JP2022526949A - ポリマーを含む成長培地 - Google Patents

ポリマーを含む成長培地 Download PDF

Info

Publication number
JP2022526949A
JP2022526949A JP2021557395A JP2021557395A JP2022526949A JP 2022526949 A JP2022526949 A JP 2022526949A JP 2021557395 A JP2021557395 A JP 2021557395A JP 2021557395 A JP2021557395 A JP 2021557395A JP 2022526949 A JP2022526949 A JP 2022526949A
Authority
JP
Japan
Prior art keywords
growth
particles
expanded polymer
plant
growth medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021557395A
Other languages
English (en)
Inventor
エイチ.カリー エドワード
ビー.ダンカン ジェフリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of JP2022526949A publication Critical patent/JP2022526949A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/42Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure of granular or aggregated structure
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)

Abstract

開示される様々な例は、膨張ポリマー粒子を含む成長培地、ならびに、植物の根が成長培地に受け入れられるように、成長培地、栄養溶液及び植物を収容する容器を含む、成長環境に関する。成長培地の滅菌及び成長促進剤を含む成長培地の調製を含む、成長培地の調製の関連方法も考えられる。

Description

関連出願への相互参照
本出願は、2019年3月28日に出願された仮出願第62/825,249号の利益を主張し、あらゆる目的のためにその全体を参照により本明細書に取り込む。
本開示は、一般に、農業用成長培地、より具体的には、再利用可能であり、ガス及び栄養素を含むこともできる膨張ポリマー農業用成長培地に関する。
屋内農業は、節約できるエネルギーの量、使用できる水の効率及び従来の農業に通常に伴うリスクの低減のために、近年、より一般的になってきた。エネルギーの節約に関して、屋内農業では、キャノピーライトなどのLEDを含む成長照明を使用して、栽培場が受け取る光の特定の波長を制御する。植物の成長は、栄養素、光及び二酸化炭素の利用可能性に起因する。植物は、クロロフィル及びその他の色素を使用して、光のエネルギーを吸収し、それを光合成と呼ばれるプロセスで植物が使用できるエネルギーに変換する。例えば、すべての植物に含まれるクロロフィルaは、紫青及び橙赤の光の波長からほとんどのエネルギーを吸収する。農民は、植物及びその色素に関する知識を使用して、エネルギーを節約するために使用する成長光を調節する。
特定の種類の屋内農業は、典型的な屋外農業とは異なる方法で水を使用する。例えば、水耕農業は、成長中の植物に土壌を使用せず、植物の根が暴露される水溶媒中で植物が成長するのに必要なすべての栄養素及びミネラルを含む。土壌の代わりに、植物はパーライト又は砂利などの不活性培地によって支持される。また、幾つかの水耕栽培に組み込まれる閉ループ灌漑システムは、地下水及び土壌から発生する可能性のある汚染物質がシステムに侵入するのを防ぎながら、水の使用量の半分以上を節約し、使用される肥料の量を低減する。
リスク低減はまた、屋内農業の人気の上昇に役割を果たす主要な要因である。例えば、植物が伝統的な屋外農業方法で栽培されるときに、有害生物、病気及び悪天候ならびに他の源による収量損失のより大きなリスクがある。さらに、食用植物及び果物を生み出す可能性のある植物を地元で栽培して、食料供給者から流通業者、例えばレストラン、スーパーマーケット、地元の農民市場までの距離を縮めることができ、これにより、輸送コストを削減し、地元の調達による鮮度の確保を助けることができる。
屋内農業における目標の1つは、望ましくない病原体から植物を保護することである。これは、そのような病原体の汚染が、無菌環境下で行われなければならない手順から得られる結果に誤りを引き起こす農業バイオテクノロジーなどの科学の分野に特に当てはまる。このように、土壌を使用せずに屋内環境で植物を成長させるための水耕支持培地は開示されており、水と、植物の成長に必要な栄養素は栄養素溶液で提供される。しかしながら、これらの例における支持培地は、植物の根が成長するにつれて、支持培地及び根を保持する容器内の圧力を増加させる。この増加した圧力は、容器の空気の相対的な余地を減らし、容器内の空気を押し出し又はさもなければ容器から散逸させる原因となりうる。圧力の増加の影響は、固い支持培地の性質によって悪化し、多くの空気を保持することができない。一般に、容器内の空気が不足すると、植物の根が呼吸に空気を利用するために植物の成長が抑制されることがある。さらに、支持培地は、水が溜まると藻及びカビが成長しやすく、植物の成長に有害である。というのは、そのような藻類及びカビは根に必要な多くの酸素を飢餓させるからである。支持培地が直面する別の問題は、根が非常に早く成長し、培地及び容器を満たし、その後に、根が成長して容器から外にそして光の中に追い出され、再び藻類が成長することを可能にし、また、他の望ましくない結果をもたらす。
さらに、屋内農業にとってより環境に優しい選択肢と考えられる再利用可能な成長培地に対する需要が高まっている。1つの課題は、使用するたびに効果的に滅菌できるように化学的に不活性である材料を見つけることである。例えば、植物が成長すると、植物の根が成長培地に入り、成長培地に受け入れられ、成長培地内に植物病原体が残ることがあり、培地内で成長される予定の次の植物に病気を引き起こす可能性があるため、成長培地の滅菌プロセスは重要であることができる。したがって、最も信頼性の高い滅菌方法は、化学薬剤、熱又は放射線を使用することである。しかしながら、これらの方法には独自の欠点がある。
化学滅菌に関しては、過酸化水素、アルコール、第四級アンモニウム塩及び漂白剤が一般的な選択肢の一部である。酵素製品を使用して、水耕培地での滅菌プロセスをスピードアップすることもできる。しかしながら、既存の成長培地はしばしば分解性であるため、化学薬剤を繰り返し使用して成長培地を滅菌すると、成長培地を廃棄する前に比較的少ない回数しか使用できない。熱滅菌は、独自の欠点がある別の選択肢である。例えば、オーブンを使用して成長培地を加熱するならば、滅菌を確保するために成長培地をどの長さでそしてどの温度で加熱しなければならないかを正確に知ることは難しいことがある。加熱しすぎると、特定の成長培地は不快な臭い又は煙を生じることがあり、これは吸入すると有害であることがある。放射線滅菌にも同じ欠点がある。典型的に、放射線タイプの滅菌には紫外線照射が使用されるが、放射線への長時間暴露は、成長培地に損傷を引き起こし、成長培地の物理的又は化学的特性を変化させることがある。
本明細書に開示されるのは成長培地構成の例である。1つの例(「例1」)によれば、成長培地は膨張ポリマー粒子を含む。膨張ポリマー粒子は、1つ以上の植物成長促進剤を保持し、その表面及び内部での微生物の拡散を防ぐ。
例1に加えて別の例(「例2」)によれば、前記成長培地は、膨張ポリマー粒子に伴うヒドロゲル材料を含む。
上述の例のいずれかに加えて別の例(「例3」)によれば、前記1つ以上の植物成長促進剤は栄養素溶液を含む。
上述の例のいずれかに加えて別の例(「例4」)によれば、前記1つ以上の植物成長促進剤は、膨張ポリマー粒子内に維持されたガスを含む。
例5に加えて別の例(「例5」)によれば、前記ガスは、空気、酸素及び窒素ガスのうちの少なくとも1つを含む。
上述の例のいずれかに加えて別の例(「例6」)によれば、前記膨張ポリマー粒子は不活性であり、再利用可能である。
上述の例のいずれかに加えて別の例(「例7」)によれば、前記膨張ポリマーは、延伸ポリテトラフルオロエチレン(ePTFE)を含む。
例1~6のいずれかに加えて別の例(「例8」)によれば、前記膨張ポリマーは、延伸フッ素化エチレンプロピレン(eFEP)を含む。
例1~6のいずれかに加えて別の例(「例9」)によれば、前記膨張ポリマーは発泡ポリエチレン(ePE)を含む。
上述の例のいずれかに加えて別の例(「例10」)によれば、前記膨張ポリマー粒子の複数の層をさらに含む。各層は、膨張ポリマー粒子のセットを含む。膨張ポリマー粒子の各セットは、膨張ポリマー粒子の別の各セットの1つ以上の成長促進剤とは区別される1つ以上の植物成長促進剤を含む。
別の例(「例11」)によれば、成長環境は、植物の根が成長培地に受け入れられるように、栄養素溶液及び植物を収容する容器に受け入れられた上述の例のいずれか1つの成長培地を含む。
別の例(「例12」)によれば、成長培地を調製する方法は、膨張ポリマー粒子を滅菌すること、前記膨張ポリマー粒子を第一の植物成長促進剤で充填すること、前記膨張ポリマー粒子を容器に入れること、前記容器を第二の植物成長促進剤で充填すること、及び、前記容器を蓋で覆うことを含む。
例12に加えて別の例(「例13」)によれば、この方法は、前記膨張ポリマー粒子上にコーティングの層を適用することをさらに含む。
例13に加えて別の例(「例14」)によれば、前記コーティングはヒドロゲル材料である。
例12~14のいずれか1つに加えて別の例(「例15」)によれば、前記第一の植物成長促進剤及び前記第二の植物成長促進剤は、ガス及び栄養素溶液のうちの1つ以上である。
例15に加えて1つの例(「例16」)によれば、前記ガスは、空気、酸素及び窒素ガスのうちの少なくとも1つを含む。
例12~16のいずれか1つに加えて別の例(「例17」)によれば、前記膨張ポリマー粒子は不活性であり、再利用可能である。
例12~17のいずれか1つに加えて別の例(「例18」)によれば、前記膨張ポリマー粒子は、延伸ポリテトラフルオロエチレン(ePTFE)を含む。
例12~18のいずれかに加えて別の例(「例19」)によれば、前記膨張ポリマー粒子は、延伸フッ素化エチレンプロピレン(eFEP)を含む。
例12~19のいずれかに加えて別の例(「例20」)によれば、前記膨張ポリマー粒子は、発泡ポリエチレン(ePE)を含む。
例12~20のいずれかに加えて別の例(「例21」)によれば、成長培地を調製する方法は、膨張ポリマー粒子の複数の層を形成することをさらに含む。各層は、膨張ポリマー粒子のセットを含む。膨張ポリマー粒子の各セットは、膨張ポリマー粒子の別の各セットの1つ以上の成長促進剤とは区別される又は異なる1つ以上の植物成長促進剤を含む。
別の例(「例22」)によれば、成長培地は、多孔質微細構造を有する膨張ポリマー粒子を含む。膨張ポリマー粒子は、1つ以上の植物成長促進剤を保持し、前記粒子の外面上での微生物の付着及び増殖うちの少なくとも1つに耐性がある。膨張ポリマー粒子は、膨張ポリマー粒子内の微生物の付着及び増殖のうちの少なくとも1つにも耐性がある。
例22に加えて別の例(「例23」)によれば、前記成長培地は、膨張ポリマー粒子に伴うヒドロゲル材料をさらに含む。
例22又は23に加えて別の例(「例24」)によれば、前記1つ以上の植物成長促進剤は、栄養素溶液を含む。
例22~24のいずれか1つに加えて別の例(「例25」)によれば、前記1つ以上の植物成長促進剤は、前記膨張ポリマー粒子内に維持されたガスを含む。
例25に加えて別の例(「例26」)によれば、前記ガスは、空気、酸素、窒素ガス及びそれらの組み合わせのうちの少なくとも1つを含む。
例22~26のいずれか1つに加えて別の例(「例27」)によれば、前記膨張ポリマー粒子は不活性である。
例22~27のいずれか1つに加えて別の例(「例28」)によれば、前記膨張ポリマー粒子は、延伸ポリテトラフルオロエチレン(ePTFE)を含む。
例22~28のいずれか1つに加えて別の例(「例29」)によれば、前記膨張ポリマー粒子は、延伸フッ素化エチレンプロピレン(eFEP)を含む。
例22~29のいずれか1つに加えて別の例(「例30」)によれば、前記膨張ポリマー粒子は、発泡ポリエチレン(ePE)を含む。
例22~30のいずれか1つに加えて別の例(「例31」)によれば、複数の層のそれぞれは、前記複数の層のうちの互いに異なる層の成長促進剤とは異なる成長促進剤を含む。
別の例(「例32」)によれば、成長環境は、容器、前記容器内の栄養素溶液、前記容器内に受け入れられた例22~31のいずれかの成長培地、及び、前記成長培地内に受け入れられた、根を有する植物を含む。
別の例(「例33」)によれば、成長環境を調製する方法は、膨張ポリマー粒子を含む成長培地を滅菌すること、及び、前記膨張ポリマー粒子を第一の植物成長促進剤で処理することを含む。
例33に加えて別の例(「例34」)によれば、この方法は、膨張ポリマー粒子を容器内に入れること、及び、前記容器を第二の植物成長促進剤で充填することをさらに含む。
例33又は34に加えて別の例(「例35」)によれば、この方法は、前記容器を蓋で覆うことをさらに含む。
例33~35のいずれかに加えて別の例(「例36」)によれば、前記成長培地の滅菌は、化学的、熱及び照射滅菌技術のうちの少なくとも1つを含む。
例33~36のいずれかに加えて別の例(「例37」)によれば、前記成長培地は、前記膨張ポリマー粒子に適用される親水性処理剤を含む。
例37に加えて別の例(「例38」)によれば、前記親水性処理剤は、前記膨張ポリマー粒子に適用されるヒドロゲル材料を含む。
例33~38のいずれかに加えて別の例(「例39」)によれば、前記第一の植物成長促進剤及び前記第二の植物成長促進剤は、ガス及び栄養素溶液から選ばれる。
例33に加えて別の例(「例40」)によれば、前記膨張ポリマー粒子は多孔質微細構造を含む。また、前記膨張ポリマー粒子を前記第一の植物成長促進剤で処理することは、前記第一の植物成長促進剤を前記膨張ポリマー粒子の多孔質微細構造内に受け入れさせることを含む。
例40に加えて別の例(「例41」)によれば、前記第一の植物成長促進剤は、前記膨張ポリマー粒子内に維持される、栄養溶液及びガスのうちの1つ以上を含み、場合により、空気、酸素、窒素ガス及びそれらの組み合わせのうちの少なくとも1つである。
例33~41のいずれか1つに加えて別の例(「例42」)によれば、前記膨張ポリマー粒子は不活性である。
例33~42のいずれか1つに加えて別の例(「例43」)によれば、前記膨張ポリマー粒子は、延伸ポリテトラフルオロエチレン(ePTFE)を含む。
例33~43のいずれか1つに加えて別の例(「例44」)によれば、前記膨張ポリマー粒子は、延伸フッ素化エチレンプロピレン(eFEP)を含む。
例33~44のいずれか1つに加えて別の例(「例45」)によれば、前記膨張ポリマー粒子は、発泡ポリエチレン(ePE)を含む。
例33~45のいずれか1つに加えて別の例(「例46」)によれば、成長環境を調製する方法は、膨張ポリマー粒子の複数の層を形成することをさらに含む。複数の層のそれぞれは、複数の層のうちの他の1つのそれぞれの成長促進剤とは異なる成長促進剤を含む。
上述の例はまさに実施例であり、本開示によって別の方法で提供される本発明の概念の範囲を制限又は限定するために読まれるべきではない。複数の実施例が開示されているが、さらに他の実施形態が例示的な例を示して記載する以下の詳細な説明から当業者に明らかになるであろう。したがって、図面及び詳細な説明は、本質的に限定的なものではなく、本質的に例示的なものと考えられるべきである。
添付の図面は、本開示のさらなる理解を提供するために含まれ、本明細書に組み込まれ、その一部を構成し、実施形態を示し、記載とともに、本開示の原理を説明するのに役立つ。
図1は、少なくとも1つの実施形態による、容器、粒子及び栄養素溶液を使用する無土壌成長環境の概略図である。
図2は、少なくとも1つの実施形態による、図1に開示されるとおりの粒子の概略図である。
図3は、少なくとも1つの実施形態による、粒子の層を有する別の無土壌成長環境の概略図である。
図4は、少なくとも1つの実施形態による、植物を成長させるために粒子を実装する方法のフローチャートである。
図5は、少なくとも1つの実施形態による、図1に示される容器の上面図である。
定義及び用語
本開示は、限定的な方法で読まれることが意図されない。例えば、本出願で使用される用語は、そのような用語に帰する分野での意味の関係で広く読まれるべきである。
不正確さの用語に関して、「約」及び「ほぼ」という用語は、交換可能に使用されて、記載された測定値を含み、また、記載された測定値に合理的に近い測定値も含む測定値を指すことができる。記載された測定値に合理的に近い測定値は、関連技術の当業者によって理解され、容易に確認されるように、記載された測定値から合理的に少量だけ逸脱する。このような逸脱は、例えば、測定誤差又は性能を最適化するために行われた小さな調整に起因することができる。関連技術の当業者がそのような合理的に小さな違いの値を容易に確認できないと判断された場合には、「約」及び「ほぼ」という用語は、記載されている値±10%を意味するものと理解できる。
様々な実施形態の説明
当業者は、本開示の様々な態様が、意図された機能を発揮するように構成された任意の数の方法及び装置によって実現できることを容易に理解するであろう。本明細書で参照される添付の図面は必ずしも一定の縮尺で描かれているわけではなく、本開示の様々な態様を例示するために誇張されていることがあり、その点で、図面は限定として解釈されるべきではないことにも留意されたい。
図1は、植物102などの光合成生物の成長環境100の例を示す。成長環境は、植物102が成長するときにそれを収容する容器104を含む。容器は、栄養素溶液106及び粒子108を含む成長培地105を収容する。以下に記載されるように、様々な例において、粒子108は、ポリマー(例えば、フルオロポリマー、ポリエチレン又はその他)材料を含む。容器の上部110は、一般に、蓋110で覆われるか、又はそうでなければ、容器110の内容物が逃げないように閉止されている。図5は、図1に示す容器110の上面図を示す。蓋110によって形成されるシールは気密である必要はなく、一般的に植物102の一部は、蓋110を貫通し、植物102の葉を光に暴露して光合成を行う。図5において、蓋110の開口部500は、植物102が蓋を貫通する場所である。また、蓋110は、粒子108が容器104からの漏れず、又はさもなければ意図せず容器から取り出されることを防止するのを助ける。
図2は、粒子108のうちの1つの構造の例を示している。粒子108は、複数の層を有することができるが、より少ない(すなわち、単一の層)又はより多くの(すなわち、2つより多い)層を所望の実施に応じて使用する。幾つかの実施形態において、粒子108は、延伸ポリテトラフルオロエチレン(ePTFE)、延伸フッ素化エチレンプロピレン(eFEP)、それらの組み合わせなどの延伸フルオロポリマー材料、又は、発泡ポリエチレン(ePE)などの他の適切なポリマー材料を含む、様々な材料から形成することができるベース又はベース層200を含む。幾つかの例において、ベース層200は、延伸フルオロポリマー粒子108の全体的な構造(例えば、サイズ及び形状)を画定するのを助ける。粒子108は、ベース層200の内側に配置された内層202(又は複数の内層)などの1つ以上の追加の層を含むことができる。内層202は、ベース層200に直接結合されうる(例えば、接着剤及び/又は熱結合を使用して)。層202は、植物102の成長を促進する固体、流体又はガスのキャリアとして構成されうる。内層202は、場合により、1つ以上の成長促進剤を保持するように構成された、延伸フルオロポリマー(例えば、ePTFE)などのフルオロポリマーから形成される(例えば、コーティングとして、内層202の構造内で内部的に)。さらに、本開示は、特定の機能を有する粒子108のベース層200、内層202又は任意の追加の層(例えば、外層(図示せず))のそれぞれに言及しているが、本明細書で論じられるとおりのこれらの層の様々な機能は交換可能であり、任意の層によって実行することができる。例えば、内層202は、粒子108の構造を画定することができ、ベース層200は、植物成長に不可欠な材料を保持することができる。別の例において、すべての層が特定の機能を発揮でき、粒子108が1つ以上の層を欠くときに、残りの層がこれらの機能を発揮する際に代用できる。
例えば、1つの実施形態において、内層202は酸素を含み、植物102の根が成長するときに利用することができる内層202(例えば、層202の微細構造内)への酸素を通過させることができる。具体的には、植物が成長すると、植物の根は、溶液106中の粒子108に向かって伸びる。根が粒子108に付着した後に、根は、植物102に必要な栄養素を取り出すことができる。酸素は、溶液のみの環境では酸素が不足すると根が「水死する」可能性があるため、酸素は植物の成長に不可欠な要素である。したがって、典型的な水耕農業設備において、根を浸漬させる溶液は、植物が溶液中で呼吸できるように十分な溶存酸素が注入される必要がある。同様に構成されうる内層202及び/又はベース層200に酸素を提供することは、この目的を達成するのを支援することができる。
別の例において、内層202は、多量栄養素及び微量栄養素として分類される1つ以上のミネラル要素を含む。多量栄養素は、タンパク質及び核酸などのしばしば重要な細胞成分を獲得するために植物が大量に利用するものである。多量栄養素ミネラルの例としては、窒素、カリウム、カルシウム、マグネシウム、リン及び硫黄が挙げられる。多量栄養素は、炭素、水素及び酸素などの非ミネラルも挙げることができる。一方、微量栄養素は、典型的に、しばしば酵素活性の補因子として比較的に少量でのみ必要とされるものである。微量栄養素ミネラルの例としては、塩素、鉄、ホウ素、マンガン、亜鉛、銅、モリブデン及びニッケルが挙げられる。一般に、植物は成長して生存するために多量栄養素及び微量栄養素の両方を必要とするため、「必須ミネラル要素」と考えることができる。植物の成長を促進するが、植物のライフサイクルを完了するのに必ずしも不可欠ではない他のミネラル要素もある。このような有益なミネラル要素としては、ナトリウム、ケイ素、コバルト及びセレンが挙げられる。様々な例において、これらの要素は必須ミネラル要素に追加して含まれる。植物成長の必要性に応じて、上記のミネラル及びガスの様々な組み合わせは、内層202又は本明細書で言及される他の任意の層に含まれることができる。また、幾つかの例において、容器104は、植物の所望のサイクル全体に必要なすべての水、栄養素及び酸素を保持するので、植物に水をやる又は水耕システムを実践する必要はない。植物の望ましいサイクルは、植物が何に使用されるかによって異なることがある。例えば、望ましいサイクルは、農業バイオテクノロジーでの植物の成長において約14日間であることができる。これは、ワクチン学の重要な部分であるウイルス様粒子(VLP)を開発するために植物に必要とされる時間量であるからである。望ましいサイクルの後に、植物はさらなる処理のために容器から取り出され、容器内の粒子は、その後、滅菌され、次いで、無土壌成長環境で再利用されうる。植物の成長サイクルに必要なすべてのもの(水、栄養素及び酸素など)を容器内に配置する方法は、一般に「クラッキー法」と呼ばれる。本明細書に記載されるような容器内の培地を使用すると、この方法の収量を改善しうる。
上記に対処されたものに対する別の追加又は任意選択的な特徴として、幾つかの実施形態において、内層202の含有分を調整して、成長環境100内のpHレベルを制御することができる。成長環境100で成長される植物は、土壌育成植物など、他の状況で成長されるものとは異なる最適pHレベルを有することができる。したがって、様々な状況において、pHレベルを慎重に検討し、成長環境100で適切なpHレベル範囲を維持することが重要であることができる。例えば、水耕環境で成長される多くの植物の最適なpH範囲は5.5~6.5であり、幾つかの例は5.8~6の狭い範囲である。pHレベルが高くなりすぎてアルカリ性になりすぎると、植物は、一般に、成長環境100内で栄養素を吸収する効率が低下し、周囲に十分な栄養素がある場合でさえ、植物102に栄養失調を引き起こす。pHレベルを好ましい範囲に維持するために、自動化されたpHコントローラを使用して、水耕システムに酸を注入することができる。追加又は代替の機構として、粒子108は、pH制御を支援して、追加のpHコントローラを使用する必要性を低減又はさらには完全に排除するように構成されうる。例えば、経時的に又は成長サイクルの所望の時点で、pH調整内容物(例えば、酸性物質)を含むことができ、又は、それを放出するように構成されうる。例えば、植物102は、発育状態において特定のpHを必要としうるが、開花又は結実状態において別のpHを必要としうる。
粒子108はまた、ベース層200の外側に位置する外層204を最外層として含むことができる。外層204は、押し出し、ラッピング、コーティング又は他の方法を含む様々な方法で形成されうる。例えば、ベース層200の外面は、外層204として機能するコーティングを備えていることができる。1つの例において、ミネラル及びガスが内層202に注入された後に、ヒドロゲルのコーティングがベース層200の外面上に適用され、外層204を形成する。外層204は、内層202の内容物が成長環境100に時期尚早に逃げるのを、又は望ましくない速度で逃げるのを防ぐのを支援するためのシールドとして機能しうる。例えば、粒子108内の酸素はゆっくりと溶液106内に逃げることができる。というのは、蓋110及び容器104は密閉シールを形成せず、酸素は容器104の外の大気中に、蓋110の開口部から逃げることができるからである。このシナリオは、植物102の根が、大気中に逃げた酸素を利用できないため、植物の成長に悪影響を与える可能性がある。他のタイプのコーティングも、所望に応じて同様又は異なる目的で適用することができる。さらに、所望の結果を達成するために(例えば、粒子108の内容物の放出を制御するために)、必要に応じて複数のコーティングを適用することができる。上記のように、ベース層200及び外層204、ならびに必要に応じて実装することができる追加の層などの任意の他の層の内容物は、成長環境100内のpHレベルを制御し及び/又は隣接層の内容物が逃げるのを防ぐように調整することができることに留意されたい。幾つかの例において、複数の層200、202、204のそれぞれは、複数の層の他の1つのそれぞれの成長促進剤とは異なる成長促進剤を含む。
図2は、粒子108を本質的に丸いものとして示しているが、粒子108は、任意の適切なサイズ及び形状であることができ、すべてが同じサイズ及び/又は形状を共有する必要はなく、これは、部分的に、培地内で成長される植物102のタイプ及びサイズによって決定されうることに留意されたい。適切な粒子108としては、例えば、粒子の長さ、幅及び高さのそれぞれが約20mm未満、約10mm未満、約7mm未満、約5mm未満又は約3mm未満であるものが挙げられる。幾つかの例において、粒子108は、長さが幅及び高さよりも大きくなるような長尺構成であることができ、その場合に、長さは、約50mm未満、約40mm未満、約30mm未満、約20mm未満又は約10mm未満であることができる。さらに、粒子108は、貫通孔、穿孔、マクロ細孔、マイクロ細孔、又は、植物の根がより簡単に粒子108内の栄養素にアクセスするのを支援することができる他の特徴を含むことができる。また、図1は、すべての粒子108が同様のサイズ及び形状であることを示しているが、粒子108の幾つかは、他の粒子108よりも大きくても又は小さくてもよく、さらに又は代わりに形状が様々であってもよいことに留意されたい。1つの実施形態において、粒子108は、実質的に等しい濃度で容器全体に分散することができ、他の例において、容器104の上面近くに、底面よりも多くの粒子108を集中させることができ、又はその逆も可能である。
幾つかの実施形態において、粒子108は、疎水性、親水性又はその両方であることができる。疎水性粒子は、時間遅延ベースで栄養素、特にガスを格納するのに特に効果的であることができる。例えば、疎水性粒子は、主に水を含む栄養素溶液106中にうまく溶解せず、粒子108が植物102の根によって物理的に穿刺されるまで、ガスの放出を遅らせることができる。したがって、1つの実施形態において、格納された栄養素が放出されるタイミングを制御するために、層200、202、204のうちの1つは疎水性であるが、他の2つの層は親水性であり、又はその逆である。幾つかの例において、膨張ポリマー粒子108の外面(例えば、外層204又はベース層200の外面)は、微生物の付着及び増殖のうちの少なくとも1つに耐性がある。幾つかの例において、成長培地105は、膨張ポリマー粒子108内(例えば、内層202内)の微生物の付着及び増殖のうちの少なくとも1つに耐性であることができる。
図3は、成長培地105を含む層状成長環境300の例を示す。成長環境300において、容器106内に位置する成長培地105は、形成される3つの別個の層、すなわち、第一の層302、第二の層304及び第三の層306に分離される。各層は、異なる粒子のセットを含む(例えば、異なる構成及び/又は内容物を有する)。例えば、粒子のセットのそれぞれは、異なる濃度のガスを有することができ、粒子の他のセットと別個に維持される。成長環境300の例において、粒子のセットは、上層、中間層及び下層に分離されるが、水平に分離する必要なく、段階的なサイズのリング、水平層として又は他の構成として形成されうる。関係なく、図3に示されるように、第一の層302(図示の上層)は、粒子の第一のセット308、第二の層304(図示の中間層)は、粒子の第二のセット310を含み、第三の層306(図示の下層)は、粒子の第三のセット312を含む。各層の粒子のセット内に含まれる液体、固体及び/又はガスは、異なる植物成長の必要性に対応する。例えば、第一の層302は、上層として位置決めされることができ、したがって、第一の層が表面に最も近いので植物の根(図示せず)が到達する粒子の第一のセットとして位置決めされることができ、そして根が成長してくると、第二の層304、最終的には第三の層306まで深く伸びる。各層302、304、306の内容物は、より多くの栄養素が吸収されるように根がより速く成長するように第一の層302における植物成長のための正しい栄養素を提供し、次に第二の層304における葉の成長ならびに第三の層306における花及び果実の生成を促進するように代替の栄養素を提供するなどして、成長する植物の要求と相関するように設計できる。
例えば、第一の層302は、植物の根の成長速度を増加させるために、窒素よりもリン及びカリウムが豊富な肥料を含むことができる。1つの例において、肥料は、N-P-K比(すなわち、窒素-リン-カリウム比)が3-20-20であることができる。第一の層302の別の例は、根の成長を刺激することが知られている植物ホルモンであるオーキシン(例えば、インドール酪酸及びナフチル酢酸)を含むことができる。さらに、第二の層304及び第三の層306は、必要に応じて、葉及び/又は果実及び花の成長をサポートするために、より多くの窒素を含むことができる。図示のように、成長環境300内の粒子混合物は、特性が均一ではなくてよく、栄養素、酸素及び/又は粒子の他の内容物を特定の植物及び/又は用途に合わせた方法で配置することができる。
成長環境100又は300などの成長環境での使用に適した粒子を製造する1つの方法は、所望の細かさ(又は逆に粗さ)の粒子を生成するように材料を破砕することによる。1つの例において、発泡ポリエチレン(ePE)、延伸ポリテトラフルオロエチレン(ePTFE)及び/又は他の材料を使用して粒子を形成することができる。粒子を製造する他の適切な方法としては、チョッピング、切断、モールド成形、シェディング又は他の方法を挙げることができる。
図4は、上記のような成長環境を実装する方法400のフローチャートを示す。第一の工程402において、粒子108は滅菌される。次に、粒子108は、工程404において植物成長促進剤で満たされ、それは、例えば、所望のガスであることができる。1つの実施形態において、所望のガスは、植物の成長に必要な酸素又は他のガスであることができる。別の例において、上述のミネラル多量栄養素及び微量栄養素などの様々な栄養素は、所望のガスの代わりに、又はそれに加えて、粒子108を充填又は部分的に充填することができる。次に、工程406において、コーティングが粒子108の外面に適用されるべきかどうかが決定される。上記のように、コーティングは、ポリアクリル酸カリウム又はポリアクリル酸ナトリウムなどのヒドロゲルであることができる。コーティングが必要であると決定されるならば、工程408において、コーティングの層は粒子108上に適用される。次に、コーティングされた粒子108は、工程410において容器内に配置される。さもなければ、コーティングが必要でないならば、粒子108は、コーティングなしで容器内に配置される(工程408)。次に、容器は、工程412で栄養素溶液又は植物成長促進剤で充填される。最後に、工程414において、蓋を使用して容器を覆う。
上述の記載は、成長環境で使用するための様々な特徴及び関連する利点を提供する。幾つかの実施形態において、粒子は、圧縮可能及び/又は順応性であり、根及び/又は容器に過度の応力又は圧力を加えることなく植物の根を成長させることができる。このような粒子を使用することで、容器を逃げる空気をより少量(例えば、従来の土壌環境と比較して)にすることができる。別の実施形態において、粒子は、粒子の意図された目的に望ましい形状を達成するために成形可能である。
幾つかの実施形態において、粒子は、粒子の表面ならびにその内部への微生物の付着及び拡散を防止する。例えば、特定の成長環境において、藻類及び真菌(その胞子を含む)が存在し得る。これらの微生物は、容器の外部から気流を介して輸送され、粒子の内面又は外面に付着することができる。しかしながら、粒子に使用される材料は、そのような微生物の付着及び/又は成長に対して特に耐性であることができる。驚くべきことに、粒子状材料としてePTFEを使用すると、これらの微生物の成長及び増殖が阻害されることが発見された。例えば、ePTFEの疎水性により、微生物が長期間表面に付着するのを防ぐのを支援することができる。したがって、様々な例において、粒子はePTFEなどのポリマーから形成され、それは微生物の成長を阻害するように構成されている。さらに、幾つかの粒子は、粉砕されたePTFEフレーク、又は、液体環境で微生物を成長させるために使用できる別の形態を取ることができる。例えば、このような粒子は、1つ以上の微生物(例えば、藻類)が播種された液体を含む容器に入れることができる。容器は、微生物の成長を促進するために光源に暴露されうる(例えば、太陽の下に置かれる)。液体は、微生物の成長に必要な水、栄養素及び/又は他の成分を含むことができる。藻類は液体中で成長するが、ePTFEフレーク上では成長しないような条件下で成長することができ、藻類の取り出し及び収穫が容易になることが観察された。
様々な実施形態において、粒子は不活性で再利用可能である。上述のように、望ましくない病原体から植物を保護することは、考慮に入れるべき重要な要因である可能性がある。1つの例において、粒子は、前の植物が粒子から作られた成長培地において成長を終えた後に粒子が容器から取り出され、次いで、とりわけ、化学滅菌、熱滅菌及び/又は照射による滅菌などの手段で滅菌される。滅菌が完了すると、粒子は処理又は再処理されて(本明細書において「リチャージ」と呼ばれる)、再び所望の栄養素を含み(本明細書において「回復」とも呼ばれる)、次に容器に入れられ、植物の成長に再び使用される。その植物は、同じ粒子を使用して成長された以前の植物と異なるタイプ又は種類であってもよい。言い換えれば、ePTFEなどの不活性材料を使用することにより、病原体は滅菌プロセス中に粒子が分解することなく簡単に除去することができ、そのため、粒子は様々な植物のために再利用できる。幾つかの例において、成長培地は、成長培地からの植物の根の除去(例えば、脱離又は分離)を容易にして、次のサイクルのための成長培地のクリーニング及び回復を容易にする。上述の滅菌及びリチャージプロセスは、上述の根の除去の容易さによってさらに促進されうる。さらに、自動化は、成長環境(例えば、自動収穫システム)により容易に導入されうる。上述の除去の容易さ、成長培地を滅菌/クリーニングする能力は、自動化を通じて一貫した結果を保証するのを支援することができる。
別の実施形態において、個々の粒子は、所望の形状、サイズ及び/又は含有分で構成されることができ、粒子のセットを形成する粒子は、異なる形状、サイズ及び/又は含有分を達成するために変化させることができ、及び/又は、複数の粒子のセット(例えば、層)は、形状、サイズ及び含有分を変化させることができる。例えば、粒子のサイズは、非常に細い根又はより大きな根、又は他の成長の必要性を考慮して調整されうる。さらに別の実施形態において、粒子は、ガスで満たされている及び/又は低密度を有する粒子が成長培地の上面に浮くのを防ぐために加重されうる。加重された粒子を得る1つの例は、粒子に使用されているポリマー(ePTFEなど)より重い異なる抗微生物性ポリマーを付着させることを含み、その結果、加重された粒子は、適宜、容器の下層に沈むことができる。別の実施形態において、材料の微細ストランドを容器の底に付着させることができる。ストランド又はリボン様粒子は、上記と同じ方法で処理でき、浮力が発生する傾向があることがある。容器が水及び栄養素溶液で満たされると、上述のストランドは直立して浮く傾向がある。この実施形態は、「成長培地」が容器と一体であるため、自動化にも役立つことができる。
別の態様は、粒子108の反射特性である。例えば、ePTFEは反射率が高く、ePTFEを製造するために使用されるプロセスに応じて、反射率は90%以上、幾つかの例においては95%を超え又は98%を超える反射率に達することができる。したがって、ePTFE粒子又は他の反射性材料が使用されるときに、粒子108は、光が植物の根系に入るのを防ぎ、容器104内の領域を実質的に暗く保つことを可能にする。これは、特定のタイプの植物(例えば、植物の根が光に暴露されていないときによく成長することができる非水生植物)の成長に有利であることができる。
さらに別の実施形態において、「浮遊島」又は「浮遊粒子塊」構成は、本明細書に記載の粒子を使用することで利用される。浮遊島は、粒子の内部が栄養素及び他の植物成長促進剤ならびにガスで満たされるように、複数の層状の粒子を最初に調製することにより形成される。次に、粒子は、ネッティング、ラッピング、バンドリング、接着及び個別の粒子を結合する他の方法などの様々な手段により結合される。結合された粒子は、「浮遊島」を形成することができ、それを、次に、水生環境に配置して、粒子が少なくとも所定の期間浮遊し続けることを可能にすることができる。1つの例において、この浮遊島構成は、島内で植物が成長することを可能にするために種子で満たされることができる。別の例において、この浮遊島構成は、「バイオカプセル化」と呼ばれるプロセスで粒子内に特定のタイプの細菌を含ませることにより、粒子内の細菌は水中にある汚染物質(ハイドロフラッキング又はオイルスピルの結果として水中に放出される炭化水素など)を摂取し、それによって湖又は貯水池を浄化するように、湖又は貯水池などの大量の水の中の汚染水を浄化するためにも使用されることができる。
本出願の発明は、一般的に及び特定の実施形態に関しての両方で上記に記載されてきた。本開示の範囲から逸脱することなく、実施形態において様々な変更及び変形を行うことができることが当業者に明らかである。したがって、実施形態は、添付の特許請求の範囲及びそれらの均等形態の範囲内に入るかぎり、本発明の変更及び変形を網羅することが意図されている。

Claims (15)

  1. 膨張ポリマー粒子を含む成長培地であって、該膨張ポリマー粒子は、1つ以上の植物成長促進剤を保持し、かつ、その表面及び内部での微生物の拡散を防ぐように構成されている、成長培地。
  2. 前記膨張ポリマー粒子に伴うヒドロゲル材料をさらに含む、請求項1記載の成長培地。
  3. 前記1つ以上の植物成長促進剤は栄養素溶液を含む、請求項1又は2記載の成長培地。
  4. 前記1つ以上の植物成長促進剤は、前記膨張ポリマー粒子内に維持されたガスを含む、請求項1~3のいずれか1項記載の成長培地。
  5. 前記ガスは、空気、酸素、窒素ガス及びそれらの組み合わせから選ばれる少なくとも1つを含む、請求項4記載の成長培地。
  6. 前記膨張ポリマー粒子は不活性であり、かつ、再利用可能である、請求項1~5のいずれか1項記載の成長培地。
  7. 前記膨張ポリマーは延伸ポリテトラフルオロエチレン(ePTFE)を含む、請求項1~6のいずれか1項記載の成長培地。
  8. 前記膨張ポリマーは延伸フッ素化エチレンプロピレン(eFEP)を含む、請求項1~6のいずれか1項記載の成長培地。
  9. 前記膨張ポリマーは発泡ポリエチレン(ePE)を含む、請求項1~6のいずれか1項記載の成長培地。
  10. 膨張ポリマー粒子の複数の層をさらに含み、各層は、膨張ポリマー粒子のセットを含み、膨張ポリマー粒子の各セットは、膨張ポリマー粒子の別の各セットの1つ以上の成長促進剤とは区別される1つ以上の植物成長促進剤を含む、請求項1~9のいずれか1項記載の成長培地。
  11. 植物の根が成長培地に受け入れられるように、栄養素溶液及び植物を収容する容器に受け入れられた、請求項1~10のいずれか1項記載の成長培地を含む、成長環境。
  12. 膨張ポリマー粒子を滅菌すること、
    前記膨張ポリマー粒子を第一の植物成長促進剤で充填すること、
    前記膨張ポリマー粒子を容器に入れること、
    前記容器を第二の植物成長促進剤で充填すること、及び
    前記容器を蓋で覆うこと、
    を含んでなる、成長培地を調製する方法。
  13. 前記膨張ポリマー粒子上にコーティングの層を適用することをさらに含む、請求項12記載の方法。
  14. 前記コーティングはヒドロゲル材料である、請求項13記載の方法。
  15. 前記第一の植物成長促進剤及び前記第二の植物成長促進剤は、ガス及び栄養素溶液から選ばれる、請求項12~14のいずれか1項記載の方法。
JP2021557395A 2019-03-28 2020-03-27 ポリマーを含む成長培地 Pending JP2022526949A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962825249P 2019-03-28 2019-03-28
US62/825,249 2019-03-28
PCT/US2020/025450 WO2020198674A1 (en) 2019-03-28 2020-03-27 Growth medium with polymer

Publications (1)

Publication Number Publication Date
JP2022526949A true JP2022526949A (ja) 2022-05-27

Family

ID=70286037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021557395A Pending JP2022526949A (ja) 2019-03-28 2020-03-27 ポリマーを含む成長培地

Country Status (5)

Country Link
US (1) US20220174895A1 (ja)
EP (1) EP3945782A1 (ja)
JP (1) JP2022526949A (ja)
CN (1) CN113645837A (ja)
WO (1) WO2020198674A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245792A1 (en) * 2021-05-17 2022-11-24 Upward Enterprises Inc. Growing-media amendment for crop production in containers utilizing sub-irrigation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100097A (ja) * 2012-11-20 2014-06-05 Sekisui Plastics Co Ltd 養液栽培方法、高分子発泡体培地、および養液栽培装置
JP2015084684A (ja) * 2013-10-29 2015-05-07 株式会社日本医化器械製作所 水耕栽培装置、及び水耕栽培方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861586B1 (en) * 1995-09-05 2003-11-26 Mukoyama Orchids Ltd. Support for plant culture and method for plant growth
GB2398562B (en) * 2003-10-27 2005-02-23 Gsf Forschungszentrum Umwelt Floatable granular substrate for culturing plant material
WO2007056794A1 (en) * 2005-11-15 2007-05-24 Australian Centre For Plant Functional Genomics Pty Ltd Hydroponic support medium of plastic pellets
CN103168641B (zh) * 2012-04-27 2015-11-04 北京仁创科技集团有限公司 一种复合型砂种植结构
CN102726275B (zh) * 2012-06-07 2013-10-02 重庆天开园林景观工程有限公司 一种脲醛-丙烯酸复合栽培基质及其制备方法
CN202744468U (zh) * 2012-09-10 2013-02-20 黄超群 一种植物用生物生长颗粒
US20160037728A1 (en) * 2013-03-15 2016-02-11 Adama Makhteshim Ltd. Artificial environment for efficient uptate of fertilizers and other agrochemicals in soil
MX2017000819A (es) * 2014-09-15 2017-05-04 Adama Makhteshim Ltd Composiciones para el suministro de productos agroquimicos a las raices de una planta.
WO2017110385A1 (ja) * 2015-12-25 2017-06-29 東洋ゴム工業株式会社 人工土壌培地
CN105961168A (zh) * 2016-03-04 2016-09-28 美比欧株式会社 植物栽培装置
CN207543878U (zh) * 2017-07-26 2018-06-29 云南省农业科学院农业环境资源研究所 一种多层栽培模制基质
CN108055942A (zh) * 2017-12-13 2018-05-22 王歆歆 一种砂种植结构
CN108651220A (zh) * 2017-12-19 2018-10-16 秘立强 无土栽培植物营养球
JP2021164431A (ja) * 2020-04-08 2021-10-14 株式会社タムロン 植物栽培プランタ及びそれを用いた植物生育ライン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100097A (ja) * 2012-11-20 2014-06-05 Sekisui Plastics Co Ltd 養液栽培方法、高分子発泡体培地、および養液栽培装置
JP2015084684A (ja) * 2013-10-29 2015-05-07 株式会社日本医化器械製作所 水耕栽培装置、及び水耕栽培方法

Also Published As

Publication number Publication date
EP3945782A1 (en) 2022-02-09
US20220174895A1 (en) 2022-06-09
WO2020198674A1 (en) 2020-10-01
CN113645837A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
EP1761125B1 (en) Support for cultivating biological material
EP3634112B1 (en) Container, system and method for cultivating, storing and/or transporting a living plant
US10874063B2 (en) Self watering bottle planter insert
KR101727485B1 (ko) 자연생태환경을 이용한 식물식재 수질정화 양어장치
JP2010094101A (ja) 簡易型水耕装置及び水耕栽培方法
JP2022526949A (ja) ポリマーを含む成長培地
GB2398562A (en) A method of culturing plant material on a floatable substrate
JP2006166802A (ja) もやしの製造方法
US20150216129A1 (en) Planting sponge and method for manufacturing the same
JP6956409B2 (ja) 循環型飼育栽培装置
US11483985B2 (en) Method and system for fungi production in an aquaponics system
JP2011172539A (ja) 栽培装置
JP2021164431A (ja) 植物栽培プランタ及びそれを用いた植物生育ライン
CN114731867B (zh) 一种便捷种植的鲜植罐头及其制备方法
JP2005328740A (ja) 植物矮化栽培装置及び植物矮化栽培方法
SI26438A (sl) Hidroponski sistem s samoprilagodljivo regulacijo ter način njegove proizvodnje
KR20000024402A (ko) 화분용 유기질비료의 제조방법
JP2004329005A (ja) 養液栽培装置
CA2949899C (en) Hydroponic planting cup system and method
RU2642085C2 (ru) Способ адаптации in vivo микрорастений земляники
TWM508896U (zh) 提供種子保存及育苗環境之植栽載體
JP2023137110A (ja) 植物栽培装置、養液処理部材及び植物栽培方法
CN203015511U (zh) 一种植物种植容器
CA3228043A1 (en) Culture apparatus and a culture method of a plant whole body, and a manufacturing method of the culture apparatus
KR20230059263A (ko) 바위손 기내 식물체의 토양 순화 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328