JP2022546369A - 衛星編隊ベースの遠隔検知システム及びコンステレーションシステム - Google Patents

衛星編隊ベースの遠隔検知システム及びコンステレーションシステム Download PDF

Info

Publication number
JP2022546369A
JP2022546369A JP2022512772A JP2022512772A JP2022546369A JP 2022546369 A JP2022546369 A JP 2022546369A JP 2022512772 A JP2022512772 A JP 2022512772A JP 2022512772 A JP2022512772 A JP 2022512772A JP 2022546369 A JP2022546369 A JP 2022546369A
Authority
JP
Japan
Prior art keywords
satellite
baseline
spatial
master
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022512772A
Other languages
English (en)
Other versions
JP7391429B2 (ja
Inventor
フォン ヤン,
ウェイジャ レン,
ヂーグゥイ ドゥ,
シィェンフォン チェン,
Original Assignee
長沙天儀空間科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910788732.4A external-priority patent/CN110456350B/zh
Priority claimed from CN201910787398.0A external-priority patent/CN110488292B/zh
Application filed by 長沙天儀空間科技研究院有限公司 filed Critical 長沙天儀空間科技研究院有限公司
Publication of JP2022546369A publication Critical patent/JP2022546369A/ja
Application granted granted Critical
Publication of JP7391429B2 publication Critical patent/JP7391429B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • B64G1/1035Earth observation satellites using radar for mapping, surveying or detection, e.g. of intelligence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9023SAR image post-processing techniques combined with interferometric techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Navigation (AREA)

Abstract

本発明は、SARシステムをそのペイロードとして備えるマスター衛星と、第1の付随衛星と、第2の付随衛星とを備える、遠隔検知システム又は特に衛星編隊ベースの遠隔検知システムに関し、第1の付随衛星及び第2の付随衛星がマスター衛星の周りを飛行し、マスター衛星は、同一のクロストラックベースライン成分を有する第1の空間ベースライン及び第2の空間ベースラインを規定するために、第1の付随衛星及び第2の付随衛星の運動軌跡の長軸上に位置される。本発明は、衛星編隊に基づく高精度で広範囲の3次元撮像を可能にする一方で、時間、周波数、及び、空間に関する同期にしたがって地面領域の変化の時空間的特徴を取得する。【選択図】 図1

Description

本発明は、遠隔検知技術、より詳細には、衛星編隊ベースの遠隔検知システム及びコンステレーションシステムに関する。
衛星遠隔検知システムとは、地球の能動的/受動的な画像観測を実行するとともに、デジタル画像の形態で地球の様々な特性情報を取得するように構成されるセンサを備える衛星プラットフォームを指す。合成開口レーダーを備える衛星は、マイクロ波能動検出の方法を採用する。レンジ方向のパルス圧縮とアジマス方向の合成開口技術により、衛星は、雲、雨、霧、砂嵐などを突き抜け、全天候型にわたって終日稼働することができる。それは、高分解能で広範囲の地面の撮像を実現でき、一年中曇りや雨の多い地域のデータを取得するのに最も効果的な方法である。
光学遠隔検知とは異なり、合成開口レーダー衛星は、観測領域の複合画像を取得することができ、すなわち、強度情報及び位相情報の両方を網羅することができる。合成開口干渉法技術により、レーダー複合画像データの位相情報を抽出して、地形や表面の小さな変化に関する情報を反転させることができる。この情報により、合成開口レーダー衛星は、土地資源、地震、地質学、防災及び緩和、農業、林業、水文学、測量及び地図作成、並びに、軍事の分野で独自の用途価値を有する。
例えば、公開番号CN108120981Aを伴う中国特許文献は、検出されるべき領域におけるマルチビューSAR遠隔検知画像を取得するステップであって、マルチビューSAR遠隔検知画像がq個のシングルビューSAR遠隔検知画像を含み、各シングルビューSAR遠隔検知画像が、検出されるべき領域における深海水域から浅海水域へと至る波を示す画像の特性を含む、ステップと、浅海水域での浅水深検出結果を取得するために各シングルビューSAR遠隔検知画像をそれぞれ計算するステップと、各シングルビューSAR遠隔検知画像によって取得される浅水深検出結果に対してそれぞれ潮汐補正を実行するステップと、補正された浅水深検出結果を要素ごとに構成し、所定の規則にしたがってq個の要素を含む1次元浅水深配列を形成するステップと、カルマンフィルタリングアルゴリズムによって浅水深配列の全てのグループをフィルタで除去するステップと、浅水深配列の全てのフィルタ処理されたグループにおける少なくとも1つの要素数値を浅海水域の深さとして取得するステップとを含む、浅水深レーダー遠隔検知検出方法を開示する。この特許は、合成開口レーダー撮像のために単一のレーダー搭載衛星を採用するとともに、複数のシングルビューSAR遠隔検知画像を使用して、特に高い水色レベル、曇及び雨を伴うとともに船にとってアクセスできない浅海域で大面積のほぼリアルタイムの浅海水中地形検出を実現する。
例えば、公開番号CN108053416Aを伴う中国特許文献は、衛星遠隔検知画像ブラウジングモジュールと、画像サブセクションパーティションモジュールと、境界ポイントの自動捕捉モジュールと、石油タンクシェード高さ測定モジュールと、石油備蓄計算モジュールとを含み、衛星遠隔検知画像を処理するときに人間機械インタラクティブ情報を取得するために衛星遠隔検知画像ブラウジングモジュールが使用され、石油タンクターゲットの輪郭エッジを抽出するとともにキーポイントの選択を容易にするために画像サブセクションパーティションモジュールが使用され、アーク側のキーポイントの補助的な選択のために境界ポイントの自動捕捉モジュールが使用され、石油タンクシャドウ情報に基づいて石油タンクの高さを計算するために石油タンクシェード高さ測定モジュールが使用される、単一の衛星画像に基づく最大石油備蓄抽出システムを開示する。この特許では、単一の衛星画像に基づいてタンク高度の正確な抽出を実行でき、同じ名前のアークポイントを手動で決定することによって引き起こされる計算エラーが効果的に防止され、タンク高度の抽出率が大幅に向上される。
しかしながら、前述の特許は、制限された地形特徴、制限された分解能、及び、制限されたマッピング幅を取得する遠隔検知撮像のために単一のSAR衛星を使用する。例えば、単一の衛星画像における地面の高さ情報は不十分であり、石油タンクの抽出された高さは十分に正確ではない。更に、画像分解能が制限され、取得された輪郭、影、及び、他の情報は十分に正確ではない。不正確な画像情報を使用すると、同じ名前のアークポイントを手動で決定することによって引き起こされる計算エラーが回避される場合であっても、正確な高さ情報を取得することができない。しかしながら、浅水域における水中地形検出を実現するために複数のシングルビューSAR遠隔検知画像を使用しても、複数のシングルビューSAR遠隔検知画像の時間同期問題を回避することはできず、このことは、単一の衛星から取得される複数のシングルビューSAR遠隔検知画像が時間及びアジマス方向に関して不連続であることを意味し、また、異なる時間に捕捉される画像に含まれる水深情報は、浅水域水中検出のリアルタイム検出を保証できない。加えて、単一の合成開口レーダー衛星の場合、画像の分解能及びマッピング幅が矛盾しているため、広範囲撮像中に高分解能を維持することが不可能である。したがって、大規模な浅水域撮像の場合、比較的低分解能の撮像しか維持できず、これは浅海水での水面下検出の助とならない。衛星編隊又はコンステレーションに基づく分散型合成開口レーダーシステムは、異なる衛星に受信アンテナを設置して、分離された送受信プラットフォームを実現し、それにより、長い衛星間空間ベースラインを有するだけでなく、空間分解能も向上させ、また、複数の低分解能広範囲合成開口レーダー画像を組み合わせることによって高精度の広範囲画像を取得する。分散型合成開口レーダー衛星システムは、少なくとも2つの複合画像を生成でき、また、衛星間空間ベースラインの存在に起因して、2つの複合画像の干渉処理中に、より多くの地形位相情報を提供でき、それにより、三次元シーンの高精度で広範囲の遠隔検知撮像の実現のための条件がもたらされる。
例えば、公開番号CN108557114Aを伴う中国特許文献は、サービス衛星と6つの遠隔検知ユニット衛星とを備える分散型遠隔検知衛星を伴い、また、分散型編隊モード又は合成開口一体型モードをサービス衛星及び遠隔検知ユニット衛星で使用できる。この用途は、分散型衛星技術により、モジュール式衛星の迅速な設計、開発、及び、軌道上用途を実現し、費用効率が高い衛星システムを使用して地球の高性能遠隔検知を達成するとともに、軌道上自律結合による合成開口撮像撮像を実施し、それにより、空間分解能を向上させて、宇宙資源を最大限に活用する。
例えば、公開番号CN104297751Bを伴う中国特許文献は、分散型衛星SARシステムのメジャーマイナーSAR画像融合方法を伴い、この方法は、具体的には、以下のステップ、すなわち、ドップラースペクトル包絡線補正と、レーダー幾何学的方法を使用する画像レジストレーションと、地形位相回復と、SAR画像最大コントラスト法を使用するレジストレーションエラー及び残留位相偏差の推定と、メジャーマイナーSAR画像の微細レジストレーション及び位相偏差補正と、ドップラースペクトルスプライシングとを含む。この用途は、メジャーマイナーSAR画像に対する効果的な画像同時レジストレーションを実行して、長いトラックに沿うベースラインを伴う分散型衛星SARシステムのドップラースペクトルオーバーラップ度がほぼゼロの場合にアジマス方向分解能を向上させ、高品質の干渉合成開口レーダー処理の性能要件を満たすことができる。
しかしながら、上記の特許によって提供される分散型遠隔検知衛星は、編隊における衛星間の時間同期を考慮に入れず、また、2つの衛星が同時に地面の同じ領域をカバーすることを保証できず、それにより、2つの複合画像の干渉性能の低下がもたらされ、或いは更には、干渉を形成し損なう。同時に、時間の非同期性により、遠隔検知衛星が時間情報にしたがって地面領域の変化の時空間的特徴を取得することも不可能となる。更に、分散型合成開口レーダーシステムが2つの複合画像と干渉する場合、得られる位相差は、[-π、π]間の未知の整数周期によってラップされる位相の主な値であり、また、位相を拡張する必要があるが、2つの衛星間の時間の非同期性は、位相アンラッピングのエラーにつながる。その上、位相情報は地形の高さ情報を含み、そのため、遠隔検知システムでは正確な2次元シーン画像を取得できない。
更に、公開番号CN107395309を伴う中国特許文献などの先行技術は、衛星間リンクに基づく相対的な測距及び時間同期のための高精度な方法を開示し、この方法は、速度試験情報及び動的エラーモデルへのクロッキングエラーを含む、2つの衛星A、Bのそれぞれの衛星周波数マーキングにそれぞれ基づいて衛星間リンクを構築するステップと、タイムスロットで互いからそれぞれ受信される信号をA,Bの2つの衛星に捕捉させ、追跡させ、復調させ、情報フレームを回復させて、測定タイムスロットでエポックタイムを互いから送信することに基づいてローカル疑似距離を計算するステップと、最後に、衛星A及び衛星Bに、ローカルベースバンドデータに修正された疑似距離をそれぞれ埋め込ませてそれを互いに送信させ、局所的に測定されて修正された疑似距離を使用して、情報フレームから独立して復調された他の修正された疑似距離を受信するとともに、衛星間の相対距離値及び時間差を計算し、2つの衛星にクロック調整を及ぼして、衛星エフェメリス及びクロックパラメータを補正するステップとを含む。しかしながら、この特許は、時間同期のみを考慮しており、衛星プラットフォーム上の受信デバイスの周波数ドリフトによって引き起こされる干渉位相エラーも、アンテナ角度が一貫していないためにビームが同じ領域をカバーしないという問題も考慮しない。
したがって、衛星編隊ベースの合成開口レーダーを提供することによって従来の技術を改善することが望ましく、これは、時間、周波数、及び、空間同期を通じて位相アンラッピングエラーを補償して、地形高度測定の精度を向上させるとともに、高精度で広範囲の3次元撮像を提供しつつ、時間、周波数、及び、空間に関する同期にしたがって地面領域の変化の時空間的特徴を取得する。
先行技術の技術的課題に対処するため、本発明は、SARシステムをそのペイロードとして備えるマスター衛星と、第1の付随衛星と、第2の付随衛星とを備える遠隔検知システム、又は、特に衛星編隊ベースの遠隔検知システムを提供し、第1の付随衛星及び第2の付随衛星がマスター衛星の周りを飛行し、マスター衛星は、同一のクロストラックベースライン成分を有する第1の空間ベースラインAと第2の空間ベースラインBとを規定するように第1の付随衛星及び第2の付随衛星の運動軌跡の長軸上に位置される。
好適には、マスター衛星には、そのペイロードとして、撮像・検知デバイス及び同期デバイスが設けられ、同期デバイスは、時間、周波数、及び、空間に関する同期に基づいて、時系列で第1の空間ベースラインA及び第2の空間ベースラインBを形成し、撮像・検知デバイスは、第1の空間ベースラインA及び第2の空間ベースラインBにしたがって地面領域の変化の時空間的特徴を取得する。
好適には、第3の付随衛星は、マスター衛星と共にタンデム編隊で飛行するために第1の付随衛星及び第2の付随衛星の運動軌跡の外側に位置されるとともに、撮像・検知デバイス及び同期デバイスをそのペイロードとして備え、第3の付随衛星は、マスター衛星に隣接する軌道上に位置され、それにより、第3の付随衛星は、マスター衛星に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定する。撮像・検知デバイスは、高精度で広範囲の撮像を実行しながら、地形標高情報及び移動ターゲット速度情報を取得するために、第1の空間ベースラインA及び第2の空間ベースラインB並びに短いクロストラックベースラインD及び長いトラックに沿うベースラインCに基づいて最適な干渉ベースライン処理を実行する。
好適には、撮像・検知デバイスは、マスター衛星、第1の付随衛星、第2の付随衛星、及び、第3の付随衛星の衛星姿勢パラメータをリアルタイムで測定するとともに、正確な軌道決定を実行して、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを高精度で取得するように構成される測定デバイスを更に備える。
好適には、撮像・検知デバイスは、測定デバイスを使用して地面ターゲット領域に関する先験的情報を取得して、地面のターゲット領域の緯度情報に基づき、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の撮像・検知デバイスのアンテナ角度を調整することにより、一定の仰角曖昧さを維持し、それによって、異なる緯度の領域における地面仰角を測定するための精度の一貫性を高めるように更に構成される。
好適には、先験的情報に基づいて取得される地面ターゲット領域の地形高度が変化の大きな振幅を示す場合、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の撮像・検知デバイスのアンテナ角度は、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持するように調整され、それにより、SARシステムは、2つの異なる仰角曖昧さで少なくとも2回の撮像を実行する。
好適には、第3の付随衛星が同期デバイスによって同期されると、第1の空間ベースラインA、第2の空間ベースラインB、短いクロストラックベースラインD、及び、長いトラックに沿うベースラインCは、トラックに沿うベースライン及びクロストラックベースラインを時系列で規定する。
この場合、撮像・検知デバイスは、時系列のトラックに沿う接線に基づいて移動するターゲットの経時的な速度の変化情報を取得するとともに、時系列でクロストラックベースラインに基づいて経時的な地面仰角の変化情報を取得する。
好適には、マスター衛星の軌道パラメータが与えられると、第1の付随衛星及び第2の付随衛星の軌道パラメータは、有効クロストラックベースラインの長さと第1の空間ベースラインA及び第2の空間ベースラインBのクロストラック有効ベースラインの限界長とを比較するとともに第1の付随衛星及び第2の付随衛星の飛行経路の半短軸を調整することによって取得され、また、第3の付随衛星の軌道パラメータは、アジマスドップラー曖昧さ分解のための空間サンプリングの要件及びドップラー曖昧さ分解の精度の要件に基づいて取得される。
好適には、同期デバイスは、少なくとも、時間同期モジュール、周波数同期モジュール、及び、空間同期モジュールを備え、時間同期モジュールは、起動時に衛星によって運ばれるタイミングパルス信号をトリガーして、衛星間の周波数同期パルスによる衛星間の周波数差を取得し、それにより、時間同期を達成するように構成される。
好ましくは、同期デバイスにおける周波数同期モジュールは、線形周波数変調信号を同期パルスとして使用して、マスター衛星及び第1の付随衛星又は第2の付随衛星又は第3の付随衛星の同期パルス信号処理を周期的に切り換え、それにより、衛星周波数源によって引き起こされる位相差を取得し、その結果、位相補償を実行して周波数同期を達成するように構成される。
好適には、同期デバイスにおける空間同期モジュールは、地面ターゲット領域に対するマスター衛星の撮像・検知デバイスの方向と第1の付随衛星又は第2の付随衛星又は第3の付随衛星の衛星姿勢とに基づいて第1の付随衛星又は第2の付随衛星又は第3の付随衛星の撮像・検知デバイスを同じ地面ターゲット領域に向け、それにより、空間同期を達成するように構成される。
本発明は、SARシステムをそのペイロードとして備えるマスター衛星と、マスター衛星の周りを飛行する第1の付随衛星と第2の付随衛星とから成る少なくとも1つの対とを備える、衛星搭載SARコンステレーションシステムを更に備え、この場合、第1の付随衛星及び第2の付随衛星はマスター衛星の周りを飛行し、マスター衛星は、同一のクロストラックベースライン成分を有する第1の空間ベースラインA及び第2の空間ベースラインBを規定するように第1の付随衛星及び第2の付随衛星の運動軌跡の長軸上に位置される。
この場合、第1の付随衛星及び第2の付随衛星は、中心対称的にマスター衛星に対して受動的に安定した形態を形成し、それにより、第1の付随衛星がマスター衛星に対して第1の空間ベースラインAを規定し、第2の付随衛星がマスター衛星に対して第2の空間ベースラインBを規定し、また、第1の空間ベースラインA及び第2の空間ベースラインBは、長さに関して同一であり、位相に関して反対である。
好適には、衛星搭載SARコンステレーションシステムは第3の付随衛星を更に備える。
この場合、第3の付随衛星は、第1の付随衛星及び第2の付随衛星の飛行軌道の外側に位置されるとともに、第1のマスター衛星と共にタンデム編隊で飛行するようにマスター衛星に隣接する軌道上にあり、それにより、マスター衛星に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定し、また、この場合、SARシステムは、第1の空間ベースラインA及び第2の空間ベースラインBに基づき、長さに関して短いクロストラックベースラインDよりも大きい長い垂直ベースラインと、長さに関して長いトラックに沿うベースラインCよりも小さい短い水平ベースラインとを規定するとともに、短いクロストラックベースラインD及び長いトラックに沿うベースラインCと組み合わされる最適な干渉信号処理を実行し、それにより、精度及びレンジに関して改善された地形高度測定を伴って高分解能の幅広いスワスの撮像を実行する。
好適には、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の軌道パラメータが取得された後、マスター衛星は、測定デバイスを使用してSARレーダーアンテナの姿勢パラメータを取得して、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星に関する正確な軌道決定を行ない、それにより、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを高精度で取得する。
この場合、測定デバイスは、少なくとも、以下のステップ、すなわち、
主にエフェメリスデータの復号化及びデータの同期化を含めて未加工データを前処理するステップと、
微分位置決めアルゴリズムを使用してSARレーダーアンテナの位置パラメータを取得するステップと、
SARレーダーアンテナの位置パラメータを使用して整数の曖昧さの初期値を取得し、カルマンフィルタ及び再帰検索によって整数の曖昧さの正確な値を計算するとともに、キャリア位相を使用して正確な座標を取得するステップと、
取得された正確な座標を使用して衛星間ベースラインベクトルを取得するとともに、衛星間ベースラインベクトルを使用してSARレーダーアンテナの姿勢パラメータを取得するステップと、
によって姿勢測定を実行するGPS受信機を備える。
本発明は、SARシステムをそのペイロードとして備えるマスター衛星と、第3の付随衛星と、マスター衛星の周りを飛行する第1の付随衛星と第2の付随衛星とから成る少なくとも1つの対と備える衛星遠隔検知システムを更に提供し、マスター衛星がSARレーダーアンテナの姿勢パラメータを取得した後、GPS受信機は、少なくとも、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の軌道パラメータとGPSコンステレーションとのその接続とに基づいて月面重力摂動、太陽放射圧力摂動、及び、大気抗力摂動に関する先験的情報を取得し、コンステレーションシステムの軌道摂動モデルを構築して、ベースライン測定に対する摂動の影響を排除し、この場合、GPS受信機は、コンステレーションシステムの軌道摂動モデルを通じて取得される軌道決定結果とSARレーダーアンテナの姿勢パラメータとに基づいて、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを規定する。
先行技術の技術的課題に対処するため、本発明は、衛星編隊ベースの遠隔検知システムを提供し、この場合、マスター衛星は、第1の付随衛星及び第2の付随衛星の運動軌跡の長軸上に位置され、第3の付随衛星は、長さに関して同一であるとともに位相に関して反対である第1の空間ベースラインA及び第2の空間ベースラインBを規定するように、マスター衛星と共にタンデム編隊で飛行する。したがって、得られる地面高度情報がトラックに沿うベースラインとクロストラックベースラインとに起因して第1の空間ベースラインAと第2の空間ベースラインBとの間の結合によって引き起こされるその位相で混合される視線速度情報を有するという問題を防ぐことができ、これにより、地形高度測定の精度が向上する。更に、本発明は、同期デバイスを使用して、時間、周波数に関する同期に基づいてトラックに沿うベースライン及びクロストラックベースラインを時系列で形成し、それにより、時間及び周波数に関する同期情報を取得し、その結果、受信信号を較正するとともに、長い及び短いクロストラックベースラインを使用して位相アンラッピングを実行し、位相アンラッピング及び地形高度測定の両方で精度を高めることにより、地面領域で経時的に仰角及び速度に関する微妙な変化を認識できる。
好適には、衛星編隊ベースの遠隔検知システムは、撮像・検知デバイス及び同期デバイスをそのペイロードとして備えるマスター衛星と、第1の付随衛星と、第2の付随衛星とを備える。第1の付随衛星及び第2の付随衛星はマスター衛星の周りを飛行し、マスター衛星は、同一のクロストラックベースライン成分を有する第1の空間ベースラインA及び第2の空間ベースラインBを規定するように第1の付随衛星及び第2の付随衛星の運動軌跡の長軸上に位置される。同期デバイスは、時間、周波数、及び、空間に関する同期に基づいて第1の空間ベースラインA及び第2の空間ベースラインBを時系列で形成し、それにより、撮像・検知デバイスは、地面領域の変化の時空間的特徴を取得できる。
好適には、第3の付随衛星は、マスター衛星と共にタンデム編隊で飛行するために第1の付随衛星及び第2の付随衛星の運動軌跡の外側に位置されるとともに、撮像・検知デバイス及び同期デバイスをそのペイロードとして備える。第3の付随衛星はマスター衛星に隣接する軌道上に位置され、それにより、第3の付随衛星は、マスター衛星に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定する。撮像・検知デバイスは、高精度で広範囲の撮像を実行しつつ、地形仰角情報及び移動ターゲット速度情報を取得するために、第1の空間ベースラインA及び第2の空間ベースラインB並びに短いクロストラックベースラインD及び長いトラックに沿うベースラインCに基づいて最適な干渉ベースライン処理を実行する。
好適には、第3の付随衛星が同期デバイスによって同期されると、第1の空間ベースラインA、第2の空間ベースラインB、短いクロストラックベースラインD、及び、長いトラックに沿うベースラインCは、トラックに沿うベースライン及びクロストラックベースラインを時系列で規定する。撮像・検知デバイスは、時系列のトラックに沿う接線に基づいて移動するターゲットの経時的な速度の情報を取得するとともに、時系列でクロストラックベースラインに基づいて経時的な地面仰角の情報を取得する。
好適には、マスター衛星の軌道パラメータが与えられると、第1の付随衛星及び第2の付随衛星の軌道パラメータは、有効クロストラックベースラインの長さと第1の空間ベースラインA及び第2の空間ベースラインBのクロストラック有効ベースラインの限界長とを比較するとともに第1の付随衛星及び第2の付随衛星の飛行経路の半短軸を調整することによって取得される。第3の付随衛星の軌道パラメータは、アジマスドップラー曖昧さ分解のための空間サンプリングの要件及びドップラー曖昧さ分解の精度の要件に基づいて取得される。
好適には、同期デバイスは、少なくとも、時間同期モジュール、周波数同期モジュール、及び、空間同期モジュールを備え、時間同期モジュールは、起動時に衛星によって運ばれるタイミングパルス信号をトリガーして、衛星間の周波数同期パルスによる衛星間の周波数差を取得し、それにより、時間同期を達成するように構成される。
好適には、同期デバイスにおける周波数同期モジュールは、線形周波数変調信号を同期パルスとして使用して、マスター衛星及び第1の付随衛星又は第2の付随衛星又は第3の付随衛星の同期パルス信号処理を周期的に切り換え、それにより、衛星周波数源によって引き起こされる位相差を取得し、その結果、位相補償を実行して周波数同期を達成するように構成される。
好適には、同期デバイスにおける空間同期モジュールは、地面ターゲット領域に対するマスター衛星の撮像・検知デバイスの方向と第1の付随衛星又は第2の付随衛星又は第3の付随衛星の衛星姿勢とに基づいて第1の付随衛星又は第2の付随衛星又は第3の付随衛星の撮像・検知デバイスを同じ地面ターゲット領域に向け、それにより、空間同期を達成するように構成される。
好適には、撮像・検知デバイスは、マスター衛星、第1の付随衛星、第2の付随衛星、及び、第3の付随衛星の衛星姿勢パラメータをリアルタイムで測定するとともに、正確な軌道決定を実行して、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを高精度で取得するように構成される測定デバイスを更に備える。
好適には、撮像・検知デバイスは、測定デバイスを使用して地面ターゲット領域に関する先験的情報を取得して、地面ターゲット領域の緯度情報に基づき、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の撮像・検知デバイスのアンテナ角度を調整することにより、一定の仰角曖昧さを維持し、それによって、異なる緯度の領域における地面仰角を測定するための精度の一貫性を高めるように更に構成される。
好適には、先験的情報に基づいて取得される地面ターゲット領域の地形高度が変化の大きな振幅を示す場合、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の撮像・検知デバイスのアンテナ角度は、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持するように調整され、それにより、SARシステムは、2つの異なる仰角曖昧さで少なくとも2回の撮像を実行する。
先行技術の技術的課題に対処するため、本発明は、衛星搭載SARコンステレーションシステムを提供し、この場合、第1の付随衛星及び第2の付随衛星は、中心対称態様でマスター衛星に対して受動的に安定した軌道形態を形成し、それにより、第1の付随衛星及び第2の付随衛星は、任意の時点において軌道周期でマスター衛星に対して長さに関して同一であり且つ位相に関して反対である第1の空間ベースラインA及び第2の空間ベースラインBをそれぞれ規定することができる。地形高度情報を含む長い垂直ベースラインと、第1の空間ベースラインAと第2の空間ベースラインBとの間のデカップリングによって得られるとともに第3の付随衛星とマスター衛星との間で形成される長いトラックに沿うベースラインC及び短いクロストラックベースラインDと組み合わされる速度情報を含む短い水平ベースラインとに基づき、SARシステムは、長い垂直ベースライン、短いクロストラックベースラインD、長いトラックに沿うベースラインC、及び、短い水平ベースラインにしたがって、最適な干渉信号処理を実行して、精度及びレンジに関して改善された地形高度測定を伴って高分解能の幅広いスワスの撮像を実行できる。
好適には、衛星搭載SARコンステレーションシステムは、SARシステムをそのペイロードとして備えるマスター衛星と、第3の付随衛星と、マスター衛星の周りを飛行する第1の付随衛星と第2の付随衛星とから成る少なくとも1つの対とを備える。第1の付随衛星及び第2の付随衛星は、中心対称的にマスター衛星に対して受動的に安定した形態を形成し、それにより、第1の付随衛星がマスター衛星に対する第1の空間ベースラインAを規定し、第2の付随衛星がマスター衛星に対する第2の空間ベースラインBを規定する。第1の空間ベースラインA及び第2の空間ベースラインBは、長さに関して同一であり、位相に関して反対である。第3の付随衛星は、第1の付随衛星及び第2の付随衛星の飛行軌道の外側に位置されるとともに、第1のマスター衛星と共にタンデム編隊で飛行するようにマスター衛星に隣接する軌道上にあり、それにより、マスター衛星に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定する。SARシステムは、第1の空間ベースラインA及び第2の空間ベースラインBに基づき、長さに関して短いクロストラックベースラインDよりも大きい長い垂直ベースラインと、長さに関して長いトラックに沿うベースラインCよりも小さい短い水平ベースラインとを規定するとともに、短いクロストラックベースラインD及び長いトラックに沿うベースラインCと組み合わされる最適な干渉信号処理を実行し、それにより、精度及びレンジに関して改善された地形高度測定を伴って高分解能の幅広いスワスの撮像を実行する。
好適には、第3の付随衛星の軌道パラメータは、以下のステップによって取得される。タスクの要件にしたがって、マスター衛星の軌道パラメータが取得され、この場合、マスター衛星の軌道の離心率は0である。第1の付随衛星及び第2の付随衛星は、半長軸、軌道傾斜、及び、昇交点赤経に関してマスター衛星と同一である。第1の付随衛星及び第2の付随衛星の飛行経路の半短軸及び半長軸は、ヒルの式を使用して計算される。その場合、第1の付随衛星及び第2の付随衛星の飛行経路の半短軸の設計値は、タスクのベースライン要件である。第1の付随衛星及び第2の付随衛星の飛行経路間の位相差にしたがって、近地点の引数及び平均近点角を取得できる。得られた全ての衛星の軌道パラメータにしたがって、軌道周期における第1の空間ベースラインA及び第2の空間ベースラインBの有効クロストラックベースライン長が取得される。次のステップは、有効クロストラックベースライン長がクロストラック有効ベースラインの臨界ベースライン長よりも小さいかどうかを決定することである。有効クロストラックベースライン長がクロストラック有効ベースラインの臨界ベースライン長より小さくない場合、第1の付随衛星及び第2の付随衛星の飛行経路の半短軸は、第1の空間ベースラインA及び第2の空間ベースラインBの有効クロストラックベースライン長が要件を満たすまで調整される。前述のプロセスによって得られるマスター衛星、第1の付随衛星、及び、第2の付随衛星の軌道パラメータにしたがって、長いトラックに沿うベースラインCがアジマスドップラー曖昧さ分解に関する空間サンプリングの要件を満たすことができるようにするとともに短いクロストラックベースラインDがドップラー曖昧さ分解の精度に関する要件を満たすことができるようにする第3の付随衛星の軌道パラメータを計算することができる。
好適には、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の軌道パラメータが取得された後、マスター衛星は、測定デバイスを使用してSARレーダーアンテナの姿勢パラメータを取得し、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星に関して正確な軌道決定を行ない、それにより、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、短いクロストラックベースラインDを高精度で取得する。測定デバイスは、少なくとも、主にエフェメリスデータの復号化及びデータの同期化を含めて未加工データを前処理するステップと、微分位置決めアルゴリズムを使用してSARレーダーアンテナの位置パラメータを取得するステップと、SARレーダーアンテナの位置パラメータを使用して整数の曖昧さの初期値を取得し、カルマンフィルタ及び再帰検索によって整数の曖昧さの正確な値を計算するステップと、キャリア位相を使用して正確な座標を取得するステップと、取得された正確な座標を使用して衛星間ベースラインベクトルを取得するステップと、衛星間ベースラインベクトルを使用してSARレーダーアンテナの姿勢パラメータを取得するステップとによって姿勢測定を実行するGPS受信機を備える。
好適には、マスター衛星がSARレーダーアンテナの姿勢パラメータを取得した後、GPS受信機は、少なくとも、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星の軌道パラメータとGPSコンステレーションとのその接続とに基づいて月面重力摂動、太陽放射圧力摂動、及び、大気抗力摂動に関する先験的情報を取得し、コンステレーションシステムの軌道摂動モデルを構築して、ベースライン測定に対する摂動の影響を排除し、また、GPS受信機は、コンステレーションシステムの軌道摂動モデルを通じて取得される軌道決定結果とSARレーダーアンテナの姿勢パラメータとに基づいて、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを規定する。
好適には、GSPコンステレーションを介して先験的情報を取得する前に、マスター衛星は、クロックエラーによって引き起こされる問題を回避するために、最初に時間同期を達成する。マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星は全て、少なくとも時間同期モジュールを備える同期デバイスを含む。時間同期モジュールは、起動時に衛星によって運ばれるタイミングパルス信号をトリガーするとともに、衛星間の周波数同期パルスを介して衛星間の周波数差を取得し、それにより、時間同期を達成するように構成される。
好適には、同期デバイスは周波数同期構成要素を更に備える。周波数同期構成要素は、周波数線形時変信号を同期パルスとして使用して任意の2つのオンボードSAR情報の取得を周期的に中断するとともに、交換された同期パルス信号を処理して、任意の2つの衛星の周波数源によって引き起こされる位相差を取得するように構成される。位相差に基づいてSARに位相補償を実行し、周波数同期を実現する。
好適には、マスター衛星が同期デバイスによって第3の付随衛星及び/又は第1の付随衛星及び/又は第2の付随衛星と同期されると、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDは、時系列で水平ベースライン及び垂直ベースラインを規定する。
好適には、同期デバイス及びGPSコンステレーション接続によって先験的情報を取得した後、マスター衛星は、GPSコンステレーションの先験的情報にしたがって地面ターゲット領域の緯度情報を取得するとともに、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星のアンテナ角度を調整して、一定の仰角曖昧さを維持し、それにより、異なる緯度の領域における地面仰角を測定するための精度の一貫性を高める。
好適には、衛星搭載SAR撮像方法は以下のステップを含む。SARシステムをそのペイロードとして備えるマスター衛星、第3の付随衛星、及び、マスター衛星の周りを飛行する第1の付随衛星と第2の付随衛星とから成る少なくとも1つの対が撮像のために使用される。第1の付随衛星及び第2の付随衛星は、中心対称的にマスター衛星に対して受動的に安定した形態を形成し、それにより、第1の付随衛星及び第2の付随衛星は、マスター衛星に対してそれぞれ長さに関し同一であるとともに位相に関し反対である第1の空間ベースラインA及び第2の空間ベースラインBを規定することができる。第3の付随衛星は、第1の付随衛星及び第2の付随衛星の飛行軌道の外側に位置されるとともに、第1のマスター衛星と共にタンデム編隊で飛行するように第1のマスター衛星に隣接する軌道上にあり、それにより、第1のマスター衛星に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定する。SARシステムは、第1の空間ベースラインA及び第2の空間ベースラインBに基づいて長い垂直ベースライン及び短い水平ベースラインを規定するとともに、短いクロストラックベースラインD及び長いトラックに沿うベースラインCと組み合わされる最適な干渉信号処理を実行し、それにより、精度及びレンジに関して改善された地形高度測定を伴って高分解能の幅広いスワスの撮像を実行する。
好適には、同期デバイス及びGPSコンステレーション接続によって先験的情報を取得した後、マスター衛星は、GPSコンステレーションの先験的情報にしたがって地面ターゲット領域の緯度情報を取得して、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星におけるSARシステムのアンテナ角度を調整し、一定の仰角曖昧さを維持し、それにより、異なる緯度領域における地面仰角を測定するための精度の一貫性を高める。先験的情報に基づいて取得される地面ターゲット領域の地形高度が変化の大きな振幅を示すときに、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星におけるSARシステムのアンテナ角度が一定の第1の仰角曖昧さに維持されて撮像を1回実行した後、マスター衛星、第3の付随衛星、第1の付随衛星、及び、第2の付随衛星におけるSARシステムのアンテナ角度は、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持するように調整され、それにより、SARシステムは、2つの異なる仰角曖昧さを伴って撮像を少なくとも2回実行する。
本発明の有益な技術的効果は、以下のうちの1以上を含む。
1.得られる地面高度情報がトラックに沿うベースラインとクロストラックベースラインとに起因して第1の空間ベースラインAと第2の空間ベースラインBとの間の結合によって引き起こされるその位相で混合される視線速度情報を有するという問題を防ぐことができ、これにより、地形高度測定の精度が高まる。
2.時間的及び空間的同期は、2つの衛星の主ビームが同時に同じ地面領域をカバーするようにするのに役立つとともに、2つの衛星が同じ時間窓で戻り信号を受信するようにするのに役立ち、また、周波数同期は、2つの衛星のそれぞれの周波数ドリフトによって引き起こされる干渉位相エラーを減らすのに役立つ。
3.長いトラックに沿うベースラインC、第1の空間ベースラインA、及び、第2の空間ベースラインBは、システムが移動するターゲットを測定できるようにする視線速度の情報を含み、一方、長いトラックに沿うベースラインC及び短いトラックに沿うベースラインは、アジマスドップラー曖昧さ分解により必要とされる空間サンプリングを更にもたらし、それにより、低アジマスでの繰り返し周波数によって引き起こされる短いサンプリング時間を補償して、アジマスドップラー曖昧さ分解を可能にし、ひいては、高精度で広範囲の撮像を実現する。
4.短いクロストラックベースラインDは高度測定に関して精度が低いため、第1の空間ベースラインA及び第2の空間ベースラインBの長いクロストラックベースライン成分に基づく位相アンラッピングはエラーを有する場合があるが、本発明は、トラックに沿うベースライン及びクロストラックベースラインを時系列で使用して、時間及び周波数に関する同期情報を取得し、それにより、受信信号を較正し、また、長い及び短いクロストラックベースラインを使用して位相アンラッピングを実行し、それにより、位相アンラッピング及び地形高度測定の両方における精度を高め、その結果、地面領域での経時的な仰角及び速度に関して微妙な変化を認識できる。
本発明の好ましい撮像・検知デバイス及び同期デバイスの概略モジュール図である。
本発明の好ましい衛星編隊の概略幾何学図である。
詳細な説明は、図1及び図2に関連して以下に与えられる。本発明における各「モジュール」は、専用の一体型チップ、サーバ、及び、サーバグループのそれぞれのうちの1つ以上であってもよい。本発明のモジュールは、「モジュール」と関連付けられる機能を果たすことができる任意のハードウェア、ソフトウェア、又は、それらの任意の組み合わせを表わす。
実行可能な態様によれば、本発明は遠隔検知撮像方法を開示し、この方法は、衛星ベースの遠隔検知撮像方法、分散型合成開口レーダーベースの遠隔検知撮像方法、又は、衛星編隊ベースの遠隔検知撮像法であってもよい。遠隔検知撮像法は、本発明のシステム及び/又は他の別の構成要素によって実現され得る。例えば、方法におけるシステムは、本発明のシステムにおける様々な構成要素を使用することによって達成され得る。他の実施形態の好ましい実施の全体的及び/又は部分的な内容は、不一致又は矛盾が引き起こされなければ、この実施形態の補足として使用され得る。
好適には、撮像方法は、撮像・検知デバイス300及び同期デバイス400をそのペイロードとして備えるマスター衛星100、第1の付随衛星200、及び、第2の付随衛星201を含む。第1の付随衛星200及び第2の付随衛星201はマスター衛星100の周りを飛行し、マスター衛星100は、同一のクロストラックベースライン成分を有する第1の空間ベースラインA及び第2の空間ベースラインBを規定するように、第1の付随衛星200及び第2の付随衛星201の運動軌跡の長軸上に位置される。同期デバイス400は、時間、周波数、及び、空間に関する同期に基づいて第1の空間ベースラインA及び第2の空間ベースラインBを時系列で形成し、その後、撮像・検知デバイス300は、地面領域の変化の時空間的特徴を取得することができる。好ましくは、撮像・検知デバイス300は、少なくとも、地面情報を能動的又は受動的に取得するように構成される撮像センサを備える。そのような撮像センサは、レーダー又はレーザーなどの撮像が可能な任意のデバイスであってもよい。撮像センサは、合成開口レーダー又は合成開口レーザーレーダーなどの合成開口技術によって撮像することができるセンサであってもよい。好ましくは、第1の付随衛星200及び第2の付随衛星201は、その中心にマスター衛星100を有する同じ軌道に沿って移動し、燃料を消費しない受動的に安定した形態を有するようにヒル方程式を流れるように設計される。図2に示されるように、第1の付随衛星200及び第2の付随衛星201の運動軌跡は、ヒル方程式によって楕円軌道として表わされる。マスター衛星100、第1の付随衛星200、及び、第2の付随衛星201は、同じ軌道平面内で軌道に乗るため、第1の付随衛星200及び第2の付随衛星201は、同じ軌道周期、同じ半長軸、及び、同じ離心率を有する。衛星間で水平方向の位置シフトがないため、第1の付随衛星200と第2の付随衛星201は、空間内に楕円形の空間形態を形成する。それにより、本発明では、第1の付随衛星200及び第2の付随衛星201をマスター衛星100に対して相対的な空間位置に維持することができ、その結果、それにより規定される第1の空間ベースラインA及び第2の空間ベースラインBが安定したままとなり得る。更に、第1の空間ベースラインA及び第2の空間ベースラインBは、楕円形態の回転に伴って周期的に変化するため、第1の空間ベースラインA及び第2の空間ベースラインBは、速度情報及び地形高度情報の両方を含む混合ベースラインである。
好ましくは、マスター衛星100、第1の付随衛星200、及び、第2の付随衛星201の撮像デバイス300は、マスター衛星100によって地面ターゲットに送信される信号の戻り信号を受信する。撮像デバイス300における合成開口レーダー撮像センサは、低アジマス繰り返しサンプリングによって地面ターゲットの複数の合成開口レーダー画像を取得し、その後、複数の合成開口レーダー画像を、高精度で広範囲の合成開口レーダー画像につなぎ合わせることができる。第1の空間ベースラインA及び第2の空間ベースラインBは、高精度で広範囲の3次元撮像を可能にする速度情報及び地形高度情報の位相を含む。
好ましくは、第1の空間ベースラインA及び第2の空間ベースラインBは、それらの長軸上にマスター衛星100が位置される状態で、同じ長さであるが反対の位相を有するクロストラックベースライン成分を有する。したがって、例えば、微分処理により、地形高度情報のみを含むクロストラックベースラインと、速度情報のみを含むトラックに沿うベースラインとを取得することが可能である。この手法により、本発明は、少なくとも、得られる地面高度情報がトラックに沿うベースラインとクロストラックベースラインとに起因して第1の空間ベースラインAと第2の空間ベースラインBとの間の結合によって引き起こされるその位相で混合される視線速度情報を有するという問題を防止し、それにより、地形高度測定の精度が向上するという技術的利益を実現することができる。
好ましくは、第1の空間ベースラインA及び第2の空間ベースラインBをそれらの同期デバイス400に基づいて時間、周波数、及び、空間に関して同期させて、第1の空間ベースラインA及び第2の空間ベースラインBを時系列で取得し、それにより、トラックに沿うベースラインとクロストラックベースラインとを時系列で取得することができる。好ましくは、時空間的特徴は、時系列のクロストラックベースラインに含まれる経時的に変化する地面仰角の情報、及び、時系列のトラックに沿うベースラインに含まれる経時的に変化するターゲットの速度の情報を指す。本発明は、例えば、経時的な作物及び森林の高度の微妙な変化を識別するために使用されてもよい。また、本発明は、例えば、経時的な平原又は山の高度の微妙な変化を識別するために使用されてもよい。その後、そのような変化の情報を解析して使用し、例えば、作物の成長状態と変化傾向とを予測し、ひいてはそれを昨年の同時期のデータ、前年の平均、及び/又は、特定の年の同じ期間と比較して、作物の成長の変化、つまり、作物の空間分布及び高度分布の変化を認識することができる。これらのデータは、水田、乾燥地、耕作地、及び、地域ごとの優勢な作物の様々な成長運動量レベルの共有に関する統計分析に使用できる。例えば、様々な時点で取得された平原及び山の高精度の高度データを比較して、地滑りや雪崩などの災害の監視と防止とに特に役立つ微妙な変化を明らかにすることができる。本発明によれば、時系列におけるトラックに沿うベースラインの視線速度は、ターゲット抽出及び速度推定のために更に使用されてもよい。例えば、海水と海氷からの戻り信号のコヒーレンス係数の違いにより、本発明を使用して、海氷と海水とを区別し、その後、時系列のトラックに沿うベースラインによって海氷と海水の両方の視線速度情報を取得し、それにより、対応する速度の推定を実現できる。
好適には、同期デバイス400は、少なくとも、時間同期モジュール410、周波数同期モジュール420、及び、空間同期モジュール430を備える。時間同期モジュール410は、起動時に衛星によって運ばれるタイミングパルス信号をトリガーして、衛星間の周波数同期パルスを介して衛星間の周波数差を取得し、それにより、時間同期を実現するように構成される。好ましくは、タイミングパルス信号の前記起動トリガーは、毎秒のGPSパルスを使用して達成され得る。好ましくは、図1に示されるように、地面反射後にマスター衛星100により放出される信号は、戻り信号となる。戻り信号は、同期デバイス400を通過し、その後、それらの信号が処理される撮像・検知デバイス300に到達する。
好適には、周波数同期モジュール420は、線形周波数変調信号を同期パルスとして使用して、マスター衛星100及び第1の付随衛星200又は第2の付随衛星201又は第3の付随衛星101の同期パルス信号処理を周期的に切り換え、衛星周波数源によって引き起こされる位相差を取得し、それにより、位相補償を実行して、周波数同期を達成するように構成される。好ましくは、周波数線形時変信号はチャープ信号である。好ましくは、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201はそれぞれ、準全方向性ビームカバレッジを与えるように、6つの同期ホーンアンテナを有し、それにより、ほぼリアルタイムの全アジマス周波数同期パルス受信を確保する。好ましくは、マスター衛星100は、同期パルスを、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201にそれぞれ送信する。その周波数が経時的に直線的に変化するチャープ信号の性質により、マスター衛星100の合成開口レーダーのデータ取得が周期的に中断された。ある期間に、マスター衛星100の撮像・検知デバイス300のメインアンテナから第3の付随衛星101及び/又は第1の付随衛星200及び/又は第2の付随衛星201上の同期専用ホーンアンテナへ同期パルスが放出される。第3の付随衛星101及び/又は第1の付随衛星200及び/又は第2の付随衛星201はそれぞれ、その後、パルスを記録し、短い同期パルスをマスター衛星100に戻す。交換された同期パルス信号は、マスター衛星100に対して付随する衛星の周波数源によって生じる位相差を計算するために処理される。その後、各衛星の撮像・検知デバイス300は、その撮像動作中に対応して位相補償を行ない、それにより、周波数同期を達成することができる。好ましくは、周波数線形時変信号がパルス信号として使用される場合、衛星上の周波数源の周波数は定数と見なされ得る。したがって、同期信号の位相差の線形部分から周波数差を抽出することができ、それにより、時間同期を達成することができる。
好適には、空間同期モジュール430は、地面ターゲット領域に対するマスター衛星100の撮像・検知デバイス300の方向と第1の付随衛星200又は第2の付随衛星201又は第3の付随衛星101の衛星姿勢とに基づいて第1の付随衛星200又は第2の付随衛星201又は第3の付随衛星101の撮像・検知デバイス300を同じ地面ターゲット領域に向け、それにより、空間同期を達成するように構成される。このようにして、マスター衛星100の撮像・検知デバイス300は、そのアンテナを横向きに撮像された領域に向けさせる。第1の付随衛星200、第2の付随衛星201、及び、第3の付随衛星101は、小さな角度の目を細めたように撮像された領域を指し示し、地面ターゲットを観察することができる。それにより、本発明は、少なくとも、以下の技術的利益を与えることができる。第一に、時間的及び空間的同期により、本発明は、2つの衛星の主ビームが同時に同じ地面領域をカバーできるようにするとともに、2つの衛星が同期された時間窓で戻り信号を受信するようにする。第二に、周波数同期は、2つの衛星のそれぞれの周波数ドリフトによって引き起こされる干渉位相エラーを減らすのに役立つ。
1つの実行可能な態様によれば、第3の付随衛星101は、マスター衛星100と共にタンデム編隊で飛行するために第1の付随衛星200及び第2の付随衛星201の運動軌跡の外側に位置されるとともに、撮像・検知デバイス300及び同期デバイス400をそのペイロードとして備える。第3の付随衛星101はマスター衛星100に隣接する軌道上に位置され、それにより、第3の付随衛星101は、マスター衛星100に対して長いトラックに沿うベースラインC及び短いクロストラックベースラインDを規定する。撮像・検知デバイス300は、第1の空間ベースラインA及び第2の空間ベースラインB並びに短いクロストラックベースラインD及び長いトラックに沿うベースラインCに基づいて最適な干渉ベースライン処理を実行し、高精度で広範囲の撮像を実行しつつ、地形仰角情報及び移動ターゲット速度情報を取得する。好ましくは、撮像・検知デバイス300は、第1の空間ベースラインA及び第2の空間ベースラインBに基づいて、短いクロストラックベースラインDよりも長い長いクロストラックベースライン及び長いトラックに沿うベースラインCよりも短い短いトラックに沿うベースラインを生成する。その後、長いクロストラックベースライン及び短いトラックに沿うベースラインは、最適な干渉信号処理において、短いクロストラックベースラインD及び長いトラックに沿うベースラインCと一緒に使用され、精度及びレンジの両方で地形高度の測定の向上に役立ちつつ、高分解能の幅広いスワスの撮像に寄与する。好ましくは、第3の付随衛星101の軌道及びマスター衛星100の軌道は、少なくとも120m離間される。また、第3の付随衛星101の軌道とマスター衛星100の軌道との間の距離は、図2に示されるように固定される。軌道距離が与えられると、マスター衛星100に対して第3の付随衛星101によって規定される空間ベースラインは、短いクロストラックベースラインD及び長いトラックに沿うベースラインCを取得するべく決定され得る。本発明において、短いクロストラックベースラインDは、第3の付随衛星101及びマスター衛星100が軌道に乗るときに、一定で固定されたままである。これは、第3の付随衛星101及びマスター衛星100の正確な軌道決定及びベースライン測定のための前提条件及びサポートエラー解析をもたらすことができる。
好ましくは、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の撮像・検知デバイス300は、マスター衛星100によって地面ターゲットに送信された信号の戻り信号を受信する。撮像・検知デバイス300は、低アジマス繰り返しサンプリングによって地面ターゲットの複数の合成開口レーダー画像を取得する。撮像・検知デバイス300は低アジマス繰り返しサンプリングによって画像を取得するため、アジマスドップラーの曖昧さが起こり得る。好ましくは、アジマスドップラー周波数及びアジマス瞬間斜視角の正弦は、正比例し、1対1で対応している。アジマス繰り返し率が低く且つドップラー帯域幅よりも小さい場合には、エイリアシングがアジマスドップラースペクトルに現れて曖昧さを引き起す。結果として、アジマスドップラー周波数は、アジマス瞬間斜視角の正弦に正比例しなくなり、アジマス瞬間斜視角に向かうエネルギーの混合となる。アジマスドップラー曖昧さ分解のプロセスは、エネルギーのエイリアシングがアジマス瞬間斜視角に向かう場合、全てのドップラー周波数に関し、アジマス瞬間斜視角に向かう特定のエネルギーを抽出して、最後にステッチングによって曖昧さが無いドップラースペクトルを再構築することに関する。この手法により、本発明は、少なくとも以下の技術的利益を与えることができる。第一に、長いトラックに沿うベースラインC及び短いトラックに沿うベースラインは、移動ターゲットの測定を可能にする視線速度情報を含む。第二に、長いトラックに沿うベースラインC及び短いトラックに沿うベースラインは、アジマスドップラー曖昧さの分解に必要な空間サンプリングを更に与えることができ、それにより、低アジマスにおける繰り返し周波数によって引き起こされる短いサンプリング時間を補償し、アジマスドップラー曖昧さの分解を可能にする。
好ましくは、マスター衛星100に対する第1の空間ベースラインA、第2の空間ベースラインB、及び、第3の付随衛星101の物理的ベースラインの存在は、空間変化ベクトルを導入し得る。マスター衛星100に対する第1の空間ベースラインA、第2の空間ベースラインB、及び、第3の付随衛星101の空間ベースラインを分解して、長いクロストラックベースライン及び短いクロストラックベースラインDを取得することができる。その後、長いクロストラックベースライン及び短いクロストラックベースラインDのマルチベースライン干渉処理により、クロストラックベースラインによって全てのドップラー周波数に導入される位相の情報を取得できる。この手法により、本発明は、少なくとも以下の技術的利益を与えることができる。第一に、ドップラー曖昧さ分解の精度を満たしつつ、レンジに関して地形高度の測定を改善するために、ドップラー曖昧さの分解前に得られる位相情報に基づいて位相補償を実行することができる。第二に、長いクロストラックベースライン及び短いクロストラックベースラインDのマルチベースライン干渉処理は、地形高度測定の精度を更に高めることができる。
好適には、マスター衛星100の所定の軌道パラメータにより、第1の付随衛星200及び第2の付随衛星201の軌道パラメータは、有効クロストラックベースラインの長さと第1の空間ベースラインA及び第2の空間ベースラインBのクロストラック有効ベースラインの限界長とを比較して第1の付随衛星200及び第2の付随衛星201の飛行経路の半短軸を調整することによって取得され得る。第3の付随衛星101の軌道パラメータは、アジマスドップラー曖昧さの分解のための空間サンプリングの要件とドップラー曖昧さ分解の精度の要件とに基づいて取得され得る。好ましくは、第3の付随衛星101の軌道パラメータは、以下のステップによって取得される。タスク要件にしたがって、マスター衛星100の軌道パラメータが得られ、この場合、マスター衛星の軌道の離心率は0である。第1の付随衛星200及び第2の付随衛星201は、半長軸、軌道傾斜、及び、昇交点赤経に関してマスター衛星100と同一である。第1の付随衛星200及び第2の付随衛星201の飛行経路の半短軸及び半長軸は、ヒル方程式を使用して計算される。この場合、第1の付随衛星200及び第2の付随衛星201の飛行経路の半短軸の設計値は、タスクのベースライン要件である。第1の付随衛星200及び第2の付随衛星201の飛行経路間の位相差にしたがって、近地点引数及び平均近点角を得ることができる。得られた全ての衛星の軌道パラメータにしたがって、軌道周期における第1の空間ベースラインA及び第2の空間ベースラインBの有効クロストラックベースライン長が得られる。次のステップは、有効クロストラックベースライン長がクロストラック有効ベースラインの臨界ベースライン長よりも小さいかどうかを決定することである。有効クロストラックベースライン長がクロストラック有効ベースラインの臨界ベースライン長よりも小さくない場合、第1の空間ベースラインA及び第2の空間ベースラインBの有効クロストラックベースライン長が要件を満たすまで、第1の付随衛星200及び第2の付随衛星201の飛行経路の半短軸が調整される。前述のプロセスによって得られるマスター衛星100、第1の付随衛星200、及び、第2の付随衛星201の軌道パラメータにしたがって、長いトラックに沿うベースラインCがアジマスドップラー曖昧さ分解に関する空間サンプリングの要件を満たすことができるようにするとともに短いクロストラックベースラインDがドップラー曖昧さ分解の精度に関する要件を満たすことができるようにする第3の付随衛星101の軌道パラメータを計算できる。好ましくは、軌道タイプ、軌道高度を含むパラメータにしたがってその離心率が0である円形軌道をマスター衛星100が有すると仮定すると、マスター衛星の6つのルートをヒル連立方程式を使用して得ることができる。6つのルートは、軌道半長軸、軌道離心率、軌道離心率、軌道傾斜、昇交点赤経、近地点引数、及び、定められたエポックの平均近点角である。好ましくは、付随衛星の動きを表わすヒル方程式は次のとおりである。
Figure 2022546369000002
ここで、座標系の原点がマスター衛星100であり且つマスター衛星が地球を周回するとき、x軸は基準衛星の飛行方向を指し示し、y軸はマスター衛星100の軌道面に対して垂直であり、一方、z軸は、地球の中心とは逆であり、マスター衛星100を指し示す。式中、φk, ψkは、楕円軌道形態におけるk番目の付随衛星の初期位置を示し、Tは軌道周期を表わす。好ましくは、マスター衛星100は、第1の付随衛星200及び第2の付随衛星201の中心であり、したがって、Bは0である。好ましくは、第1の付随衛星200と第2の付随衛星201との間の相対運動はXZ平面内に楕円トラックを有し、また、速度方向Xに沿う半長軸は、速度方向Zに対して垂直な半短軸の2倍の長さである。好ましくは、第1の付随衛星200と第2の付随衛星201との間の相対運動は、y軸で正弦波運動を行なう。第1の付随衛星200及び第2の付随衛星201は、マスター衛星100を中心とする楕円形態を成してゆっくりと回転する。第1の付随衛星200、第2の付随衛星201、及び、マスター衛星100は全て同じ軌道面内にあるため、これらの衛星は、同じ軌道傾斜及び昇交点赤経を有する。好ましくは、ベースラインは、衛星の編隊飛行によって形成される楕円トラックの半短軸の設計値として取得される。編隊飛行の相対運動の楕円トラックの半短軸は、半長軸と衛星の離心率とにのみ関係するため、半長軸がわかっている場合、第1の付随衛星200及び第2の付随衛星201の離心率は、半短軸を通じて確認することができる。好ましくは、マスター衛星100は、第1の付随衛星200及び第2の付随衛星201の運動軌跡の長軸上に位置されるため、第1の付随衛星200及び第2の付随衛星201の近地点引数及び平均近点角を計算できる。好ましくは、前述のように得られるマスター衛星100、第1の付随衛星200、及び、第2の付随衛星201の軌道パラメータにしたがって、軌道周期におけるマスター衛星100に対する第1の付随衛星200及び第2の付随衛星201の第1の空間ベースラインA及び第2の空間ベースラインBの長さを計算することができる。その後、そのようにして得られた第1の空間ベースラインA及び第2の空間ベースラインBが地表に投影されて、有効ベースラインが得られる。クロストラック有効ベースラインの長さは、ドップラー曖昧さ分解に関する精度の要件を満たすようにされ、また、トラックに沿う有効ベースラインの長さは、アジマスドップラー曖昧さ分解に関する空間サンプリングの要件を満たすようにされる。このとき、クロストラック有効ベースラインの長さ及びトラックに沿う有効ベースラインの長さの両方を対応する臨海ベースラインの長さよりも小さくする必要がある。クロストラック有効ベースラインの臨界ベースライン長は以下のとおりである。
Figure 2022546369000003
トラックに沿う有効ベースラインの臨界ベースライン長は、
Figure 2022546369000004
である。
ここで、λは撮像・検知デバイス300の動作波長、θは画角、φは斜視角、αは衛星の衛星質量中心及び水平面のリンク間の夾角、すなわち、ベースラインの傾き、βは地形の傾斜、Rは地面ターゲットに対するベースラインを形成する2つの衛星の平均傾斜レンジを表わし、p及びpはそれぞれレンジ分解能及びアジマス分解能を表わす。Rは、方程式4を使用して取得されてもよく、ここで、aは、マスター衛星100の軌道の半長軸であり、Rは地球半径である。
Figure 2022546369000005
及びpは、方程式5を使用して取得されてもよく、ここで、Cは光速であり、Bwは信号帯域幅を表わし、Dはアジマスアンテナのサイズを表わす。
Figure 2022546369000006
好ましくは、第3の付随衛星101の軌道パラメータは、上記のように決定されたマスター衛星100、第1の付随衛星200、及び、第2の付随衛星201の軌道の設計パラメータにしたがって決定されてもよい。第3の付随衛星101の軌道とマスター衛星100の軌道は、一定の距離だけ離間される。好ましくは、第3の付随衛星101及びマスター衛星100はタンデム編隊に配置される。好ましくは、第3の付随衛星101とマスター衛星100との間の縦方向の離間は、トラックに沿う有効なベースラインの臨界ベースライン長を満たす。
この手法により、本発明は、少なくとも以下の技術的利益を実現することができる。第一に、第1の付随衛星200、第2の付随衛星201、及び、マスター衛星100は、同じ軌道面内で飛行する。楕円形の空間形態は受動的に安定しており、また、電力システムは軌道補正又はタスク切り換えのためにのみオンになっており、それにより、エネルギーを節約できる。第二に、第3の付随衛星101の軌道及びマスター衛星100の軌道は接近しており、2つの衛星は、衛星の編隊がアジマスドップラー曖昧さ分解のための空間サンプリングの要件をいつでも満たすトラックに沿うベースラインを取得できるようにし、それにより、システムの撮像効率を向上させることができるように、タンデム編隊で飛行する。第三に、第3の付随衛星101、第1の付随衛星200、第2の付随衛星201、及び、マスター衛星100によって形成される空間形態は、燃料消費量を抑えて維持され得る、同じ軌道面内の形態である。第四に、本発明で使用される編隊は、安定したベースライン及びベースライン傾斜を形成するように構成され、干渉合成開口レーダー撮像に適用可能である。第五に、本発明で使用される編隊は、複数の有効クロストラックベースライン及び複数の有効トラックに沿うベースラインをいつでも形成するように構成され、また、有効クロストラックベースライン及び有効トラックに沿うベースラインは全て、マルチベースライン干渉処理の要件を満たす。第六に、本発明からの編隊によって形成される有効クロストラックベースラインは、いつでも、ドップラー曖昧さ分解の精度に関する要件を満たし、また、有効トラックに沿うベースラインは、アジマスドップラー曖昧さ分解のための空間サンプリングに関する要件を満たし、それにより、合成開口レーダーシステムは、地面高度測定の精度及びレンジを高めて、高精度で広範囲の撮像をいつでも行なうことができる。
好適には、第3の付随衛星101が同期デバイス400を介して同期されると、第1の空間ベースラインA、第2の空間ベースラインB、短いクロストラックベースラインD、及び、長いトラックに沿うベースラインCは、トラックに沿うベースライン及びクロストラックベースラインを時系列で規定する。時系列のトラックに沿う接線に基づく撮像・検知デバイス300は、経時的な移動ターゲットの速度の変化に関する情報を取得する。撮像・検知デバイス300は、時系列のクロストラックベースラインに基づいて、経時的な地面仰角の変化に関する情報を取得する。
好ましくは、長いクロストラックベースライン及び短いクロストラックベースラインDにしたがった合成開口レーダー干渉撮像中、インターフェログラムから得られる位相差は、ワインドアップの未知の整数期間の後の[-π、π]間の位相主値である。実際の位相差を示すためには、ワインディング位相を復元する必要があり、このプロセスは位相アンラッピングと呼ばれる。好ましくは、撮像・検知デバイス300は、時系列のトラックに沿うベースライン及びクロストラックベースラインに基づいて、時間及び周波数に関して同期に関する情報を取得し、それにより、それが受信する信号を較正する。その後、撮像・検知デバイス300は、較正された情報に基づいて位相補償を実行し、短いクロストラックベースラインを使用して、長いクロストラックベースラインに関して位相アンラッピングを実行し、それにより、地形高度測定の精度を更に高める。この手法により、本発明は、少なくとも以下の技術的利益を実現することができる。短いクロストラックベースラインDは高度測定に関してあまり精度が高くないため、長いクロストラックベースラインに基づく位相アンラッピングはエラーを有する場合があるが、本発明は、時系列のトラックに沿うベースライン及びクロストラックベースラインを使用して、時間及び周波数に関する同期情報を取得し、それにより、受信信号を較正し、また、長い及び短いクロストラックベースラインを使用して位相アンラッピングを実行することにより、位相アンラッピング及び地形高度測定の両方において精度を高め、それにより、地面領域での経時的な仰角及び速度に関して微妙な変化を認識できる。
1つの実行可能な態様によれば、撮像・検知デバイス300は、マスター衛星100、第1の付随衛星200、第2の付随衛星201、及び、第3の付随衛星101の衛星姿勢パラメータをリアルタイムで測定するとともに、正確な軌道決定を実行して、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックベースラインDを高精度で取得するように構成される測定デバイス310を更に備える。好ましくは、測定デバイス310は、姿勢測定のためのGPS受信機を少なくとも備える。GPS受信機は、以下のステップ、すなわち、主にエフェメリスデータの復号化及びデータの同期化を含めて未加工データを前処理するステップと、微分位置決めアルゴリズムを使用して撮像・検知デバイス300の位置パラメータを取得するステップと、撮像・検知デバイス300のアンテナの位置パラメータを使用して整数の曖昧さの初期値を取得するステップと、カルマンフィルタ及び再帰検索を使用して整数の曖昧さの正確な値を計算するステップと、キャリア位相を使用して正確な座標を取得するステップと、取得された正確な座標値を使用して衛星間ベースラインベクトルを取得するステップと、衛星間ベースラインベクトルを使用して撮像・検知デバイス300のアンテナの姿勢パラメータを取得するステップとを実行する。
好ましくは、GPS受信機は、高精度の二周波GPS受信機である。好ましくは、高精度の二周波GPS受信機はGPS掩蔽受信機に組み込まれる。好ましくは、GPS受信機は、それが受信する未加工データを前処理した後、単一点測位座標計算を実行する。その後、GPS受信機は、移動座標状態の座標を計算するために二重微分測位計算を実行し、それにより、撮像・検知デバイス300のアンテナの大まかな位置の座標を取得する。好ましくは、撮像・検知デバイス300のアンテナの正確な座標を取得するため、GPS受信機は、レンジ測定のためにセンチメートルグレードの波長及びミリメートルグレードのレンジエラーを有するキャリア位相を使用する必要がある。キャリア信号は周期的な正弦波信号であるため、測定レンジが波長よりも大きい場合、整数の曖昧さ発生する可能性がある。好ましくは、GPS受信機は、大まかな位置座標に基づいて整数の曖昧さの初期値を取得した後、カルマンフィルタ及び再帰検索を使用して整数の曖昧さの正確な値を計算する。
好ましくは、マスター衛星100が撮像・検知デバイス300のアンテナの姿勢パラメータを取得した後、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の軌道パラメータに基づくとともにGPSコンステレーションに接続されるGSP受信機は、少なくとも、月面重力摂動、太陽放射圧力摂動、及び、大気抗力摂動に関する先験的情報を取得して、衛星編隊の軌道摂動モデルを構築し、ベースライン測定に対する摂動の影響を排除する。GSP受信機は、撮像・検知デバイス300のアンテナの姿勢パラメータと編隊の軌道摂動モデルを使用して得られる軌道決定結果とに基づき、微分キャリア位相測定を実行して、第1の空間ベースラインA、第2の空間ベースラインB、長いトラックに沿うベースラインC、及び、短いクロストラックのベースラインDを取得する。
好ましくは、地球の非球形の摂動、太陽放射圧摂動、及び、大気抗力摂動が衛星に及ぼす影響は、無視できないものであり、推定のための先験的情報と一緒に考慮されるべきモデルノイズと見なすことができる。好ましくは、軌道摂動モデルは、地球の非球形の摂動、太陽放射圧摂動、及び、衛星の動きに対する大気抗力摂動の影響の加速の直線的な蓄積を反映する。好ましくは、微分キャリア位相測定方法は、2つの衛星の最も一般的なエラー成分を排除するために、2つの衛星の経路遅延及びアルゴリズムによって引き起こされる軌道決定におけるエラーを区別することに関するものである。2つの衛星の軌道決定結果を区別することにより、対応するベースラインベクトルを取得できる。この手法により、本発明は、少なくとも以下の技術的利益を実現することができる。GPS受信機は、2つの衛星の最も一般的なエラー成分を排除することができ、その後、アルゴリズムを使用して結果が最適化され、それにより、軌道摂動モデルを構築して、対応する補償を行ない、その結果、衛星間ベースラインと衛星の姿勢パラメータとを正確に測定できる。
好適には、撮像・検知デバイス300は、測定デバイス310を更に使用して、地面ターゲット領域の先験的情報を取得することができる。撮像・検知デバイス300は、地面ターゲット領域の緯度情報に基づいて、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の撮像・検知デバイス300のアンテナ角度を調整して、それらを同じ仰角曖昧さに維持し、それにより、異なる緯度領域における地面仰角測定の精度の一貫性を高める。好ましくは、仰角曖昧さは、仰角変化に対する干渉位相の感度を反映する。クロストラックベースラインが長い場合、仰角曖昧さは小さく、干渉位相は仰角変化に敏感である。クロストラックベースラインが極端に短い場合、干渉位相は仰角変化に対する感度が低くなり、それにより、地形高度測定の精度が低下する。好ましくは、仰角曖昧さは、アジマス瞬間斜視角の正弦に正比例し、また、空間ベースラインを地面に投影することによって得られる有効ベースラインは、地球自転に起因して異なる緯度で異なる長さを有するため、撮像・検知デバイス300のアンテナ角度を調整することによって仰角曖昧さを調整できる。この手法により、本発明は、少なくとも以下の技術的利益を実現することができる。マスター衛星100は、GPSコンステレーションの先験的情報にしたがって地面上の観測領域の緯度情報を取得し、それに応じてアンテナ角度を調整して、同じ仰角曖昧さを維持し、それにより、異なる緯度領域での仰角測定の精度の一貫性を高めることができる。
好適には、先験的情報に基づいて得られる地面ターゲット領域の地形高度が変化の大きな振幅を示す場合には、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の撮像・検知デバイス300のアンテナ角度を調整して、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持することができ、それにより、SARシステムは、異なる仰角曖昧さで少なくとも2回撮像を実行する。好ましくは、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の撮像・検知デバイス300のアンテナ角度が同じ第1の仰角曖昧さを維持する状態で撮像が実行された後、先験的情報に基づいて得られる地面観測領域の地形高度が変化の比較的大きな振幅を示す場合、マスター衛星100、第3の付随衛星101、第1の付随衛星200、及び、第2の付随衛星201の撮像・検知デバイス300のアンテナ角度は、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持するように調整され、それにより、撮像・検知デバイス300は、異なる仰角曖昧さで少なくとも2回撮像を実行する。撮像された領域における地形が明らかな起伏を有する場合、位相の主値が不連続になる場合があり、それにより、大きな位相アンラッピングエラーがもたらされる。好ましくは、撮像・検知デバイス300は、位相アンラッピングの一貫性と2回の撮像間の同じ撮像領域の差異とをチェックするべくアンテナの調整によって得られる異なる仰角曖昧さで撮像し、それにより、位相アンラッピングエラーを低減する。この手法により、本発明は、少なくとも以下の技術的利点を実現することができる。すなわち、明らかな起伏を伴う急な地形を撮像するために、位相アンラッピングエラーを低減するように異なる仰角曖昧さで撮像を実行することができ、それにより、相対精度を改善し、ひいては地形高度の測定の測定精度を向上させることができる。
本明細書中で使用される「モジュール」という用語は、「モジュール」と関連付けられる機能を果たすことができる任意のハードウェア、ソフトウェア、又は、それらの任意の組み合わせを表わす。
本発明を詳細に説明してきたが、本発明の思想内及び範囲内の変更は当業者には明らかである。そのような変更もこの開示の一部と見なされる。前述の議論、当技術分野における関連知識、及び、背景に関連して前述した引用文献又は情報を考慮して、これらの全てが参照により本明細書に組み入れられるため、更なる説明は必要ないように思われる。更に、本発明の様々な態様及び様々な実施形態の一部を全体的又は部分的に組み合わせる又は交換することができると理解されるべきである。更に、当業者であれば分かるように、前述の説明は、単なる一例に過ぎず、本発明を限定しようとするものではない。
100 マスター衛星
101 第3の付随衛星
200 第1の付随衛星
201 第2の付随衛星
300 撮像・検知デバイス
310 測定デバイス
400 同期デバイス
410 時間同期モジュール
420周波数同期モジュール
430 空間同期モジュール
A 第1の空間ベースライン
B 第2の空間ベースライン
C 長いトラックに沿うベースライン
D 短いクロストラックベースライン

Claims (15)

  1. SARシステムをそのペイロードとして備えるマスター衛星(100)と、第1の付随衛星(200)と、第2の付随衛星(201)とを備え、
    前記第1の付随衛星(200)及び前記第2の付随衛星(201)が前記マスター衛星(100)の周りを飛行し、前記マスター衛星(100)は、同一のクロストラックベースライン成分を有する第1の空間ベースライン(A)及び第2の空間ベースライン(B)を規定するように前記第1の付随衛星(200)及び前記第2の付随衛星(201)の運動軌跡の長軸上に位置される、
    遠隔検知システム又は特に衛星編隊ベースの遠隔検知システム。
  2. 前記マスター衛星(100)には、そのペイロードとして撮像・検知デバイス(300)及び同期デバイス(400)が設けられ、
    前記同期デバイス(400)は、時間、周波数、及び、空間に関する同期に基づいて、前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)を時系列で形成し、
    前記撮像・検知デバイス(300)は、前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)にしたがって地面領域の変化の時空間的特徴を取得する、
    請求項1に記載のシステム。
  3. 前記マスター衛星(100)と共にタンデム編隊で飛行する前記第1の付随衛星(200)及び前記第2の付随衛星(201)の運動軌跡の外側に位置されるとともに、撮像・検知デバイス(300)及び同期デバイス(400)をそのペイロードとして備える第3の付随衛星(101)を更に備え、
    前記第3の付随衛星(101)は、前記第3の付随衛星(101)が前記マスター衛星(100)に対して長いトラックに沿うベースライン(C)及び短いクロストラックベースライン(D)を規定するように、前記マスター衛星(100)に隣接する軌道上に位置され、
    前記撮像・検知デバイス(300)は、高精度で広範囲の撮像を実行しつつ地形仰角情報及び移動ターゲット速度情報を取得するために、前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)並びに前記短いクロストラックベースライン(D)及び前記長いトラックに沿うベースライン(C)に基づいて最適な干渉ベースライン処理を実行する、
    請求項1又は2に記載のシステム。
  4. 前記撮像・検知デバイス(300)は、前記マスター衛星(100)、前記第1の付随衛星(200)、前記第2の付随衛星(201)、及び、前記第3の付随衛星(101)の衛星姿勢パラメータをリアルタイムで測定するとともに、正確な軌道決定を行なって、前記第1の空間ベースライン(A)、前記第2の空間ベースライン(B)、前記長いトラックに沿うベースライン(C)、及び、前記短いクロストラックベースライン(D)を高精度で取得するように構成される測定デバイス(310)を更に備える、請求項2又は3に記載のシステム。
  5. 前記撮像・検知デバイス(300)は、前記測定デバイス(310)を使用して地面ターゲット領域に関する先験的情報を取得するとともに、前記地面ターゲット領域の緯度情報に基づいて、前記マスター衛星(100)、前記第3の付随衛星(101)、前記第1の付随衛星(200)、及び、前記第2の付随衛星(201)の前記撮像・検知デバイス(300)のアンテナ角度を調整して、一定の仰角曖昧さを維持し、それにより、異なる緯度の領域における地面仰角を測定するための精度の一貫性を高めるように更に構成される、請求項2から4のいずれか一項に記載のシステム。
  6. 先験的情報に基づいて取得される地面ターゲット領域の地形高度が変化の大きな振幅を示すときに、前記マスター衛星(100)、前記第3の付随衛星(101)、前記第1の付随衛星(200)、及び、前記第2の付随衛星(201)の前記撮像・検知デバイス(300)のアンテナ角度は、前記SARシステムが2つの異なる仰角曖昧さで撮像を少なくとも2回実行するように、一定であって第1の仰角曖昧さとは異なる第2の仰角曖昧さを維持するように調整される、請求項1から5のいずれか一項に記載のシステム。
  7. 前記第3の付随衛星(101)が前記同期デバイス(400)によって同期されると、前記第1の空間ベースライン(A)、前記第2の空間ベースライン(B)、前記短いクロストラックベースライン(D)、及び、前記長いトラックに沿うベースライン(C)は、トラックに沿うベースライン及びクロストラックベースラインを時系列で規定し、
    前記撮像・検知デバイス(300)は、時系列のトラックに沿う接線に基づいて移動するターゲットの経時的な速度の変化情報を取得するとともに、時系列で前記クロストラックベースラインに基づいて経時的な地面仰角の変化情報を取得する、請求項2から6のいずれか一項に記載のシステム。
  8. 前記マスター衛星(100)の軌道パラメータが与えられると、前記第1の付随衛星(200)及び前記第2の付随衛星(201)の軌道パラメータは、有効クロストラックベースラインの長さと前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)のクロストラック有効ベースラインの限界長とを比較するとともに前記第1の付随衛星(200)及び前記第2の付随衛星(201)の飛行経路の半短軸を調整することによって取得され、
    前記第3の付随衛星(101)の軌道パラメータは、アジマスドップラー曖昧さ分解のための空間サンプリングの要件及びドップラー曖昧さ分解の精度の要件に基づいて取得される、
    請求項1から7のいずれか一項に記載のシステム。
  9. 前記同期デバイス(400)は、少なくとも、時間同期モジュール(410)、周波数同期モジュール(420)、及び、空間同期モジュール(430)を備え、
    前記時間同期モジュール(410)は、起動時に衛星によって運ばれるタイミングパルス信号をトリガーして、衛星間の周波数同期パルスによる衛星間の周波数差を取得し、それにより、時間同期を達成するように構成される、請求項2から8のいずれか一項に記載のシステム。
  10. 前記同期デバイス(400)における前記周波数同期モジュール(420)は、線形周波数変調信号を同期パルスとして使用して、前記マスター衛星(100)及び前記第1の付随衛星(200)又は前記第2の付随衛星(201)又は前記第3の付随衛星(101)の同期パルス信号処理を周期的に切り換え、それにより、衛星周波数源によって引き起こされる位相差を取得し、その結果、位相補償を実行して周波数同期を達成するように構成される、請求項2から9のいずれか一項に記載のシステム。
  11. 前記同期デバイス(400)における前記空間同期モジュール(430)は、地面ターゲット領域に対する前記マスター衛星(100)の前記撮像・検知デバイス(300)の方向と前記第1の付随衛星(200)又は前記第2の付随衛星(201)又は前記第3の付随衛星(101)の衛星姿勢とに基づいて前記第1の付随衛星(200)又は前記第2の付随衛星(201)又は前記第3の付随衛星(101)の前記撮像・検知デバイス(300)を同じ地面ターゲット領域に向け、それにより、空間同期を達成するように構成される、請求項2から10のいずれか一項に記載のシステム。
  12. SARシステムをそのペイロードとして備えるマスター衛星(100)と、前記マスター衛星(100)の周りを飛行する第1の付随衛星(200)と第2の付随衛星(201)とから成る少なくとも1つの対とを備える、衛星搭載SARコンステレーションシステムであって、
    前記第1の付随衛星(200)及び前記第2の付随衛星(201)は前記マスター衛星(100)の周りを飛行し、前記マスター衛星(100)は、同一のクロストラックベースライン成分を有する第1の空間ベースライン(A)及び第2の空間ベースライン(B)を規定するように前記第1の付随衛星(200)及び前記第2の付随衛星(201)の運動軌跡の長軸上に位置され、
    前記第1の付随衛星(200)及び前記第2の付随衛星(201)は、中心対称的に前記マスター衛星(100)に対して受動的に安定した形態を形成し、それにより、前記第1の付随衛星(200)が前記マスター衛星(100)に対して前記第1の空間ベースライン(A)を規定し、前記第2の付随衛星(201)が前記マスター衛星(100)に対して前記第2の空間ベースライン(B)を規定し、
    前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)は、長さに関して同一であり、位相に関して反対である、
    衛星搭載SARコンステレーションシステム。
  13. 第3の付随衛星(101)を更に備え、
    前記第3の付随衛星(101)が、前記第1の付随衛星(200)及び前記第2の付随衛星(201)の飛行軌道の外側に位置されるとともに、前記第1のマスター衛星(100)と共にタンデム編隊で飛行するように前記マスター衛星(100)に隣接する軌道上にあり、それにより、前記マスター衛星(100)に対して長いトラックに沿うベースライン(C)及び短いクロストラックベースライン(D)を規定し、
    前記SARシステムは、前記第1の空間ベースライン(A)及び前記第2の空間ベースライン(B)に基づき、長さに関して前記短いクロストラックベースライン(D)よりも大きい長い垂直ベースラインと、長さに関して前記長いトラックに沿うベースライン(C)よりも小さい短い水平ベースラインとを規定するとともに、前記短いクロストラックベースライン(D)及び前記長いトラックに沿うベースライン(C)と組み合わされる最適な干渉信号処理を実行して、精度及びレンジに関して改善された地形高度測定を伴って高分解能の幅広いスワスの撮像を実行する、
    請求項12に記載のシステム。
  14. 前記マスター衛星(100)、前記第3の付随衛星(101)、前記第1の付随衛星(200)、及び、前記第2の付随衛星(201)の軌道パラメータが取得された後、前記マスター衛星(100)は、測定デバイスを使用してSARレーダーアンテナの姿勢パラメータを取得して、前記マスター衛星(100)、前記第3の付随衛星(101)、前記第1の付随衛星(200)、及び、前記第2の付随衛星(201)に関する正確な軌道決定を行ない、それにより、前記第1の空間ベースライン(A)、前記第2の空間ベースライン(B)、前記長いトラックに沿うベースライン(C)、及び、前記短いクロストラックベースライン(D)を高精度で取得し、
    前記測定デバイスは、少なくとも、
    主にエフェメリスデータの復号化及びデータの同期化を含めて未加工データを前処理するステップと、
    微分位置決めアルゴリズムを使用して前記SARレーダーアンテナの位置パラメータを取得するステップと、
    前記SARレーダーアンテナの位置パラメータを使用して整数の曖昧さの初期値を取得し、カルマンフィルタ及び再帰検索によって前記整数の曖昧さの正確な値を計算するとともに、キャリア位相を使用して正確な座標を取得するステップと、
    前記取得された正確な座標を使用して衛星間ベースラインベクトルを取得するとともに、前記衛星間ベースラインベクトルを使用して前記SARレーダーアンテナの姿勢パラメータを取得するステップと、
    によって姿勢測定を実行するGPS受信機を備える、
    請求項12又は13に記載のシステム。
  15. SARシステムをそのペイロードとして備えるマスター衛星(100)と、第3の付随衛星(101)と、前記マスター衛星(100)の周りを飛行する第1の付随衛星(200)と第2の付随衛星(201)とから成る少なくとも1つの対と備える衛星遠隔検知システムであって、
    前記マスター衛星(100)がSARレーダーアンテナの姿勢パラメータを取得した後、GPS受信機が、少なくとも、前記マスター衛星(100)、前記第3の付随衛星(101)、前記第1の付随衛星(200)、及び、前記第2の付随衛星(201)の軌道パラメータとGPSコンステレーションとのその接続とに基づいて月面重力摂動、太陽放射圧力摂動、及び、大気抗力摂動に関する先験的情報を取得し、コンステレーションシステムの軌道摂動モデルを構築して、ベースライン測定に対する摂動の影響を排除し、
    前記GPS受信機は、前記コンステレーションシステムの前記軌道摂動モデルを通じて取得される軌道決定結果と前記SARレーダーアンテナの姿勢パラメータとに基づいて、第1の空間ベースライン(A)、第2の空間ベースライン(B)、長いトラックに沿うベースライン(C)、及び、短いクロストラックベースライン(D)を規定する、
    衛星遠隔検知システム。
JP2022512772A 2019-08-23 2019-11-29 衛星編隊ベースの遠隔検知システム及びコンステレーションシステム Active JP7391429B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201910788732.4A CN110456350B (zh) 2019-08-23 2019-08-23 一种星载sar星座系统
CN201910787398.0A CN110488292B (zh) 2019-08-23 2019-08-23 一种基于卫星编队的遥感系统
CN201910788732.4 2019-08-23
CN201910787398.0 2019-08-23
PCT/CN2019/121956 WO2021036066A1 (zh) 2019-08-23 2019-11-29 一种基于卫星编队的遥感系统及星座系统

Publications (2)

Publication Number Publication Date
JP2022546369A true JP2022546369A (ja) 2022-11-04
JP7391429B2 JP7391429B2 (ja) 2023-12-05

Family

ID=74683781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512772A Active JP7391429B2 (ja) 2019-08-23 2019-11-29 衛星編隊ベースの遠隔検知システム及びコンステレーションシステム

Country Status (5)

Country Link
US (1) US11821980B2 (ja)
EP (1) EP4020013A4 (ja)
JP (1) JP7391429B2 (ja)
CN (1) CN113439220B (ja)
WO (1) WO2021036066A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472417B (zh) * 2021-04-06 2023-02-03 中国科学院空天信息创新研究院 多星编队的雷达定时同步方法、装置、设备及存储介质
CN113900442B (zh) * 2021-10-25 2023-02-24 北京航空航天大学 航天器编队展开重构最优控制求解方法和系统
CN113911398B (zh) * 2021-11-09 2023-11-10 中国人民解放军火箭军工程大学 飞行器单脉冲躲避策略确定方法及系统
CN114844556B (zh) * 2022-04-26 2023-08-25 武昌理工学院 一种基于功能卫星负荷率的遥感信息去差异化传输方法
CN114928417B (zh) * 2022-05-17 2023-06-23 南京邮电大学 一种在摄动影响下基于分布式卫星编队的组阵频谱感知建模分析方法
DE102022117088A1 (de) * 2022-07-08 2024-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Erkennung und Auflösung von Phasenmehrdeutigkeiten in interferometrischen SAR-Daten
CN114910911B (zh) * 2022-07-18 2022-09-30 中国科学院空天信息创新研究院 一种基于多相位中心重构的星载多基sar成像方法
CN116299589B (zh) * 2022-10-20 2024-01-26 极诺星空(北京)科技有限公司 一种星载超小型gnss掩星探测仪
CN115728766B (zh) * 2022-11-18 2023-07-25 北京卫星信息工程研究所 两级智能双星sar系统与海面舰船目标跟踪方法
CN115754924B (zh) * 2022-11-18 2023-05-16 北京卫星信息工程研究所 卫星分布式短波雷达系统及空间目标探测方法
CN116148802B (zh) * 2023-04-24 2023-06-30 中国科学院空天信息创新研究院 一种双基sar相位同步抗干扰方法
CN116859344B (zh) * 2023-08-28 2023-11-03 中国电子科技集团公司第十四研究所 一种面向相干最优的能谱自适应分布式InSAR空间同步方法
CN117056449B (zh) * 2023-10-12 2024-03-12 中国科学院空天信息创新研究院 基于全球网格的卫星数据分景方法、装置、设备及介质
CN117849721B (zh) * 2024-03-07 2024-05-10 银河航天(北京)网络技术有限公司 卫星选择方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136189A1 (ja) * 2015-02-25 2016-09-01 日本電気株式会社 Sarデータ検索装置、方法および記録媒体
JP2017072473A (ja) * 2015-10-07 2017-04-13 三菱電機株式会社 画像処理装置および画像処理方法
CN109031297A (zh) * 2018-08-01 2018-12-18 北京空间飞行器总体设计部 主星位于中心、辅星cartwheel编队的分布式SAR构型
CN109164448A (zh) * 2018-08-01 2019-01-08 北京空间飞行器总体设计部 一种主辅星分布式sar侦测一体化成像卫星系统

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793727A (fr) * 1972-01-07 1973-07-05 Philips Nv Systeem voor de overdracht van datasignalen met behulp van lineaire frequentiemodulatie
US4472720A (en) * 1980-03-24 1984-09-18 Reesor Thomas W Area navigational system using geosynchronous satellites
EP0164142B1 (de) * 1984-05-02 1991-03-27 Koninklijke Philips Electronics N.V. Verfahren und Anordnung zur Ermittlung einer Kernmagnetisierungsverteilung in einem Teil eines Körpers
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
DE19730306C2 (de) * 1997-07-15 1999-05-20 Deutsch Zentr Luft & Raumfahrt Verfahren zur Synchronisation von Navigationsmeßdaten mit SAR-Radardaten und Einrichtung zur Durchführung dieses Verfahrens
DE10132723B4 (de) * 2001-07-05 2006-03-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Satellitenkonfiguration zur interferometrischen und/oder tomografischen Abbildung der Erdoberfläche mittels Radar mit synthetischer Apertur (SAR)
KR100387136B1 (ko) * 2001-07-06 2003-06-12 주식회사 네비콤 위성항법시스템 및 그를 이용한 항체의 자세측정방법
DE10160399B4 (de) * 2001-12-10 2004-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flugzeug- oder satellitengestütztes tomographisches Radarverfahren mit synthetischer Apertur
US6781540B1 (en) * 2003-02-21 2004-08-24 Harris Corporation Radar system having multi-platform, multi-frequency and multi-polarization features and related methods
US8768622B2 (en) * 2012-09-14 2014-07-01 The United States Of America, As Represented By The Secretary Of The Navy System and method for maneuver plan for satellites flying in proximity using apocentral coordinate system
ITTO20121117A1 (it) * 2012-12-20 2014-06-21 Thales Alenia Space Italia S P A C On Unico Socio Innovativo design orbitale per missioni spaziali di osservazione della terra
US9743373B2 (en) * 2012-12-28 2017-08-22 Trimble Inc. Concurrent dual processing of pseudoranges with corrections
US9880286B2 (en) * 2012-12-28 2018-01-30 Trimble Inc. Locally measured movement smoothing of position fixes based on extracted pseudoranges
US9910158B2 (en) * 2012-12-28 2018-03-06 Trimble Inc. Position determination of a cellular device using carrier phase smoothing
WO2014171988A2 (en) * 2013-01-29 2014-10-23 Andrew Robert Korb Methods for analyzing and compressing multiple images
CA3122468C (en) * 2013-10-07 2023-10-17 Google Llc Smart-home hazard detector providing non-alarm status signals at opportune moments
CN104297751B (zh) 2014-10-20 2017-03-08 西安电子科技大学 一种分布式卫星sar系统的主辅sar图像融合方法
US9919813B2 (en) * 2015-04-15 2018-03-20 The United States Of America, As Represented By The Secretary Of The Navy Control system and method for a plane change for satellite operations
EP3355079B8 (en) * 2017-01-25 2023-06-21 Airbus Defence and Space GmbH Method for each of a plurality of satellites of a secondary global navigation satellite system in a low earth orbit
CN107064935B (zh) 2017-06-13 2019-12-03 中国科学院电子学研究所 一种星载sar系统及其构建方法
JP6828193B2 (ja) * 2017-06-14 2021-02-10 ビーエイイー・システムズ・インフォメーション・アンド・エレクトロニック・システムズ・インテグレイション・インコーポレーテッド 合成開口を介した雨および運動の衛星トモグラフィ
CN107395309A (zh) 2017-07-25 2017-11-24 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于星间链路的高精度相对测距与时间同步方法
CN108053416B (zh) 2017-12-14 2020-06-02 北京市遥感信息研究所 一种基于单幅卫星图像的最大储油量提取系统
CN108120981B (zh) 2017-12-27 2019-12-03 中科卫星应用德清研究院 浅海水深雷达遥感探测方法
CN108557114A (zh) 2018-04-18 2018-09-21 上海微小卫星工程中心 一种分布式遥感卫星
CN109164480B (zh) 2018-10-15 2019-11-19 北京环境特性研究所 一种多次反射红外传感器标定装置及方法
CN111829964B (zh) * 2018-12-29 2023-07-18 长沙天仪空间科技研究院有限公司 一种分布式遥感卫星系统
CN109560862A (zh) 2019-01-23 2019-04-02 长沙天仪空间科技研究院有限公司 一种基于编队卫星的星间通信系统及方法
CN110377047B (zh) 2019-06-03 2022-08-02 上海航天控制技术研究所 一种双星卫星编队防碰撞方法
CN110488293B (zh) 2019-08-23 2021-07-06 长沙天仪空间科技研究院有限公司 一种非均匀空间构型的分布式sar系统
CN110488292B (zh) 2019-08-23 2021-04-13 长沙天仪空间科技研究院有限公司 一种基于卫星编队的遥感系统
CN113238226B (zh) 2019-08-23 2023-10-13 长沙天仪空间科技研究院有限公司 一种合成孔径雷达
CN113281747B (zh) 2019-08-23 2024-01-19 长沙天仪空间科技研究院有限公司 一种基于sar成像的卫星

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136189A1 (ja) * 2015-02-25 2016-09-01 日本電気株式会社 Sarデータ検索装置、方法および記録媒体
JP2017072473A (ja) * 2015-10-07 2017-04-13 三菱電機株式会社 画像処理装置および画像処理方法
CN109031297A (zh) * 2018-08-01 2018-12-18 北京空间飞行器总体设计部 主星位于中心、辅星cartwheel编队的分布式SAR构型
CN109164448A (zh) * 2018-08-01 2019-01-08 北京空间飞行器总体设计部 一种主辅星分布式sar侦测一体化成像卫星系统

Also Published As

Publication number Publication date
EP4020013A1 (en) 2022-06-29
CN113439220B (zh) 2023-10-13
EP4020013A4 (en) 2023-08-23
CN113439220A (zh) 2021-09-24
US11821980B2 (en) 2023-11-21
WO2021036066A1 (zh) 2021-03-04
US20220283295A1 (en) 2022-09-08
JP7391429B2 (ja) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7391429B2 (ja) 衛星編隊ベースの遠隔検知システム及びコンステレーションシステム
Zink et al. TanDEM-X: The new global DEM takes shape
CN110488292B (zh) 一种基于卫星编队的遥感系统
Gray et al. Repeat-pass interferometry with airborne synthetic aperture radar
Krieger et al. TanDEM-X: A radar interferometer with two formation-flying satellites
JP6828193B2 (ja) 合成開口を介した雨および運動の衛星トモグラフィ
Fornaro et al. SAR interferometry and tomography: Theory and applications
CN110456350B (zh) 一种星载sar星座系统
Magnard et al. Processing of MEMPHIS Ka-band multibaseline interferometric SAR data: From raw data to digital surface models
JPH0772244A (ja) 干渉型合成開口レーダ装置および地形変動観測方式
Faller et al. First results with the airborne single-pass DO-SAR interferometer
Nannini et al. TOPS time series performance assessment with TerraSAR-X data
KR100441590B1 (ko) 간섭측정용 합성 개구 레이다의 기하학적 특성을 이용하여지형고도를 측정하기 위한 디지털 고도모형 생성방법
US20030006927A1 (en) Satellite configuration for interferometric and/or tomographic remote sensing by means of synthetic aperture radar (SAR)
CN110823191A (zh) 混合基线双天线斜视干涉sar洋流测量性能确定方法及系统
Renga et al. Performance of stereoradargrammetric methods applied to spaceborne monostatic–bistatic synthetic aperture radar
Bamler et al. SRTM and beyond: current situation and new developments in spaceborne InSAR
Moccia et al. Bistatic synthetic aperture radar
Cramer et al. Data capture
Nitti et al. On the use of SAR interferometry to aid navigation of UAV
Kriegern et al. TanDEM-X: A radar interferometer with two formation-flying satellites$
Eineder Alpine Digital Elevation Models from Radar Interferometry-A Generic Approach to Exploit Multiple Imaging Geometries
Yu Interferometric synthetic aperture radar and radargrammetry for accurate digital elevation model generation in New South Wales, Australia
Chen et al. Space-surface bistatic SAR tomography: a promising approach for accurate local 3D reconstruction
Eineder et al. First data acquisition and processing concepts for the TanDEM-X mission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7391429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150