して1つまたは複数の測定信号を生成する。位置センサ335の例としては、以下が挙げられる:1つもしくは複数の加速度計、1つもしくは複数のジャイロスコープ、1つもしくは複数の磁気計、1つもしくは複数の高度計、1つもしくは複数の傾斜計、ならびに/または動き検出、ドリフト検出、および/もしくは誤差検出のための様々なタイプのセンサ。位置センサ335は、IMU340の外部に、IMU340の内部に、またはそれらの何らかの組み合わせで配置されてもよい。
1つまたは複数の位置センサ335からの1つまたは複数の測定信号に基づいて、IMU340は、NED305の初期位置に対するNED305の推定現在位置を示すデータを生成する。例えば、位置センサ335は、並進運動(前後、上下、左右)を測定するための複数の加速度計、および回転運動(例えば、ピッチ、ヨー、およびロール)を測定するための複数のジャイロスコープを含んでもよい。いくつかの実施形態では、IMU340は、測定信号を素早くサンプリングして、サンプリングされたデータからNED305の推定現在位置を計算する。例えば、IMU340は、速度ベクトルを推定するために加速度計から経時的に受信される測定信号を統合し、NED305上の基準点の推定現在位置を決定するために速度ベクトルを経時的に統合してもよい。代替的に、IMU340は、サンプリングされた測定信号をコンソール310に提供し、コンソール310はサンプルデータを分析して1つまたは複数の測定誤差を判断する。コンソール310は、制御信号および/または測定誤差のうちの1つまたは複数をIMU340にさらに送信して、IMU340が1つまたは複数の測定誤差(例えば、ドリフト誤差)を、補正および/または低減するように構成してもよい。基準点は、NED305の位置を記述するために用いられ得る点である。基準点は、一般的に、空間中のある点、またはNED305の位置および/もしくは配向に関する位置として定義することができる。
様々な実施形態では、IMU340は、コンソール310から1つまたは複数のパラメータを受信する。1つまたは複数のパラメータは、NED305の追跡を維持するために使用される。受信したパラメータに基づいて、IMU340は、1つまたは複数のIMUパラメータ(例えば、サンプリングレート)を調節することができる。いくつかの実施形態では、特定のパラメータは、IMU340に基準点の初期位置を更新させ、その位置が基準点の次の位置に対応するようにする。基準点の初期位置を基準点の次の較正済の位置として更新することは、IMU340の現在位置推定を検出する際のドリフト誤差を低減することに役立つ。
いくつかの実施形態では、視線追跡システム345は、NED305に一体化される。視線追跡システム345は、1つまたは複数の照明光源および撮像デバイス(カメラ)を含んでもよい。動作中、視線追跡システム345は、ユーザがNED305を装着するとユーザの目に関する追跡データを生成して分析する。視線追跡システム345は、ユーザの目の位置についての情報、つまり目の注視の角度についての情報を含み得る視線追跡情報をさらに生成してもよい。
いくつかの実施形態では、可変焦点モジュール350が、NED305にさらに一体化される。可変焦点モジュール350は、可変焦点モジュール350が視線追跡システム345から視線追跡情報を受信できるようにするために、視線追跡システム345に通信可能に結合することができる。可変焦点モジュール350は、視線追跡システム345から受信した視線追跡情報に基づいて、ディスプレイ325から発せられた画像光の焦点をさらに修正してもよい。したがって、可変焦点モジュール350は、ユーザの目が画像光を解像する際に作り出され得る輻輳調節矛盾を低減することができる。様々な実施形態では、可変焦点モジュール350は、光学アセンブリ330の少なくとも1つの光学素子で(例えば、機械的または電気的のいずれかで)インターフェースすることができる。
動作中、可変焦点モジュール350は、光学アセンブリ330を伝播する画像光の焦点を調節するために、光学アセンブリ330内の1つまたは複数の光学素子の位置および/または配向を調節することができる。様々な実施形態では、可変焦点モジュール350は、視線追跡システム345から取得した視線追跡情報を使用して、光学アセンブリ330内の1つまたは複数の光学素子をどのように調節するかを決定することができる。いくつかの実施形態では、可変焦点モジュール350は、ディスプレイ325によって発せられた画像光の解像度を調節するために、視線追跡システム345から取得した視線追跡情報に基づいて画像光の中心窩レンダリングを行うことができる。この場合、可変焦点モジュール350は、ユーザの目の注視の中心窩領域に高ピクセル密度を、またユーザの目の注視の他の領域に低ピクセル密度を表示するようにディスプレイ325を構成する。
I/Oインターフェース315は、ユーザからコンソール310へのアクション要求の転送を容易にする。加えて、I/Oインターフェース315は、コンソール310からユーザへのデバイスフィードバックの転送を容易にする。アクション要求は、特定のアクションを実施するための要求である。例えば、アクション要求は、画像もしくは動画データのキャプチャを開始もしくは終了させる命令であってもよく、または動画再生を一時停止する、音声再生の音量を大きくするもしくは小さくするなどアプリケーション内で特定のアクションを実施するための命令などであってもよい。様々な実施形態では、I/Oインターフェース315は、1つまたは複数の入力デバイスを含み得る。入力デバイスの例としては、以下が挙げられる:キーボード、マウス、ゲームコントローラ、ジョイスティック、および/またはアクション要求を受信し、アクション要求をコンソール310に通信するためのあらゆる他の適切なデバイス。いくつかの実施形態では、I/Oインターフェース315は、I/Oインターフェース315の初期位置に対するI/Oインターフェース315の推定現在位置を示す較正データをキャプチャするIMU340を含む。
動作中、I/Oインターフェース315はユーザからアクション要求を受信し、それらのアクション要求をコンソール310に送信する。アクション要求を受信したことに応答して、コンソール310は対応するアクションを実施する。例えば、アクション要求を受信したことに応答して、コンソール310は、I/Oインターフェース315が、ユーザの腕に触覚フィードバックを発するように構成することができる。例えば、コンソール315は、アクション要求が受信されたときに、I/Oインターフェース315が、触覚フィードバックをユーザに与えるように構成されてもよい。追加的に、または代替的に、コンソール310は、コンソール310がアクション要求を受信したことに応答してアクションを実施するときに、I/Oインターフェース315が、触覚フィードバックを生成するように構成されてもよい。
コンソール310は、DCA320、NED305、およびI/Oインターフェース315のうちの1つまたは複数から受信される情報に従って処理するために、NED305にコンテンツを提供する。図3に示されるように、コンソール310はアプリケーションストア355、追跡モジュール360、およびエンジン365を含む。いくつかの実施形態では、コンソール310は、図3に関して説明したモジュールおよび/もしくはコンポーネントに加えて、それらより少ない、またはそれらとは異なるモジュールおよび/もしくはコンポーネントを有してもよい。同様に、以下でさらに説明される機能は、図3に関して説明したものとは異なる様式で、コンソール310のコンポーネントに分散され得る。
アプリケーションストア355は、コンソール310による実行のための1つまたは複数のアプリケーションを記憶する。アプリケーションは、プロセッサによって実行されるとき、ユーザに対する提示のためのコンテンツを生成するなど、機能の特定のセットを実施する命令のグループである。例えば、アプリケーションは、ユーザから入力を(例えば、ユーザが自身の頭部を動かす際のNED305の動きによって、I/Oインターフェース315によって、など)受信したことに応答してコンテンツを生成してもよい。アプリケーションの例としては、ゲーミングアプリケーション、会議アプリケーション、動画再生アプリケーション、または他の適切なアプリケーションが挙げられる。
追跡モジュール360は、1つまたは複数の較正パラメータを使用してNEDシステム300を較正する。追跡モジュール360は、NED305またはI/Oインターフェース315の位置および/または配向を決定する際の誤差を低減するために、1つまたは複数の較正パラメータをさらに調節してもよい。例えば、追跡モジュール360は、DCA320の焦点を調節するために、較正パラメータをDCA320に送信してもよい。したがって、DCA320は、環境内の物体から反射する構造化光の要素の位置をさらに正確に決定することができる。追跡モジュール360はまた、修正する様々な較正パラメータを決定する際、IMU340によって生成されたセンサデータを分析することができる。さらには、いくつかの実施形態では、NED305がユーザの目の追跡を失った場合、追跡モジュール360は、NEDシステム300のコンポーネントのうちの一部またはすべてを再較正することができる。例えば、DCA320がユーザの目に投影される少なくともしきい値数の構造化光の要素の視線を失った場合、追跡モジュール360は、視線追跡を再確立するために、較正パラメータを可変焦点モジュール350に送信してもよい。
追跡モジュール360は、DCA320、1つもしくは複数の位置センサ335、IMU340、またはそれらの何らかの組み合わせからの情報を使用して、NED305の動きおよび/またはI/Oインターフェース315の動きを追跡する。例えば、追跡モジュール360は、NED305にローカルなエリアのマッピングからNED305の基準位置を決定してもよい。追跡モジュール360は、NED305それ自体から受信した情報に基づいて、このマッピングを生成してもよい。追跡モジュール360はまた、IMU340からのセンサデータおよび/またはDCA320からの深度データを利用して、NED305および/またはI/Oインターフェース315についての基準位置を決定してもよい。様々な実施形態では、追跡モジュール360は、NED305および/またはI/Oインターフェース315のその後の位置についての推定および/または予測を生成する。追跡モジュール360は、予測されたその後の位置をエンジン365に送信してもよい。
エンジン365は、NED305から受信した情報に基づいて、NED305の周囲のエリア(つまり、「局所的エリア」)の三次元マッピングを生成する。いくつかの実施形態では、エンジン365は、DCA320から受信した深度データに基づいて、局所的エリアの三次元マッピング用の深度情報を決定する(例えば、局所的エリア内の物体の深度情報)。いくつかの実施形態では、エンジン365は、DCA320によって生成された深度データを使用して、NED305の深度および/または位置を計算する。特に、エンジン365は、NED305の深度および/または位置を計算するために、ステレオベースの技法、構造化光照明技法、time-of-flight技法などの、様々な技法を実装することができる。様々な実施形態では、エンジン365は、DCA320から受信した深度データを使用して、局所的エリアのモデルを更新し、更新モデルに一部基づいてメディアコンテンツを生成および/または修正する。
エンジン365はまた、NEDシステム300内でアプリケーションを実行し、NED305の位置情報、加速度情報、速度情報、予測した今後の位置、またはそれらの何らかの組み合わせを追跡モジュール360から受信する。受信した情報に基づいて、エンジン365は、ユーザへの提示のためにNED305に送信する様々な形態のメディアコンテンツを決定する。例えば、受信した情報が、ユーザが左を見たことを示す場合、エンジン365は、仮想環境内で、または局所的エリアを追加的なメディアコンテンツで拡張する環境内で、メディアコンテンツにおけるユーザの運動を左右逆にする、NED305のためのメディアコンテンツを生成する。したがって、エンジン365は、ユーザへの提示用のメディアコンテンツ(例えば、視覚的コンテンツおよび/または音声コンテンツ)を生成および/または修正することができる。エンジン365は、メディアコンテンツをNED305に向けてさらに送信してもよい。追加的に、I/Oインターフェース315からアクション要求を受信したことに応答して、エンジン365は、コンソール310で実行中のアプリケーション内でアクションを実施してもよい。エンジン305は、アクションが実施されるとフィードバックをさらに提供してもよい。例えば、エンジン365は、NED305が視覚的および/もしくは音声フィードバックを生成するように、ならびに/またはI/Oインターフェース315がユーザに向けて触覚フィードバックを生成するように構成してもよい。
いくつかの実施形態では、視線追跡システム345から受信した視線追跡情報(例えば、ユーザの目の配向)に基づいて、エンジン365は、NED305に提供されるメディアコンテンツの、ディスプレイ325でのユーザへ向けた提示用の解像度を決定する。エンジン365は、視線追跡システム345から受信したユーザの注視の方向に少なくとも一部基づいて、ディスプレイ325が視覚的コンテンツの中心窩レンダリングを実施するように構成することによって、NED305に提供される視覚的コンテンツの解像度を調節することができる。エンジン365は、ユーザの注視の中心窩領域ではディスプレイ325で高解像度を有し、他の領域では低解像度を有するコンテンツをNED305に提供し、それによりNED305の電力消費を低減している。加えて、中心窩レンダリングを用いることは、ユーザの視覚体験の品質を損なうことなく、視覚的コンテンツをレンダリングする際に使用される計算サイクル数を低減させる。いくつかの実施形態では、エンジン365は、輻輳調節矛盾を低減するために、視線追跡情報をさらに使用して、ディスプレイ325から発せられた画像光の焦点を調節することができる。
液晶パターン化制御システムにおける液晶の磁場駆動の再配向
図4は、様々な実施形態による、磁場を用いて液晶(LC)を再配向するための手法を図示する概略図である。パネルAは、LCの再配向を駆動するために磁場を使用するLCパターン化制御システムのピクセル400に関するジオメトリを示している。本明細書で使用される場合、ピクセルとはLCセルを指し、LCセルには、磁石などの駆動方法とともに、LCとアラインメント層が含まれてもよい。いくつかの実施形態では、ピクセル間またはセル間にディバイダは必要とされないが、他の実施形態ではディバイダが使用されてもよい。例えば、ディバイダを用いない実施形態では、LC層の一部分を再配向する磁石は、1つのセルと考えることができ、LC層の異なる部分を再配向する別の磁石は、次のセルなどと考えてもよい。
示されるように、ピクセル400は、2つのアラインメント層402と406との間のLC層404、反射層408、および磁石410を含む。1つのピクセル400が説明目的で示されているが、LCパターン化制御システムは、一般的にピクセルのアレイなど、あらゆる数のピクセルを含むことができる。いくつかの実施形態におけるピクセルはまた、アラインメント層402および406の周りのガラス基板層、ガラス基板層の片面または両面上の偏光層など、追加的な、または示された層とは異なる層を含んでもよい。図4は、反射型のLCパターン化制御システムを示しているが、LCはまた、以下で考察するように、いくつかの実施形態では、透過型のLCパターン化制御システムにおいて磁場を使用して再配向されてもよい。
液晶は、複屈折性であり、LCの屈折率が配向に依存することを意味している。いくつかの実施形態では、LC層404は、LC層404の異方性分子405(分子405と総称され、分子405と個別に称される)が揃えられる「配向子(director)」と称されることがある光軸に沿った常光屈折率、ならびに光軸に垂直な方向に沿った異常光屈折率を有する一軸ネマチックLCを含んでもよい。そのような場合、磁場は光軸を再配向するように印加され、それによりLC層404に入射する光に対する屈折率を変化させる。結果として、磁場が印加される場合、LC層404を通過する光の位相は、磁場が印加されない(または異なる磁場が印加された)場合とは異なるように変調され、ピクセル400の異なる状態を表現することができる(例えば、ONとOFF状態)。他の実施形態は、キラルネマチックLC(「コレステリック」相にあるLCと称されることもある)、二軸ネマチックLCなどを含むあらゆる技術的に実現可能なタイプのLCを使用することができる。磁場に対する応答は、用いられるLCのタイプに依存して変化し得ることを理解されたい。
本明細書では主に位相変調に関して考察するが、いくつかの実施形態では、LCパターン化制御システムは、光の位相の変調に加えて、またはその代わりに、光の振幅を変調するために使用されてもよい。例えば、いくつかの実施形態では、光の透過を制御するために、45°でLCに入る光を偏光するための直線偏光板を含む直交偏光板のセット、およびLCによって出力される光の成分を透過するアナライザを使用することが可能である。代替の実施形態では、他の振幅変調方式が使用されてもよい。本明細書では主にLCに関して考察するが、いくつかの実施形態では、LC以外の複屈折材料が使用されてもよい。
示されるように、アラインメント層402および406は、LC層404の分子405を、実質的に一様な平面アラインメントに誘導する。いくつかの実施形態では、アラインメント層402および406は、ポリマ表面を摩擦することによって形成することができる。より一般的には、あらゆる技術的に実現可能なプロセスを用いて、LC層404の分子405を揃えることができる。説明目的のため、平面アラインメントが示されるが、実施形態には、LC分子がアラインメント層402および406に対して垂直に揃うホメオトロピックなアラインメントなど、あらゆる適切なアラインメントのLCが含まれてもよい。
パネルBに示されるように、磁場412の印加は、LC分子405を、磁石410の側部の周辺場を除いて実質的に一様な磁場412に揃えることにより、再配向する。磁場412はまた、磁石410の内部など他の場所にも広がり得るが、そのような磁場の部分は本明細書では簡略化のために示していないことを理解されたい。さらには、一部のLC分子405は、磁場412に完全には揃っていない場合があり、達成されるアラインメントの度合いは、一般的に、例えばLC層404を構築するために使用されるLC材料および磁場412の強度に依存する場合があることを理解されたい。例として、LC層404のエリアは、磁石410のエリアよりも小さい。結果として、LC分子405は、実質的に周辺場によって影響されない。磁場412を印加すると、磁石410によって生成される磁場412の実質的に一様な部分によって、LC分子405は、平面アラインメントから平面に対して垂直な方向に再配向される。
動作中、1つまたは複数の発光デバイスからの光は、ピクセル400を含むピクセルのアレイから成るLCパターン化制御システムに入射し得る。いくつかの実施形態では、偏光した光が用いられてもよい。他の実施形態では、LCパターン化制御システムは両方の偏光に対して同様に良好に作用する場合がある。一般的に、LCパターン化制御システムは、例えば、空間光変調器、パンチャラトナム-ベリー位相(PBP)レンズ、液晶ディスプレイ(LCD)画面、可変焦点レンズであってもよく、とりわけホログラフィ(例えば、偏光体積ホログラム、点光源ホログラム、フーリエ変換ホログラム、または他のコンピュータ生成ホログラム)で使用されてもよい。LCパターン化制御システム中のピクセルの状態を制御することによって、空間的に変化する変調を光に与えることができ、このとき変調光は反射層408によって後ろ向きに反射される。例えば、空間光変調器のピクセルはONとOFFを切り替えることができ、それにより視聴者に向けて反射される画像を形成する。別の例として、ホログラムを生成するために、レーザなどのコヒーレントな光源によって発せられる光からホログラムを生成するために必要なピクセル状態を判定するために、ホログラフィ方程式を解いてもよい。追加的な、さらなる例を、以下でさらに詳しく考察する。
図5Aは、様々な実施形態による、LCパターン化制御システム500の断面図を図示する概略図である。示されるように、LCパターン化制御システム500は、個々のLC502~502(LC502と総称され、LC502と個別に称される)および対応する磁石506~506(磁石506と総称され、磁石506と個別に称される)から構成されるピクセルのアレイを含む。LCパターン化制御システム500のコンポーネントのすべてまたは一部は、互いに物理的に接触していてもよく、互いに1つの基板を共有してもよく、互いに積層されてもよく、互いに光学的に接触してもよく、屈折率マッチング流体もしくは光学糊を互いの間に有してもよく、および/またはコンポーネント同士の間に空間があってもよい。
LC502および磁石506は、あらゆる技術的に実現可能な材料から構築することができる。説明するように、LC502は、一軸ネマチックLC、キラルネマチックLC、二軸ネマチックなど、あらゆる適切なタイプのLCを含んでもよい。いくつかの実施形態では、磁石506には、磁性のマイクロ粒子またはナノ粒子が含まれてもよい。いくつかの実施形態では、パターン化された磁性の多層フィルム、または垂直的に磁化されたフィルムが使用されてもよい。小さな(<1μm)磁性粒子は、一部のLCを再配向するために必要な臨界磁場Hを上回る外部磁場を生成することができる。例えば、一部のナノ磁石は、約1~2Tのオーダーで磁場を生成することができ、これは一部のLCを完全に揃えるために十分である。小さな磁性粒子によって生成される磁場は、距離約dで広がり、ここでdは粒子の特性的な寸法である。磁性粒子506は、あらゆる適切な形状および/またはサイズのものであってもよく、50nmおよびそれより小さな粒子が含まれる。LC502もまた、あらゆる適切な形状および/またはサイズのものであってもよい。例えば、いくつかの実施形態では、LC502のそれぞれは、数百ナノメートルの厚さであってもよい。いくつかの実施形態では、LCパターン化制御システム500な間のピクセルのサイズは、電場に依拠する従来型のLCデバイスの限界を下回るよう低減することができ、約1μm未満のサイズのピクセルを含む。
いくつかの実施形態では、磁石506は、異方性であってもよい。つまり、磁石506は、複数の好ましい磁化方向を有する可能性があり、これらは「容易軸」と称されることもある。例えば、いくつかの実施形態では、磁石506のそれぞれは、2つの容易軸を有してもよく、1つが平面内にありもう1つが平面に垂直である(図5A~図5Bに示される通り)、または2つが平面内で直交する角度となるなどである。さらには、磁石506の磁化方向は、容易軸の1つに揃った後、安定したままであってもよい。このような安定した2つの平衡状態は、双安定性と称される。
LCパターン化制御システム500は、反射層504および配線508~508(配線508と総称され、配線508と個別に称される)と510とのグリッドをさらに含み、図5Bに関してこれらを以下でさらに詳しく考察する。説明目的のため、特定の層を示すが、いくつかの実施形態は、図4に関して上で考察したものと同様に、アラインメント層およびLC502のそれぞれの周りのガラス基板層、ガラス基板層の片面または両面上の偏光層など、さらなる層を含んでもよい。
LCパターン化制御システム500に入射する光は、LC502を通過し、反射層504により、例えば視聴者またはレンズなどの光学素子に向けて反射される場合がある。つまり、LCパターン化制御システム500は、ミラーとして機能し、そこに入射する光を変調するLC502を用いて、空間的に変化する光の変調を生成する。説明するように、いくつかの実施形態では、LCパターン化制御システム500上に投影される光はまた、偏光していてもよい。
いくつかの実施形態では、間隙507などの磁石506同士の間の間隙は、反射性の材料によって覆ってもよく、反射層504は、クロムなどの反射性の材料を磁石506および間隙の上部でスパッタリングすることによって形成してもよい。これにより、そうしないと間隙によって作り出されるであろう回折を除去することができる。
図5Bは、様々な実施形態による、LCパターン化制御システム500の上から見下ろす視点を図示する概略図である。示されるように、配線508および510は、磁石506およびLC502の下で、交差配線方式で配設される。磁石506上の反射層504は、説明目的のために省略してある。
示されるように、配線508と510との個々の対は、LC502のそれぞれで交差する。磁場は、配線508および510を通じる電流の流れによって生成される。例えば、配線508および510を通じて電流を駆動するために薄膜トランジスタを使用することが可能である。配線を通じる電流の流れによって生成される磁場は、H≒I/rであり、ここでIは配線中の電流であり、rは配線からの距離である。磁石506を切り替えるために必要とされる保磁力場が約2I/rである磁石506を使用することによって、配線508および510の2つが、同時に駆動され、例えば磁石506が異方性である異なる容易軸の間に、磁石506のうちの1つを切り替えるために必要な保磁力場を生成することができる。磁石506のそれぞれが2つの容易軸を有する上の例に戻ると、電流は、磁石506で交差する配線508と510との対を通って駆動され、容易軸のうちの1つに向かってその磁化を促し、その後、磁化がその容易軸方向に固定されてもよい。さらには、LCを揃えるための磁場を維持するために連続的な電力消費を必要とする従来型のLCデバイスとは対照的に、磁化は、電力消費をせずに固定されたままであってもよい(配線508および510を通って追加的な電流を駆動させない状態で)。その後、電流は同じ配線を通るが反対向きに駆動され、磁石をそのもう一方の容易軸に切り替えてもよく、それにより磁場の方向を反転させる。
例えば、磁石506は、磁石506で交差する配線508および510の両方を通じて電流を駆動することにより切り替えてもよい。そのような場合、配線の磁場の2倍したものが交差点で生成されるが、配線508および510のうちの1つだけの上にある磁石506だけがその配線に関連する磁場を見ることができる。例えば、磁石506の磁化は、最初は平面内にあってもよく、磁石506の磁化は、図5Bに示されるように、その平面に垂直な磁場を作り出すように切り替えられてもよい。LC502の異方性の分子は、図4に関して上述したように、垂直な磁場に揃うように再配向する場合がある。このような磁場とのアラインメントは、例えばピクセルのON状態を表すことができ、一方で他の(例えば、平面アラインメントしている)LC502は、OFF状態を表すことができ、またはその逆である。さらには、いくつかの実施形態では、磁石506および関連するLC502は、素早く(例えば、10~100ns)切り替わる場合がある。
配線508および510は、磁石506よりも下に配設され、磁石506よりも薄いものとして示されているが、磁石506を切り替えるために必要とされる保磁力場を作るために、配線のあらゆる技術的に実現可能な構成が使用されてもよい。例えば、いくつかの実施形態では、配線508および510は、磁石506と同じ厚さであってもよい。別の例としては、いくつかの実施形態では、配線は、磁石の下ではなく、磁石の側部に配設されてもよい。さらには、本明細書では図5A~図5B、図6A~図6B、図7A~図7B、および図8A~図8Bに関して説明するような例示的な駆動方式が説明目的で開示されるが、代替の実施形態では、磁場を用いてLCを駆動するためのあらゆる技術的に実現可能な方式が採用されてもよい。
図6Aは、様々な実施形態による、別のLCパターン化制御システム600の断面図を図示する概略図である。示されるように、LCパターン化制御システム600は、個々のLC602~602(LC602と総称され、LC602と個別に称される)、反射層604、磁力ドメイン607~607NN(磁力ドメイン607と総称され、磁力ドメイン607と個別に称される)を含む層606、および配線608~608(配線608と総称され、配線608と個別に称される)と610から構成されるピクセルのアレイを含む。LC602、反射層604、ならびに配線608および610は、LCパターン化制御システム500のLC502、反射層504、ならびに配線508および510にそれぞれ類似しており、簡略のため詳細には説明しない。LCパターン化制御システム600のコンポーネントのすべてまたは一部は、互いに物理的に接触していてもよく、互いに1つの基板を共有してもよく、互いに積層されてもよく、互いに光学的に接触してもよく、屈折率マッチング流体もしくは光学糊を互いの間に有してもよく、および/またはコンポーネント同士の間に空間があってもよい。
磁力ドメインは、原子の磁気モーメントが同一方向を指すように揃うことにより磁化が一様な方向となる磁性材料内部の領域である。原子の磁気モーメントが同一方向に揃っている磁性材料の連続的なフィルムは、そのフィルム上に磁場を作らない。しかしながら、磁性フィルムの磁力ドメイン同士の遷移部分における磁場が、フィルム上で広がる可能性がある。いくつかの実施形態では、磁性材料のフィルムの上に磁場が広がる、そのような遷移部分領域上にLCが配置されてもよい。
例として、磁性層606は、LC602の下に遷移部分を有する磁力ドメイン607を含む。例えば、磁力ドメイン607および607内の原子の磁気モーメントは、磁力ドメイン607内の原子の磁気モーメントとは異なる方向に揃っていてもよい。説明目的のために特定の構成を示すが、代替の実施形態では、他の構成が用いられてもよい。磁力ドメインは、一般的にはドメイン壁と呼ばれる遷移領域によって別個にされ、いくつかの実施形態では、あらゆる適切な性質(狭い、または広い、どれくらい動きやすいか、など)を有する磁力ドメイン607はドメイン壁によって別個にされてもよい。
いくつかの実施形態では、LCパターン化制御システム500の磁石506に関する上の考察と同じように、磁力ドメイン607は異方性で、それに沿って磁力ドメイン607の磁化が切り替わることができる2つ(またはそれ以上)の容易軸を伴ってもよい。さらには、いくつかの実施形態では、磁力ドメイン607は十分に小さくすることができ、LCパターン化制御システム600のピクセルサイズは、従来型のLCデバイスの限界を下回るよう低減することができ、約1μm未満のサイズのピクセルを含む。
図6Bは、様々な実施形態による、LCパターン化制御システム600の上から見下ろす視点を図示する概略図である。示されるように、図5Bに関して上述した配線508および510と同様に、配線608および610は、LC602および対応する磁力ドメインの下で、交差配線方式で配設される。磁場は、配線608および610を通じる電流の流れによって生成され得る。例えば、配線608および610を通じて電流を駆動するために薄膜トランジスタを使用することが可能である。配線608および610のうちの1つを通じる電流の流れによって生成される磁場は、H≒I/rであり、配線608および610の2つが、同時に駆動され、図5Bに関する上の考察と同じように、例えば磁力ドメイン607が異方性である異なる容易軸間で、磁力ドメイン607のうちの1つを切り替えるために必要とされる保磁力場、約2I/rを生成してもよい。
例えば、磁力ドメイン607は、磁力ドメイン607で交差する配線608および610の両方を通じて電流を駆動することにより切り替えてもよい。図6A~図6Bに示されるように、これによって平面に垂直な磁場が作り出される。LC602の異方性の分子は、そのような磁場に揃うように再配向して、例えばピクセルのON状態を表す場合があり、一方で分子がそのように揃っていない(そして、例えば、平面アラインメントしている)LC602はOFF状態を表す場合があり、またはその逆である。図5Bに関して説明した磁石506およびLC502と同様に、磁力ドメイン607および関連するLC602は、いくつかの実施形態では、素早く(例えば、10~100nsで)切り替わる場合がある。さらには、切り替えられない場合、磁力ドメイン607の磁化は、電力消費をせずに固定されたままであってもよい。
配線608および610は、磁力ドメイン607よりも下に配設され、磁力ドメイン607よりも薄いものとして示されているが、厚みのある配線および磁力ドメインの側部に配設される配線を含め、磁力ドメインを切り替えるために必要とされる保磁力場を作ることが可能な、配線のあらゆる技術的に実現可能な構成が使用されてもよい。
図7Aは、様々な実施形態による、別のLCパターン化制御システム700の断面図を図示する概略図である。示されるように、LCパターン化制御システム700は、個々のLC702~702(LC702と総称され、LC702と個別に称される)および対応する磁石706~706(磁石706と総称され、磁石706と個別に称される)から構成されるピクセルのアレイ、ならびに反射層704を含む。LC702および反射層704は、LCパターン化制御システム500のLC502および反射層504にそれぞれ類似しており、簡略のため詳細には説明しない。LCパターン化制御システム700のコンポーネントのすべてまたは一部は、互いに物理的に接触していてもよく、互いに1つの基板を共有してもよく、互いに積層されてもよく、互いに光学的に接触してもよく、屈折率マッチング流体もしくは光学糊を互いの間に有してもよく、および/またはコンポーネント同士の間に空間があってもよい。
示されるように、磁石706のそれぞれは、周りに配線のコイルが巻き付けられた高透磁性コアを備える電磁石である。いくつかの実施形態では、配線のコイルは、マイクロまたはナノコイルであってもよい。配線のコイルおよび高透磁性コアは、あらゆる技術的に実現可能な材料から構築することができる。例えば、高透磁性コアは鉄製のコアであってもよい。いくつかの実施形態では、磁石706は十分に小さくすることができ、LCパターン化制御システム700のピクセルサイズは、従来型のLCデバイスの限界を下回るよう低減することができ、約1μm未満のサイズのピクセルを含む。
動作中、磁石706の配線のコイルを通じる電流の流れは、その内部に磁場を作る。加えてそのような磁場の強度は、コアの透磁率で乗じたものとなる。つまり生成される磁場は、B=μHとなり、ここでμはコアの透磁率であり、Hは配線中の電流による磁場である。結果として、比較的小さな電流で比較的大きな磁場が生成され得る。例えば、鉄コアは、磁場の強度を10,000倍大きくすることができる。コアそれ自体の内部の磁場は有用ではないが、コアの端部のちょうど外側の磁場は、実質的に内部の磁場に等しい。示されるように、LC702のそれぞれは、そのような磁石706のコアのちょうど外側の磁場を経るべく、それぞれの磁石706のコアの上に配設される。
それぞれの電圧708~708(電圧708と総称され、電圧708と個別に称される)は、磁石706の周りのコイルを通じて電流を駆動するように印加されてもよい。例として、電圧708の印加は、磁石706の周りのコイルを通る電流を駆動し、それにより磁場が生じる。いくつかの実施形態では、磁石706の周りのコイルはまた、共通のグラウンドに接続されてもよい。例えば、コイルの一端は、電圧(+/-V)に、もう一端はグラウンドに接続することが可能である。それにより、コイルを通る電流を駆動し、正と負の電圧を切り替えることにより(+Vから-Vまたは-Vから+V)、磁場の方向が切り替わる。
図7Bは、様々な実施形態による、LCパターン化制御システム700の上から見下ろす視点を図示する概略図である。示されるように、電圧の印加は磁石706のコイル内で電流を駆動させ、それにより平面に垂直な磁場を生成する。LC702の異方性の分子は、そのような磁場に揃うように再配向して、例えばピクセルのON状態を表す場合があり、一方で分子が磁場に揃っていない(そして、例えば、平面アラインメントしている)LC702はOFF状態を表す場合があり、またはその逆である。
図8Aは、様々な実施形態による、別のLCパターン化制御システム800の断面図を図示する概略図である。示されるように、LCパターン化制御システム800は、個々のLC802~802(LC802と総称され、LC802と個別に称される)および対応する磁石804~804(磁石804と総称され、磁石804と個別に称される)から構成されるピクセルのアレイを含む。LC802は、LCパターン化制御システム500のLC502に類似しており、簡略のため詳細には説明しない。LCパターン化制御システム800のコンポーネントのすべてまたは一部は、互いに物理的に接触していてもよく、互いに1つの基板を共有してもよく、互いに積層されてもよく、互いに光学的に接触してもよく、屈折率マッチング流体もしくは光学糊を互いの間に有してもよく、および/またはコンポーネント同士の間に空間があってもよい。
示されるように、磁石804のそれぞれは、LC802のうちの1つに巻き付けられている。いくつかの実施形態では、LCパターン化制御システム500の磁石506に関する上の考察と同じように、磁石804は異方性で、それに沿って磁石804の磁化が切り替わることができる2つ(またはそれ以上)の容易軸を伴ってもよい。さらには、いくつかの実施形態では、磁石804は十分に小さくすることができ、LCパターン化制御システム800のピクセルサイズは、従来型のLCデバイスの限界を下回るよう低減することができ、約1μm未満のサイズのピクセルを含む。いくつかの他の実施形態では、それぞれのセルの縁部に2つ以上の磁石が配置されてもよい。
示されるように、LCパターン化制御システム800はまた、LC802および磁石804の下で、交差配線方式で配設される配線806~806および808~808(それぞれ、配線806および808と総称され、配線806および808と個別に称される)を含む。図8Bは、交差配線方式を示している、LCパターン化制御システム800の上から見下ろす視点を図示する概略図である。図5Bに関して上述した配線508および510と同様に、磁場は配線806および808を通じる電流の流れによって生成される。例えば、配線806および808を通じて電流を駆動するために薄膜トランジスタを使用することができ、配線806および808の2つが、同時に駆動され、例えば異方性の磁石804の場合では異なる容易軸の間に、磁石804のうちの1つを切り替えるために必要な保磁力場を生成することができる。
図7A~図7Bに示されるように、磁石804の切り替えは、配線806および808の両方を通じて電流を駆動することにより、平面内で特定方向の磁場を作り出す。LC802の異方性の分子は、そのような磁場に揃うように再配向して、これは例えばピクセルのON状態を表す場合があり、他のLC802の分子は別の方向(例えば、平面に対して垂直)に揃って、OFF状態を表す場合があり、またはその逆である。図5Bに関して上述した磁石506およびLC502と同様に、磁石804および関連するLC802は、いくつかの実施形態では、素早く、例えば切り替え1回当たり10~100nsで切り替わる場合がある。さらには、切り替えられない場合、磁石804の磁化は、電力消費をせずに固定されたままであってもよい。
反射型および透過型のLCパターン化制御システムの特定の実施形態を参照例として図4~図8に関して上述したが、LCを揃えるために磁場が使用される他の実施形態もまた企図される。例えば、いくつかの実施形態では、磁石によって生成される磁場の配向は、本明細書で開示される例とは異なっていてもよい。別の例として、いくつかの透過型の実施形態では、LCを巻いている磁石の代わりに、透明な磁性酸化物が使用されてもよい。
図9~図10は、様々な実施形態による、1つまたは複数のLCパターン化制御システムを含む例示的な光学システム構成を図示している。そのようなシステムは、図1A~図1Bおよび図2A~図2Bに関してそれぞれ上述したNEDシステム100またはHMD162などの、例えば仮想現実(VR)、拡張現実(AR)、または複合現実(MR)向けのニアアイディスプレイデバイスに含まれてもよい。本明細書では特定の光学システムが参照例として開示されるが、本明細書で開示されるLCパターン化制御システムは、一般的にあらゆる適切な光学システムに含まれてもよい。様々な実施形態において、AR、VR、およびMR用ニアアイディスプレイデバイス向けの光学システムは、コンピュータプロセッサにより実行されるアプリケーション(例えば、図3に関して上述したアプリケーションストア355に記憶されたアプリケーションのうちの1つ)によって駆動される光源により生成された仮想世界の光を処理するように構成される。光学システムは、そのような仮想的な光を処理して、NEDデバイスのユーザの目の場所と一致し得る光学システムの射出瞳において画像を形成することができる。
様々な実施形態において、ARおよびMRニアアイディスプレイデバイス向けの光学システムは、現実世界の光を処理するように構成される。仮想世界の光の場合とは異なり、そのような光学システムは、射出瞳において現実世界の光の画像に屈折力を導入する必要がなく、また光学システムに対する目の場所(および/または配向)における変化に応答して現実世界の光に対する射出瞳の場所を変える必要がない。したがって、現実世界の光および仮想世界の光は、光学システムの部分に共配置されているが、少なくともいくつかの実施形態では、光学システムによって互いに異なって処理される。
図9は、様々な実施形態による、LCパターン化制御システムを含む仮想現実光学システム900の一部を図示する概略図である。例えば、光学システム900は、仮想現実NEDに含まれる可能性がある。示されるように、光学システム900は、光源910およびLCパターン化制御システム920を含む。
光源910は、光のビームをLCパターン化制御システム920に投影するように構成される。光源の例としては、有機発光ダイオード(OLED)、アクティブマトリクス式有機発光ダイオード(AMOLED)、発光ダイオード(LED)、レーザ、スーパールミネッセントLED(SLED)、またはそれらの何らかの組み合わせが挙げられる。あらゆる技術的に実現可能な光源が使用されてもよく、使用される光源のタイプは、一般的に用途に応じたものとなる。例えば、レーザまたはSLEDなどのコヒーレントな光源は、ホログラムを作り出すために使用することができるが、LEDなどのあらゆる光源が通常のイメージングに使用することができる。いくつかの実施形態では、光源910は、偏光した光を作り出すことができる。他の実施形態では、LCパターン化制御システム920は、光源910から入射する光を偏光させる1つまたは複数の偏光層を含んでもよい。
いくつかの実施形態では、LCパターン化制御システム920は、図5A~図5B、図6A~図6B、および図7A~図7Bに関してそれぞれ上述した反射型のLCパターン化制御システム500、600、または700のうちの1つであってもよい。例えば、いくつかの実施形態では、LCパターン化制御システム920は、ONおよびOFFに駆動されたピクセルを含む空間光変調器であってもよく、それにより視聴者に向けて反射される画像を形成する。別の例として、いくつかの実施形態では、光源910は、レーザなどのコヒーレントな光源であってもよく、LCパターン化制御システム920は、ホログラムを形成するよう光源910によって発せられたコヒーレントな光を変調することができる。さらに別の例として、いくつかの実施形態では、LCパターン化制御システム920は、瞳/ビームステアリングに使用されてもよい。そのような場合では、LCパターン化制御システム920は、光をユーザの目に向けてステアリングする、例えばPBPを含む可能性がある。
いくつかの実施形態では、光学システム900は、光を光学システム900の射出瞳930にフォーカスするレンズまたは他の光学素子、目の位置情報をコントローラモジュールに提供する視線追跡モジュール、射出瞳930を目の注視の角度に応じて異なる場所にステアリングする光学素子など、示されない追加的なコンポーネントを含む場合がある。例えば、リフトレンズ、PBPレンズ、パンケーキレンズなどが、射出瞳930で光をフォーカスするために使用される可能性がある。別の例として、視線追跡モジュールは、NED内部またはNED上のいくつかの場所のうちいずれかに配置することが可能である。つまり、実施形態は、本明細書で開示される技法に従ってLCパターン化制御システムを含むVR光学システムのあらゆる技術的に実現可能な構成を含むことができる。
図10は、様々な実施形態による、LCパターン化制御システムを含む別の仮想現実光学システム1000の一部を図示する概略図である。例えば、光学システム1000は、仮想現実NEDに含まれる可能性がある。示されるように、光学システム1000は、光源1010およびLCパターン化制御システム1020を含む。
上述の光源910と同様に、光源1010は、例えば、OLED、AMOLED、LED、レーザ、SLED、または光のビームをLCパターン化制御システム1020に投影するそれらの何らかの組み合わせを含んでもよい。さらには、いくつかの実施形態では、光源1010は、偏光した光を作り出すことができるか、代替的に、LCパターン化制御システム1020が光源1010からの光を偏光させる偏光層を含んでもよい。
LCパターン化制御システム920とは対照的に、LCパターン化制御システム1020は、光源1010から入射する光を透過する。いくつかの実施形態では、LCパターン化制御システム1020は、図8A~図8Bに関して上述したLCパターン化制御システム800であってもよい。例えば、いくつかの実施形態では、LCパターン化制御システム1020は、ONおよびOFFに駆動されたピクセルを含む空間光変調器であってもよく、それにより画像を形成する。別の例として、いくつかの実施形態では、LCパターン化制御システム1020は、ホログラムを形成するよう光源1010によって発せられたコヒーレントな光を変調することができる。さらに別の例として、いくつかの実施形態では、LCパターン化制御システム1020は、PBPレンズまたは格子などのPBP光学素子であってもよく、それらの機能性を図12A~図12Bに関して以下でさらに詳しく考察する。さらなる例として、いくつかの実施形態では、LCパターン化制御システム1020は、局所的に印加された磁場を用いてLCを揃えることにより可能となされる、屈折力の連続的な調節の範囲を有する可変焦点レンズであってもよい。
光学システム900に関する上の考察と同様に、光学システム1000は、光を光学システム1000の射出瞳1030にフォーカスするレンズまたは他の光学素子、目の位置情報をコントローラモジュールに提供する視線追跡モジュール、射出瞳1030を目の注視の角度に応じて異なる場所にステアリングする光学素子など、示されない追加的なコンポーネントを含む場合がある。
図11は、様々な実施形態による、LCパターン化制御システムを含む拡張現実光学システム1100の一部を図示する概略図である。例えば、光学システム1100は、拡張現実NEDに含まれてもよい。光学システム1100は、いくつかの点で光学システム900および1000とは異なっている。例えば、光学システム900および1000は、仮想世界の光を用いて動作するように構成されるが、光学システム1100は、仮想世界の光と現実世界の光を用いて動作するように構成される。
示されるように、光学システム1100は、光源1110およびLCパターン化制御システム1120を含む。上述の光源910と同様に、光源1110は、例えば、OLED、AMOLED、LED、レーザ、SLED、または光のビームをLCパターン化制御システム1120に投影するそれらの何らかの組み合わせを含んでもよい。さらには、いくつかの実施形態では、光源1110は、偏光した光を作り出すことができるか、代替的には、LCパターン化制御システム1120が光源1110からの光を偏光させる偏光層を含んでもよい。
例として、LCパターン化制御システム1120は、現実世界の光に対して透明な反射モードで機能し、現実世界の光を、光源1110を使用して生成された仮想的な画像と組み合わせる。例えば、いくつかの実施形態では、LCパターン化制御システム1120は、図8に関して上述したLCパターン化制御システム800であってもよい。LCパターン化制御システム1020に関する上の考察と同様に、LCパターン化制御システム1120は、例えば、空間光変調器、PBP光学素子、可変焦点レンズであってもよく、とりわけいくつかの実施形態では、ホログラフィで使用されてもよい。
いくつかの実施形態では、光学システム1100は、プリズム、導波路光学システム、または光源1110からの光を射出瞳位置1130にリダイレクトおよび/またはフォーカスする他の光学素子をさらに含んでもよい。そのような場合、LCパターン化制御システムは、図11に示されるLCパターン化制御システム1120とは異なる光学システムに異なるように配置されてもよい(または配置されなくてもよい)。いくつかの実施形態では、光学システム1100はまた、光を光学システム1100の射出瞳1130にフォーカスするレンズまたは他の光学素子、目の位置情報をコントローラモジュールに提供する視線追跡モジュール、射出瞳1130を目の注視の角度に応じて異なる場所にステアリングする光学素子など、示されない他のコンポーネントを含む場合がある。つまり、実施形態は、本明細書で開示される技法に従ってLCパターン化制御システムを含むAR光学システムのあらゆる技術的に実現可能な構成を含むことができる。
図12Aは、様々な実施形態による、PBP格子1200Aの図である。互いに直交するx軸およびy軸1210が、基準として図示される。z軸は図示されていないが、xy平面に垂直で、格子1200Aの光軸に沿っている。
示されるように、格子1200Aは、LCまたは線形反復パターンで配向するメタ構造の一軸速軸1220を含む。図12Aでは、速軸の配向は、LCまたはメタ構造の配向を概略的に表現するように揃えられた短い線分として図示されている。例えば、速軸1220Aは、x方向に配向しているが、LC1220Bはy方向に配向している。1220Aと1220Bとの間の速軸は、x方向とy方向に対して中間的な方向に沿って揃っている。そのようなパターン化された配向を有する一軸波長板は、光の光波が波長板(例えば、位相板)を伝播する際の偏光の進行の結果として、光の幾何学的位相シフトを引き起こす。様々な実施形態では、x軸に沿う速軸の配向は、格子1200Aの特定のxy平面について一定である。さらには、図示されていないが、様々な実施形態において、xy平面に垂直な(z軸)、ある方向における速軸の配向は、回転的に変化してもよい(例えば、ねじれ構造)。
格子1200Aの線形反復パターンは、パターンの繰返し部分の間がy軸に沿って距離1230の半分であるピッチを有する。ピッチは、一部、格子1200Aの光学的な性質を決定する。例えば、光学軸に沿って格子1200Aに入射する偏光した光は、それぞれが回折次数m=+1、-1、および0に対応する、一次、共役、および漏れ(leakage)の光を含む格子出力をもたらす。本明細書では、m=+1は一次の次数として考え、共役次数はm=-1の次数として考えるが、次数の指定は反転させてもよく、または変えてもよい。ピッチは、異なる回折次数における光の回折角(例えば、ビームステアリング角)を決定する。一般的に、所与の光の波長に対し、ピッチが小さくなると、角度は大きくなる。
図12Bは、様々な実施形態による、例示的なPBPレンズ1200Bの上から見下ろした図である。互いに直交するx軸およびy軸1210が、基準として図示される。z軸は図示されていないが、xy平面に垂直で、レンズ1200Bの光軸に沿っている。xy平面のr軸は、半径方向およびレンズ1200Bの中心1225からの距離を表している。
示されるように、PBPレンズ1200Bは、半径方向および円周方向に反復するパターンで配向される速軸1235を含む。示されるように、LCまたはメタ構造は、速軸の配向を概略的に表現するように揃えられた短い線分として図示されている。例えば、光軸から固定の距離では、速軸1235Aは円周方向に配向しているが、速軸1235Bは半径方向に配向している。1235Aと1235Bとの間の速軸は、円周方向と半径方向に対して中間的な方向に沿って揃っている。別の例として、固定の半径方向に沿って、速軸1245Aは、円周方向に配向しているが、速軸1245Bは半径方向に配向している。1245Aと1245Bとの間の速軸は、円周方向と半径方向に対して中間的な方向に沿って揃っている。そのようなパターン化された配向を有するLCまたはメタ構造の一軸速軸は、光の光波が幾何学的位相板を伝播する際の偏光の進行の結果として、光の幾何学的位相シフトを引き起こす。図示されていないが、xy平面に垂直な(z軸)、ある方向における速軸の配向は、回転的に変化してもよい(例えば、ねじれ構造)。
レンズ1200Bの半径方向に反復するパターンは、パターンの繰返し部分の間がr軸に沿う距離であるピッチ1250を有する。一般的に、ピッチ1250は、半径方向に変わってもよい。例えば、r軸に沿うパターンの繰返し部分間の距離は、rが大きくなるにつれ小さくなる可能性がある。結果として、ピッチ1250は、中心1225に向かって、より大きくより近くなる場合がある。ピッチは、一部、レンズ1200Bの光学的な性質を決定する。例えば、光軸に沿ってレンズ1200Bに入射する偏光した光は、特定の光の波長に対して特定の焦点距離を有する光のレンズ出力となる。ピッチは、そのような焦点距離を決定する。一般的に、所与の光の波長に対し、ピッチが小さくなると、焦点距離は短くなる。
古典的には、光の波面は、光路長(OPL)を調節することによって制御され、波の速度(材料の屈折率に依存する)と材料を通る波の物理的な伝播距離との積として等方的な材料について定義される。古典的なレンズでは、レンズの湾曲面によって生ずる空間的に変化するOPLは、波面の位相シフトとなり、レンズの焦点距離をもたらす。それとは対照的に、PBPレンズの幾何学的位相シフトは、PBPレンズの異方性の体積を通過する光波の進行により生じる。位相シフトは、異方性のものを通過する個々の光波の経路の幾何学に依存し、光波を変形させる。例えば、LCおよびPBPレンズ内のメタ材料のナノ構造の分子の異方性は、透過または反射される光波の位相シフトをもたらす。そのような位相シフトは、有効な光軸の配向および異方性の材料の速軸配向に直接的に比例する。
いくつかの実施形態では、PBPレンズ1200BなどのPBPレンズは、アクティブ(「アクティブ素子」とも称される)またはパッシブ(「パッシブ素子」とも称される)であってもよい。例えば、アクティブなPBPレンズは、次の3つの光学的な状態を有する:加法状態、中間状態、および減法状態。加法状態は、屈折力を系に加え、中間状態は系の屈折力に影響せず、またアクティブなPBPレンズを通過する光の偏光に影響せず、そして減法状態は系から屈折力を減ずる。
アクティブなPBPレンズの状態は、アクティブなPBPレンズに入射する光の偏光の左右像、および液晶から作られたアクティブなPBPレンズに印加される磁場の尺度によって決定される場合がある。例えば、いくつかの実施形態では、アクティブなPBP LCレンズは、右回りの円偏光を有する入射光およびゼロの(またはより一般的には、しきい値磁場を下回る)磁場が印加されたことに応答して減法状態で動作する。いくつかの実施形態では、アクティブなPBP LCレンズは、左回りの円偏光を有する入射光およびゼロの磁場が印加されたことに応答して加法状態で動作する。いくつかの実施形態では、アクティブなPBP LCレンズは、印加される磁場に応答して(偏光に関わらず)中間状態で動作する。印加される磁場は、LCを正の誘電率異方性を用いて印加される磁場方向に沿って揃える。アクティブなPBP LCレンズが、加法または減法状態にある場合、アクティブなPBP LCレンズから出力される光は、アクティブなPBP LCレンズに入る光の左右像と反対の左右像を有する。対照的に、アクティブなPBP LCレンズが、中間状態にある場合、アクティブなPBP LCレンズから出力される光は、アクティブなPBP LCレンズに入る光と同じ左右像を有する。
パッシブなPBPレンズは、次の2つの光学的な状態を有する:加法状態、および減法状態。パッシブなPBPレンズの状態は、パッシブなPBPレンズに入射する光の偏光の左右像によって決定される。一般に、パッシブなPBPレンズは、パッシブなPBPレンズに入る光とは反対の左右像を有する光を出力する。例えば、いくつかの実施形態では、パッシブなPBPレンズは、右回りの偏光を有する入射光に応答して減法状態で動作し、左回りの偏光を有する入射光に応答して加法状態で動作する。
いくつかの実施形態では、1200BなどのPBP格子は、アクティブ(「アクティブ素子」とも称される)またはパッシブ(「パッシブ素子」とも称される)であってもよい。アクティブなPBP格子は、例えば、アクティブなPBPレンズの状態と同様に、次の3つの光学的な状態を有する:加法状態、中間状態、および減法状態。加法状態では、アクティブなPBP格子は特定の波長の光を、減法状態の回折角に対して正となる角度に回折する。減法状態では、アクティブなPBP格子は特定の波長の光を、加法状態の正の角度に対して負となる角度に回折する。その一方で、中間状態では、PBP格子は光の回折に至らず、アクティブなPBP格子を通過する光の偏光に影響しない。
アクティブなPBP格子の状態は、アクティブなPBP格子に入射する光の偏光の左右像、およびアクティブなPBP格子に印加される磁場の尺度によって決定される場合がある。例えば、いくつかの実施形態では、アクティブなPBP格子は、右回りの円偏光を有する入射光およびゼロの(またはより一般的には、しきい値磁場を下回る)磁場が印加されたことに応答して減法状態で動作する。いくつかの実施形態では、PBP格子は、左回りの円偏光を有する入射光およびゼロの磁場が印加されたことに応答して加法状態で動作する。いくつかの実施形態では、PBP格子は、印加される磁場に応答して(偏光に関わらず)中間状態で動作する。正の誘電率異方性を有する液晶は、印加される磁場方向に沿って揃えることができる。アクティブなPBP格子が、加法または減法状態にある場合、アクティブなPBP格子から出力される光は、アクティブなPBP格子に入る光の左右像と反対の左右像を有する。アクティブなPBP格子が、中間状態にある場合、アクティブなPBP格子から出力される光は、アクティブなPBP格子に入る光と同じ左右像を有する。
パッシブなPBP格子の状態は、パッシブなPBP格子に入射する光の偏光の左右像によって決定される。例えば、いくつかの実施形態では、パッシブなPBP格子は、右回りの円偏光を有する入射光に応答して減法状態で動作する。いくつかの実施形態では、パッシブなPBP格子は、左回りの円偏光を有する入射光に応答して加法状態で動作する。加法または減法状態にあるパッシブなPBP格子では、パッシブなPBP格子から出力される光は、パッシブなPBP格子に入る光の左右像と反対の左右像を有する。
図13は、様々な実施形態による、光のビームを変調するための方法を図示するフロー図である。図1~図12のシステムを参照して方法ステップを説明するが、当業者であれば、あらゆるシステムは、他の実施形態では任意の順序で、方法ステップを実装するように構成されてもよいことを理解されよう。
示されるように、方法1300は、ステップ1302に開始し、このステップでは、アプリケーションは、ある時点でのLCパターン化制御システムのピクセルの状態を判定する。アプリケーションは、例えば、図3に関して上述したようなアプリケーションストア355に記憶されたアプリケーションのうちの1つであってもよく、ゲーミングアプリケーション、会議アプリケーション、動画再生アプリケーション、またはあらゆる他の適切なアプリケーションを含んでもよい。いくつかの実施形態では、アプリケーションは、ステップ1302において、ONとOFFをする、LCパターン化制御システムのピクセルを判定する。本明細書では主にそのようなシステムについて考察するが、いくつかの実施形態では、アプリケーションはまた、中間の状態を判定してもよい。つまり、磁場駆動システムに応じて、中間的な状態の一部またはすべてが、LCパターン化制御システムにおいて達成可能であり得る。
ステップ1302においてアプリケーションによって判定されたピクセル状態は、一般的に動的な光学用途に依存し得る。例えば、アプリケーションは、画像を形成するために、空間光変調器のどのピクセルがONまたはOFFされる必要があるかを判定することができる。別の例として、アプリケーションは、コヒーレントな光源によって発せられる光からホログラムを生成するために必要なピクセル状態を判定するために、ホログラフィ方程式を解くことができる。他のピクセル状態は、他の動的な光学用途向けに判定されてもよい。
ステップ1304では、アプリケーションは、LCパターン化制御システムのピクセルに関連付けられる液晶を、判定されたピクセル状態に基づいて、磁場を使用して駆動する。それにより、ピクセルに関連付けられるLCの異方性分子を、対応する磁石によって作り出された磁場に揃うよう再配向することができる。例えば、コントローラは、適当な配線を通じて電流を駆動して、図5B、図6B、および図8Bに、それぞれ上述するようなLCパターン化制御システム500、600、および800内の磁石を切り替えることができる。別の例として、コントローラは、電圧を印加して、図7Bに関して上述したようなLCパターン化制御システム700内で切り替わるように、磁石のコイルを通じて電流を駆動する。
ステップ1306において、アプリケーションは、光ビームをLCパターン化制御システムに投影させる。LCパターン化制御システムは、空間的に変化する変調を、そのような光ビームに与える。複屈折性により、LCを通過する光の位相は、異なる状態を有するピクセルごとに異なって変調される。結果として、LCパターン化制御システムは、上述したように、例えば、画像を形成してもよく、コヒーレントな光からホログラムを形成してもよい。いくつかの実施形態では、LCパターン化制御システムは、図5A~図5B、図6A~図6B、および図7A~図7Bに関してそれぞれ上述した反射型のLCパターン化制御システム500、600、または700におけるように、変調光を反射してもよい。他の実施形態では、LCパターン化制御システムは、図8A~図8Bに関して上述したLCパターン化制御システム800におけるように、変調光を透過してもよい。
ステップ1308において、アプリケーションは、別の時点へと継続するかどうかを判定する。アプリケーションが継続すると判定した場合、方法1300は、ステップ1302に戻り、このステップでは、アプリケーションは、次の時点でのLCパターン化制御システムのピクセルの状態を判定する。一方で、アプリケーションが継続しないと判定した場合、方法1300は終了する。
本明細書において開示されるLCパターン化制御システムの1つの利点は、LCを揃えるために電場ではなく磁場を使用することが、ピクセルサイズを従来型のLCデバイスの限界を下回るよう低減できることである。例えば、実施形態のピクセルサイズは、約1μmより小さくてもよく、約100nmなどであってもよい。本明細書において開示されるLCパターン化制御システムはまた、イオンシールドによって影響されない。加えて、異方性磁石の磁化は、そのような磁石が切り替わった後に固定することができ、電力消費を伴わずにそのような磁石によって作り出された磁場にLCが揃ったままにすることができる。これらの技術上の利点は、従来技術の手法に優る1つまたは複数の技術的な進歩を表している。
請求項のいずれかで述べられる請求項要素のいずれか、および/または本出願において説明されるあらゆる要素の、任意およびすべての組み合わせは、あらゆる様式で、本開示および保護の企図される範囲に含まれる。
本開示の実施形態の前述の説明は、説明を目的として提示されたものであり、網羅的であること、または本開示を開示される厳密な形態に限定するように意図されていない。当業者であれば、上述の開示に照らして、多くの修正形態および変形形態が可能であることを諒解されよう。
本説明の一部分は、本開示の実施形態を、情報に対する操作のアルゴリズムおよび記号的な表現の観点から説明している。このようなアルゴリズム的な説明および表現は、一般的にはデータ処理分野の熟練者により、自身の仕事の実体を、他の当業者に効果的に伝えるために使用される。このような操作は、機能的に、計算科学的に、または論理的に説明されるが、コンピュータプログラムまたは等価的な電気回路、マイクロコードなどによって実装されるものと理解される。さらには、一般性を失うことなく、時には、このような操作の配置構成をモジュールと称することが便利であることもまた証明されている。説明される操作およびその関連するモジュールは、ソフトウェア、ファームウェア、ハードウェア、またはそれらのあらゆる組み合わせに具体化され得る。
本明細書において説明されるステップ、操作、またはプロセスのいずれも、1つまたは複数のハードウェアまたはソフトウェアモジュールにより、単体で、または他のデバイスとの組み合わせとして、実施または実装することができる。一実施形態において、ソフトウェアモジュールは、説明されるステップ、操作、またはプロセスの、いずれかまたはすべてを実施するためにコンピュータプロセッサによって実行可能な、コンピュータプログラムコードを含むコンピュータ可読媒体を備えるコンピュータプログラム製品により実装される。
本開示の実施形態はまた、本明細書における動作を実施するための装置に関連する場合がある。この装置は、必要とされる目的のために特別に構築されてもよく、および/またはコンピュータに記憶されるコンピュータプログラムによって選択的にアクティブ化または再構成される汎用コンピューティングデバイスを含んでもよい。そのようなコンピュータプログラムは、コンピュータシステムバスに連結可能な場合がある、非一時的な有形のコンピュータ可読記憶媒体、または電子的な命令を記憶するために適したあらゆるタイプの媒体に記憶されてもよい。さらには、本明細書で言及されるあらゆるコンピューティングシステムは、単一のプロセッサを含んでもよく、またはコンピューティング能力の向上のために複数のプロセッサ設計を採用するアーキテクチャであってもよい。
本開示の実施形態はまた、本明細書において説明される計算プロセスによって作り出される製品に関連する場合がある。そのような製品は、計算プロセスから得られる情報を含んでもよく、この場合、情報は、非一時的な有形なコンピュータ可読記憶媒体に記憶され、コンピュータプログラム製品のあらゆる実施形態または本明細書において説明される他のデータの組み合わせを含んでもよい。
最終的に、本明細書で用いられる言葉は、原則的に読み易さと指示的な目的のために選ばれたものであり、発明の主題を詳述するため、またはその範囲を定めるために選ばれたものではない場合がある。したがって、本開示の範囲は、この詳細な説明によって限定されることは意図されておらず、これに基づく出願に対して発行されるあらゆる特許請求によって限定されることが意図されている。したがって、実施形態の開示は、本開示の範囲を限定するのではなく、例示的であることが意図されており、これを以下の特許請求の範囲において述べる。
様々な実施形態の説明が、説明を目的として提示されてきたが、網羅的であることまたは開示される実施形態に限定されることを意図されていない。説明される実施形態の範囲から逸脱することなく、多くの修正形態および変形形態が、当業者には明らかである。
本実施形態の態様は、システム、方法、またはコンピュータプログラム製品として具体化することができる。したがって、本開示の態様は、完全にハードウェアの実施形態、完全にソフトウェアの実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、またはソフトウェアとハードウェアの態様を組み合わせた実施形態の形態を取ってもよく、これらは本明細書においては、すべて全体的に「モジュール」または「システム」と称することができる。さらには、本開示の態様は、コンピュータ可読プログラムコードが具体化された1つまたは複数のコンピュータ可読媒体に具体化されたコンピュータプログラム製品の形態を取ってもよい。
1つまたは複数のコンピュータ可読媒体のあらゆる組み合わせを利用することができる。コンピュータ可読媒体は、コンピュータ可読の信号媒体またはコンピュータ可読記憶媒体であってもよい。コンピュータ可読記憶媒体は、例えば、電子的、磁気的、光学的、電磁気的、赤外、または半導体のシステム、装置、もしくはデバイス、または前述のあらゆる適切な組み合わせであってもよいが、それに限定されない。コンピュータ可読記憶媒体のより具体的な例(非網羅的な一覧)としては、以下が挙げられよう:1つまたは複数の配線を有する電気接続、ポータブルのコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、消去可能プログラム可能読み取り専用メモリ(EPROMまたはフラッシュメモリ)、光ファイバ、ポータブルコンパクトディスク読み取り専用メモリ(CD-ROM)、光学記憶デバイス、磁気記憶デバイス、または前述のあらゆる適切な組み合わせ。本文書のコンテキストでは、コンピュータ可読記憶媒体は、命令実行システム、装置、またはデバイスにより、またはそれと併せて使用するためのプログラムを含むか記憶することができるあらゆる有形の媒体であってもよい。
本開示の態様は、本開示の実施形態による、方法、装置(システム)、およびコンピュータプログラム製品のフローチャート図および/またはブロック図を参照して上述される。フローチャート図および/またはブロック図のそれぞれのブロック、ならびにフローチャート図および/またはブロック図におけるブロックの組み合わせは、コンピュータプログラム命令によって実装可能であることを理解されたい。これらのコンピュータプログラム命令は、汎用コンピュータ、特殊目的コンピュータ、または他のプログラム可能データ処理装置のプロセッサに提供されて、マシンを作り出すことができる。命令は、コンピュータまたは他のプログラム可能データ処理装置のプロセッサを通じて実行されると、フローチャートおよび/またはブロック図の1つまたは複数のブロックに指定される機能/作用の実装を可能にする。そのようなプロセッサは、限定することなく、汎用プロセッサ、特殊目的プロセッサ、特定用途向けプロセッサ、またはフィールドプログラマブルゲートアレイであってもよい。
図面中のフローチャートおよびブロック図は、本開示の様々な実施形態による、システム、方法、およびコンピュータプログラム製品の可能な実装形態の、アーキテクチャ、機能性、および動作を図示している。この点において、フローチャートまたはブロック図のそれぞれのブロックは、指定される論理機能を実装するための1つまたは複数の実行可能な命令を含む、コードのモジュール、セグメント、または一部を表現している場合がある。一部の代替的な実装形態では、ブロックに示される機能は、図面に示される順とは異なって生じてもよいことにも留意されたい。例えば、続けて示される2つのブロックは、実際には、実質的に同時的に実行されてもよく、または関与する機能性に応じて、ブロックは時に逆の順で実行されてもよい。ブロック図および/またはフローチャート図のそれぞれのブロック、ならびにブロック図および/またはフローチャート図のブロックの組み合わせは、指定された機能もしくは作用を実施する特殊目的のハードウェアベースのシステム、または特殊目的ハードウェアとコンピュータ命令との組み合わせによって実装することも可能であることにも留意されたい。
上記は、本開示の実施形態に向けたものであるが、本開示の他の実施形態およびさらなる実施形態が、その基本的な範囲を逸脱することなく考案されてもよく、その範囲は、以下の特許請求の範囲によって定められる。

Claims (15)

  1. 複数のピクセルを備え、前記ピクセルのそれぞれが、
    液晶と、
    磁石と
    を備え、前記磁石の切り替えに応答して、前記液晶の分子が、前記磁石によって生成された磁場に実質的に揃うように再配向する、液晶パターン化制御システム。
  2. 前記ピクセルのそれぞれに含まれる前記液晶と前記磁石との間に配設された反射層
    をさらに備え、
    前記反射層が光を反射するように構成されており、前記光は、前記液晶パターン化制御システムに入射し、前記ピクセルに含まれる前記液晶によって変調される、請求項1に記載の液晶パターン化制御システム。
  3. 前記ピクセルのそれぞれに含まれる前記磁石が、マイクロ粒子、ナノ粒子、または複数の磁力ドメインを含み、好ましくは前記液晶パターン化制御システムが、
    前記ピクセルに含まれる前記磁石の下で、交差配線で配設される複数の配線
    をさらに備え、
    前記ピクセルに含まれる前記磁石のそれぞれが、対応する配線を通じて電流を駆動することにより切り替わる、請求項1または2に記載の液晶パターン化制御システム。
  4. 前記ピクセルのそれぞれに含まれる前記磁石が、高透磁性コアに巻き付けられた様々なマイクロコイルまたはナノコイルを含み、
    前記ピクセルに含まれるそれぞれのマイクロコイルまたはナノコイルが、対応する電圧源および共通のグラウンドに接続され、好ましくは、
    前記ピクセルのそれぞれに含まれる前記磁石が、前記ピクセルに含まれる前記液晶に巻き付けられている、請求項1から3のいずれか一項に記載の液晶パターン化制御システム。
  5. 前記ピクセルのそれぞれが、前記ピクセルに含まれる前記液晶に隣接して配設される少なくとも1つのアラインメント層をさらに備え、
    前記ピクセルのそれぞれに含まれる前記少なくとも1つのアラインメント層が、前記液晶に関連付けられる前記磁石の切り替え前に、前記ピクセルに含まれる前記液晶の分子を実質的に揃える、請求項1から4のいずれか一項に記載の液晶パターン化制御システム。
  6. 前記液晶パターン化制御システムが、空間光変調器、パンチャラトナム-ベリー位相レンズ、液晶ディスプレイ画面、または可変焦点レンズのうちの1つを含む、請求項1から5のいずれか一項に記載の液晶パターン化制御システム。
  7. 前記液晶パターン化制御システムが、コンピュータ生成ホログラフィで使用され、好ましくは、前記液晶パターン化制御システムが、ニアアイディスプレイデバイスに含まれる、請求項1から6のいずれか一項に記載の液晶パターン化制御システム。
  8. 複屈折材料と、
    前記複屈折材料に隣接して配設される少なくとも1つのアラインメント層と
    を備え、
    前記複屈折材料内の分子の再配向が、磁石によって駆動される、セル。
  9. 前記複屈折材料と前記磁石との間に反射層が配設され、好ましくは、前記セルが、ガラス基板層または偏光層のうちの少なくとも1つをさらに備える、請求項8に記載のセル。
  10. 前記複屈折材料が、平面的またはホメオトロピックなアラインメントにある液晶分子を含み、
    前記磁石の切り替えに応答して、前記複屈折材料に含まれる前記液晶分子が、前記磁石によって生成された磁場に実質的に揃うように再配向する、請求項8または9に記載のセル。
  11. 前記磁石が、マイクロ粒子、ナノ粒子、複数の磁力ドメイン、または高透磁性コアに巻き付けられたマイクロコイルもしくはナノコイルを含み、好ましくは、前記磁石が、前記複屈折材料に巻き付けられている、請求項8から10のいずれか一項に記載のセル。
  12. 光を変調するためのコンピュータ実装方法であって、
    少なくとも1つの時点について複数のピクセルの状態を判定することと、
    前記ピクセルの前記判定された状態に基づいて、前記ピクセルに関連付けられる液晶を磁場を用いて駆動することと、
    前記液晶を通過する光を投影することと
    を含む、方法。
  13. 前記液晶を通過する前記光を反射することをさらに含む、請求項12に記載の方法。
  14. 前記液晶を駆動することが、前記液晶に関連付けられる磁石において交差する配線を通って電流を駆動させること、または前記液晶に関連付けられる前記磁石に電圧を印加すること、のいずれかを含む、請求項12または13に記載の方法。
  15. 前記光が、人工現実用途に関連付けられる、請求項12から14のいずれか一項に記載の方法。
JP2022500567A 2019-09-05 2020-08-06 磁場駆動の液晶パターン化制御システム Pending JP2022547252A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/561,258 2019-09-05
US16/561,258 US11249365B2 (en) 2019-09-05 2019-09-05 Magnetic field driven liquid crystal patterning control system
PCT/US2020/045231 WO2021045865A1 (en) 2019-09-05 2020-08-06 Magnetic field driven liquid crystal patterning control system

Publications (1)

Publication Number Publication Date
JP2022547252A true JP2022547252A (ja) 2022-11-11

Family

ID=72193608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022500567A Pending JP2022547252A (ja) 2019-09-05 2020-08-06 磁場駆動の液晶パターン化制御システム

Country Status (5)

Country Link
US (2) US11249365B2 (ja)
EP (1) EP4025958A1 (ja)
JP (1) JP2022547252A (ja)
CN (1) CN114270253A (ja)
WO (1) WO2021045865A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013538B2 (en) 2017-07-03 2024-06-18 Holovisions LLC Augmented reality (AR) eyewear with a section of a fresnel reflector comprising individually-adjustable transmissive-reflective optical elements
US11754843B2 (en) 2017-07-03 2023-09-12 Holovisions LLC Augmented reality eyewear with “ghost buster” technology
US11307420B2 (en) 2017-07-03 2022-04-19 Holovisions LLC Augmented reality eyewear with “ghost buster” technology
US11249365B2 (en) * 2019-09-05 2022-02-15 Facebook Technologies, Llc Magnetic field driven liquid crystal patterning control system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602908A (en) 1969-07-22 1971-08-31 Kokusai Denshin Denwa Co Ltd Wire memory matrix
FR2606418B1 (fr) 1986-11-07 1994-02-11 Commissariat A Energie Atomique Dispositifs optiques a cristal liquide lyotrope commandables thermiquement, electriquement ou magnetiquement
JPH09330046A (ja) * 1996-04-04 1997-12-22 Sony Corp ディスプレイ装置およびディスプレイ方法
JP2001272681A (ja) * 2000-03-24 2001-10-05 Casio Comput Co Ltd 液晶表示素子
US6647771B2 (en) * 2000-08-30 2003-11-18 Mlhd, Inc. External pressure display for vehicle tires
EP1197791A3 (en) * 2000-10-10 2002-12-04 Sony International (Europe) GmbH Liquid crystal mixture including a dye with a dipole
JP3608562B2 (ja) * 2003-03-07 2005-01-12 ソニー株式会社 反射型液晶表示素子および液晶表示装置
KR20050065822A (ko) * 2003-12-24 2005-06-30 엘지.필립스 엘시디 주식회사 액정표시소자와 그 구동방법
GB0525766D0 (en) * 2005-12-19 2006-01-25 Dymo Nv Magnetic tape
KR20090019196A (ko) * 2007-08-20 2009-02-25 삼성전자주식회사 마그네틱 반사형 디스플레이
US20090153942A1 (en) * 2007-12-17 2009-06-18 Palo Alto Research Center Incorporated Particle display with jet-printed color filters and surface coatings
CN202171715U (zh) * 2011-08-08 2012-03-21 京东方科技集团股份有限公司 一种液晶显示面板和液晶显示装置
CN105425428A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 阵列基板及磁光开关显示器
US20190212482A1 (en) 2018-01-10 2019-07-11 Oculus Vr, Llc Angle selective filter for near eye displays
US11002969B2 (en) 2018-01-25 2021-05-11 Facebook Technologies, Llc Light projection system including an optical assembly for correction of differential distortion
US11249365B2 (en) * 2019-09-05 2022-02-15 Facebook Technologies, Llc Magnetic field driven liquid crystal patterning control system

Also Published As

Publication number Publication date
EP4025958A1 (en) 2022-07-13
US11249365B2 (en) 2022-02-15
US20210072585A1 (en) 2021-03-11
US11681194B2 (en) 2023-06-20
US20220171232A1 (en) 2022-06-02
CN114270253A (zh) 2022-04-01
WO2021045865A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7289842B2 (ja) 偏光子を利用したpancharatnam berry位相構成要素の画質改善
US11175507B2 (en) Polarization-sensitive components in optical systems for large pupil acceptance angles
US11294184B2 (en) Foveated display system
US11681194B2 (en) Magnetic field driven liquid crystal patterning control system
US11668932B2 (en) Switchable Pancharatnam-Berry phase grating stack
WO2023003689A1 (en) Techniques for multi-layer liquid crystal active light modulation
US20220026721A1 (en) Polarization-sensitive components in optical systems for large pupil acceptance angles
US12078896B2 (en) Techniques for complex wavefront modulation
US11448803B1 (en) Pancake lens including diffuser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240813