JP2022513288A - デジタルビームフォーミングレーダシステムにおける位相ノイズ補償 - Google Patents

デジタルビームフォーミングレーダシステムにおける位相ノイズ補償 Download PDF

Info

Publication number
JP2022513288A
JP2022513288A JP2021534903A JP2021534903A JP2022513288A JP 2022513288 A JP2022513288 A JP 2022513288A JP 2021534903 A JP2021534903 A JP 2021534903A JP 2021534903 A JP2021534903 A JP 2021534903A JP 2022513288 A JP2022513288 A JP 2022513288A
Authority
JP
Japan
Prior art keywords
pulse
frequency
pulses
sequence
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021534903A
Other languages
English (en)
Inventor
ファーリー,ブレンダン
エルドマン,クリストフ
バーブルッゲン,ボブ・ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xilinx Inc
Original Assignee
Xilinx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xilinx Inc filed Critical Xilinx Inc
Publication of JP2022513288A publication Critical patent/JP2022513288A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/505Systems of measurement based on relative movement of target using Doppler effect for determining closest range to a target or corresponding time, e.g. miss-distance indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9047Doppler beam sharpening mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0254Active array antenna

Abstract

レーダシステム(600)は、パルスのシーケンス(112)を送信する送信機(610)と、送信されたパルスのシーケンス(112)の反射(114)を受信する受信機(620)と、送信されたパルスのシーケンス(112)および反射されたパルス(114)に少なくとも部分的に基づいて、送信されたパルスのシーケンス(112)の経路における物体(101)の速度を判定する速度検出回路(115)とを備える。送信機(610)は、クロック信号(TX/RX CLK)に応答してパルスのシーケンス(112)を生成するよう、複数のデジタルアナログ変換器(DAC)(614)を含む。受信機(620)は、クロック信号(TX/RX CLK)に応答して、反射されたパルス(114)をサンプリングするよう、複数のアナログデジタル変換器(ADC)(624)を含む。したがって、ADC(614)はDAC(624)と同相でロックされる。

Description

本開示の局面は、一般にレーダシステムに関し、特にデジタルビームフォーミングレーダシステムにおける位相ノイズ補償に関する。
背景
レーダシステムは、その近傍における物体の距離および/または速度を測定するために用いることができる。レーダシステムは、1つまたは複数の変調されたパルスを送信することによって動作する。パルスの経路内の任意の物体は、送信されたパルスの少なくとも一部をレーダに反射して戻す。レーダシステムは、レーダが反射されたパルスを受信するタイミングに基づいて物体の距離および/または速度を判定することができる。例えば、レーダパルスは、レーダシステムにより近い物体と比較して、レーダシステムからより遠い物体に到達する(およびそこから戻る)のに時間がより長くかかり得る。したがって、レーダシステムは、物体から反射されるパルスの往復時間(RTT)に基づいて物体の距離を判定することができる。
ドップラーレーダシステムは、典型的には、移動物体の速度を測定するために使用される。例えば、ドップラーレーダは、一連のパルス(またはパルスのシーケンス)を目標周波数で送信することによって動作する。レーダパルスの経路における物体の動きは、反射されるパルスの周波数に影響を及ぼす。例えば、レーダシステムの方向(例えば、レーダシステムに向かって)に移動する物体によって反射されたレーダパルスは、目標周波数よりも高い周波数(例えば、連続するパルス間の、より短い持続時間)を示す。他方、レーダシステムの方向と反対に(例えば、レーダシステムから離れるように)移動する物体によって反射されたレーダパルスは、目標周波数よりも低い周波数(例えば、連続するパルス間の、より長い持続時間)を示す。反射されたパルスと送信されたパルス(例えば目標周波数)との間の周波数における変化は、典型的には「ドップラーシフト」と呼ばれる。したがって、ドップラーレーダシステムは、物体から反射されたパルスによって示されるドップラーシフトの量に基づいて物体の速度を判定することができる。
概要
本概要は、以下で詳細な説明においてさらに説明される概念の選択を簡略化された形で紹介するために提供される。本概要は、特許請求される主題の主要な特徴または本質的な特徴を識別することを意図するものではなく、特許請求される主題の範囲を限定することを意図するものでもない。
本開示の局面は、レーダシステムおよびそれらの動作方法を対象とする。例示的なレーダシステムは、パルスのシーケンスを送信する送信機と、送信されたパルスの反射を受信する受信機と、送信されたパルスおよび反射されたパルスに少なくとも部分的に基づいて、送信されたパルスの経路内の第1の物体の速度を判定するための速度検出回路とを備える。送信機は、クロック信号に応答してパルスのシーケンスを生成するよう、複数のデジタルアナログ変換器(DAC)を含む。受信機は、クロック信号に応答して、反射されたパルスをサンプリングするよう、複数のアナログデジタル変換器(ADC)を含む。
いくつかの実現例では、ADCはDACと同相でロックされる。例えば、DACのうちの少なくとも1つは、クロック信号の第1の遷移に応答して第1のパルスを生成するように構成されてもよく、ADCのうちの少なくとも1つは、クロック信号の第1の遷移に応答して第1のパルスの反射をサンプリングするように構成され得る。
速度検出回路は、さらに、送信されたパルスの周波数と反射されたパルスの周波数との間のドップラーシフトを検出し、ドップラーシフトに少なくとも部分的に基づいて第1の物体の速度を判定するように構成され得る。クロック信号における位相ノイズは、送信されたパルスの周波数の変動および反射されたパルスの周波数の対応する変動を引き起こし得る。したがって、いくつかの局面では、受信機は、反射されたパルスをサンプリングするときに、反射されたパルスの周波数の変動を送信されたパルスの周波数の変動に一致させる。
いくつかの実現例では、反射されたパルスは、送信されたパルスの経路内の第2の物体からの反射を含み得る。さらに、位相ノイズは、第2の物体からの反射されたパルスのうちの少なくとも一部のパルスの周波数を、第1の物体からの反射されたパルスの周波数に重畳させ得る。いくつかの局面では、第1の物体は移動物体であってもよく、第2の物体は静止していてもよい。したがって、速度検出回路は、さらに、ドップラーシフトを検出すると、第2の物体からの反射されたパルスをフィルタリングするように構成され得る。
いくつかの実現例では、レーダシステムは、クロック信号を生成するためのクロック生成器回路と、ADCに供給されるクロック信号を遅延させるための遅延素子とをさらに含み得る。例えば、位相ノイズは、クロック生成器回路の1つまたは複数の構成要素によって生成され得る。いくつかの局面では、遅延素子によって実現される遅延の量は、パルスの送信とパルスの反射の受信との間の往復時間に少なくとも部分的に基づいてもよい。
本明細書で開示される例示的な方法は、レーダシステムを動作させるために使用され得る。本方法は、クロック信号に応答して複数のデジタルアナログ変換器(DAC)を介してパルスのシーケンスを生成することと、パルスのシーケンスを送信することと、クロック信号に応答して、複数のアナログデジタル変換器(ADC)を介して、送信されたパルスのシーケンスの反射をサンプリングすることと、送信されたパルスおよび反射されたパルスに少なくとも部分的に基づいて、送信されたパルスのシーケンスの経路における第1の物体の速度を判定することとを含む。
いくつかの実現例では、ADCはDACと同相でロックされる。例えば、DACのうちの少なくとも1つは、クロック信号の第1の遷移に応答して第1のパルスを生成するように構成されてもよく、ADCのうちの少なくとも1つは、クロック信号の第1の遷移に応答して第1のパルスの反射をサンプリングするように構成されてもよい。
いくつかの局面では、第1の物体の速度を判定するステップは、送信されたパルスの周波数と反射されたパルスの周波数との間のドップラーシフトを検出するステップと、ドップラーシフトに少なくとも部分的に基づいて第1の物体の速度を判定するステップとをさらに含み得る。クロック信号における位相ノイズは、送信されたパルスの周波数の変動および反射されたパルスの周波数の対応する変動を引き起こし得る。したがって、いくつかの局面では、反射のサンプリングは、反射されたパルスの周波数の変動を送信されたパルスの周波数の変動に一致させるステップをさらに含み得る。
いくつかの実現例では、反射されたパルスは、送信されたパルスの経路内の第2の物体からの反射を含み得る。さらに、位相ノイズは、第2の物体からの反射されたパルスのうちの少なくとも一部のパルスの周波数を、第1の物体からの反射されたパルスの周波数に重畳させ得る。いくつかの局面では、第1の物体は移動物体であってもよく、第2の物体は静止していてもよい。したがって、第1の物体の速度を判定するステップは、ドップラーシフトを検出すると、第2の物体からの反射されたパルスをフィルタリングするステップをさらに含み得る。
いくつかの実現例では、本方法は、クロック生成器回路を介してクロック信号を生成するステップと、ADCに供給されるクロック信号を遅延させるステップとをさらに含み得る。例えば、位相ノイズは、クロック生成器回路の1つまたは複数の構成要素によって生成され得る。いくつかの局面では、遅延素子によって実現される遅延の量は、パルスの送信とパルスの反射の受信との間の往復時間に少なくとも部分的に基づいてもよい。
図面の簡単な説明
例示的な実施形態は、例として示されており、添付の図面によって限定されることを意図していない。図面および明細書全体を通して、同様の参照番号は同様の要素を示す。
本実施形態が実現され得るレーダ感知環境の例を示す。 本実施形態が実現され得るレーダ感知環境の例を示す。 レーダシステムのための例示的なアナログフロントエンド(AFE)のブロック図である。 例示的なクロック生成器のブロック図である。 ドップラーレーダシステムによって送信および受信され得るレーダパルスの例示的なシーケンスを示すタイミング図である。 ドップラーレーダシステムによって受信され得る反射されたパルスのシーケンスの周波数領域表現の一例を示す周波数図である。 いくつかの実施形態による位相整合ドップラーレーダAFEのブロック図である。 位相整合ドップラーレーダAFEによって受信され得る反射されたパルスのシーケンスの周波数領域表現の一例を示す周波数図である。 いくつかの実施形態による、別の位相整合ドップラーレーダAFEのブロック図である。 いくつかの実施形態による、位相整合ドップラーレーダシステムの例示的な動作を示す例示的なフローチャートである。
詳細な説明
以下の説明では、本開示の完全な理解のために、特定の構成要素、回路、およびプロセスの例など、多数の具体的な詳細が記載される。本明細書で使用される「結合される」という用語は、直接結合されるか、または1つもしくは複数の介在する構成要もしくは回路を介して結合されることを意味する。また、以下の説明では、説明の目的のため、具体的な名称および/または詳細が、例示的な実施形態の完全な理解のために記載される。しかしながら、当業者には、これらの具体的な詳細は、例示的な実施形態を実施するのに必要ではない場合があることは明白であろう。他の事例では、周知の回路および装置は、本開示を不明瞭にすることを避けるためにブロック図形式で示される。本明細書で説明するさまざまなバス上で与えられる信号のいずれも、他の信号と時間多重化され得、1つまたは複数の共通のバス上で与えられ得る。さらに、回路要素またはソフトウェアブロック間の相互接続は、バスまたは単一の信号線として示され得る。バスの各々は、代替的に単一の信号線とすることができ、単一の信号線の各々は、代替的にバスとすることができ、単一の線またはバスは、構成要素間の通信のための無数の物理的または論理的なメカニズムのいずれか1つまたは複数を表すことができる。例示的な実施形態は、本明細書に記載される特定の例に限定されると解釈されるべきではなく、むしろ、特許請求の範囲によって定義されるすべての実施形態をそれらの範囲内に含むと解釈されるべきである。
図1Aおよび図1Bは、本実施形態が実現され得るレーダ感知環境の例を示す。例えば図1Aを参照すると、環境100Aは、第1の物体101と、第2の物体102と、レーダシステム110とを含む。レーダシステム110は、環境100A内の他の物体(例えば第1の物体101および第2の物体102)の距離および/または速度を測定するように構成されてもよい。
いくつかの実施形態では、レーダシステム110は、環境100A内において1つまたは複数の物体の方向にパルスのシーケンス112(これは、本明細書では「レーダパルス」または集合的に「レーダビーム」とも称され得る)を送信してもよい。例えば、レーダパルス112は、所与の持続期間内に送信されるパルスの数に対応する所定のパルス幅(x)およびパルス繰り返し周波数(PRF)を有する無線周波数(RF)搬送波信号を含むことができる。図1Bに示されるように、送信されたパルス112の少なくとも一部分は、物体101および102によって反射され、それぞれ、反射されたパルス114および116としてレーダシステム110に戻ってもよい。電磁信号は光の速度(c)で伝搬するので、レーダシステム110は、あるレーダパルスの送信とそのレーダパルスの対応する反射の受信との間の往復時間(RTT)に基づいて、物体101および102の各々の距離または範囲(R)を判定することができる。
Figure 2022513288000001
上記の等式から、レーダシステム110と物体との間の距離が変化するにつれて、その物体によって反射される連続するレーダパルス間のRTTも変化することに注目されたい。したがって、いくつかの実施形態では、レーダシステム110は、ドップラー感知技術を用いて移動物体の速度を測定するために速度検出回路115を含み得る。例えば、レーダシステム110は、パルスのシーケンス112を所定の「目標」周波数(f)で送信してもよい。レーダシステム110の方向に(例えば、レーダシステム110に向かって)移動する物体によって反射されたレーダパルスは、目標周波数よりも高い周波数(例えば、連続するパルス間の、より短い持続時間)を示す。他方、レーダシステム110の方向と反対に(例えば、レーダシステム110から離れるように)移動する物体によって反射されたレーダパルスは、目標周波数よりも低い周波数(例えば、連続するパルス間の、より長い持続時間)を示す。反射されたパルス(f)と送信されたパルス(f)との間の周波数の変化は、典型的には「ドップラーシフト」(f)と呼ばれる。したがって、速度検出回路115は、移動物体から反射されたパルスによって示されるドップラーシフトの量(例えばf=f-f)に基づいて、移動物体の速度(v)を判定することができる。
Figure 2022513288000002
図1Bの例では、第1の物体101は、レーダシステム110に向かって速度(V)で移動する移動物体(例えば飛行機)であり、第2の物体102は、静止物体(例えば木)である。したがって、第1の物体101からの反射されたパルス114は、送信されたパルス112の周波数(たとえば、f)より高い周波数(例えば、正のドップラーシフトに対応する)を有し得る。しかしながら、第2の物体102は動かないため、第2の物体102からの反射されたパルス116は、送信されたパルス112の周波数と同じ周波数(例えば、ドップラーシフトなし)を有し得る。反射されたパルス114および116の電力(P)またはエネルギは、反射物体の距離、サイズ、および/または形状に依存し得ることに注目されたい。例えば、図1Bに示されるように、第1の物体101は、第2の物体102よりもレーダシステム110からはるかに遠い。したがって、第1の物体101からの反射されたパルス114は、第2の物体102からの反射されたパルス116よりも著しく小さい電力を有し得る。より一般的には、受信電力(PRX)は、送信電力(PTX)、レーダシステム110のアンテナ利得(G)、送信されたパルス112の波長(λ)、レーダ断面(σ)および反射物体の距離(R)、ならびに任意の外部損失または内部損失(L)の関数として表され得る。
Figure 2022513288000003
上の等式から、受信された(反射された)レーダパルスにおける電力損失は、レーダシステム110と目標物体との間の距離に関して指数関数的に変化することに注目されたい。
Figure 2022513288000004
したがって、反射されたパルスの電力を最大化するために、レーダシステム110は、ビームフォーミング技術を用いて、送信されたパルス112を特定の方向(目標物体の方向など)に集束してもよい。例えば、レーダシステム110は、同じレーダパルスを異なる位相オフセットで送信するように各々が構成された複数のアンテナ(例えばアンテナアレイ)を含むことができる。結果として、さまざまなアンテナによって送信されたパルスは、(たとえば、増加された電力のために、)意図された経路に沿って結合することができ、意図された経路外で互いを打ち消すことができる。いくつかの実施形態では、レーダシステム110は、アナログビームフォーミング技術を用いてレーダパルス112を送信するように構成され得る(例えば、位相シフトがアナログ領域において個々のパルスに適用される)。いくつかの他の実施形態では、レーダシステム110は、デジタルビームフォーミング技術を用いてレーダパルス112を送信するように構成され得る(例えば、位相シフトがデジタル領域において個々のパルスに適用される)。
図2は、レーダシステムのための例示的なアナログフロントエンド(AFE)200のブロック図である。AFE200は、周囲環境において物体の速さまたは速度を検出するために使用され得るレーダパルスを送信および受信するために、図1のレーダシステム110などのドップラーレーダシステムにおいて実現され得る。より具体的には、AFE200は、レーダパルスを送信する送信機210と、レーダパルスの反射を受信する受信機220とを含む。一部の実施形態では、AFE200は、デジタルビームフォーミング技術を用いてレーダパルスを送信および受信するように構成される。
送信機210は、発信(TX)パルスのデジタル表現を受け取り、複数のTXアンテナ201(1)~201(n)を介して目標方向(例えば、目標物体の方向)にTXパルスを送信する。いくつかの実現例では、送信機210は、複数の先入れ先出し(FIFO)バッファ212(1)~212(n)と、複数のデジタルアナログ変換器(DAC)214(1)~214(n)と、複数のTXフィルタ216(1)~216(n)と、TXアンテナ201(1)~201(n)のうちの対応するものに各々が結合される複数の電力増幅器(PA)218(1)~218(n)とを含み得る。FIFO212(1)~212(n)の各々は、アンテナ201(1)~201(n)によって送信されるアナログパルスが目標方向に指向または集束されるように、それぞれの位相シフト(たとえば、デジタル遅延)をTXパルスに適用し得る。DAC214(1)~214(n)は、FIFO212(1)~212(n)のデジタル出力を、それぞれ、TXフィルタ216(1)~216(n)によってフィルタリングされる複数の位相シフトされたアナログパルスに変換し得る。位相シフトされたアナログパルスは、PA218(1)~218(n)によって増幅され、その後、TXアンテナ201(1)~201(n)を介して送信される。
受信機220は、複数のRXアンテナ202(1)~202(n)を介して、(たとえば、送信機210によって送信された)送信されたパルスの反射を受信し、反射された(RX)パルスのデジタル表現を復元することができる。図2の例では、RXアンテナ202(1)~202(n)は、TXアンテナ201(1)~201(n)とは別個のものとして示されている。しかしながら、いくつかの実施形態では、送信機210および受信機220は、たとえば、アンテナ切換回路(簡単にするために図示せず)を介して、1つまたは複数のアンテナを共有し得る。いくつかの実現例では、送信機210は、複数のFIFOバッファ222(1)~222(n)と、複数のアナログデジタル変換器(ADC)224(1)~224(n)と、複数のRXフィルタ226(1)~226(n)と、RXアンテナ202(1)~202(n)の対応の1つに各々が結合される複数の低ノイズ増幅器(LNA)228(1)~228(n)とを含み得る。LNA228(1)~228(n)は、それぞれ、RXアンテナ202(1)~202(n)を介して受信されたアナログパルスを増幅することができる。増幅されたパルスは、RXフィルタ226(1)~226(n)によってフィルタリングされ、ADC224(1)~224(n)を介してデジタルフォーマットに変換され得る。FIFO222(1)~222(n)の各々は、それぞれの位相シフト(例えばデジタル遅延)をADC224(1)~224(n)の出力に適用して、デジタルパルスの位相を(例えばビームフォーミングの影響に対抗するために)整列させることができる。次いで、位相整列されたデジタルパルスは、対応するRXパルスを復元するために結合または(たとえば、加算回路221を介して)加算し合わされ得る。
AFE200がドップラーレーダシステムにおいて実現される場合、送信機210は、送信されるべき一連のTXパルスに対応するデジタルビットストリームを、所定の(例えば、目標)周波数で、連続して受け取り得る。したがって、受信機220は、送信されたパルスの経路内の1つまたは複数の物体から(例えばRXパルスに変換されるべき)対応する一連の反射されたパルスを受信し得る。上述したように、AFE200に結合された処理システム(図1Aおよび図1Bの速度検出回路115など)は、RXパルスの周波数に少なくとも部分的に基づいて物体の速度を判定することができる。より具体的には、物体の速度は、(例えば、TXパルスの周波数に対する、)その物体によって反射されたRXパルスの周波数において検出されるドップラーシフトの量によって判定され得る。以下でより詳細に説明するように、そのようなドップラーシフトを正確に検出するために、RXパルスはTXパルスと相関(例えば、位相が整合)されるべきである。
図2の例では、DAC214(1)~214(n)は、TXクロック信号(CLK)に応答してアナログパルスをサンプリングまたは生成することに注目されたい。より具体的には、DAC214(1)~214(n)の各々は、(たとえば、TXパルスに対応する)そのアナログ出力の振幅を、TX CLKの(例えば、LレベルからHレベル、もしくはHレベルからLレベル、またはその両方の)各遷移で、更新することができる。一方、ADC224(1)~224(n)は、RX CLKに応答してアナログパルスの反射をサンプリングする。より具体的には、ADC224(1)~224(n)の各々は、(例えば、RXパルスに対応する)そのデジタル出力の振幅を、RX CLKの(例えば、LレベルからHレベル、もしくはHレベルからLレベル、またはその両方の)各遷移で、更新することができる。従来のレーダシステムでは、TX CLKは、送信機210上に常駐するローカルクロック生成器(図示せず)によって提供され、RX CLKは、受信機220上に常駐する異なるクロック生成器(図示せず)によって提供される。
図3は、例示的なクロック生成器300のブロック図である。例えば、クロック生成器300は、図2のAFE200のためにTX CLKおよび/またはRX CLKを生成するために使用され得る。クロック生成器300は、水晶発振器(XO)310と、PLL(位相ロックループ)回路320とを含む。水晶発振器310は、典型的には、電圧が印加されると正確な周波数(例えば結晶の共振周波数)で共振する圧電材料(結晶など)を含む。結晶の機械的振動は、PLL320のための参照(REF)信号として用いることができる非常に正確な正弦波波形を生成する。PLL320は水晶発振器310からREF信号を受信し、REF信号に少なくとも部分的に基づいてクロック(CLK)信号を生成する。より具体的には、PLL320は、REF信号と位相がロックされるCLK信号を生成し得る。しかしながら、CLK信号の発振周波数とREF信号の発振周波数は異なっていてもよい。たとえば、いくつかの局面では、CLK信号は、REF信号より高い発振周波数を有し得る。
PLL回路320は、位相および周波数検出器(PFD)322と、チャージポンプ324と、ループフィルタ326と、電圧制御される発振器(VCO)328と、分周器329とを含む。PFD322は、REF信号の位相をフィードバック(FB)信号と比較して、アップ(UP)制御信号およびダウン(DN)制御信号を生成する。チャージポンプ324は、UP制御信号およびDN制御信号を、REF信号とFB信号との位相差に比例する電荷(Q)に変換する。電荷Qは、ループフィルタ326によってフィルタリング(例えば積分)され、制御電圧(V)としてVCO328に供給される。VCO328は、制御電圧Vに基づく発振周波数でCLK信号を出力する。CLK信号はさらに、(例えばCLK信号の周波数をREF信号の周波数にスケーリングするよう)分周器329に供給され、FB信号としてPFD322にフィードバックされる。
CLK信号は、レーダパルスの送信のタイミングをとるために、図2のAFE200などのAFEによって使用され得る。たとえば、いくつかの局面では、CLK信号は、TXパルスのサンプリング時間を制御するためにDAC214(1)~214(n)に(たとえば、TX CLKとして)提供され得る。したがって、DAC214(1)~214(n)によって出力されるアナログパルスのタイミング(たとえば、位相)は、少なくとも部分的に、CLK信号の周波数(例えば、CLK信号の立ち上がり縁遷移または立ち下がり縁遷移間のタイミング)に依存し得る。しかしながら、クロック生成器300の1つまたは複数の構成要素は、ジッタまたは位相ノイズ(たとえば、ランダムな位相変動)をCLK信号に導入し得ることに注目されたい。例えば、水晶発振器310はかなり安定したREF信号を生成し得るが、REF信号の位相のわずかな変動であっても、送信されるパルスにおける「近傍(close-in)」位相ノイズ(例えば、比較的小さい周波数変動)に寄与し得る。温度における変化ならびにVCO328および/またはPLL320の動作条件における他の変動は、CLK信号の周波数におけるさらなる変動を引き起こし得る。
上述したように、従来のレーダシステムにおいては、AFEの送信機および受信機は、通常、それらのCLK信号を、異なるクロック生成器から受け取る。例えば、クロック生成器300が(例えば、TX CLKを提供するために)AFE200の送信機210上にローカルに常駐する場合、)通常、受信機220上には、(例えば、RX CLKを提供するために)異なるクロック生成器が常駐するであろう。しかしながら、TX CLKおよびRX CLKが異なるソースから生成される場合、それらクロック信号のいずれかにおける位相ノイズは、RXパルスをTXパルスにマッピングし得る精度に影響を及ぼし得る。特に、TX CLKまたはRX CLKにおける位相ノイズが多すぎると、TXパルスおよびRXパルスが無相関になる可能性がある。これは、次いで、(例えば、静止物体によって反射されたRXパルスと比較して、)移動物体によって反射されたRXパルスにおいてドップラーシフトを検出または区別するレーダシステムの能力に影響を及ぼし得る。
図4は、ドップラーレーダシステムによって送信および受信され得るレーダパルスの例示的なシーケンスを示すタイミング図である。例えば図2を参照すると、レーダパルス401は、アンテナ201(1)~201(n)を介して送信されるアナログパルスに対応し得、反射されたパルス402は、アンテナ202(1)~202(n)に入射するそのようなアナログパルスの反射に対応し得る。より具体的には、反射されたパルス402の各々は、レーダパルス401の対応する1つの反射であり得る。例えば、時間tの直後に受信される反射されたパルス402は、時間tで送信されたレーダパルス401の反射であってもよく、その後受信される各連続する反射されたパルス402は、直前に送信された対応するレーダパルス401の反射であってもよい。反射されたパルス402の振幅(例えば電力)は、対応するレーダパルス401の振幅よりも実質的に小さいことに注目されたい。
レーダパルス401は、一般に、時間tからtまで目標周波数fで送信される。反射されたパルス402も、一般に、時間tからtまで、目標周波数fで受信機220に到達する。反射されたパルス402の周波数はレーダパルス401の周波数に実質的に等しい(例えば、ドップラーシフトがない)ので、時間tとtの間に受信された反射されたパルス402は、静止物体(例えば図1の第2の物体102)によって反射されている可能性がある。図4の例では、TX CLKにおける位相ノイズは、時刻tと時刻tの間に送信される連続するレーダパルス401のタイミングに変動を生じさせる。これは、時間tからtの間のレーダパルス401の周波数に、対応する変化または変動(Δf)をもたらす。より具体的には、時刻tとtとの間のTX CLKにおける位相ノイズは、レーダパルス401を、時刻tからtまでの目標周波数より高い周波数(f+Δf)で送信させる。結果として、静止物体からの反射されたパルス402もまた、時間tとtとの間、このより高い周波数(f+Δf)で反射して戻る。
反射されたパルス402(およびレーダパルス401)の周波数における変動は、移動物体からの反射されたパルスの周波数においてドップラーシフトを測定および/または検出するレーダシステムの能力を妨害し得ることに注目されたい。例えば、いくつかの事例では、静止物体からの反射されたパルス402の周波数は、移動物体からの反射されたパルスの周波数(例えばドップラー周波数)と重なるか、または一致し得る。さらに、レーダシステムが移動物体よりも静止物体に近い場合には、静止物体からの反射されたパルス402の振幅は、移動物体からの反射されたパルスの振幅よりも実質的に大きくなる。結果として、静止物体からの反射されたパルス402におけるエネルギは、受信機を「圧倒する」場合がある。
図5は、ドップラーレーダシステムによって受信され得る反射されたパルスのシーケンスの周波数領域表現の一例を示す周波数図500である。例えば図1Aおよび図1Bを参照すると、周波数図500は、第1の物体101および第2の物体102からの反射されたパルス114および116の周波数をそれぞれ示すことができる。
図5の例では、反射されたパルスの周波数は、一般に、2つの周波数ビン510および520に分配される。第1の周波数ビン510の中心は、目標周波数f(例えば、レーダパルス112がレーダシステム110によって送信される周波数)であり、第2の周波数ビン520の中心は、目標周波数fよりもわずかに高いドップラー周波数fである。上述したように、第1の物体101は移動物体であり得、第2の物体102は静止物体であり得る。したがって、第1の周波数ビン510は、第2の物体102からの反射されたパルス116を含み得、第2の周波数ビン520は、第1の物体101からの反射されたパルス114を含み得る。
TX CLKにおける位相ノイズは、送信されるパルス112の周波数において変動を引き起こし得、したがって、反射されるパルス114および116の周波数において変動を引き起こし得る。例えば、静止物体102からの反射されたパルス116の周波数における変動は、第1の周波数ビン510の周りの裾501によって示される。さらに、移動物体101からの反射されたパルス114の周波数における変動は、第2の周波数ビン520の周りの裾502によって示される。図1Aおよび図1Bに示されるように、レーダシステム110と第2の物体102との間の距離は、レーダシステム110と第1の物体101との間の距離よりも著しく短い。したがって、第1の周波数ビン510における反射されたパルスの振幅は、第2の周波数ビン520における反射されたパルスの振幅よりも著しく大きい。
図5に示されるように、TX CLKにおける位相ノイズのため、静止物体102からの反射されたパルス116におけるエネルギは、ドップラー周波数fにおける移動物体101からの反射されたパルス114におけるエネルギよりも大きい(例えば、第2の周波数ビン520におけるエネルギは、例えば裾501内の位相ノイズからのエネルギによって圧倒される)。結果として、従来のレーダシステムは、移動物体101からの反射されたパルス114のドップラー周波数fを検出することができないか、または静止物体102からの反射されたパルス116における位相ノイズからドップラー周波数fを区別することができないかもしれない。レーダパルスにおいて位相ノイズを緩和する従来の技術は、(例えば、より安定した水晶発振器310を実現することによって、および/または図3のクロック生成器300内でPLL320の温度および電圧供給を調整することによって、)TX CLKにおいて位相ノイズを抑制することに焦点を当ててきた。しかしながら、上述のように、基準クロック(REF)信号のわずかな変動であっても、反射されたパルス116における近傍位相ノイズに寄与し得、それは、反射されたパルス114のドップラー周波数fを圧倒し、なぜならば、ドップラーシフトはレーダパルスfの周波数に対して非常に小さい傾向があるからである(例えば|f-f|<<f)。
本開示の局面は、TX CLKにおける位相ノイズをRX CLKにおける位相ノイズと相関させることによって(例えば一致させることによって)、反射されたパルス114および116における近傍位相ノイズをレーダシステム110の受信機において(例えば、抑制するよりもむしろ)緩和することができることを認識する。例えば、図4に戻り、TX CLKにおける位相ノイズは、時刻tと時刻tとの間に送信されるレーダパルス401の周波数に変化(Δf)を生じさせる。周波数のこの変化は、同じ期間中のTX CLKの周波数の突然の増加に起因し得る。たとえば、TX CLKが一般に(例えば、時間tとtとの間、および時間tとtとの間において)2fに等しい周波数で動作すると仮定すると、時間tとtとの間の位相ノイズは、TX CLKを2f+Δfに等しい周波数で事実上動作させ、送信機内のDAC(例えば図2のDAC214(1)~214(n))に、TXパルスを、より速いレートでサンプリングさせ得る。
例えば図2を参照すると、RX CLKの位相ノイズをTX CLKの位相ノイズと同期させることによって、反射されたパルス402もまた、時間tとtとの間において、より高い周波数(例えば2f+Δf)でサンプリングされることになる。結果として、DACによって生成されるレーダパルス401の位相は、ADC(例えば図2のADC224(1)~224(n))によってサンプリングされる反射されたパルス402の位相と相関(例えば、一致)されることになり、レーダシステムは、時間tとtとの間に受信される反射されたパルス402の周波数において変化を検出しないという効果を有する。換言すれば、レーダシステムにとって、反射されたパルス402は、時間tからtまでの全持続時間の間(例えば、時間tとtとの間でも)、目標周波数fで受信されるように見えることになる。
図6は、いくつかの実施形態による位相整合ドップラーレーダAFE600のブロック図である。AFE600は、周囲環境における物体の速さまたは速度を検出するために使用され得るレーダパルスを送信および受信するために、図1のレーダシステム110などのドップラーレーダシステムにおいて実現され得る。より具体的には、AFE600は、図2のAFE200の例示的な実施形態であり得る。AFE600は、レーダパルスを送信する送信機610と、レーダパルスの反射を受信する受信機620とを含む。一部の実施形態では、AFE600は、デジタルビームフォーミング技術を用いてレーダパルスを送信および受信するように構成される。
送信機610は、一連のTXパルスのデジタル表現を受け取り、複数のTXアンテナ601(1)~601(n)を介して目標方向(例えば目標物体の方向)にTXパルスを送信する。いくつかの実現例では、送信機610は、複数のFIFO612(1)~612(n)、DAC614(1)~614(n)、複数のTXフィルタ616(1)~616(n)、およびTXアンテナ601(1)~601(n)の対応の1つに各々が結合される複数のPA618(1)~618(n)を含み得る。FIFO612(1)~612(n)の各々は、アンテナ601(1)~601(n)によって送信されるアナログパルスが目標方向に指向または集束されるように、それぞれの位相シフト(たとえばデジタル遅延)をTXパルスに適用し得る。DAC614(1)~614(n)は、FIFO612(1)~612(n)のデジタル出力を、それぞれ、TXフィルタ616(1)~616(n)によってフィルタリングされる複数の位相シフトされたアナログパルスに変換し得る。位相シフトされたアナログパルスは、PA618(1)~618(n)によって増幅され、その後、TXアンテナ601(1)~601(n)を介して送信される。
受信機620は、複数のRXアンテナ602(1)~602(n)を介して(たとえば、送信機610によって送信された)送信されたパルスの反射を受信し、反射された(RX)パルスのデジタル表現を復元することができる。図6の例では、RXアンテナ602(1)~602(n)は、TXアンテナ601(1)~601(n)とは別個のものとして示されている。しかしながら、いくつかの実施形態では、送信機610および受信機620は、たとえば、アンテナ切換回路(簡単にするために図示せず)を介して、1つまたは複数のアンテナを共有し得る。いくつかの実現例では、送信機610は、複数のFIFOバッファ622(1)~622(n)、複数のADC6224(1)~624(n)、複数のRXフィルタ626(1)~626(n)、およびRXアンテナ602(1)~602(n)の対応の1つに各々が結合される複数のLNA628(1)~628(n)を含み得る。LNA628(1)~628(n)は、RXアンテナ602(1)~602(n)を介して受信されたアナログパルスをそれぞれ増幅することができる。増幅されたパルスは、RXフィルタ626(1)~626(n)によってフィルタリングされ、ADC6224(1)~624(n)を介してデジタルフォーマットに変換され得る。FIFO622(1)~622(n)の各々は、それぞれの位相シフト(例えばデジタル遅延)をADC624(1)~624(n)の出力にそれぞれ適用して、デジタルパルスの位相を(例えばビームフォーミングの影響に対抗するために)整列させることができる。次いで、位相整列されたデジタルパルスは、対応するRXパルスを復元するために、結合または(たとえば加算回路621を介して)加算し合わされ得る。
AFE600がドップラーレーダシステムにおいて実現される場合、送信機610は、送信されるべき一連のTXパルスに対応するデジタルビットストリームを、所定の(例えば、目標)周波数で、連続して受け取り得る。したがって、受信機620は、送信されたパルスの経路内の1つまたは複数の物体から(例えばRXパルスに変換されるべき)対応する一連の反射されたパルスを受信し得る。上述したように、AFE600に結合された処理システム(図1Aおよび図1Bの速度検出回路115など)は、RXパルスの周波数に少なくとも部分的に基づいて物体の速度を判定することができる。より具体的には、物体の速度は、(例えば、TXパルスの周波数に対する、)その物体によって反射されたRXパルスの周波数において検出されるドップラーシフトの量によって判定され得る。
図6の例では、DAC614(1)~614(n)およびADC624(1)~624(n)は、同じTX/RX CLKを受信するように結合されることに注目されたい。より具体的には、TX/RX CLKは、送信機610と受信機620との間で共有されるクロック生成器630によって提供される。いくつかの実現例では、クロック生成器630は、図3のクロック生成器回路300の例示的な実施形態であり得る。同じクロック生成器630によって生成されたTX/RX CLKを送信機610および受信機620に分配することによって、DAC614(1)~614(n)のサンプリング時間(位相ノイズを含む)は、ADC624(1)~624(n)のサンプリング時間に一致される。結果として、ADC624(1)~624(n)における位相ノイズは、DAC614(1)~614(n)における位相ノイズを効果的に打ち消し、したがって、送信および/または反射されるパルスの周波数における変動を緩和する。
図7は、位相整合ドップラーレーダAFEによって受信され得る反射されたパルスのシーケンスの周波数領域表現の一例を示す周波数図700である。例えば図1Aおよび図1Bを参照すると、周波数図700は、第1の物体101および第2の物体102からの反射されたパルス114および116の周波数をそれぞれ示すことができる。より具体的には、周波数図700は、図6のAFE600などの位相整合ドップラーレーダAFEによって知覚される反射されたパルス114および116の周波数を示すことができる。
図7の例では、反射されたパルスの周波数は、一般に、2つの周波数ビン710および720に分配される。第1の周波数ビン710の中心は、目標周波数f(例えば、レーダパルス112がレーダシステム110によって送信される周波数)であり、第2の周波数ビン720の中心は、目標周波数fよりもわずかに高いドップラー周波数fである。上述したように、第1の物体101は移動物体であり得、第2の物体102は静止物体であり得る。したがって、第1の周波数ビン710は、第2の物体102からの反射されたパルス116を含み得、第2の周波数ビン720は、第1の物体101からの反射されたパルス114を含み得る。
TX CLKにおける位相ノイズは、送信されるパルス112の周波数において変動を引き起こし得、したがって、反射されるパルス114および116の周波数において変動を引き起こし得る。例えば図5を参照すると、静止物体102からの反射されたパルス116の周波数における変動は、第1の周波数ビン510の周りの裾501によって示され、移動物体101からの反射されたパルス114の周波数における変動は、第2の周波数ビン520の周りの裾502によって示される。しかしながら、RX CLK(例えば受信機620におけるTX/RX CLK)の位相はTX CLK(例えば送信機610におけるTX/RX CLK)の位相と相関または整合されるので、AFE600は、反射されたパルス114および116において、TX CLKにおける位相ノイズに起因する周波数変動を知覚しない。したがって、周波数図700は、図5の周波数図500に示される裾501または502(たとえば、位相ノイズ)を含まない。
図7の例では、(例えば、第1の周波数ビン701における)静止物体102からの反射されたパルス116におけるエネルギは、(例えば、第2の周波数ビン702における)移動物体101からの反射されたパルス114におけるエネルギとは別個であり、相異なる。したがって、位相整合ドップラーレーダシステムは、移動物体101から受信される反射されたパルス114におけるドップラー周波数fおよび/またはドップラーシフトの量(例えば|f-f|)を明確に識別することができる。さらに、位相整合ドップラーレーダシステムは、ドップラー周波数fに少なくとも部分的に基づいて、移動物体101の速度をより正確に判定することができる。
図8は、いくつかの実施形態による、別の位相整合ドップラーレーダAFE800のブロック図である。AFE800は、周囲環境において物体の速さまたは速度を検出するために使用され得るレーダパルスを送信および受信するために、図1のレーダシステム110などのドップラーレーダシステムにおいて実現され得る。より具体的には、AFE800は、図2のAFE200の例示的な実施形態であり得る。AFE800は、レーダパルスを送信する送信機810と、レーダパルスの反射を受信する受信機820とを含む。一部の実施形態では、AFE800は、デジタルビームフォーミング技術を用いてレーダパルスを送信および受信するように構成される。
送信機810は、一連のTXパルスのデジタル表現を受け取り、複数のTXアンテナ801(1)~801(n)を介して目標方向(例えば目標物体の方向)にTXパルスを送信する。いくつかの実現例では、送信機810は、複数のFIFO812(1)~812(n)、DAC814(1)~814(n)、複数のTXフィルタ816(1)~816(n)、およびTXアンテナ801(1)~801(n)の対応の1つに各々が結合される複数のPA818(1)~818(n)を含み得る。FIFO812(1)~812(n)の各々は、アンテナ801(1)~801(n)によって送信されるアナログパルスが目標方向に指向または集束されるように、それぞれの位相シフト(たとえばデジタル遅延)をTXパルスに適用し得る。DAC814(1)~814(n)は、FIFO812(1)~812(n)のデジタル出力を、それぞれ、TXフィルタ816(1)~816(n)によってフィルタリングされる複数の位相シフトされたアナログパルスに変換し得る。位相シフトされたアナログパルスは、PA818(1)~818(n)によって増幅され、その後、TXアンテナ801(1)~801(n)を介して送信される。
受信機820は、複数のRXアンテナ802(1)~802(n)を介して(たとえば、送信機810によって送信された)送信されたパルスの反射を受信し、反射された(RX)パルスのデジタル表現を復元することができる。図8の例では、RXアンテナ802(1)~802(n)は、TXアンテナ801(1)~801(n)とは別個のものとして示されている。しかしながら、いくつかの実施形態では、送信機810および受信機820は、たとえば、アンテナ切換回路(簡単にするために図示せず)を介して、1つまたは複数のアンテナを共有し得る。いくつかの実現例では、送信機810は、複数のFIFOバッファ822(1)~822(n)、複数のADC824(1)~824(n)、複数のRXフィルタ826(1)~826(n)、およびRXアンテナ802(1)~802(n)の対応の1つに各々が結合される複数のLNA828(1)~828(n)を含み得る。LNA828(1)~828(n)は、それぞれ、RXアンテナ802(1)~802(n)を介して受信されたアナログパルスを増幅し得る。増幅されたパルスは、RXフィルタ826(1)~826(n)によってフィルタリングされ、ADC824(1)~824(n)を介してデジタルフォーマットに変換され得る。FIFO822(1)~822(n)の各々は、それぞれの位相シフト(例えばデジタル遅延)をADC824(1)~824(n)の出力にそれぞれ適用して、デジタルパルスの位相を(例えばビームフォーミングの影響に対抗するために)整列させることができる。次いで、位相整列されたデジタルパルスは、対応するRXパルスを復元するために、結合または(たとえば加算回路821を介して)加算し合わされ得る。
AFE800がドップラーレーダシステムにおいて実現される場合、送信機810は、送信されるべき一連のTXパルスに対応するデジタルビットストリームを、所定の(例えば、目標)周波数で、連続して受け取り得る。したがって、受信機820は、送信されたパルスの経路内の1つまたは複数の物体から(例えばRXパルスに変換されるべき)対応する一連の反射されたパルスを受信し得る。上述したように、AFE800に結合された処理システム(図1Aおよび図1Bの速度検出回路115など)は、RXパルスの周波数に少なくとも部分的に基づいて物体の速度を判定することができる。より具体的には、物体の速度は、(例えば、TXパルスの周波数に対する、)その物体によって反射されたRXパルスの周波数において検出されるドップラーシフトの量によって判定され得る。
図8の例では、DAC814(1)~814(n)およびADC824(1)~824(n)は、同じTX/RX CLKを受け取るように結合されることに注目されたい。より具体的には、TX/RX CLKは、送信機810と受信機820との間で共有されるクロック生成器830によって提供される。いくつかの実現例では、クロック生成器830は、図3のクロック生成器回路300の例示的な実施形態であり得る。しかしながら、同じクロック生成器830によって生成されたTX/RX CLKを送信機810および受信機820に分配することによって、DAC814(1)~814(n)のサンプリング時間(位相ノイズを含む)は、ADC824(1)~824(n)のサンプリング時間に一致される。結果として、ADC824(1)~824(n)における位相ノイズは、DAC814(1)~814(n)における位相ノイズを効果的に打ち消し、したがって、送信および/または反射されるパルスの周波数におけるどのような変動も緩和する。
いくつかの実施形態では、受信機820は、送信機810に供給されるTX/RX CLKが遅延されたものを受信することができる。例えば、遅延素子840が、クロック生成器830の出力とADC824(1)~824(n)のクロック入力との間に結合され得る。遅延素子840によって適用される遅延量は、送信されたパルスが反射されAFE800によって受信される往復時間(RTT)に少なくとも部分的に基づくことができる。図4に関して述べたように、典型的には、レーダパルス401がTXアンテナ801(1)~801(n)を介して送信される時間と、レーダパルス402の反射がRXアンテナ802(1)~802(n)に到達する時間との間にはいくらかの伝搬遅延がある。レーダパルスのRTTは、一般に、レーダシステムと反射物体との間の距離に依存する。例えば、レーダシステムから遠い物体から反射するパルスは、レーダシステムにより近い物体から反射するパルスよりも長いRTTを有する。
レーダパルスは事実上光の速度で伝搬するので、レーダシステムに比較的近い物体によって反射されるレーダパルスのRTTは無視可能であり得る。したがって、いくつかの実施形態では、遅延素子840は、AFE800(または対応するレーダシステム)がレーダシステムの比較的近くにおいて物体の速度を検出するように構成される場合、受信機820に供給されるTX/RX CLKに遅延を適用しない場合がある。しかしながら、AFE800がレーダシステムからより遠い物体の速度を検出するように構成される場合、遅延素子840は、レーダパルス401のサンプリング時間(位相ノイズを含む)が反射されたパルス402のサンプリング時間とより正確に一致するように、受信機820に供給されるTX/RX CLKを、目標物体の範囲に応じた量だけ遅延させるように構成されてもよい。これは、レーダシステムがレーダパルス401における周波数変動および/またはTX CLKにおける位相ノイズをより正確に緩和することを可能にし得る。
図9は、いくつかの実施形態による、位相整合ドップラーレーダシステムの例示的な動作900を示す例示的なフローチャートである。例えば、図6および図8を参照して、例示的な動作900は、本明細書で説明する位相整合ドップラーレーダAFE600および/または800のいずれかに結合されたレーダシステムによって実行され得る。より具体的には、例示的な動作900は、レーダシステムが、TX CLKとRX CLKとを相関または同期させることにより、TX CLKにおいて位相ノイズを緩和することを可能にし得る。
レーダシステムは、パルスのシーケンスを送信することができ、パルスのシーケンスは、クロック信号の遷移に応答して複数のDACによって生成される(910)。例えば図6を参照すると、送信機610は、送信されるべき一連のTXパルスに対応するデジタルビットストリームを、所定の(例えば、目標)周波数で、連続して受け取り得る。より具体的には、FIFO612(1)~612(n)の各々は、アンテナ601(1)~601(n)によって送信されるアナログパルスが目標方向に指向または集束されるように、それぞれの位相シフト(たとえばデジタル遅延)をTXパルスに適用し得る。DAC614(1)~614(n)は、FIFO612(1)~612(n)のデジタル出力をそれぞれ複数の位相シフトされたアナログパルスに変換し得る。いくつかの実施形態では、DAC614(1)~614(n)は、クロック生成器630によって生成されたTX/RX CLKに応答してアナログパルスをサンプリングまたは生成する。たとえば、DAC614(1)~614(n)の各々は、(たとえば、TXパルスに対応する)そのアナログ出力の振幅を、TX/RX CLKの(例えば、LレベルからHレベル、もしくはHレベルからLレベル、またはその両方の)各遷移で、更新することができる。
レーダシステムは、さらに、送信されたパルスの反射を受信することができ、反射されたパルスは、クロック信号の遷移に応答して、複数のADCによってサンプリングされる(920)。例えば図6を参照すると、受信機620は、送信されたパルスの経路内の1つまたは複数の物体から(例えばRXパルスに変換されるべき)対応する一連の反射されたパルスを受信し得る。より具体的には、受信されたパルスは、ADC624(1)~624(n)を介してデジタルフォーマットに変換され得る。FIFO622(1)~622(n)の各々は、それぞれの位相シフト(例えばデジタル遅延)をADC624(1)~624(n)の出力にそれぞれ適用して、デジタルパルスの位相を(例えばビームフォーミングの影響に対抗するために)整列させることができる。次いで、位相整列されたデジタルパルスは、対応するRXパルスを復元するために、結合または(たとえば加算回路621を介して)加算し合わされ得る。いくつかの実施形態では、ADC224(1)~224(n)は、同じクロック生成器630によって生成されたTX/RX CLKに応答して、受信されたパルスをサンプリングすることができる。たとえば、ADC624(1)~624(n)の各々は、(たとえば、RXパルスに対応する)そのデジタル出力の振幅を、TX/RX CLKの(例えば、LレベルからHレベル、もしくはHレベルからLレベル、またはその両方の)各遷移で、更新することができる。
次いで、レーダシステムは、送信されたパルスおよび反射されたパルスに少なくとも部分的に基づいて、送信されたパルスの経路において物体の速度を判定することができる(930)。図1Aおよび図1Bに関して上述したように、ドップラーレーダシステムは、RXパルスの周波数に少なくとも部分的に基づいて物体の速度を判定することができる。より具体的には、物体の速度は、(例えば、TXパルスの周波数に対する、)その物体によって反射されたRXパルスの周波数において検出されるドップラーシフトの量によって判定され得る。したがって、そのようなドップラーシフトを正確に検出するために、RXパルスはTXパルスと相関(例えば、位相が整合)されるべきである。同じクロック生成器630によって生成されたTX/RX CLKを送信機610および受信機620に分配することによって、DAC614(1)~614(n)のサンプリング時間(位相ノイズを含む)は、ADC624(1)~624(n)のサンプリング時間に一致される。結果として、ADC624(1)~624(n)における位相ノイズは、DAC614(1)~614(n)における位相ノイズを効果的に打ち消し、したがって、送信および/または反射されるパルスの周波数における変動を緩和する。
当業者は、情報および信号が、さまざまな異なる技術および技法のいずれかを用いて表され得ることを理解するであろう。例えば、上記の説明全体にわたって参照され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光学粒子、またはそれらの任意の組合せによって表され得る。
さらに、本明細書で開示される局面に関連して説明されるさまざまな例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実現され得ることを、当業者は理解されよう。ハードウェアとソフトウェアとのこの互換性を明確に示すために、さまざまな例示的な構成要素、ブロック、モジュール、回路、およびステップを、上記では概してそれらの機能に関して説明した。そのような機能がハードウェアとして実現されるかソフトウェアとして実現されるかは、特定の適用例および全体的なシステムに課される設計制約に依存する。当業者は、説明した機能を特定の適用例ごとにさまざまな態様で実現することができるが、そのような実現の判定は、本開示の範囲からの逸脱を生じさせるものとして解釈されるべきではない。
本明細書で開示される局面に関連して説明される方法、シーケンス、またはアルゴリズムは、直接ハードウェアにおいて、プロセッサによって実行されるソフトウェアモジュールにおいて、またはその2つの組合せで、具現化され得る。ソフトウェアモジュールは、RAMラッチ、フラッシュラッチ、ROMラッチ、EPROMラッチ、EEPROMラッチ、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、または当技術分野で公知の任意の他の形態の記憶媒体内に常駐することができる。例示的な記憶媒体は、プロセッサが記憶媒体から情報を読み出し、記憶媒体に情報を書き込むことができるように、プロセッサに結合される。代替例として、記憶媒体はプロセッサに一体化され得る。
上記明細書において、例示的実施形態は、その具体的な例示的実施形態を参照して説明された。しかしながら、特許請求の範囲に記載される本開示のより広範な範囲から逸脱することなく、さまざまな修正および変更がそれに対して行われ得ることは明白であろう。したがって、明細書および図面は、限定的な意味ではなく例示的な意味において評価されるべきである。

Claims (15)

  1. レーダシステムであって、
    パルスのシーケンスを送信するように構成された送信機を備え、前記送信機は、クロック信号に応答して前記パルスのシーケンスを生成するよう、複数のデジタルアナログ変換器(DAC)を含み、前記レーダシステムはさらに、
    前記送信されたパルスシーケンスの反射を受信するように構成された受信機を備え、前記受信機は、前記クロック信号に応答して、前記反射されたパルスをサンプリングするよう、複数のアナログデジタル変換器(ADC)を含み、前記レーダシステムはさらに、
    前記送信されたパルスのシーケンスおよび前記反射されたパルスに少なくとも部分的に基づいて、前記送信されたパルスのシーケンスの経路における第1の物体の速度を判定する速度検出回路を備える、レーダシステム。
  2. 前記ADCは前記DACと同相でロックされる、請求項1に記載のレーダシステム。
  3. 前記DACのうちの少なくとも1つは、前記クロック信号の第1の遷移に応答して前記パルスのシーケンスの第1のパルスを生成するように構成され、前記ADCのうちの少なくとも1つは、前記クロック信号の前記第1の遷移に応答して前記パルスのシーケンスの前記第1のパルスの反射をサンプリングするように構成される、請求項1または2に記載のレーダシステム。
  4. 前記速度検出回路は、さらに、
    前記送信されたパルスのシーケンスの周波数と前記反射されたパルスの周波数との間のドップラーシフトを検出し、
    前記ドップラーシフトに少なくとも部分的に基づいて前記第1の物体の速度を判定するように構成される、請求項1に記載のレーダシステム。
  5. 前記クロック信号における位相ノイズは、前記送信されたパルスのシーケンスの周波数における変動および前記反射されたパルスの周波数における対応する変動を引き起こし、前記受信機は、前記反射されたパルスをサンプリングするときに、前記反射されたパルスの周波数における変動を、前記送信されたパルスのシーケンスの周波数における変動に一致させるように構成される、請求項4に記載のレーダシステム。
  6. 前記反射されたパルスは、前記送信されたパルスのシーケンスの経路内における第2の物体からの反射を含み、前記位相ノイズは、前記第2の物体からの反射されたパルスの少なくとも一部のパルスの周波数を前記第1の物体からの反射されたパルスの周波数に重畳させ、前記速度検出回路は、さらに、前記ドップラーシフトを検出すると、前記第2の物体からの前記反射されたパルスをフィルタリングするように構成される、請求項1または5に記載のレーダシステム。
  7. 前記第1の物体は移動物体であり、前記第2の物体は静止している、請求項6に記載のレーダシステム。
  8. さらに、前記複数のDACおよび前記複数のADCに供給される前記クロック信号を生成するように構成されたクロック生成器回路を備え、前記位相ノイズは、前記クロック生成器回路の1つまたは複数の構成要素によって生成される近傍(close-in)位相ノイズに対応する、請求項1に記載のレーダシステム。
  9. さらに、前記ADCに供給される前記クロック信号を、前記パルスのシーケンスのそれぞれのパルスの送信と前記それぞれのパルスの反射の受信との間の往復時間に少なくとも部分的に基づく遅延量だけ遅延させるように構成される遅延素子を備える、請求項1に記載のレーダシステム。
  10. デジタルビームフォーミング技術を用いて、前記送信機は前記パルスのシーケンスを送信し、前記受信機は前記送信されたパルスの反射を受信するように構成される、請求項1に記載のレーダシステム。
  11. レーダシステムを動作させる方法であって、
    クロック信号に応答して複数のデジタルアナログ変換器(DAC)を介してパルスのシーケンスを生成することと、
    前記パルスのシーケンスを送信することと、
    前記クロック信号に応答して複数のアナログデジタル変換器(ADC)を介して前記送信されたパルスのシーケンスの反射をサンプリングすることと、
    前記送信されたパルスのシーケンスおよび前記反射されたパルスに少なくとも部分的に基づいて、前記送信されたパルスのシーケンスの経路における第1の物体の速度を判定することとを含む、方法。
  12. 前記ADCは前記DACと同相でロックされ、前記DACのうちの少なくとも1つは、前記クロック信号の第1の遷移に応答して前記パルスのシーケンスの第1のパルスを生成するように構成され、前記ADCのうちの少なくとも1つは、前記クロック信号の前記第1の遷移に応答して前記パルスのシーケンスの前記第1のパルスの反射をサンプリングするように構成される、請求項11に記載の方法。
  13. 前記判定することは、
    前記送信されたパルスのシーケンスの周波数と前記反射されたパルスの周波数との間のドップラーシフトを検出することと、
    前記ドップラーシフトに少なくとも部分的に基づいて前記第1の物体の速度を判定することとを含む、請求項11に記載の方法。
  14. 前記クロック信号における位相ノイズは、前記送信されたパルスのシーケンスの周波数における変動および前記反射されたパルスの周波数における対応する変動を引き起こし、前記サンプリングすることは、
    前記反射されたパルスの周波数における変動を、前記送信されたパルスのシーケンスの周波数における変動に一致させることを含む、請求項11または13に記載の方法。
  15. さらに、
    前記クロック生成器回路を介して前記クロック信号を生成することであって、前記位相ノイズはクロック生成器回路の1つまたは複数の構成要素によって生成される近傍(close-in)位相ノイズに対応すること、または、
    前記ADCに供給される前記クロック信号を、前記パルスのシーケンスのそれぞれのパルスの送信と前記それぞれのパルスの反射の受信との間の往復時間に少なくとも部分的に基づく遅延量だけ遅延させることを含む、請求項11に記載の方法。
JP2021534903A 2018-12-17 2019-12-06 デジタルビームフォーミングレーダシステムにおける位相ノイズ補償 Pending JP2022513288A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/222,801 2018-12-17
US16/222,801 US11009597B2 (en) 2018-12-17 2018-12-17 Phase noise compensation in digital beamforming radar systems
PCT/US2019/064917 WO2020131423A1 (en) 2018-12-17 2019-12-06 Phase noise compensation in digital beamforming radar systems

Publications (1)

Publication Number Publication Date
JP2022513288A true JP2022513288A (ja) 2022-02-07

Family

ID=69165563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021534903A Pending JP2022513288A (ja) 2018-12-17 2019-12-06 デジタルビームフォーミングレーダシステムにおける位相ノイズ補償

Country Status (6)

Country Link
US (1) US11009597B2 (ja)
EP (1) EP3899581A1 (ja)
JP (1) JP2022513288A (ja)
KR (1) KR20210099143A (ja)
CN (1) CN113196097A (ja)
WO (1) WO2020131423A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220187439A1 (en) * 2020-12-15 2022-06-16 Uif (University Industry Foundation), Yonsei University Detection method and detection device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151702A (en) * 1991-07-22 1992-09-29 General Electric Company Complementary-sequence pulse radar with matched filtering following doppler filtering
FR2835120B1 (fr) * 2002-01-21 2006-10-20 Evolium Sas Procede et dispositif de preparation de signaux destines a etre compares pour etablir une pre-distorsion sur l'entree d'un amplificateur
DE102005022558A1 (de) * 2005-05-17 2006-11-23 Vega Grieshaber Kg Taktsteuervorrichtung eines Mikrowellenpulsradars
US8330651B2 (en) * 2009-11-23 2012-12-11 Honeywell International Inc. Single-antenna FM/CW marine radar
US8593331B2 (en) * 2010-06-16 2013-11-26 Qualcomm Incorported RF ranging-assisted local motion sensing
JP5887539B2 (ja) * 2010-09-14 2016-03-16 パナソニックIpマネジメント株式会社 レーダ装置
US9057785B1 (en) * 2014-05-29 2015-06-16 Robert W. Lee Radar operation with increased doppler capability
JP6331195B2 (ja) * 2014-09-29 2018-05-30 パナソニックIpマネジメント株式会社 レーダ装置
CA2980920C (en) * 2015-03-25 2023-09-26 King Abdulaziz City Of Science And Technology Apparatus and methods for synthetic aperture radar with digital beamforming
US10641883B2 (en) * 2016-08-31 2020-05-05 Electronics And Telecommunications Research Institute Pulse radar device and operating method thereof
US10775489B2 (en) * 2016-12-15 2020-09-15 Texas Instruments Incorporated Maximum measurable velocity in frequency modulated continuous wave (FMCW) radar

Also Published As

Publication number Publication date
US20200191937A1 (en) 2020-06-18
KR20210099143A (ko) 2021-08-11
CN113196097A (zh) 2021-07-30
US11009597B2 (en) 2021-05-18
WO2020131423A1 (en) 2020-06-25
EP3899581A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US20050248749A1 (en) Method and an apparatus for distance measurement
US6239741B1 (en) UWB dual tunnel diode detector for object detection, measurement, or avoidance
CN104024878B (zh) 距离测量装置
EP2965470B1 (en) High-resolution link-path delay estimator and method for estimating a signal-path delay
US8754806B2 (en) Pulse radar receiver
US10101439B2 (en) Apparatus and method for controlling power of vehicle radar
JP6324327B2 (ja) パッシブレーダ装置
EP2207263B1 (en) A digital time base generator and method for providing a first clock signal and a second clock signal
US9031811B2 (en) System and method for pulse-echo ranging
JP2013238477A (ja) レーダ装置
US11067678B2 (en) Radar device using delay
US10495727B2 (en) Phase difference estimator and method for estimating a phase difference between signals
JP2022513288A (ja) デジタルビームフォーミングレーダシステムにおける位相ノイズ補償
KR101705532B1 (ko) 주파수 변조 레이더 및 그것의 제어방법
US11808894B2 (en) LiDAR device using time delayed local oscillator light and operating method thereof
KR102188387B1 (ko) 지연을 이용하는 레이더 장치
KR102549408B1 (ko) 펄스 레이더 장치 및 그것의 동작 방법
JP4437804B2 (ja) レーダ装置および距離測定方法
Beasley et al. Global Navigation Satellite Systems disciplined oscillator synchronisation of multistatic radar
KR101359344B1 (ko) Fmcw 기반 거리 측정 장치
JP6103951B2 (ja) レーダ装置およびレーダ信号受信方法
JP2006329689A (ja) パルスレーダ装置
KR20200068586A (ko) 경로 손실 보상을 위한 임펄스 레이더 송수신기
KR101489890B1 (ko) 통신 시스템에서 동기신호 처리 방법
CN117008093A (zh) 信号发射接收系统及其方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123