JP2022531787A - フォークメータにおける異常の判定および識別 - Google Patents

フォークメータにおける異常の判定および識別 Download PDF

Info

Publication number
JP2022531787A
JP2022531787A JP2021566239A JP2021566239A JP2022531787A JP 2022531787 A JP2022531787 A JP 2022531787A JP 2021566239 A JP2021566239 A JP 2021566239A JP 2021566239 A JP2021566239 A JP 2021566239A JP 2022531787 A JP2022531787 A JP 2022531787A
Authority
JP
Japan
Prior art keywords
phase difference
processing circuit
data processing
anomaly
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021566239A
Other languages
English (en)
Other versions
JP7288978B2 (ja
Inventor
ケヴィン エフ. スミス,
Original Assignee
マイクロ モーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ モーション インコーポレイテッド filed Critical マイクロ モーション インコーポレイテッド
Publication of JP2022531787A publication Critical patent/JP2022531787A/ja
Application granted granted Critical
Publication of JP7288978B2 publication Critical patent/JP7288978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • G01F23/2967Acoustic waves making use of acoustical resonance or standing waves for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/004Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis comparing frequencies of two elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/006Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

流体流システム内のプロセス異常を判定するための方法であって、システムは、流体流の流体中に浸漬された浸漬素子を備えたメータを有する。本方法は、データ処理回路(132)を使用して、流体流システム内の流体の測定密度を決定するステップと、データ処理回路(132)を使用して、流体流システム内の流体の測定密度と予想密度との間の関係に基づいて、流体流システムが密度異常を経験しているかどうかを判定するステップと、データ処理回路(132)を使用して、メータの浸漬素子の振動の測定位相差を決定するステップと、データ処理回路(132)を使用して、流体流システム内の浸漬素子の振動の測定位相差と目標位相差との間の関係に基づいて、流体流システムが位相異常を経験しているかどうかを判定するステップと、密度異常が存在するかどうかの判定および位相異常が存在するかどうかの判定に基づいて、流体流システムの異常を識別するステップと、を含む。

Description

以下に記載される実施形態は、振動センサに関し、より詳細には、振動センサにおける異常を判定および識別することに関する。
振動密度計および振動粘度計などの振動センサは、特徴付けられる流体の存在下で振動する振動素子の動きを検出することによって動作する。振動素子は、共振周波数または品質係数Qなどの振動応答パラメータを有することがある振動応答を有する。振動素子の振動応答は、一般に、流体との組合せによる振動素子の質量、剛性、および減衰特性の組合せによって影響を受ける。密度、粘度、温度などの流体に関連付けられた特性は、振動素子に関連付けられた1つまたは複数の動き変換器から受信した振動信号を処理することによって決定することができる。振動信号の処理には、振動応答パラメータを決定することが含まれることがある。
振動センサは、振動素子と、振動素子に結合されたメータ電子機器とを有する。振動センサは、振動素子を振動させるためのドライバと、振動に応答して振動信号を生成するピックオフとを含む。振動信号は、典型的には、連続時間またはアナログ信号である。メータ電子機器は、振動信号を受信し、振動信号を処理して、1つまたは複数の流体特性または流体測定値を生成する。メータ電子機器は、振動信号の周波数および振幅の両方を決定する。振動信号の周波数および振幅をさらに処理して、流体の密度を決定することができる。
振動センサは、閉ループまたは開ループ回路を使用してドライバに駆動信号を提供する。駆動信号は、典型的には、受信した振動信号に基づく。回路は、振動信号または振動信号のパラメータを変更するか、駆動信号に組み込む。例えば、駆動信号は、受信した振動信号を増幅、変調、またはその他の方法で変更したバージョンであってもよい。したがって、受信した振動信号は、回路が目標周波数を達成することを可能にするフィードバックを含むことができる。フィードバックを使用して、回路は、駆動周波数を段階的に変化させ、目標周波数に達するまで振動信号を監視する。
流体の粘度および密度などの流体特性は、駆動信号と振動信号との間の位相差が例えば135°および45°である周波数から決定することができる。これらの所望の位相差は、第1の共振外れ位相差および第2の共振外れ位相差として表記され、半分の電力または3 dBの周波数に相当することができる。第1の共振外れ周波数は、第1の共振外れ位相差が約135°である周波数として定義される。第2の共振外れ周波数は、第2の共振外れ位相差が約45°である周波数として定義される。第2の共振外れ周波数で行われる密度測定は、流体の粘度とは無関係とすることができる。したがって、第2の共振外れ位相差が45°である場合に行われる密度測定は、他の位相差で行われる密度測定よりも正確である可能性がある。
動作時に、流動流体に曝されるフォーク振動計の素子は、異常状態に起因して効率のシフトを経験することがある。例えば、流体流に浸漬された素子は、密度および/または粘度の有意な変動に起因してばらつきを経験することがある。これは、同伴する異物粒子または同伴するガスに起因している可能性がある。流体中に浸漬された素子はまた、膜または微粒子などの蓄積を生じることがある。流動流体中に浸漬された素子はまた、物理的相互作用または化学反応によって浸食または腐食をそれぞれ経験する可能性がある。また、異常な読取り値は、製造上または設置上の異常の特徴である可能性がある。流体中に浸漬された素子は、振動素子を含むことがある。この振動素子は、振動素子および流体の測定された特性が異常なセンサ読取り値を介して影響を受けるため、これらの異常のいずれかによって影響を受ける可能性がある。また、設置上または製造上の不具合は、予測不能の読取り値をもたらす可能性がある。
既存のメータおよび流量監視装置は、メータシステムの動作中に、メータシステム内の故障の性質を判定および識別するためのより効果的な手段を必要としている。現在の手法は、結果として得られる読取り値の異常に気付き、メータを動作状態から取り外してメータを検査することである。
したがって、故障の存在を判定し、振動流量計においてどの故障が問題を引き起こしているかを識別する必要がある。
一実施形態において、プロセス異常を判定するための方法が提供される。流体流システムにおけるプロセス異常を判定するための方法の実施形態が記載され、本システムは、流体流の流体中に浸漬された浸漬素子を備えたメータを有し、本方法は、データ処理回路を使用して、流体流システム内の流体の測定密度を決定するステップを含む。本方法は、データ処理回路を使用して、流体流システム内の流体の測定密度と予想密度との間の関係に基づいて、流体流システムが密度異常を経験しているかどうかを判定するステップをさらに含む。本方法は、データ処理回路を使用して、メータの浸漬素子の振動の測定位相差を決定するステップをさらに含む。本方法は、データ処理回路を使用して、流体流システムが位相異常を経験しているかどうかを、測定位相差と流体流内の浸漬素子の振動の目標位相差との間の関係に基づいて判定するステップをさらに含む。本方法は、密度異常が存在するかどうかの判定および位相異常が存在するかどうかの判定に基づいて、流体流システムの異常を識別するステップをさらに含む。
別の実施形態では、異常を判定するためのデータ処理回路が提供される。メータのメータ電子機器に通信可能に結合および/または一体化されたデータ処理回路の一実施形態において、メータは、振動素子と、振動素子の振動を駆動するためのドライバと、振動素子の振動を測定するための少なくとも1つのセンサと、を有し、メータ電子機器は、測定位相差および測定密度を判定するように構成されている。データ処理回路は、流体流システム内の流体の測定密度を決定し、流体流システム内の流体の測定密度と予想密度との間の関係に基づいて、流体流システムが密度異常を経験しているかどうかを判定し、メータの振動素子の振動の測定位相差を決定し、データ処理回路を使用して、流体流内の振動素子の振動の測定位相差と目標位相差との間の関係に基づいて、流体流システムが位相異常を経験しているかどうかを判定し、密度異常の判定および位相異常の判定に基づいて、流体流システムの異常を識別するようにさらに構成されている。
[態様]
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、ガス同伴異常を示す密度異常を識別することを含むことができ、測定密度と予想密度との間の関係は、測定密度が予想密度よりも少なくとも閾値密度差だけ小さいことである。
一態様によると、プロセス異常を判定するための方法は、測定位相差が目標位相差と少なくとも閾値位相偏差だけ異なることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、測定位相差が平均測定位相差であり、閾値位相偏差が平均測定位相差と目標位相差との差であることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、識別された流体流システムの異常がガス同伴異常であることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、データ処理回路に記憶されたデータに基づいて、流体および流体に同伴する要素のうちの1つまたは複数が浸漬素子を浸食する可能性があるかどうかを判定することによって、ガス同伴異常の識別が浸食異常の識別と混同される可能性があるかどうかを判定するステップと、データ処理回路を使用して、データ処理回路が、流体および流動流体に同伴する要素のうちの1つまたは複数が浸漬素子を浸食する可能性があることを示すデータを有する場合に、ガス同伴異常の識別が浸食異常と混同される可能性があると識別するステップと、を含むことができる。
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、蓄積異常を示す密度異常を識別するステップを含むことができ、測定密度と予想密度との間の関係は、測定密度が予想密度よりも少なくとも閾値密度差だけ大きいことである。
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、測定位相差が目標位相差から少なくとも閾値位相偏差だけ異なること、測定位相差が目標位相差から上下に揺れる揺れ挙動、および測定位相差の目標位相差に対する三角測量挙動のうちの1つまたは複数を判定することによって、測定位相差と目標位相差との間の関係を判定し、データ処理回路を使用して、蓄積異常を示す位相異常を識別することを含むことができる。
一態様によると、プロセス異常を判定するための方法は、揺れ挙動および三角測量挙動のうちの1つまたは複数が、測定位相差のいくつかの連続するサイクル発振が目標位相差を上回り、および/または測定位相差の別の数の連続するサイクル発振が目標位相差を下回るとして判定されることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、三角測量挙動が、目標位相に対して三角形または円形パターンを生成する測定位相差のいくつかの連続するサイクル発振によって判定されることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、識別するステップが、流体流システムの異常が蓄積異常として識別されるステップをさらに含むことを含むことができる。
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、データ処理回路に記憶されたデータに基づいて流体および流体に同伴する要素のうちの1つまたは複数が浸漬素子を腐食する可能性があるかどうかを判定することによって、蓄積異常の識別が腐食異常の識別と混同される可能性があるかどうかを判定するステップと、データ処理回路を使用して、データ処理回路が、流動流体および流動流体に同伴する要素のうちの1つまたは複数が浸漬素子を腐食する可能性があることを示すデータを有する場合に、蓄積異常の識別が腐食異常と混同される可能性があると識別するステップと、を含むことができる。
一態様によると、プロセス異常を判定するための方法は、閾値密度差が1kg/m3であることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、閾値位相偏差が.02°であることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、閾値位相偏差が.015°であることを含むことができる。
一態様によると、プロセス異常を判定するための方法は、データ処理回路を使用して、ガス同伴異常をユーザに通知するステップ、ガス同伴異常が発生したことをメータ上で示すステップ、ガス同伴異常に応答して流体または流体流の特性を変化させるステップ、およびガス同伴異常を表すデータを記憶するステップのうちの1つまたは複数によって、異常に応答することを含むことができる。
一態様によると、プロセス異常を判定するための方法は、流体または流体流の流れ特性を変化させることが、流体流の速度を増加させること、および流体流内の流体の温度を上昇させることのうちの1つまたは複数をさらに含むことを含むことができる。
一態様によると、プロセス異常を判定するための方法は、メータがフォーク密度計およびフォーク粘度計のうちの1つであることを含むことができる。
一態様によると、データ処理回路は、測定密度が予想密度よりも少なくとも閾値密度差だけ小さいと判定することによって、測定密度と予想密度との間の関係を判定し、ガス同伴異常を示す密度異常を識別するように構成することができる。
一態様によると、データ処理回路は、測定位相差が目標位相差と少なくとも閾値位相偏差だけ異なると判定することによって、測定位相差と目標位相差との間の関係を判定するように構成することができる。
一態様によると、データ処理回路は、平均測定位相差である測定位相差を使用するように構成されてもよく、閾値位相偏差は、平均測定位相差と目標位相差との差である。
一態様によると、データ処理回路は、流体流システムの異常をガス同伴異常として識別することによって流体流システムの異常を識別するように構成することができる。
一態様によると、データ処理回路は、データ処理回路を使用して、データ処理回路に記憶されたデータに基づいて流体および流体に同伴する要素のうちの1つまたは複数が振動素子を浸食する可能性があるかどうかを判定することによって、ガス同伴異常の識別が浸食異常の識別と混同される可能性があるかどうかを判定し、データ処理回路が流体および流動流体に同伴する要素のうちの1つまたは複数が振動素子を浸食する可能性があることを示すデータを有する場合に、ガス同伴異常の識別が浸食異常と混同される可能性があると識別するように構成することができる。
一態様によると、データ処理回路は、測定密度が予想密度よりも少なくとも閾値密度差だけ大きいと判定することによって、測定密度と予想密度との間の関係を判定し、蓄積異常を示す密度異常を識別するように構成することができる。
一態様によると、データ処理回路は、測定位相差が目標位相差と少なくとも閾値位相偏差だけ異なること、測定位相差が目標位相差の上下に揺れる揺れ挙動、および測定位相差の目標位相差に対する三角測量挙動のうちの1つまたは複数を判定することによって、測定位相差と目標位相差との間の関係を判定し、蓄積異常を示す位相異常を識別するように構成することができる。
一態様によると、データ処理回路は、目標位相差を上回る測定位相差のいくつかの連続するサイクル発振と目標位相差を下回る測定位相差の別の数の連続するサイクル発振との一方または両方を検出することによって、揺れ挙動および三角測量挙動のうちの1つまたは複数を判定するように構成することができる。
一態様によると、データ処理回路は、目標位相に対して三角形または円形パターンを生成する測定位相差の連続するサイクル発振の数を識別することによって三角測量挙動を判定するように構成することができる。
一態様によると、データ処理回路は、流体流システムの異常を蓄積異常として識別するように構成することができる。
一態様によると、データ処理回路は、データ処理回路に記憶されたデータに基づいて、流体および流体に同伴する要素のうちの1つまたは複数が振動素子を腐食する可能性があるかどうかを判定することによって、蓄積異常の識別が腐食異常の識別と混同される可能性があるかどうかを判定し、データ処理回路が流動流体および流動流体に同伴する要素のうちの1つまたは複数が振動素子を腐食する可能性があることを示すデータを有する場合に、蓄積異常の識別が腐食異常と混同される可能性があると識別するように構成することができる。
一態様によると、データ処理回路は、1kg/m3の閾値密度差を使用するように構成することができる。
一態様によると、データ処理回路は、.02°である閾値位相偏差を使用するように構成することができる。
一態様によると、データ処理回路は、.015°である閾値位相偏差を使用するように構成することができる。
一態様によると、データ処理回路は、異常をユーザに通知すること、異常が発生したことをメータ上で示すこと、異常に応答して流体または流体流の特性を変化させること、および異常を表すデータを記憶することのうちの1つまたは複数によって異常に応答するように構成することができる。
一態様によると、データ処理回路は、流体流の速度を増加させること、および流体流内の流体の温度を上昇させることのうちの1つまたは複数によって、流体または流体流の流れ特性を変化させるように構成することができる。
一態様によると、メータは、フォーク密度計およびフォーク粘度計のうちの1つであってもよい。
一態様によると、プロセス異常を判定するための方法は、データ処理回路が、流体流システムがいかなる密度異常も経験していないが、流体流が少なくとも1つの位相異常を経験していると判定することを含むことができ、識別される異常は、製造上異常および設置上異常のうちの1つまたは複数である。
一態様によると、プロセス異常を判定するための方法は、信号処理回路をリセットするかまたはデータ処理回路との新たな位相ロックを確立することと、信号処理回路をリセットするかまたは新たな位相ロックを確立した後に揺れ挙動が時間とともに減少するかどうかをデータ処理回路によって判定することと、揺れ挙動が時間とともに減少する場合に、位相異常が蓄積異常を示す位相異常ではなく、設置異常を示す位相異常であると信号処理回路によって判定することと、を含むことができる。
一態様によると、プロセス異常を判定するための方法は、予想位相差からの測定位相差の最大サイクル偏差が増加し、それに続いて、おそらく、予想位相差からの最大サイクル偏差が減少しながら、潜在的に異なる数の連続する測定位相差のサイクルが続く、測定位相差が予想位相差を上回るまたは下回る連続するサイクル数を識別することによって、揺れ挙動および三角測量挙動のうちの1つまたは複数を判定することができる。
一態様によると、プロセス異常を判定するための方法は、いくつかの連続するサイクルが予想位相差から増加しながら逸脱し、その後引き続いて、別の数のサイクルが連続して引き続いて減少しながら逸脱したと判定した後に、測定位相差が予想位相差を満たし、予想位相差の反対側にクロスオーバすることによって、揺れ挙動をさらに判定することを含むことができる。
一態様によると、プロセス異常を判定するための方法は、流体または流体流の特性を変化させるステップが、蓄積物が浸漬素子の融点よりも低い融点を有することを示すデータをデータ処理回路が記憶している場合に流体の温度を上昇させるステップを含むことを含むことができる。
一態様によると、データ処理回路は、流体流システムがいかなる密度異常も経験していないが、流体流が少なくとも1つの位相異常を経験しているとデータ処理回路が判定することを含むように構成することができ、識別される異常は、製造上異常および設置上異常のうちの1つまたは複数である。
一態様によると、データ処理回路は、信号処理回路をリセットするかまたはデータ処理回路との新たな位相ロックを確立し、信号処理回路をリセットするかまたは新たな位相ロックを確立した後に揺れ挙動が時間とともに減少するかどうかをデータ処理回路によって判定し、揺れ挙動が時間とともに減少する場合に、位相異常が蓄積異常を示す位相異常ではなく、設置異常を示す位相異常であるとデータ処理回路によって決定するように構成することができる。
一態様によると、データ処理回路は、予想位相差からの測定位相差の最大サイクル偏差が増加し、それに続いて、おそらく、予想位相差からの最大サイクル偏差が減少しながら、潜在的に異なる数の連続する測定位相差のサイクルが続く、測定位相差が予想位相差を上回るまたは下回る連続するサイクル数を識別することによって、揺れ挙動および三角測量挙動のうちの1つまたは複数を判定するように構成することができる。
一態様によると、データ処理回路は、いくつかの連続するサイクルが予想位相差から増加しながら逸脱し、その後引き続いて、別の数のサイクルが連続して引き続いて減少しながら逸脱したと判定した後に、測定位相差が予想位相差を満たし、予想位相差の反対側にクロスオーバすることによって、揺れ挙動をさらに判定するように構成することができる。
一態様によると、データ処理回路は、蓄積物が浸漬素子の融点よりも低い融点を有することを示すデータが記憶されている場合に、流体の温度を上昇させることによって、流体または流体流の特性を変化させることができ、温度は、蓄積物の融点よりも高い。
一態様によると、データ処理回路は、メータと一体であってもよく、メータは、異常および/または異常に対する応答を表すデータ以外の流体または流体流の特性を表すデータをユーザまたは外部デバイスに提供するように構成されていない専用の故障検出要素である。
一態様によると、プロセス異常を判定するための方法は、浸漬素子が最初に流体に浸漬されたときの流体の最初に測定された密度に基づいて、異常を判定するための少なくとも1つの閾値または範囲を決定することを含むことができる。
一態様によると、データ処理回路は、浸漬素子が最初に流体に浸漬されたときの流体の最初の測定密度に基づいて、異常を判定するための少なくとも1つの閾値または範囲を決定するように構成することができる。
一態様によると、プロセス異常を判定するための方法は、メータが設置されている、動作している、および動作から取り外されていない、のうちの1つまたは複数であるときに異常が識別されることを含むことができる。
一態様によると、データ処理回路は、メータが設置されている、動作している、および動作から取り外されていない、のうちの1つまたは複数であるときに異常が識別されるように構成することができる。
すべての図面において、同じ参照番号は同じ要素を表す。図面は、必ずしも縮尺通りではないことを理解されたい。
振動素子および振動素子に結合されたメータ電子機器を備える振動センサを示す図である。 データ処理回路132の一実施形態のブロック図である。 異常を判定および識別するための方法300の実施形態の流れ図である。 密度異常を判定および識別するための方法400の一実施形態の流れ図である。 位相異常を判定するための方法500の一実施形態の流れ図である。 システム内に同伴ガスが存在するかどうかを判定するための方法600の一実施形態の流れ図である。 メータ上に蓄積物があるかどうかを判定するための方法700の一実施形態の流れ図である。 ガス同伴異常が浸食異常と混同されているかどうかを判定するための方法800の一実施形態の流れ図である。 蓄積異常が腐食異常と混同されているかどうかを判定するための方法900の一実施形態の流れ図である。 異常検出に応答するための方法1000の一実施形態の流れ図である。 一実施形態による、フォーク密度計が異常なく動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1100aである。 一実施形態による、フォーク密度計が異常なく動作しているときの予想位相差からのライブ位相の偏差のグラフ1100bである。 一実施形態による、フォーク密度計が同伴ガス異常で動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1200aである。 一実施形態による、フォーク密度計が同伴ガス異常で動作しているときの、予想位相差からのライブ位相の偏差のグラフである。 一実施形態による、フォーク密度計が蓄積異常で動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1300aを示す。 一実施形態による、フォーク密度計が蓄積異常で動作しているときの予想位相差からのライブ位相の偏差のグラフである。 一実施形態による、フォーク粘度計が異常なく動作しているときの時間に対するフォーク位相をフォーク位相と比較する2軸グラフ1400である。
図1~図14および以下の説明は、振動素子の振動応答パラメータを決定する実施形態の最良のモードをどのように作成し使用するかを当業者に教示するための特定の例を示す。本発明の原理を教示する目的で、いくつかの従来の態様は、簡略化または省略されている。当業者は、本明細書の範囲内に入るこれらの例からの変形形態を理解するであろう。当業者は、以下に説明する特徴を様々な仕方で組み合わせて、振動素子の振動応答パラメータを決定する複数の変形形態を形成することができることを理解するであろう。結果として、以下に記載される実施形態は、以下に記載される特定の例に限定されず、特許請求の範囲およびその均等物によってのみ限定される。
図1は、一実施形態によるメータの振動センサ5を示す。振動センサ5は、振動素子104およびメータ電子機器20を備えることができ、振動素子104は、リード線100によってメータ電子機器20に結合されている。一部の実施形態では、振動センサ5は、振動タインセンサまたはフォーク密度もしくはフォーク粘度センサを備えることができる。しかしながら、他の振動センサも企図され、本明細書および特許請求の範囲の範囲内にある。メータは、流体流特性を決定するように構成されたメータであってもよく、および/または異常を検出するように特に構成されていてもよい。他の流体測定値を決定するためのメータとは対照的に、メータが専ら異常検出器である実施形態が企図されており、おそらく、異常および/または異常に対する応答を表すデータ以外の流体または流体流特性を表すデータをユーザまたは外部デバイスに提供するようには構成されていない。
振動センサ5は、特徴付けられる流体中に少なくとも部分的に浸漬されることがある。流体は、液体または気体を含むことができる。あるいは、流体は、同伴ガス、同伴固体、複数の液体、またはそれらの組合せを含む液体などの多相流体を含むことができる。いくつかの例示的な流体としては、セメントスラリー、石油製品などが挙げられる。振動センサ5は、パイプまたは導管、タンク、コンテナ、または他の流体容器内に取り付けられてもよい。振動センサ5はまた、流体流を方向付けるための、マニホールドまたは同様の構造に取り付けられてもよい。しかしながら、他の取付け構成が企図され、本明細書および特許請求の範囲の範囲内にある。
振動センサ5は、流体測定値を提供するように動作する。振動センサ5は、流動または非流動流体を含む流体の流体密度および流体粘度のうちの1つまたは複数を含む、流体測定値を提供することができる。振動センサ5は、流体の質量流量、流体の体積流量、流体の密度、流体の粘度、および/または流体の温度を含む流体の測定値を提供することができる。このリストは、網羅的なものではなく、振動センサ5は、他の流体特性を測定または決定することができる。
メータ電子機器20は、リード線100を介して振動素子104に電力を供給することができる。メータ電子機器20は、リード線100を介して振動素子104の動作を制御する。例えば、メータ電子機器20は、駆動信号を生成し、生成された駆動信号を振動素子104に提供することができ、振動素子104は、生成された駆動信号を使用して1つまたは複数の振動構成要素に振動を生成する。生成された駆動信号は、振動素子104の振動振幅および周波数を制御することができる。生成された駆動信号は、振動持続時間および/または振動タイミングを制御することもできる。
メータ電子機器20は、リード線100を介して振動素子104から振動信号を受信することもできる。メータ電子機器20は、振動信号を処理して、例えば密度測定値を生成することができる。メータ電子機器20は、振動素子104から受信した振動信号を処理して、信号の周波数を決定する。さらに、または加えて、メータ電子機器20は、振動信号を処理して、例えば、粘度などの流体の他の特性、流体流量を決定するために処理することができる信号間の位相差などを決定する。理解され得るように、位相差は、典型的には、度またはラジアンなどの空間単位で測定または表現されるが、時間ベースの単位などの任意の適切な単位を採用することができる。時間ベースの単位が採用される場合、位相差は、当業者によって、振動信号と駆動信号との間の時間遅延と呼ばれることがある。他の振動応答特性および/または流体測定値も企図され、本明細書および特許請求の範囲の範囲内にある。
メータ電子機器20は、図示する実施形態ではシャフト115によって振動素子104に結合されている。シャフト115は、任意の所望の長さであってもよい。シャフト115は、少なくとも部分的に中空であってもよい。ワイヤまたは他の導体が、シャフト115を通ってメータ電子機器20と振動素子104との間に延在することができる。メータ電子機器20は、データ処理回路132、レシーバ回路134、インターフェース回路136、およびドライバ回路138などの回路構成要素を含む。図示する実施形態では、レシーバ回路134およびドライバ回路138は、振動素子104のリード線に直接結合されている。あるいは、メータ電子機器20は、振動素子104とは別個の構成要素またはデバイスを備えることができ、レシーバ回路134およびドライバ回路138は、リード線100を介して振動素子104に結合されている。
図示する実施形態では、振動センサ5の振動素子104は、音叉構造を含み、振動素子104は、測定される流体に少なくとも部分的に浸漬される。振動素子104は、パイプ、導管、タンク、レセプタクル、マニホールド、または任意の他の流体ハンドリング構造などの別の構造に取り付けることができるハウジング105を含む。ハウジング105は、振動素子104を保持するが、振動素子104は、少なくとも部分的に露出したままである。したがって、振動素子104は、流体中に浸漬されるように構成されている。振動センサ5は、温度を測定する温度センサ118も有し、流量計算および異常検出のための温度情報を提供することができる。
図示する実施形態の振動素子104は、少なくとも部分的に流体内に延在するように構成された第1および第2のタイン112、114を含む。第1および第2のタイン112、114は、任意の所望の断面形状を有することができる細長い要素を備える。第1および第2のタイン112、114は、本質的に少なくとも部分的に可撓性または弾性であってもよい。振動センサ5は、圧電結晶素子を含む対応する第1および第2のピエゾ素子122、124をさらに含む。第1および第2のピエゾ素子122、124は、第1および第2のタイン112、114にそれぞれ隣接して配置されている。第1および第2のピエゾ素子122、124は、第1および第2のタイン112、114とそれぞれ接触し、機械的に相互作用するように構成されている。第1および第2のピエゾ素子122、124は、本明細書の目的のために浸漬素子と考えることもできる。
第1のピエゾ素子122は、第1のタイン112の少なくとも一部と接触している。第1のピエゾ素子122はまた、ドライバ回路138に電気的に結合されている。ドライバ回路138は、生成された駆動信号を第1のピエゾ素子122に供給する。第1のピエゾ素子122は、生成された駆動信号を受け取ると伸縮する。その結果、第1のピエゾ素子122は、第1のタイン112を交互に変形させ、振動運動(破線参照)で左右に変位させ、流体を周期的に往復運動させて攪乱することができる。第1のピエゾ素子122は、本明細書および特許請求の範囲の目的のためにドライバ122と呼ばれることもある。第1のピエゾ素子122は、例示的なピエゾドライバ122として示されているが、当技術分野で使用される任意のドライバ122が本明細書によって企図される。
第2のピエゾ素子124は、流体中の第2のタイン114の変形に対応する振動信号を生成するレシーバ回路134に結合されているものとして示されている。第2のタイン114の運動により、対応する電気的な振動信号が第2のピエゾ素子124によって生成される。第2のピエゾ素子124は、振動信号をメータ電子機器20に送信する。第2のピエゾ素子124はまた、本明細書および特許請求の範囲の目的のために、センサ124と呼ばれることもあり、または少なくとも1つのセンサ124を表してもよい。図示する実施形態ではピエゾ素子124が提示されているが、当技術分野で知られているすべてのセンサ124が本明細書の目的のために企図されることに留意されたい。
メータ電子機器20は、インターフェース回路136を含む。インターフェース回路136は、外部デバイスと通信するように構成することができる。インターフェース回路136は、振動測定信号を通信し、決定された流体特性を1つまたは複数の外部デバイスに通信することができる。メータ電子機器20は、インターフェース回路136を介して、振動信号の振動信号周波数および振動信号振幅などの振動信号特性を送信することができる。メータ電子機器20は、とりわけ、流体の密度および/または粘度などの流体測定値をインターフェース回路136を介して送信することができる。他の流体測定値も考えられ、本明細書および特許請求の範囲の範囲内である。加えて、インターフェース回路136は、例えば、測定値を生成するためのコマンドおよびデータを含む、外部デバイスからの通信を受信することができる。一部の実施形態では、レシーバ回路134は、ドライバ回路138に結合されており、レシーバ回路134は、ドライバ回路138に振動信号を提供する。レシーバ回路134とドライバ回路138とによって、またはそれらの間で送受信される任意のデータは、データ処理回路132にさらに送信されてもよい。
ドライバ回路138は、振動素子104の駆動信号を生成する。ドライバ回路138は、生成された駆動信号の特性を変更することができる。駆動装置は、ドライバ回路138によって使用され、駆動信号を生成し、生成された駆動信号を振動素子104(例えば、第1のピエゾ素子/ドライバ122)に供給することができる。一部の実施形態では、駆動装置は、初期周波数で開始し、目標位相差を達成するように駆動信号を生成する。駆動装置は、振動信号からのフィードバックに基づいて動作してもしなくてもよい。
データ処理回路132は、レシーバ回路134およびドライバ回路138によって生成および/または受信されたデータを処理し、流体特性データおよび異常データのうちの少なくとも1つを判定する回路である。データ処理回路132は、メータ電子機器20内の要素のすべてに通信可能に結合されてもよく、いずれにも結合されなくてもよく、および/または任意の組合せに通信可能に結合されてもよい。データ処理回路132は、図2に提示されたデータ処理回路132の実施形態であってもよい。
図2は、データ処理回路132の一実施形態のブロック図を示す。データ処理回路132は、メータ電子機器20の構成要素のいずれかに、いくつかに、またはすべてに通信可能に結合されてもよい。データ処理回路132は、図1のデータ処理回路132の実施形態であってもよい。様々な実施形態において、データ処理回路132は、特定用途向け集積回路から構成されてもよく、または個別のプロセッサおよびメモリ素子を有してもよく、プロセッサ素子は、メモリ素子からのコマンドを処理し、メモリ素子にデータを記憶するためのものであってもよい。様々な実施形態において、データ処理回路132は、メータ電子機器20と一体であってもよく、またはメータ電子機器20に通信可能に結合されていていてもよい。データ処理回路132は、メータ電子機器の要素から受信したパラメータを表すデータと、予めインストールされた、ならびに/あるいは、メータ電子機器および/または外部デバイスの要素から受信した他のデータと、を記憶するように構成されていてもよい。
データ処理回路132は、プロセッサ210、メモリ220、および入力/出力230を有することができる。メモリ220は、例えば、流体特性モジュール202、異常検出モジュール204、および応答モジュール206を表す集積回路を格納してもよく、および/または有していてもよい。様々な実施形態において、データ処理回路132は、記載された要素に一体化された、または記載されたコンピュータ要素に加えてもしくは記載されたコンピュータ要素と通信する他のコンピュータ要素、例えば、バス、他の通信プロトコルなどを有していてもよい。
プロセッサ210は、データ処理要素である。プロセッサ210は、中央処理装置、特定用途向け集積回路、他の集積回路、アナログコントローラ、グラフィックス処理ユニット、フィールドプログラマブルゲートアレイ、これらまたは他の一般的な処理要素の任意の組合せなど、処理に使用される任意の要素であってもよい。
メモリ220は、電子的に記憶するためのデバイスである。メモリ220は、任意の非一過性記憶媒体であってもよく、ハードドライブ、ソリッドステートドライブ、揮発性メモリ、集積回路、フィールドプログラマブルゲートアレイ、ランダムアクセスメモリ、読み出し専用メモリ、ダイナミックランダムアクセスメモリ、消去可能プログラマブル読み出し専用メモリ、電気的消去可能プログラマブル読み出し専用メモリなどのうちの1つ、いくつか、またはすべてを含んでもよい。プロセッサ210は、メモリ220からのコマンドを実行し、そこに記憶されたデータを利用することができる。
データ処理回路132は、流体特性モジュール202、異常検出モジュール204、および応答モジュール206によって使用される任意のデータを記憶するように構成されていてもよく、流体特性モジュール202、異常検出モジュール204、および/または応答モジュール206によって受信または使用される任意のパラメータを表す任意の時間量の履歴データをメモリ220に記憶していてもよい。データ処理回路132はまた、異常の判定を表す任意のデータ、または異常を判定するために使用されるデータを、おそらく、データがいつ取得されたかを表すタイムスタンプとともにメモリ220に記憶していてもよい。流体特性モジュール202、異常検出モジュール204、および応答モジュール206は、3つの別個の個別のモジュールとして表示されているが、本明細書は、本明細書で表される方法を達成するために協調して動作する任意の数の(1つであっても、指定されているように3つであっても)および様々なモジュールを企図している。
流体特性モジュール202は、メータから取得したセンサ読取り値を表すデータを処理し、データを解釈して意味のある読取り値を提供するモジュールである。この流体特性モジュール202は、ソフトウェアプログラムであってもよく、集積回路であってもよく、流体特性モジュール202は、それ自体がデータを記憶してもよく、データ処理回路132のメモリデバイス220にデータを記憶してもよい。メータからのこのデータは、物理的特性を表すデータとして受信されてもよく、または基礎となる物理的意味を決定するために解釈を必要とする直接のセンサ読取り値を表す生の電圧および/または電流データを表すデータであってもよい。流体特性モジュール202は、センサ5の温度センサ118から温度読取り値を表すデータを受信することができる。流体特性モジュール202は、おそらく第1のピエゾ素子122および/またはドライバ回路138から、駆動信号を表すデータ、もしくは振動素子が振動している周波数を表すようにすでに変換されたデータを受信することができる。流体特性モジュール202は、おそらく第2のピエゾ素子124および/またはレシーバ回路134から、振動応答を表すデータ、もしくは振動応答の周波数を表すようにすでに変換されたデータを受信することができる。流体特性モジュール202はまた、流体流の密度、粘度、体積流量、および/または質量流量を判定するための特定の定数およびメータ構成情報を記憶するために、データ処理回路132内のメモリに記憶または命令することができ、データ流体特性モジュール202は、流体流の密度、粘度、体積流量、および/または質量流量を決定するように構成されていてもよい。例えば、流体特性モジュール202は、メータアセンブリの異なる構成要素、おそらく具体的には、流体流に少なくとも部分的に浸漬されるタインの質量または密度を表すデータを記憶するか、またはデータ処理回路132に記憶させることができる。データ流体特性モジュール202はまた、おそらくタイン112および114の長さおよび質量を含む、メータ要素の物理的構成を記憶するか、またはデータ処理回路132に記憶させることができる。
流体特性モジュール202は、これらの記憶されたおよび/または受信されたデータを使用して、密度および/または粘度を決定することができる。密度は、当技術分野で知られている方法を使用して、タイン112および114の質量、流動材料の温度、ならびにタイン112および114の寸法を考慮することによって決定することができる。粘度は、当技術分野で知られている方法を使用して、電力損失の量および関連付けられた帯域幅、またはピックオフによって捕捉される飛行時間によって決定することができる。流体特性モジュール202はまた、異常を検出するように構成されてもよく、異常には、例えば、ガス同伴、浸漬素子上の膜もしくは他の堆積物、浸漬素子の腐食もしくは浸食、および/または製造上もしくは設置上の問題が含まれる。流体特性モジュール202は、振動計の使用中にデータおよび異常を収集および処理するように構成されてもよく、および/または振動計は、異常を判定および識別するために作動流体の流れから取り除く必要がなくてもよい。
流体特性モジュール202は、測定位相差を受信または決定するように構成されていてもよい。測定位相差は、フォーク密度計または粘度計の振動を表すデータを比較することによって決定することができる。例えば、この位相差は、レシーバ回路134から受信した振動応答の周波数を表すデータと、ドライバ回路138から受信した、フォーク密度計または粘度計のタイン112および114をドライバが駆動する周波数を表すデータと、の比較を表すことができる。あるいは、位相差は、レシーバ回路134から受信した振動応答の周波数を表すデータと、ドライバ回路138から受信した、フォーク密度計の駆動された第1のタイン112が振動する周波数を表すデータと、の比較を表すことができる。測定位相差を決定するための方法は、当技術分野において十分に確立されている。本明細書の目的のために、測定位相差は、ライブ位相またはライブ位相測定値と呼ばれることがある。
流体特性モジュール202は、ドライバ回路138およびレシーバ回路134とともに動作して、目標位相差と呼ばれる、所定の位相差でロックしようとするようにメータを駆動するように構成されていてもよい。目標位相差は、代わりに、所望の位相差または位相ロック目標と呼ばれることがある。目標位相差は、例えば、45°、90°、135°であってもよく、および/または45°~135°の範囲内の任意の位相差であってもよい。測定位相差が目標位相差からどの程度逸脱しているかが位相誤差である。流体特性モジュール202および/または異常検出モジュール204は、位相誤差を計算するように構成されていてもよい。位相誤差は、大きさとして表されてもよく、または目標位相差を特徴的に下回る(負)または上回る(正)ベクトル相対量として表されてもよい。本明細書におけるすべての正の定量値は、符号なしの大きさまたは正の値のいずれかまたは両方であると解釈することができる。
異常検出モジュール204は、メータまたは流体流の流体の異常をおそらく示す、メータの読取り値の異常を検出するために使用されるモジュールである。異常検出モジュール204は、流体特性モジュール202と通信して、メータまたはメータと相互作用する流体の異常を判定することができる。論じられるような異常検出モジュール204は、後で別途指定されるまで、位相差を使用して判定を行うフォーク密度計の異常検出モジュール204の実施形態を指す。測定密度フォーク位相を決定するために、フォーク粘度計のライブ位相の代わりに、フォーク粘度パラメータを使用するフォーク粘度計のための異常検出モジュール204も開示されているが、類似の挙動の説明によって後で扱う。
異常検出モジュール204は、基準または予想密度を使用して、密度異常が発生したことを判定するように構成されていてもよい。例えば、異常検出モジュール204は、インターフェース回路136を介して予想密度値の値を受信および/または記憶することができる。代替として、データ処理回路132は、既存の密度データを有するストレージを有してもよく、異常検出モジュール204は、おそらく、測定値および予め記憶されたデータに基づいて、またはデータ処理回路132のメモリ220内の密度を参照するために物質または識別子を指定するユーザ供給コマンドを介して予想密度を受信することによって、予想密度を自動的に検出するように構成される。測定密度値が予想密度値と異なる場合、異常検出モジュール204は、メータが密度異常を経験していると判定することができる。異常検出モジュール204は、特定の閾値を超える予想密度と測定密度との差に基づいて密度異常を判定することができる。
異常検出モジュール204は、予想密度を下回るまたは上回る特定の閾値を超える、予想密度と測定密度と差に基づいて密度異常を判定するように構成されていてもよい。例えば、異常検出モジュール204が、測定密度が予想密度よりも小さい、おそらく不足分が閾値を超えていると判断した場合、異常検出モジュール204は、システム内にガス同伴があり、ガス同伴異常を示す密度異常が存在する可能性が高いと判断することができる。異常検出モジュール204は、流体流内に同伴ガスが存在する可能性が高いかどうかを確認するために、対応する位相異常を判定することをさらに試みることができる。異常検出モジュール204が、測定密度が予想密度よりも大きく、おそらく閾値を超えていると判断した場合、異常検出モジュール204は、システムの浸漬素子、おそらくタイン112または114などの振動素子上に蓄積物があり、蓄積異常を示す密度異常が存在する可能性が高いと判断することができる。異常検出モジュール204は、流体流内に同伴ガスが存在する可能性が高いかどうかを確認するために、対応する位相異常を判定することをさらに試みることができる。異常検出モジュール204が、測定密度が予想密度の閾値内にあると判断したが、異常検出モジュール204が位相異常を発見した場合、異常検出モジュール204は、メータが正しく設置または製造されていないと判断することができる。密度閾値は、例えば、1kg/m3、.1kg/m3、.5kg/m3、2kg/m3、8kg/m3、5kg/m3、10kg/m3、10-5g/cm3、または10-6g/cm3であってもよい。別の密度閾値は、メータの密度測定分解能の最小値またはその任意の倍数、例えば、分解能の2、3、5、10、100、1000、10000、または100000倍であってもよい。これらの範囲は、例示的であることが意図されており、流体ごとに、およびメータごとに異なる場合がある。本明細書に開示されているすべての実施形態の目的のために、パラメータ値を表す数値が指定されている場合、それらの数値のすべての間の範囲、ならびにそれらの数値を上回る範囲および下回る範囲が企図され、開示されている。
異常検出モジュール204は、位相異常を検出するように構成することができる。位相異常は、目標位相差に対する測定位相差の異常な挙動によって特徴付けられてもよい。目標位相差は、予想位相差と呼ばれることもある。特定の位相異常は、特定の測定された異常の特徴であってもよい。例えば、目標位相差からの有意な偏差を示す測定位相差は、メータによって測定された流体流にガスが同伴していることを示すことができる。有意な偏差は、例えば、.02°、-.02°、.01°、-.01°、.03°、-.03°、1°、-1°、5°、10°、-5°、および-10°の閾値よりも大きくても(または負の場合は小さくても)よい。有意な偏差はまた、例えば、目標位相差の.074%、-.074%、.0148%、-.0148%、.022%、-.022%、.74%、-.74%、-3%、-3.7%、-6%、-7.4%、3%、3.7%、6%、または7.4%の閾値よりも大きい(または負の場合は小さい)ことを表す偏差であってもよい。
本明細書の目的のために、代表的な傾向は、経時的なまたはいくつかのサンプルにわたる一連のデータ点の挙動を表す曲線であってもよい。代表的な傾向は、例えば、データ点の値の平均値、中央値、平均偏差、標準偏差、移動平均、および既知の傾向決定方法を取ることによって決定することができる。傾向を示すのに必要なデータ点の数は、テストする流体に大きく依存する。粘性の高い流体ほど、粘性の低い流体よりも、流動特性を示すのに長い時間がかかる可能性がある。傾向を決定するために取ることができるサンプルの数の例には、例えば、1、2、5、10、30、40、50、60、100、200、1000、5000、10000、または10000個のサンプルが含まれてもよい。サンプルの代わりに対応する時間量を使用して、例えば1、1、2、3、4、5、6、7、8、9、2、3、4、5、10、20、50、100、1000、10000、または100000サンプル/秒のサンプルレートで代表的な傾向を決定することができる。これらの例は網羅的であることを意図するものではなく、流体を用いた標準的な実験を使用して、分析する傾向を最もよく特徴付ける点の数または時間量を決定することができる。異常検出モジュール204は、代表的な傾向を計算するように構成することができる。
異常検出モジュール204は、測定密度の値または代表的な傾向が、測定密度の傾向から所定の閾値よりも大きく変化する場合、密度異常をさらに検出することができる。例えば、測定密度が滑らかではなく、測定密度の全体または移動平均に比べてかなりのばらつきがあることが明らかである可能性がある。異常検出モジュール204は、全体的なまたは移動平均密度値の例えば、.01%、.05%、.1%、.5%、または1%を超える偏差のインスタンスがある場合に、異常を検出することができる。測定密度データがそのような閾値を超えた場合、異常検出モジュール204は、ガス同伴異常が発生している可能性が高いと判断するように構成することができる。
異常検出モジュール204は、測定位相差の値または代表的な傾向が、予想位相差を閾値だけ下回る場合、メータがガス同伴位相異常を示す位相異常を経験していると判定することができる。アンダーシュートの閾値は、例えば、1秒、10秒、20秒、30秒、1分、2分、5分、または10分の期間にわたる、例えば、.02°、.01°、.015°、.05°、.1°、.134°、.1°、.15°、または.2°の予想位相差に対するライブ位相の平均偏差であってもよい。アンダーシュートの閾値は、例えば、1秒、5秒、10秒、20秒、30秒、1分、2分、5分、または10分の期間にわたる、ライブ位相測定の移動平均と目標位相差との差、例えば、.02°、.01°、.015°、.05°、.1°、.134°、.1°、.15°、.2°、.5°、1°、または2°を超える値を表してもよい。移動平均は、局所的な傾向を調べるために、より少ないデータ点(またはそれに対応してより短い期間)を考慮する傾向があるため、移動平均の偏差は、全体的な平均偏差よりも大きく変動する可能性がある。これらの範囲は、特性が流体ごとおよびメータごとに異なる可能性があるため、例示的であり、非網羅的であることが意図されている。
異常検出モジュール204は、信号が一貫した位相差ロックを確立するのに十分な時間が経過した後であっても、測定された位相の代表的な傾向が目標位相差の上下に揺れる場合は、メータが少なくとも1つのタイン112および/または114上の膜または他の堆積物などの蓄積を示す位相異常を経験していると判断することができる。これは、揺れ挙動(swinging behavior)と呼ばれることがある。タイン112および/または114上の膜および他の堆積物に起因する位相異常は、目標位相からのライブ位相の平均偏差が比較的小さいため、ガス同伴異常よりも検出が困難である場合がある。ライブ位相測定の傾向が目標位相差の上下に揺れる挙動は、タイン上に堆積物が存在するという明白な兆候の1つである。これらの揺れの大きさは、測定される流体と、タイン112および/または114上の蓄積物の種類および程度とによって異なる。これらの揺れは、ライブ位相の傾向が目標位相差を上回るおよび/または下回る平均時間、例えば、.1秒、.5秒、1秒、5秒、10秒、20秒、50秒、100秒、500秒、1000秒などを有することがある。目標位相差を上回るライブ位相の持続時間は、目標位相差を下回るライブ位相の持続時間とは異なってもよいことに留意されたい。これらの揺れはまた、測定位相差が予想位相差を上回る連続する発振サイクル、または測定位相差が予想位相差を下回る連続する発振サイクルの全体の数が、例えば、1、2、3、4、5、6、7、8、9、10、20、50、100、1000の発振サイクル、または列挙された発振サイクル数のうちのいずれかを上回る発振サイクルなどであることよって特徴付けられてもよい。揺れは、予想位相差からの測定位相差の最大サイクル偏差が増加し、それに続いて、予想位相差からの最大サイクル偏差が減少しながら、潜在的に異なる数の連続する測定位相差のサイクルが続き、おそらく、それに続いて、測定位相差が予想位相差を満たし、予想位相差の反対側にクロスオーバする、測定位相差が予想位相差を上回るまたは下回る連続するサイクル数を識別することによってさらに判定されてもよく、サイクル数は、おそらく、例えば、1、2、3、4、5、6、7、8、9、10、20、50、100、1000の発振サイクルのいずれかまたはそれを上回る。
蓄積に起因する揺れは、1つタインが別のタインよりも収容部材の壁に近いという設置上の欠陥と混同される場合がある。蓄積と誤設置とを区別する仕方は、コントローラをリセットするか、またはコントローラに新たなロックを確立させることである。新たなロックを確立すると、コントローラが強制的にロックしようとするときに、著しい発振が生じる。異常検出モジュール204が、読取り値が、落ち着く時間、例えば、.1秒、.5秒、1秒、5秒、10秒、20秒、50秒、100秒、500秒、1000秒などを与えられた後に、揺れ挙動が揺れ続けていると判断した場合、異常検出モジュール204は、蓄積を示す位相異常が発生したと判断することができる。異常検出モジュール204が、起動またはロックの再確立の時点から時間とともに揺れがなくなる程度まで揺れが減少したと判断した場合、異常検出モジュール204は、設置異常を示す位相異常が存在すると判断することができる。
目標位相差からのライブ位相の偏差の大きさは、ガス同伴異常よりも蓄積異常の方がそれほど顕著ではないにもかかわらず、異常検出モジュール204は、偏差が特定の閾値を超えた場合、蓄積異常に対応する位相異常を検出することができる。例えば、異常検出モジュール204が、蓄積を示す密度異常が存在すると判断した場合、異常検出モジュール204は、比較的小さいが、メータが最初に導入されて位相ロックされたときに同じ流体中の同じメータに存在するであろう偏差を超えるほど十分に大きい偏差を求めることができる。偏差の閾値は、例えば、.01°、.015°、.02°、.021°、.022°、.023°、.025°、または.026°であってもよい。
異常検出モジュール204はまた、特にメータシステムがリセットされ、かつ/またはロックを生成しようとするときに、ライブ位相および/またはライブ位相の傾向が、以下で「三角測量」と呼ばれる三角形パターンを表示する場合、蓄積異常を示す位相異常を検出することができる。異常検出モジュールが、蓄積異常が存在する可能性があることを示す密度異常判定が行われたと判断した場合、メータシステムは、再起動するか、または新たなロックの確立を試みることができる。この三角測量挙動は、少なくとも1つのタイン112および/または114などのメータの振動素子上に蓄積物がある場合に、位相差にロックしようとするときに誇張される。この三角測量は、全体的な発振パターンの大部分が目標位相差を超えるかまたは下回り、位相ロックに起因する発振の基本的な山と谷を区別するのが容易であり、三角形の形状を示す。また、異常検出モジュールは、機械学習アルゴリズム、例えば、畳み込みネットワーク、回帰、長期短期記憶(LSTM)、自己回帰和分移動平均、または他の機械学習アルゴリズムを展開して、三角測量が検出されたことを判断するように構成することができる。また、三角測量は、位相の揺れに関して開示されているように、特定の数の連続する発振サイクルについて、測定位相が目標位相差を超えるかまたは下回ることによって判定されてもよい。様々な流体流およびメータでは、パターンは、三角形よりも円形になることがある。三角測量は、目標位相差に対して三角形または円形を形成する連続する発振の数によってさらに識別することができる。この判定に用いることができる連続する発振サイクルの数の例は、揺れ挙動の決定について開示されたものと同じであってもよい。
ガス同伴および蓄積異常は、他の異常と混同される場合がある。例えば、ガス同伴異常は、タイン112および114または流体流に浸漬される可能性のある他の要素の浸食と同様の位相異常および密度異常を示す可能性がある。異常検出モジュール204は、ガス同伴を示す密度異常および/または位相異常の一方または両方を判定した後、どの異常が発生しているかを識別しようとすることができる。例えば、異常検出モジュール204は、処理されている物質が、浸漬素子を浸食する粒子を含有する可能性が高いという表示を表すデータを要求するか、または記憶している場合がある。そのような場合、異常検出モジュール204は、浸食異常および空気同伴異常の一方または両方を示すことができる。これには、異常を判定および識別するための物理的検査が必要になる場合がある。異常検出モジュール204が、流れが浸漬素子を浸食する可能性が高いことを示すデータを有していない場合、異常検出モジュール204は、おそらくより確実に空気同伴異常を識別することができる。
蓄積異常は、腐食異常と混同される場合がある。浸漬素子が腐食すると、流体と浸漬素子との化学生成物に相当する蓄積物の異物層が堆積することがある。異常検出モジュール204は、蓄積を示す密度異常および/または位相異常の一方または両方を判定した後、どの異常が発生しているかを識別しようとすることができる。例えば、異常検出モジュール204は、処理されている物質が腐食性であり、浸漬素子を腐食する可能性が高いという表示を表すデータを要求するか、または記憶している場合がある。そのような場合、異常検出モジュール204は、腐食異常および蓄積異常の一方または両方を示すことができる。
異常検出モジュール204は、蓄積異常と腐食異常とを区別するためにより多くのデータが必要であると判断する場合がある。例えば、異常検出モジュール204は、流体流の速度を増加させるように、ユーザに提案するか、または流動流体制御装置に命令するデータを送信することができる。流体流を増加させると、特定の膜要素が除去され、公称の機能が回復することが示されている。流量を増加させた後、異常検出モジュール204は、動作を継続してもよく、またはリセットされてもよく、新たな測定を行ってもよい。異常が解消された場合、異常検出モジュール204は、蓄積異常があったことを示すことができ、および/またはログに記録することができ、および/または異常の時間を記録することができる。異常検出モジュール204が、流体制御装置に流体速度を増加させるように命令する役割を担っていた場合、異常検出モジュールは、異常が解決されたという検出に応答して、流体制御装置に流体流速を減少させるように命令することができる。異常が解決されたことを異常検出モジュール204が検出した場合、異常検出モジュールは、おそらくタイムスタンプとともに、異常が解決されたことをユーザに通知し、および/またはログに記録することができる。これらの通知およびコマンド操作はまた、応答モジュール206が、独立して、または異常検出モジュール204と協調して行うことができる。
流動流体は、メータの浸漬素子よりも低い融点を有する蓄積物質を堆積させる可能性がある。例えば、ガスおよび油の用途では、流体流に浸漬された要素上にパラフィンまたは他のワックスが堆積することが一般的である。異常検出モジュール204またはデータ処理回路132は、流体流内の流体が、メータの浸漬素子の融点よりも低い融点を有する材料を堆積させるかどうかを表すデータを記憶していてもよい。異常検出モジュール204は、蓄積異常を示す少なくとも1つの異常を判定および識別した後、浸漬素子上に堆積した固体が浸漬素子の融点よりも低い融点を有することを示す、ユーザによって記憶および/または提供されたデータに基づいて、蓄積物が溶融する可能性があると判断することができる。異常検出モジュール204は、応答モジュール206とは別個に、またはそれと協働して、浸漬素子上に堆積すると予想される固体の融点を超えて流体流の温度を上昇させるようにユーザに通知することができ、または流体流内の流体の温度を上昇させるように流体制御装置および温度制御装置に命令することができる。ライブ位相および密度測定値が異常を示さないレベルに戻った場合、異常検出モジュール204は、メータの浸漬素子に、溶融することができる物質、例えば、天然ガスまたは油流体中のパラフィンまたは他のワックスの蓄積があったと判断することができる。異常検出モジュール204は、応答モジュール206とは別個に、またはそれと協働して、異常が解決されたかどうかをユーザに通知し、および/または異常識別を(おそらくタイムスタンプとともに)記録することができる。加熱しても問題が解決されない場合、メータの検査が必要になる場合があり、異常検出モジュール204は、メータの検査が必要であるという通知をユーザまたはユーザシステムに送信することができる。
異常検出モジュール204は、密度およびライブ位相読取り値、傾向、および/または偏差を、現在のライブ位相および/または密度読取り値もしくは工場で設定された予想値と比較する代わりに、あるいはそれに加えて、密度およびライブ位相読取り値、傾向、および/または偏差を履歴読取り値と比較して異常を判定することができる。データ処理回路132は、特定の流体におけるメータの最初のまたは以前の使用からの履歴データを記憶し、メータが流体中で最初に使用されたときに最初に表示された偏差とは異なるやり方で、ライブ位相測定値が予想位相差から逸脱していることを判断することができる。データ処理回路132は、現在の密度および/またはライブ位相測定値と、履歴的に記憶された挙動に関する密度および/または位相測定値の相対的な挙動とを比較するための理想的な条件および閾値を確立するために、特定の流動流体中でメータを最初に使用してからのそのようなパラメータおよび偏差を記憶することができる。例えば、メータが最初に流体に導入されたときに異常検出モジュール204を作動させることができる。データ処理回路132は、密度測定値およびライブ位相データを表すデータの記録および記憶を開始することができる。異常検出モジュール204は、記憶されたデータを使用して、例えば、かなりの期間にわたって監視することによって、正常な挙動のための閾値を決定することができる。この期間は、例えば、1秒、1分、10分、1時間、1日、1週間、1ヶ月、または1年であってもよい。データ処理回路132は、起動時から現在の時刻までのこのデータをさらに記憶することができ、異常検出モジュール204は、ライブ位相および密度測定における異常な読取り値を決定し、異常を判定および識別するために、説明したメトリックの挙動の変化を監視することができる。閾値は、履歴データにおける密度、周波数測定値の位相差からの最大または最小の偏差、またはそのパーセンテージ、例えば、140%、200%、40%、50%、60%、70%、80%、90%、100%、150%、300%、400%、500%、600%、700%、800%、900%、1000%などを表す。異なるメトリックに対して異なるパーセンテージを使用することができる。例えば、履歴データ点または傾向の第1のパーセンテージを使用して密度異常の閾値を決定することができ、別の履歴データ点または傾向の第2のパーセンテージを使用して浸食異常を示す位相異常の閾値を決定することができる。閾値、履歴データのパーセンテージ、および関連付けられた異常のすべての組合せが企図される。異常検出モジュール204はまた、機械学習技法を展開して、確立された正常な挙動または予想される異常を判断することができる。例えば、異常検出モジュール204は、位相差データに基づいて訓練されて、規則的な発振と揺れまたは三角測量とを区別することができる。これを容易にするために、異常検出モジュール204は、正常な流れとして表されラベル付けされたデータ、および異常な流れとして表されラベル付けされたデータを提供されてもよく、特性および傾向を検出する。この例には、予想値付近で揺れる異常な位相差の決定、または三角測量挙動が含まれてもよい。異常検出モジュール204はまた、機械学習アルゴリズムを使用して、正常な流れデータとしてラベル付けされたデータ、異常な流れデータとしてラベル付けされた、おそらく、本明細書に記載された異常のいずれかを示すものとして表されラベル付けされたデータが供給されることによって閾値を決定することができる。異常検出モジュール204はまた、予め訓練されたモデルを記憶していてもよく、または異常検出モジュールもしくは異常検出モジュール204に通信可能に結合された外部論理回路によって特定の流体流に関して動的に変更することができる予め訓練されたモデルを記憶していてもよい。
ガス同伴および蓄積を示す位相異常は、ライブ位相の2つの異なる閾値を調べることによって互いに区別することができる。例えば、蓄積異常を判定するためのライブ位相と目標位相差との差の閾値は、ガス同伴異常の閾値よりも小さい場合がある。ライブ位相と目標位相との差が、蓄積異常識別のための閾値を超えているが、ガス同伴異常の閾値よりも小さい場合、異常検出モジュール204は、蓄積異常を示す位相異常を識別することができる。ライブ位相と目標位相との差が、蓄積異常およびガス同伴異常の両方の閾値を超える場合、異常検出モジュール204は、ガス同伴異常を示す位相異常を識別することができる。
問題のメータが(フォーク密度計とは対照的に)フォーク粘度計である場合、位相差は、フォーク位相差として特徴付けられてもよい。フォーク粘度計は、フォーク周波数を使用して流体の密度を決定する。フォーク粘度測定値は、典型的には、共振周波数付近の低い周波数と高い周波数との間で発振するが、密度測定値を表すフォーク位相は、フォーク密度計のライブ位相と同一である。フォーク密度計がライブ位相の代わりにフォーク位相を使用するにもかかわらず、フォーク密度計の位相差測定値には、フォーク粘度計の測定密度フォーク位相読取り値と同じように、異常を検出するために言及した傾向を適用することができる。したがって、異常を検出および識別することに関して、(フォーク密度計について)測定位相差と目標位相差(または上述の位相差の同義語の様々な変形形態)との比較が言及されている本明細書の任意の要素において、フォーク粘度計の予想されるフォーク位相差に対するフォーク位相差測定の比較にも同じことが適用可能である。
開示されたフォーク密度計の異常がフォーク粘度計の異常と類似している例は、空気同伴を示す位相異常の判定によって実証することができる。フォーク密度計では、測定位相差と予想位相差との差が閾値を超えた場合に、空気同伴異常を示す位相異常と判定することができる。フォーク粘度計は、同様に、フォーク位相差(または傾向)間の差が予想されるフォーク位相差(または傾向)を閾値だけ超えた場合、空気同伴異常を示す位相異常を検出することができる。明記されているかどうかにかかわらず、位相差が本明細書に言及されている場合、測定または予想位相差もしくは位相差の傾向がフォーク密度計に適用される実施形態は、フォーク粘度計における類似の測定または予想フォーク位相差もしくはフォーク位相差の傾向も企図していると解釈されるべきである。同様に、位相異常についてのいかなる言及も、フォーク粘度計およびそのフォーク位相差の測定に適用されると解釈することができ、フォーク粘度計の位相異常について測定位相差(および同義語)に関するすべての類似のケースが、本明細書によって企図されている。
異常検出モジュール204は、位相異常が存在するが、対応する密度異常が存在しないと判断することがある。例えば、異常検出モジュールは、ガス同伴異常を示す位相異常を識別することがあるが、ガス同伴異常を示す対応する密度異常を識別しないことがある。この位相異常は、製造上の欠陥または設置上の問題を示す可能性がある。異常検出モジュールは、対応する密度異常を伴わない位相異常を製造上または設置上の問題として解釈し、ユーザまたはユーザシステムに問題を通知し、および/またはユーザにメータを検査するように指示することができる。
異常検出モジュール204が、ガス同伴異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュールは、流体がガスを同伴していると判断することができる。異常検出モジュール204が、蓄積異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュール204は、メータの浸漬素子上に蓄積物があると判断することができる。異常検出モジュール204が、腐食異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュールは、メータの浸漬素子が浸食されたと判断することができる。異常検出モジュール204が、腐食異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュールは、メータの浸漬素子が腐食したと判断することができる。異常検出モジュール204が、設置上の異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュールは、メータが正しく設置されていないと判断することができる。異常検出モジュール204が、製造上の異常を示す任意の異常または2つ以上の異常を識別した場合、異常検出モジュールは、メータが正しく製造されていないと判断することができる。
本明細書では、異常検出モジュールによって検出および識別が行われる組合せおよび順序のすべての異なる実施形態が企図されている。例えば、異常検出モジュール204は、密度異常および位相異常の両方を一貫して監視することができる。異常検出は、位相異常を判定および識別する前段階として、一貫して密度異常を最初に判定および識別することを伴ってもよい。異常検出は、密度異常を判定および識別する前段階として、一貫して位相異常を最初に判定および識別することを伴ってもよい。代替的または追加的に、ユーザは、ユーザが望む任意の順序で密度および/または位相異常の検出を開始することができる。異常検出モジュール204は、特定の時間間隔で、または流体流内の流体の変化に応答して、異なるタイプの異常を検出するようにプリセットされてもよく、自動検出プロトコルまたはユーザの指示のいずれかによって開始される。システムは、他の異常によって示された特定の異常を、任意の組合せまたは順序で展開することができ、自動化された様式で、他の異常に応答して、および/またはユーザの指示に応答して展開することができる。
異常検出モジュール204は、メータが動作しているときに使用することができるため、例えば、メータが動作中または設置されている間に異常を検出することができ、またはメータを動作状態から取り外すことなく異常を検出することができる。
応答モジュール206は、異常の検出および識別に応答するモジュールである。応答モジュール206は、判定および/または識別された異常に関する通知を、ユーザ、データ処理回路132のストレージ、または別のデバイスに送信することができる。通知は、メータ上のLEDインジケータによるものであってもよく、またはメータ上のディスプレイに表示されるものであってもよく、あるいはおそらくディスプレイまたは履歴データログを含む他の外部デバイスに通知を送信するものであってもよい。通知の例としては、表示、アラート、デジタル通信によるアラート、例えばProLinkを介した個別の出力の送信を挙げることができ、またはユーザの問い合わせに応答して通知を送信するだけであってもよい。通知自体は、ユーザまたはシステムがいつ通知を受信すべきかについて許容範囲が指定されている場合がある。
応答モジュール206は、特定の異常に関連する特定の通知を送信することができる。応答モジュール206は、例えば、ガス同伴異常、蓄積異常、腐食異常、浸食異常、設置異常、もしくは製造異常のうちの1つ、任意の組合せ、またはすべてに関する通知を送信することができる。一実施形態において、これらの通知は、所与のアラートに応答して「はい」または「いいえ」(あるいは1または0)によって示されることがある。他の異常を示す特定の異常、例えば、他の異常を暗示する異常、または他の異常を示す異常も送信することができる。
応答モジュール206は、異常検出モジュール204による異常の判定に応答してアクションを起こすことができる。例えば、蓄積異常が存在する可能性があるという判定に応答して、応答モジュール206は、流体流速を増加させ、および/または流体流の温度を上昇させて、メータの浸漬素子上の任意の蓄積物を乾燥および除去することができる。応答モジュール206は、異常の判定に応答して、流れ制御システムにおいて洗浄またはフラッシングシーケンスを開始することができる。応答モジュール206は、異常の検出に応答して、流体流システム内の弁を開放することができる。例えば、ロギング、記録、タイムスタンプ、送信、またはコマンドによる流体流特性の変更を含む、異常検出モジュール204によって行われるものとして説明されてきた任意の応答アクションは、異常検出モジュール204とは別個に、またはそれと協働して、応答モジュール206によって行われてもよい。
一実施形態において、異常検出モジュール204は、検出モジュールが識別できない異常が存在すると判断することがある。異常が存在すると判断されたが、異常検出モジュール204が識別するように構成されている異常を示さないか、または2つ以上の異常を示す(おそらく、2つ以上の異常のうちの少なくとも1つと、2つ以上の異常のうちの別の異常とが一致しない)状況では、応答モジュール206は、一般的であるが識別されていない異常が検出されたという通知を送信することができ、メータを検査すべきであるという通知を送信することができ、および/または素子の検査を可能にするために流動システムをシャットダウンするためのコマンドを送信することができる。
入力/出力230は、データ処理回路132を外部コンピューティング要素に通信可能に結合するために使用されるデバイスである。入力/出力230は、既知の技術、例えば、ユニバーサルシリアルバス、ProLink、シリアル通信、シリアルアドバンストテクノロジアタッチメント、メータ電子機器20の通信要素などを使用して、データ処理回路132を外部要素に接続することができる。入力/出力230は、通信カプラ240を有していてもよい。通信カプラ240は、データ処理回路をデータ処理回路132の外部の構成要素、例えば、メータ、センサ5、メータ電子機器20、外部コンピューティングデバイス、ディスプレイ、サーバ、インジケータなどと結合するために使用される。
[流れ図]
図3~図10は、メータにおける異常挙動を判定および識別し、および/またはそれに応答するための方法の実施形態の流れ図を示す。流れ図に開示されている方法は、非網羅的であり、ステップおよび順序の潜在的な実施形態を示すに過ぎない。本方法は、図1~図2の説明に開示されている要素、図1~図2に開示されているメータ、および/またはデータ処理回路132を含む、本明細書全体の文脈において解釈されなければならない。
図3は、異常を判定および識別するための方法300の実施形態の流れ図を示す。方法300で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ302において、メータが流体流に曝されて動作し、流体データを生成する。
ステップ304において、流体特性モジュール202が流体流中の流体の密度を決定する。
ステップ306において、異常検出モジュール204は、密度異常が存在するかどうかを判定し、判定された密度と予想密度との比較に基づいて密度異常を識別する。密度異常を検出するために、本明細書および/または異常検出モジュール204に関して開示された任意の方法が採用されてもよい。
ステップ308において、流体特性モジュール202は、位相差を決定する。
ステップ310において、異常検出モジュール204は、位相異常が存在するかどうかを判定し、判定された位相差に基づいて位相異常を識別する。位相異常を検出するために、本明細書および/または異常検出モジュール204に関して開示された任意の方法が採用されてもよい。
ステップ312において、異常検出モジュール204は、異常が存在するかどうかを判定し、密度異常の判定および識別ならびに/または位相異常の判定および識別に基づいて異常を識別する。ステップ312は、異常の判定および識別を行うために、判定および識別を考慮する任意の方法を使用することができる。判定および識別のすべての組合せが、本明細書によって企図されている。
一実施形態において、図3に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図3では別個のステップとして示されているが、ステップ302~312は、別個のステップでなくてもよい。他の実施形態では、図3に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図3に示す方法のステップは、別の順序で実行されてもよい。図3に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法300のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図4は、密度異常を判定および識別するための方法400の一実施形態の流れ図を示す。方法400で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ402において、メータが流体流に曝されて動作し、流体データを生成する。流体特性モジュール202は、密度測定値を表すデータを少なくとも含むデータを記録する。
ステップ404において、密度測定値と予想密度との差が異常であり、密度異常を表しているかどうかについての判定が行われる。異常検出モジュール204は、予想密度を下回るまたは上回る特定の閾値を超える、予想密度と測定密度と差に基づいて密度異常を判定するように構成されていてもよい。例えば、異常検出モジュール204が、測定密度が予想密度よりも小さく、おそらく欠陥が閾値を超えていると判定した場合、異常検出モジュール204は、システム内にガス同伴が存在する可能性が高いと判定することができる。密度異常が発生しているかどうかを判定するための本明細書に記載されている任意の方法を本ステップで使用することができ、これには、様々な閾値、閾値を生成するための方法、および履歴データとの比較が含まれる。ステップ404において密度異常が存在すると判定された場合、方法はステップ410に進む。ステップ404において密度異常がないと判定された場合、方法はステップ406に進む。
ステップ406において、ライブ位相測定が行われる。ライブ位相測定は、本明細書に開示されている実施形態による、設置上または製造上の異常などの別の異常が、位相測定の不規則性を引き起こしているかどうかを判定するために行われる。ステップ406は、必要な要素ではないが、密度異常がないにもかかわらず位相測定が異常である場合には有用である。ステップ406は、方法の終了に進む。
ステップ410において、異常検出モジュール204は密度異常を識別する。
ステップ412において、測定密度が予想密度よりも低いかどうかについての判定が行われる。異常検出モジュール204は、測定密度が予想密度を下回るかどうかを判定することができる。一実施形態において、異常検出モジュール204は、予想密度を下回るおよび/または上回る密度に対して異なる閾値を有するように構成されてもよく、閾値は、異なる現象を示す。異常検出モジュール204が、測定密度が予想密度より低く、おそらく閾値を超えて逸脱していると判定した場合、方法は、ステップ414に進む。異常検出モジュール204が、測定密度が予想密度よりも大きく、おそらく閾値を超えて逸脱していると判定した場合、方法はステップ420に進む。
ステップ414において、異常検出モジュール204は、ガス同伴異常を示す密度異常を判定および識別する。
ステップ420において、異常検出モジュール204は、蓄積異常を示す密度異常を判定および識別する。
一実施形態において、図4に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図4では別個のステップとして示されているが、ステップ402~420は、別個のステップでなくてもよい。他の実施形態では、図4に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図4に示す方法のステップは、別の順序で実行されてもよい。図4に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法400のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図5は、位相異常を判定するための方法500の一実施形態の流れ図を示す。方法500で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ502において、メータが流体流に浸漬され、流体データを決定する。
ステップ504において、測定位相差が流体特性モジュール202によって決定される。
ステップ506において、測定位相差が予想位相差と比較される。
ステップ508において、異常検出モジュール204は、測定位相差と予想位相差との差が異常であるかどうかを判定する。測定位相差と予想位相差との差は、異常検出モジュール204によって位相異常が検出された場合、異常である可能性がある。本明細書に開示されている位相異常を検出するためのすべての方法が考慮される。
ステップ510において、異常検出モジュールは、異常検出モジュール204が、差が異常であると判定した場合に、位相異常を判定および/または識別する。
一実施形態において、図5に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図5では別個のステップとして示されているが、ステップ502~510は、別個のステップでなくてもよい。他の実施形態では、図5に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図5に示す方法のステップは、別の順序で実行されてもよい。図5に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法500のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図6は、システム内に同伴ガスが存在するかどうかを判定するための方法600の一実施形態の流れ図を示す。方法600で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ602において、フォーク密度または粘度計が流体流に浸漬され、位相差測定値を含む流体流内の流体の物理的特性を表すデータを受信し、メータは、おそらく流体特性モジュール202を使用して、密度および測定位相差を決定する。
ステップ604において、フォーク密度または粘度計は、異常検出モジュール204を使用して、ガス同伴異常を示す密度異常が検出されたかどうかを判定する。本明細書に開示されているすべての方法は、ガス同伴異常を検出するために企図されている。
ステップ606において、ステップ604で密度異常が検出された場合、フォーク密度または粘度計は、異常検出モジュール204を使用して、ガス同伴異常を示す位相異常が検出されたかどうかを判定する。本明細書に開示されているすべての方法は、ガス同伴異常を検出するために企図されている。
ステップ608において、フォーク密度または粘度計が、ガス同伴を示す少なくとも1つの位相異常と、ガス同伴を示す少なくとも1つの密度異常との両方を判定した場合、異常検出モジュール204は、ガス同伴異常を判定および/または識別する。
一実施形態において、図6に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図6では別個のステップとして示されているが、ステップ602~608は、別個のステップでなくてもよい。他の実施形態では、図6に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図6に示す方法のステップは、別の順序で実行されてもよい。図6に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法600のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図7は、メータ上に蓄積物があるかどうかを判定するための方法700の一実施形態の流れ図を示す。方法700で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ702において、メータが流体流に浸漬され、位相差測定値を含む流体流内の流体の物理的特性を表すデータを受信し、メータは、流体特性モジュール202を使用して、密度および測定位相差を決定する。
ステップ704において、メータは、異常検出モジュール204を使用して、蓄積異常を示す密度異常が検出されたかどうかを判定する。本明細書に開示されているすべての方法は、蓄積異常を示す密度異常を検出するために企図されている。
ステップ706において、蓄積異常を示す密度異常が検出された場合、異常検出モジュール204は、蓄積異常を示す位相異常が検出されたかどうかを判定する。本明細書に開示されているすべての方法は、蓄積異常を示す位相異常を検出するために企図されている。
ステップ708において、フォーク密度計が、蓄積異常を示す少なくとも1つの位相異常と、蓄積異常を示す少なくとも1つの密度異常との両方を判定した場合、異常検出モジュール204は、ガス同伴異常を判定および/または識別する。
一実施形態において、図7に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図7では別個のステップとして示されているが、ステップ702~708は、別個のステップでなくてもよい。他の実施形態では、図7に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図7に示す方法のステップは、別の順序で実行されてもよい。図7に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法700のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図8は、ガス同伴異常が浸食異常と混同されているかどうかを判定するための方法800の一実施形態の流れ図を示す。方法800で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ802において、メータの異常検出モジュール204は、ガス同伴異常を示す少なくとも1つの密度異常および/または少なくとも1つの位相異常が存在すると判定および識別する。異常の判定および識別は、開示されている適切な異常検出方法のいずれかによって行われてもよい。
ステップ804において、異常検出モジュール204は、データ処理回路132が、流体流内の流体または同伴要素がメータの浸漬素子を浸食する可能性が高いという情報を表すデータを記憶しているかどうかを判定する。
ステップ806において、異常検出モジュール204は、流体が浸漬素子を浸食する可能性が高いことを示すデータが存在する場合、検出された異常がガス同伴異常または浸食異常のいずれかとして識別され得ると判断する。それに応答して、応答モジュール206は、両方を示すことができ、および/または特定の異常を判定および識別するために検査が必要であることを示すことができる。
ステップ808において、異常検出モジュール204は、流体流が浸漬素子を浸食する可能性が高いことを示すデータが存在しない場合、おそらくより確実にガス同伴異常を判定および識別する。
一実施形態において、図8に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図8では別個のステップとして示されているが、ステップ802~808は、別個のステップでなくてもよい。他の実施形態では、図8に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図8に示す方法のステップは、別の順序で実行されてもよい。図8に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法800のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図9は、蓄積異常が腐食異常と混同されているかどうかを判定するための方法900の一実施形態の流れ図を示す。方法900で言及されるメータは、図1~図2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ902において、メータの異常検出モジュール204は、蓄積異常を示す少なくとも1つの密度異常および/または少なくとも1つの位相異常が存在すると判定および識別する。蓄積異常の判定および識別は、開示されている適切な異常検出方法のいずれかによって行われてもよい。
ステップ904において、異常検出モジュール204は、データ処理回路132が、流体流内の流体または同伴要素がメータの浸漬素子を腐食する可能性が高いという情報を表すデータを記憶しているかどうかを判定する。
ステップ906において、異常検出モジュール204は、データ処理回路132が、流動流体が腐食性であることを表すデータを有する場合、検出された異常が蓄積異常または腐食異常のいずれかとして識別され得ると判断する。それに応答して、応答モジュール206は、両方の異常を示すことができ、および/または特定の異常を判定および識別するために検査が必要であることを示すことができる。
ステップ908において、異常検出モジュール204は、データ処理回路132が、流体が腐食性であることを表すデータを有していない場合、蓄積異常を判定および識別する。
一実施形態において、図9に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図9では別個のステップとして示されているが、ステップ902~908は、別個のステップでなくてもよい。他の実施形態では、図9に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図9に示す方法のステップは、別の順序で実行されてもよい。図9に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法900のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
図10は、異常検出に応答するための方法1000の一実施形態の流れ図を示す。方法1000で言及されるメータは、図1~2に開示されているようなセンサ5を有するメータであってもよいが、代替の実施形態では任意の適切なメータが使用されてもよい。本明細書に開示されているこれらのステップを達成するためのすべての方法は、データ処理回路132およびそのモジュールの能力のすべてを含めて企図されている。
ステップ1002において、メータの異常検出モジュール204は、異常を判定および/または識別する。異常の判定および識別は、本明細書に記載される方法のいずれかによるものであってもよい。
ステップ1004において、応答モジュール206は、異常検出モジュール204によって判定および/または識別された異常に対する応答を生成する。応答は、指示もしくは表示であってもよく、またはシステムおよび/もしくは測定されている流体もしくは流体流に影響を及ぼすための自動化されたコマンド応答であってもよい。本明細書に開示されているすべての応答が企図されており、判定および/または識別に対するすべての適切な応答も企図されている。
一実施形態において、図10に示す方法のステップのそれぞれは、別個のステップである。別の実施形態では、図10では別個のステップとして示されているが、ステップ1002~1004は、別個のステップでなくてもよい。他の実施形態では、図10に示す方法は、上記のステップのすべてを有していなくてもよく、および/または上記に列挙されたものに加えてもしくはその代わりに他のステップを有していてもよい。図10に示す方法のステップは、別の順序で実行されてもよい。図10に示す方法の一部として上に列挙されたステップのサブセットを使用して、独自の方法を形成することができる。方法1000のステップは、任意の組合せおよび順序で任意の回数繰り返すことができ、例えば、監視を維持するために連続的にループさせることができる。
[グラフ]
図11a~図14は、本明細書に記載される異常を説明するグラフを示す。これらのグラフは、メータの正常な挙動と異常な挙動との違いを示す。
図11aは、一実施形態による、フォーク密度計が異常なく動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1100aを示す。グラフ1100aは、ライブ位相測定値1102a、目標位相差1104a、測定密度1106、予想密度1108、密度偏差1110、位相偏差1112a、サンプル番号を表す横座標1114a、kg/m3単位の密度を表す左縦座標1116a、および度単位の位相差を表す右縦座標1118aを有する。位相偏差は、比較的小さく、ライブ位相および測定密度は、概ね予想値を辿っていることがわかる。
図11bは、一実施形態による、フォーク密度計が異常なく動作しているときの予想位相差からのライブ位相の偏差のグラフ1100bを示す。グラフ1100bは、目標位相差基準1104b、測定された位相偏差1112b、サンプル番号を表す横座標1114b、予想からの位相差偏差を度単位で表す縦座標1118bを有する。本実施形態における平均位相偏差1112bは、.006125°であり、各値は、.02°を超えない。位相偏差1112aの移動平均は、0.005°~.0125°である。
図12aは、一実施形態による、フォーク密度計が同伴ガス異常で動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1200aを示す。グラフ1200aは、ライブ位相測定値1202a、目標位相差1204a、測定密度1206、予想密度1208、密度偏差1210、位相偏差1212a、サンプル番号を表す横座標1214a、kg/m3単位の密度を表す左縦座標1216a、および度単位の位相差を表す右縦座標1218aを有する。密度偏差1210は、約8kg/m3であり、測定密度1206は、予想密度1208よりも低い。測定密度1206の有意なばらつきを示すことができる。また、位相偏差1212aは、大きく、顕著であり、平均測定位相差1202aは、予想位相差1204aを下回る。このアンダーシュートは、タイン112および114などの振動素子の周囲のガスまたは気泡を示す。
図12bは、一実施形態による、フォーク密度計がガス同伴異常で動作しているときの、予想位相差からのライブ位相の偏差のグラフを示す。グラフ1200bは、目標位相差基準1204b、位相偏差1212b、サンプル番号を表す横座標1214b、予想からの位相差偏差を度単位で表す縦座標1218bを有する。本実施形態における平均位相偏差1212bは、-.134°であり、目標位相差基準1204bからの偏差は、.02°を超え、中には-10°になるものもある。位相偏差1212bの移動平均は、約0°~2°である。これらは、プロセス異常の明らかな兆候である。このケースでは、ガスが、ライブ位相測定1202bにおいて大きな偏差スパイクを生成している。
図13aは、一実施形態による、フォーク密度計が蓄積異常で動作しているときの時間に関するライブ位相および密度測定値を予想値と比較する2軸グラフ1300aを示す。グラフ1300aは、ライブ位相測定値1302a、目標位相差1304a、測定密度1306、予想密度1308、密度偏差1310、位相偏差1312a、サンプル番号を表す横座標1314a、kg/m3単位の密度を表す左縦座標1316a、および度単位の位相差を表す右縦座標1318aを有する。密度偏差1310は、約130kg/m3であり、測定密度1306aは、予想密度1308よりも大きい。測定密度1306のばらつきは、ほとんど見られない。また、位相偏差1312aは、異常がない場合よりも大きく、顕著であり、平均測定位相差1302aは、予想位相差1304a付近で揺れている。この揺れは、タイン112および114などの振動素子上の蓄積を示し、揺れは、蓄積量が多いほどより顕著になる。
図13bは、一実施形態による、フォーク密度計が蓄積異常で動作しているときの予想位相差からのライブ位相の偏差のグラフを示す。グラフ1300bは、目標位相差基準1304b、決定された三角測量1306、位相偏差1312b、サンプル番号を表す横座標1314b、予想からの位相差偏差を度単位で表す縦座標1318bを有する。本実施形態における平均位相差偏差1312bは、-.134°であり、目標位相差基準1304bからの偏差は、.02°より大きく、.03°に近いものもある。移動平均位相偏差1312bは、約0°~.175°である。これらはかなり大きいが、目標位相差1304bに対する測定されたライブ位相差偏差1302bの傾向の三角測量パターンは、蓄積の兆候を強く暗示するものである。このことは、起動時またはロック時においてさらに顕著である場合がある。
図14は、一実施形態による、異常なく動作しているフォーク粘度計のサンプル番号に関して、フォーク粘度計のライブ位相をフォーク位相と比較する2軸グラフ1400を示す。グラフ1400は、粘度測定値を表すライブ位相1402、密度測定値を表すフォーク位相1404、サンプル番号を表す横座標1414、位相差を度単位で表す縦座標1418を有する。粘度計のフォーク位相は、フォーク密度計のライブ位相測定と同じように挙動することがわかり、これは、予想値からの偏差および関連付けられた異常判定および識別が類似していることを示す。
上記の実施形態の詳細な説明は、本明細書の範囲内にあると本発明者らが企図するすべての実施形態の網羅的な説明ではない。実際に、当業者であれば、上述の実施形態の特定の要素を様々に組合せまたは排除してさらなる実施形態を作成することができ、このようなさらなる実施形態は、本明細書の範囲および教示に含まれることを認識するであろう。上述の実施形態を全体的または部分的に組み合わせて、本明細書の範囲および教示内で追加の実施形態を作成することができることも、当業者には明らかであろう。パラメータ値を表す特定の数値が指定される場合、それらの数値のすべての間の範囲、ならびにそれらの数値を上回る範囲および下回る範囲が企図され、開示されている。
したがって、特定の実施形態が例示目的で本明細書に記載されているが、当業者が認識するように、様々な等価な修正が本明細書の範囲内で可能である。本明細書で提供される教示は、上述の実施形態および添付の図に示される実施形態だけでなく、振動素子の振動応答パラメータを決定するための他の方法および装置に適用することができる。したがって、上述の実施形態の範囲は、以下の特許請求の範囲から決定されるべきである。

Claims (51)

  1. 流体流システム内のプロセス異常を判定するための方法であって、前記システムが流体流の流体中に浸漬された浸漬素子を備えたメータを有し、
    データ処理回路を使用して、前記流体流システム内の前記流体の測定密度を決定するステップと、
    前記データ処理回路を使用して、前記流体流システム内の前記流体の前記測定密度と予想密度との間の関係に基づいて、前記流体流システムが密度異常を経験しているかどうかを判定するステップと、
    前記データ処理回路を使用して、前記メータの前記浸漬素子の振動の測定位相差を決定するステップと、
    前記データ処理回路を使用して、前記測定位相差と前記流体流内の前記浸漬素子の前記振動の目標位相差との間の関係に基づいて、前記流体流システムが位相異常を経験しているかどうかを判定するステップと、
    前記データ処理回路を使用して、密度異常が存在するかどうかの前記判定および位相異常が存在するかどうかの前記判定に基づいて、前記流体流システムの異常を識別するステップと、
    を含む、方法。
  2. 前記データ処理回路を使用して、ガス同伴異常を示す密度異常を識別するステップを更に含み、
    前記測定密度と前記予想密度との間の前記関係が、前記測定密度が前記予想密度よりも少なくとも閾値密度差だけ小さいことである、請求項1に記載の方法。
  3. 前記測定位相差が少なくとも閾値位相偏差だけ前記目標位相差と異なる、請求項2に記載の方法。
  4. 前記測定位相差が平均測定位相差であり、前記閾値位相偏差が前記平均測定位相差と前記目標位相差との差である、請求項3に記載の方法。
  5. 識別された前記流体流システムの前記異常がガス同伴異常である、請求項3または4に記載の方法。
  6. 前記データ処理回路を使用して、前記データ処理回路に記憶されたデータに基づいて、前記流体および前記流体に同伴する要素のうちの1つまたは複数が前記浸漬素子を浸食する可能性が高いかどうかを判定することによって、ガス同伴異常の識別が浸食異常の識別と混同される可能性があるかどうかを判定するステップと、
    前記データ処理回路を使用して、前記データ処理回路が、前記流体および前記流動流体に同伴する要素のうちの前記1つまたは複数が前記浸漬素子を浸食する可能性が高いことを示すデータを有する場合に、前記ガス同伴異常の識別が浸食異常と混同される可能性があると識別するステップと、
    を含む、請求項5に記載の方法。
  7. 前記データ処理回路を使用して、蓄積異常を示す密度異常を識別するステップであって、
    前記測定密度と前記予想密度との間の前記関係が、前記測定密度が前記予想密度よりも少なくとも閾値密度差だけ大きいことである、ステップを含む、請求項1に記載の方法。
  8. 前記データ処理回路を使用して、
    前記測定位相差が少なくとも閾値位相偏差だけ前記目標位相差と異なること、
    前記測定位相差が前記目標位相差から上下に揺れる揺れ挙動、
    前記測定位相差の前記目標位相差に対する三角測量挙動、
    のうちの1つまたは複数を判定することによって、前記測定位相差と前記目標位相差との間の前記関係を判定するステップと、
    前記データ処理回路を使用して、蓄積異常を示す位相異常を識別するステップと、
    をさらに含む、請求項7に記載の方法。
  9. 前記揺れ挙動および前記三角測量挙動のうちの1つまたは複数が、前記測定位相差のいくつかの連続するサイクル発振が前記目標位相差を上回る、および/または前記測定位相差の別の数の連続するサイクル発振が前記目標位相差を下回るとして判定される、請求項8に記載の方法。
  10. 前記三角測量挙動が、前記目標位相に対して三角形または円形パターンを生成する前記測定位相差のいくつかの連続するサイクル発振によって判定される、請求項8に記載の方法。
  11. 前記識別するステップが、前記流体流システムの前記異常が蓄積異常として識別されるステップをさらに含む、請求項1および請求項8から10のいずれか一項に記載の方法。
  12. 前記データ処理回路を使用して、前記データ処理回路に記憶されたデータに基づいて、前記流体および前記流体に同伴する要素のうちの1つまたは複数が前記浸漬素子を腐食する可能性があるかどうかを判定することによって、蓄積異常の識別が腐食異常の識別と混同される可能性があるかどうかを判定するステップと、
    前記データ処理回路を使用して、前記データ処理回路が、前記流動流体および前記流動流体中に同伴する要素のうちの前記1つまたは複数が前記浸漬素子を腐食する可能性が高いことを示すデータを有する場合に、前記蓄積異常の識別が腐食異常と混同される可能性があると識別するステップと、
    を含む、請求項7から11のいずれか一項に記載の方法。
  13. 前記閾値密度差が1kg/m3である、請求項2から12のいずれか一項に記載の方法。
  14. 前記閾値位相偏差が.02°である、請求項3から6および請求項8から13のいずれか一項に記載の方法。
  15. 前記閾値位相偏差が.015°である、請求項3から6および請求項8から13のいずれか一項に記載の方法。
  16. 前記異常に応答して、前記データ処理回路を使用して、前記ガス同伴異常をユーザに通知すること、前記ガス同伴異常が発生したことをメータ上で示すこと、前記ガス同伴異常に応答して前記流体または流体流の前記特性を変化させること、および前記ガス同伴異常を表すデータを記憶することのうちの1つまたは複数、をさらに含む、請求項1から15のいずれか一項に記載の方法。
  17. 前記流体または流体流の流れ特性を前記変化させるステップが、流体流の速度を増加させるステップ、および前記流体流の前記流体の温度を増加させるステップのうちの1つまたは複数をさらに含む、請求項16に記載の方法。
  18. 前記メータがフォーク密度計およびフォーク粘度計のうちの1つである、請求項1から17のいずれか一項に記載の方法。
  19. メータのメータ電子機器(20)に通信可能に結合および/または一体化されたデータ処理回路(132)であって、前記メータがタイン(112、114)を有する振動素子(104)と、前記タイン(112、114)に振動を駆動するためのドライバ(122)と、タイン(112、114)の振動を測定するための少なくとも1つのセンサ(124)とを有し、前記メータ電子機器(20)が測定位相差および測定密度を決定するように構成されており、
    前記流体流システム内の流体の測定密度を決定し、
    前記流体流システム内の前記流体の前記測定密度と予想密度との間の関係に基づいて、前記流体流システムが密度異常を経験しているかどうかを判定し、
    前記メータの前記タイン(112、114)の振動の測定位相差を決定し、
    前記流体流内の前記タイン(112、114)の前記振動の前記測定位相差と目標位相差との間の関係に基づいて、前記流体流システムが位相異常を経験しているかどうかを判定し、密度異常の前記判定および位相異常の前記判定に基づいて、前記流体流システムの異常を識別するように構成されている、データ処理回路(132)。
  20. 前記測定密度が前記予想密度よりも少なくとも閾値密度差だけ小さいと判定することによって、前記測定密度と前記予想密度との間の前記関係を判定し、
    ガス同伴異常を示す密度異常を識別するように構成されている、請求項19に記載のデータ処理回路(132)。
  21. 前記測定位相差が前記目標位相差と少なくとも閾値位相偏差だけ異なると判定することによって、前記測定位相差と前記目標位相差との間の前記関係を決定するようにさらに構成されている、請求項20に記載のデータ処理回路(132)。
  22. 前記測定位相差が平均測定位相差であり、前記閾値位相偏差が前記平均測定位相差と前記目標位相差との差である、請求項20または21に記載のデータ処理回路(132)。
  23. 前記流体流システムの異常を前記識別するステップが、前記流体流システムの前記異常をガス同伴異常として識別するステップをさらに含む、請求項20から22のいずれか一項に記載のデータ処理回路(132)。
  24. 前記データ処理回路を使用して、前記データ処理回路に記憶されたデータに基づいて前記流体および前記流体に同伴する要素のうちの1つまたは複数が前記タイン(112、114)を浸食する可能性が高いかどうかを判定することによって、ガス同伴異常の識別が腐食異常の識別と混同される可能性があるかどうかを判定し、
    前記データ処理回路(132)が、前記流体および前記流動流体に同伴する要素のうちの前記1つまたは複数が前記タイン(112、114)を浸食する可能性が高いことを示すデータを有する場合に、前記ガス同伴異常の識別が浸食異常と混同される可能性があると識別するようにさらに構成されている、請求項23に記載のデータ処理回路(132)。
  25. 前記測定密度が前記予想密度よりも少なくとも閾値密度差だけ大きいと判定することによって、前記測定密度と前記予想密度との間の前記関係を判定し、
    蓄積異常を示す密度異常を識別するようにさらに構成されている、請求項19に記載のデータ処理回路(132)。
  26. 前記測定位相差が少なくとも閾値位相偏差だけ前記目標位相差と異なること、
    前記測定位相差が前記目標位相差の上下に揺れる揺れ挙動、および
    前記測定位相差の前記目標位相差に対する三角測量挙動、
    のうちの1つまたは複数を判定することによって、前記測定位相差と前記目標位相差との間の前記関係を判定し、
    蓄積異常を示す位相異常を識別するようにさらに構成されている、請求項25に記載のデータ処理回路(132)。
  27. 前記揺れ挙動および前記三角測量挙動のうちの1つまたは複数が、前記目標位相差を上回る前記測定位相差のいくつかの連続するサイクル発振と、前記目標位相差を下回る前記測定位相差の別の数の連続するサイクル発振との一方または両方を検出することによって判定される、請求項26に記載のデータ処理回路(132)。
  28. 前記三角測量挙動が、前記目標位相に対して三角形または円形パターンを生成する前記測定位相差のいくつかの連続するサイクル発振によって判定される、請求項26に記載のデータ処理回路(132)。
  29. 前記流体システムの異常を前記識別するステップが、前記流体流システムの前記異常を蓄積異常として識別するステップをさらに含む、請求項19および請求項26から28のいずれか一項に記載のデータ処理回路(132)。
  30. 前記データ処理回路に記憶されたデータに基づいて、前記流体および前記流体に同伴する要素のうちの1つまたは複数が前記タイン(112、114)を腐食する可能性があるかどうかを判定することによって、蓄積異常の識別が腐食異常の識別と混同される可能性があるかどうかを判定し、
    前記データ処理回路(132)が、前記流動流体および前記流動流体に同伴する要素のうちの前記1つまたは複数が前記タイン(112、114)を腐食する可能性が高いことを示すデータを有する場合に、前記蓄積異常識別が腐食異常と混同される可能性があると識別するようにさらに構成されている、請求項25から29のいずれか一項に記載のデータ処理回路(132)。
  31. 前記閾値密度差が1kg/m3である、請求項19から30のいずれか一項に記載のデータ処理回路(132)。
  32. 前記閾値位相偏差が.02°である、請求項21から24および請求項26から31のいずれか一項に記載のデータ処理回路(132)。
  33. 前記閾値位相偏差が.015°である、請求項21から24および請求項26から31のいずれか一項に記載のデータ処理回路(132)。
  34. 前記異常をユーザに通知すること、前記異常が発生したことをメータ上に示すこと、前記異常に応答して前記流体または流体流の前記特性を変化させること、および前記異常を表すデータを記憶することのうちの1つまたは複数によって、前記異常に応答する、
    ようにさらに構成されている、請求項19から33のいずれか一項に記載のデータ処理回路(132)。
  35. 前記流体または流体流の流れ特性を前記変化させることが、流体流の速度を増加させること、および前記流体流内の前記流体の温度を上昇させることのうちの1つまたは複数をさらに含む、請求項34に記載のデータ処理回路(132)。
  36. 前記メータがフォーク密度計およびフォーク粘度計のうちの1つである、請求項19から35のいずれか一項に記載のデータ処理回路(132)。
  37. 前記データ処理回路が、前記流体流システムが密度異常を経験していないが、前記流体流が少なくとも1つの位相異常を経験していると判定し、前記識別された異常が製造異常および設置異常のうちの1つまたは複数である、請求項1に記載の方法。
  38. 前記信号処理回路をリセットするか、または前記データ処理回路との新たな位相ロックを確立するステップと、
    前記信号処理回路を前記リセットするか、または新たな位相ロックを確立した後に、前記揺れ挙動が時間とともに減少するかどうかを前記データ処理回路によって判定するステップと、
    前記揺れ挙動が時間とともに減少する場合、前記信号処理回路によって、前記位相異常が、蓄積異常を示す位相異常ではなく、設置異常を示す位相異常であると判定するステップと、
    をさらに含む、請求項9に記載の方法。
  39. 前記揺れ挙動および前記三角測量挙動のうちの1つまたは複数が、予想位相差からの測定位相差の最大サイクル偏差が増加し、それに続いて、おそらく、予想位相差からの最大サイクル偏差が減少しながら、潜在的に異なる数の連続する測定位相差のサイクルが続く、測定位相差が前記予想位相差を上回るまたは下回る連続するサイクル数を識別することによって判定される、請求項8に記載の方法。
  40. 前記揺れ挙動が、いくつかの連続するサイクルが前記予想位相差から増加しながら逸脱し、その後引き続いて、別の数のサイクルが連続して引き続いて減少しながら逸脱すると判定した後に、前記測定位相差が前記予想位相差を満たし、前記予想位相差の反対側にクロスオーバすることによって、さらに判定される、請求項39に記載の方法。
  41. 前記流体または流体流の前記特性を前記変化させるステップが、前記データ処理回路が、蓄積物が前記浸漬素子の融点よりも低い融点を有することを示すデータを記憶している場合に、前記流体の前記温度を上昇させるステップを含む、請求項16に記載の方法。
  42. 前記データ処理回路(132)が、前記流体流システムがいかなる密度異常も経験していないが、前記流体流が少なくとも1つの位相異常を経験していると判定し、前記識別された異常が製造異常および設置異常のうちの1つまたは複数である、請求項19に記載のデータ処理回路(132)。
  43. 前記信号処理回路をリセットするか、または前記データ処理回路(132)と新たな位相ロックを確立し、
    前記データ処理回路(132)によって、前記信号処理回路をリセットするか、または新たな位相ロックを確立した後に前記揺れ挙動が時間とともに減少するかどうかを判定し、
    前記揺れ挙動が時間とともに減少する場合、前記データ処理回路(132)によって、前記位相異常が、蓄積異常を示す前記位相異常ではなく、設置異常を示す位相異常であると判定するようにさらに構成されている、請求項27に記載のデータ処理回路(132)。
  44. 前記揺れ挙動および前記三角測量挙動のうちの1つまたは複数が、予想位相差からの測定位相差の最大サイクル偏差が増加し、それに続いて、おそらく、予想位相差からの最大サイクル偏差が減少しながら、潜在的に異なる数の連続する測定位相差のサイクルが続く、測定位相差が前記予想位相差を上回るまたは下回る連続するサイクル数を識別することによって判定される、請求項26に記載のデータ処理回路(132)。
  45. 前記揺れ挙動が、いくつかの連続するサイクルが前記予想位相差から増加しながら逸脱し、その後引き続いて、別の数のサイクルが連続して引き続いて減少しながら逸脱すると判定した後に、前記測定位相差が前記予想位相差を満たし、前記予想位相差の反対側にクロスオーバすることによって、さらに判定される、請求項44に記載のデータ処理回路(132)。
  46. 前記流体または流体流の前記特性を前記変化させるステップが、前記データ処理回路が、蓄積物が前記タイン(112、114)の前記融点よりも低い融点を有することを示すデータを記憶している場合に、前記流体の前記温度を上昇させるステップを含み、前記温度が前記蓄積物の前記融点よりも高い、請求項34に記載のデータ処理回路(132)。
  47. 前記データ処理回路が前記メータと一体であり、前記メータが異常および/または異常に対する応答を表すデータ以外の流体または流体流の特性を表すデータをユーザまたは外部デバイスに提供するように構成されていない専用の故障検出要素である、請求項19から35および請求項42から46のいずれか一項に記載のデータ処理回路(132)。
  48. 前記データ処理回路によって、前記浸漬素子が前記流体に最初に浸漬されたときの前記流体の最初に測定された密度に基づいて、前記異常を判定するための少なくとも1つの閾値または範囲を決定するステップをさらに含む、請求項1から18および37から41のいずれか一項に記載の方法。
  49. 前記タイン(112、114)が最初に前記流体に浸漬されたときの前記流体の最初の測定密度に基づいて、前記異常を判定するための少なくとも1つの閾値または範囲を決定するようにさらに構成されている、請求項19から36および請求項42から47のいずれか一項に記載のデータ処理回路(132)。
  50. 前記異常が、前記メータが設置されている、動作している、および動作から取り外されていないうちの1つまたは複数であるときに識別される、請求項1から18、37から41および請求項48のいずれか一項に記載の方法。
  51. 前記異常が、前記メータが設置されている、動作している、および動作から取り外されていないうちの1つまたは複数であるときに識別される、請求項19から36、請求項42から47および請求項49のいずれか一項に記載のデータ処理回路(132)。
JP2021566239A 2019-05-09 2019-05-09 フォークメータにおける異常の判定および識別 Active JP7288978B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2019/031536 WO2020226654A1 (en) 2019-05-09 2019-05-09 Determining and identifying anomalies in fork meters

Publications (2)

Publication Number Publication Date
JP2022531787A true JP2022531787A (ja) 2022-07-11
JP7288978B2 JP7288978B2 (ja) 2023-06-08

Family

ID=66625403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021566239A Active JP7288978B2 (ja) 2019-05-09 2019-05-09 フォークメータにおける異常の判定および識別

Country Status (10)

Country Link
US (1) US20220244157A1 (ja)
EP (1) EP3966547B1 (ja)
JP (1) JP7288978B2 (ja)
KR (1) KR102561086B1 (ja)
CN (1) CN113906282B (ja)
AU (1) AU2019444480B2 (ja)
CA (1) CA3139660C (ja)
MX (1) MX2021012545A (ja)
SG (1) SG11202112094SA (ja)
WO (1) WO2020226654A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115592A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
WO2024115121A1 (de) * 2022-12-02 2024-06-06 Endress+Hauser Flowtec Ag Verfahren zum überprüfen und/oder inbetriebnehmen eines modularen messsystems
DE102022134589A1 (de) * 2022-12-22 2024-06-27 Endress+Hauser Flowtec Ag Verfahren zum Ermitteln mindestens einer Belagseigenschaft an einer Wand eines Messrohrs
NL2034449B1 (en) 2023-03-28 2024-10-04 Berkin B V Method for detecting fluid parameters using a flow sensor configuration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304151A (ja) * 1996-05-17 1997-11-28 Tokico Ltd 質量流量計
JPH11173968A (ja) * 1997-12-12 1999-07-02 Riken Corp 液体性状測定方法及び液体性状測定装置
JP2003177037A (ja) * 2001-10-01 2003-06-27 Yazaki Corp ガス流量計およびガス供給システム並びにガス置換方法
JP2012255794A (ja) * 2005-05-27 2012-12-27 Micro Motion Inc コリオリ流量計内を流れる物質の不均一性を高速検出するための方法及び計測器電子機器
JP2013113656A (ja) * 2011-11-28 2013-06-10 Rion Co Ltd 振動式物性測定装置及び方法
JP2017049135A (ja) * 2015-09-02 2017-03-09 株式会社デンソー 粘度検出装置
JP2017538127A (ja) * 2014-12-19 2017-12-21 マイクロ モーション インコーポレイテッド 位相誤差に基づいて振動センサの振動を制御する方法
JP2018141803A (ja) * 2013-07-19 2018-09-13 マイクロ モーション インコーポレイテッド プロセス材料の濃度を決定する工程における関連マトリックスの自動切り換え
US20190003874A1 (en) * 2015-07-29 2019-01-03 Endress + Hauser Gmbh + Co. Kg Phase Control Unit for a Vibronic Sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106172A1 (de) * 2013-06-13 2014-12-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Kalibration oder zum Abgleich einer beliebigen schwingfähigen Einheit
KR102135790B1 (ko) * 2014-12-19 2020-07-20 마이크로 모우션, 인코포레이티드 진동 엘리먼트의 진동 응답 파라미터의 결정
DE102015102834A1 (de) * 2015-02-27 2016-09-01 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
US20160334316A1 (en) * 2015-05-14 2016-11-17 Concentric Meter Corporation Slurry process meter
EP3341701B1 (en) 2015-08-28 2020-03-18 Micro Motion, Inc. Meter and method for generating a synthetic time period output signal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304151A (ja) * 1996-05-17 1997-11-28 Tokico Ltd 質量流量計
JPH11173968A (ja) * 1997-12-12 1999-07-02 Riken Corp 液体性状測定方法及び液体性状測定装置
JP2003177037A (ja) * 2001-10-01 2003-06-27 Yazaki Corp ガス流量計およびガス供給システム並びにガス置換方法
JP2012255794A (ja) * 2005-05-27 2012-12-27 Micro Motion Inc コリオリ流量計内を流れる物質の不均一性を高速検出するための方法及び計測器電子機器
JP2013113656A (ja) * 2011-11-28 2013-06-10 Rion Co Ltd 振動式物性測定装置及び方法
JP2018141803A (ja) * 2013-07-19 2018-09-13 マイクロ モーション インコーポレイテッド プロセス材料の濃度を決定する工程における関連マトリックスの自動切り換え
JP2017538127A (ja) * 2014-12-19 2017-12-21 マイクロ モーション インコーポレイテッド 位相誤差に基づいて振動センサの振動を制御する方法
US20190003874A1 (en) * 2015-07-29 2019-01-03 Endress + Hauser Gmbh + Co. Kg Phase Control Unit for a Vibronic Sensor
JP2017049135A (ja) * 2015-09-02 2017-03-09 株式会社デンソー 粘度検出装置

Also Published As

Publication number Publication date
EP3966547B1 (en) 2024-03-13
EP3966547A1 (en) 2022-03-16
KR20220004210A (ko) 2022-01-11
WO2020226654A1 (en) 2020-11-12
CN113906282A (zh) 2022-01-07
CA3139660C (en) 2024-04-02
MX2021012545A (es) 2021-11-12
CN113906282B (zh) 2024-09-03
AU2019444480A1 (en) 2021-11-11
AU2019444480B2 (en) 2023-01-12
CA3139660A1 (en) 2020-11-12
KR102561086B1 (ko) 2023-07-28
SG11202112094SA (en) 2021-11-29
BR112021021453A2 (pt) 2021-12-21
US20220244157A1 (en) 2022-08-04
JP7288978B2 (ja) 2023-06-08

Similar Documents

Publication Publication Date Title
JP2022531787A (ja) フォークメータにおける異常の判定および識別
EP2959347B1 (en) A method and an apparatus for predicting the condition of a machine or a component of the machine
JP6358951B2 (ja) タンクを水抜きする感知方法及びバルブ制御方法及び装置
US10859428B2 (en) Apparatus for reliably determining and/or monitoring a process variable
CN105612410A (zh) 用于监测流变学复杂流动的传感器
JP2012507612A (ja) 原油装置における腐食および腐食副産物堆積を低減させる方法
RU2532508C1 (ru) Способ обнаружения засорения в расходомере кориолиса и расходомер кориолиса
RU2316737C2 (ru) Тревожный сигнал об отложениях у полевых приборов
KR20160004357A (ko) 모래 분리기 계면 검출
US11656170B2 (en) System for and method of monitoring a condition of at least one object comprised in a piping system
CN104246454A (zh) 用于监控预定料位的装置
CN214225012U (zh) 过程分析系统
RU2783635C1 (ru) Определение и идентификация аномалий в вилочных измерителях
CN105571658A (zh) 包括压力脉冲振幅分析的漩涡流量计
US20220221324A1 (en) Monitoring the condition of a vibronic sensor
EP2702458B1 (en) Method and apparatus for characterizing process control equipment integrity
BR112021021453B1 (pt) Método para determinar uma anomalia de processo em um sistema de fluxo de fluido, e, circuito de processamento de dados comunicativamente acoplado a e/ou integrado em uma eletrônica de medidor de um medidor
CA2917634C (en) Auto switching referral matrices in determining process material concentration
US5969235A (en) System and method for measuring scale deposition including a tuning fork for use in the system and the method
CN109307639A (zh) 用于确定借助于泵输送的输送流体的粘度的方法
EP3839496B1 (en) Method of monitoring a condition of at least one object comprised in a piping system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7288978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350