JP2022509420A - 自動車の可能な軌道のサンプリングベースの計画のための制御システムおよび制御方法 - Google Patents

自動車の可能な軌道のサンプリングベースの計画のための制御システムおよび制御方法 Download PDF

Info

Publication number
JP2022509420A
JP2022509420A JP2021547930A JP2021547930A JP2022509420A JP 2022509420 A JP2022509420 A JP 2022509420A JP 2021547930 A JP2021547930 A JP 2021547930A JP 2021547930 A JP2021547930 A JP 2021547930A JP 2022509420 A JP2022509420 A JP 2022509420A
Authority
JP
Japan
Prior art keywords
vehicle
control system
interest
target
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021547930A
Other languages
English (en)
Other versions
JP7546580B2 (ja
Inventor
リーンケ,クリスティアン
ビッシング,クリスティアン
シュミット,マヌエル
ホーマン,アンドレアス
ベルトラム,トルステン
ブス,マルクス
ケラー,マルティン
グランデル,カール-ハインツ
Original Assignee
ツェット・エフ・オートモーティブ・ジャーマニー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ツェット・エフ・オートモーティブ・ジャーマニー・ゲーエムベーハー filed Critical ツェット・エフ・オートモーティブ・ジャーマニー・ゲーエムベーハー
Publication of JP2022509420A publication Critical patent/JP2022509420A/ja
Application granted granted Critical
Publication of JP7546580B2 publication Critical patent/JP7546580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/006Interpolation; Extrapolation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Figure 2022509420000001
制御システム(10)は、対象の自動車(12)における使用に適しており、対象の自動車およびさらなる自動車の現在の運転状況を監視し、対象の自動車(12)のコントローラへ提供された環境データに基づいて、対象の自動車(12)によって追従される、対象の自動車(12)のその後の運転操作のための最適な軌道を決定するように設定および設計される。制御システムは、提供された環境データに基づいて、対象の自動車(12)および/または少なくとも1つの他の自動車の現在の運転状況に関する情報を取得するように設定および設計される。さらに、制御システム(10)は、対象の自動車および/または他の自動車の現在の運転状況に関する情報に基づいて、複数の横方向位置および複数の縦方向位置および/または速度を判定するように設定および設計される。最後に、制御システム(10)は、運転操作を実行する場合に、対象の自動車(12)が追従すべき、最適な軌道の停止点を、複数の横方向位置および複数の縦方向位置および/または速度から判定し、判定された停止点間のスプラインベースの補間によって、および停止点における横方向位置に従って、対象の自動車(12)の最適な軌道を決定するように設定および設計される。
【選択図】図2

Description

本明細書では、対象車両が運転操作を実行するために従う軌道を決定するための制御システムおよび制御方法が説明される。制御システムおよび制御方法は、特に対象の自動車における環境センサに基づいており、運転者または自律型自動車を支援する。半自律型自動車や自律制御型自動車の場合、これは自動車の乗員の安全性と運転快適性を高めるのに役立つ。
自動運転自動車の様々な機能への関心の高まりにより、少なくとも半自律型自動車の動作計画(軌道計画)のための信頼性の高い高速制御システムとアルゴリズムの必要性が高まっている。主要な課題は、道路利用者の数の増加だけでなく、非常に複雑な交通シナリオで道路利用者が実行しなければならない認知タスクでもある。半自律型または自律型の車両の制御システムのアーキテクチャでは、特定の交通状況の検出と制御に加えて、意思決定と移動計画が、対応する自動車の全体的なパフォーマンスに大きな影響を与える。
近年、部分的に(自律型)自動車の軌道計画のためにますます進化している制御システムとアルゴリズムは、自動運転の複雑さを証明している。動作計画に関する課題は、通常、動的に変化する環境において、自動車の部分的(自律的)システムのリアルタイムのパフォーマンスを保証するために、限られた時間内に、快適かつ実行可能で、衝突のない軌道を決定することである。
過去に、軌道計画への様々なアプローチが開発されてきた。これらは、たとえば、サンプリングベースの軌道計画のための動作計画アルゴリズムまたは技法である。後者は通常、たとえば、限られた計算時間のための特定の要件を満たすために、移動計画問題の特定の簡素化を使用する。(簡素化)目標は、有限数のサンプル(サンプリング値)で連続空間をカバーすることである。
今日の自動車では、先進運転者支援システム(ADAS)が、様々な監視および表示機能を提供して、自動車の運転をより安全にする。自動車の環境は、自動車に存在する1つまたは複数の環境センサから取得される環境データに基づいて、対象車両の走行のコースに関連して監視される。
たとえば、よく知られている運転支援システムは、車両が車線内にあるか否か、および運転者が不注意に車線の片側にドリフトしているか、または車線を離れようとしているかを判定する。これらの運転支援システムは、生成された環境データから道路、特に車線の「画像」を生成する。縁石、車線境界線、方向矢印などの物体は、運転中に検出および追跡される。
また、いわゆる「ブラインドスポットモニタ」は、今日の運転支援システムに属する。それらは、たとえば、レーダ、ライダ、ビデオなどによって、別の自動車、道路利用者、または物体が、自動車の側面および/または後方にあるか否かを判定する。対象の自動車の、車線変更または方向転換が、衝突につながる可能性があるからである。
さらに、いわゆるACC(Adaptive Cruise Control)システムでは、対象の自動車の自動速度制御が、前方の車両の速度に適合される。前方の車両から常に一定の距離を保つ必要がある。この目的のために、そのようなシステムは、対象の自動車が、深刻な状況を作り出す前方の車両の経路を横切ることを阻止するために、前方の車両の移動方向および/または速度を判定する。これは、一方では車線変更または方向転換プロセスに適用され、他方では後方追突に適用される。
人が制御する車両では、運転者支援システムは通常、運転者に深刻な状況や操作を警告し、または、運転者に自動車に適した操作を提案する、警告機能を提供する。同様に、運転者支援システムは、自律型コントローラに適切な環境データを提供するために、自律制御型車両でも使用できる。
道路交通では、対象の自動車の運転者または(部分的)自律型運転者支援システムが、運転操作を実行することを必要とする状況が発生する場合がある。たとえば、湾曲した車線のコースは、対象の自動車の対応する運転操作を必要とする場合さえある。
しかしながら、対象の自動車が自分自身を発見する現在の状況は一定ではなく、実際には絶えず変化している。たとえば、他の道路利用者は、事故の結果として、意図的または意図せずに車線を変更したり、速度を変更したりする場合がある。それに加えて、対象の自動車の現在の運転状況は、それ自体の運転挙動および/または車線の変化するコースによってさえ変化する。そのような現在の状況の変化に適切かつタイムリーに対応することは、従来の運転者支援システムと人間の運転者との両方にとって大きな課題である。多くの交通状況のダイナミクスと、ますます密集する交通は、従来の運転者支援システムによるリソースの使用の増加にも反映される。
したがって、自動車が自分自身を発見する現在の交通状況に応じて、自動車の運転安全性および運転快適性を向上させる、自動車の制御システムおよび制御方法を提供することが目的である。また、自動車のその後の運転操作の決定のために軌道を効率的に計算することにより、制御システムのリソースを節約することも目的としている。
この目的は、請求項1の特徴を備えた制御システム、および請求項12の特徴を備えた制御方法によって達成される。
好ましい実施形態は、従属請求項2から11および13、ならびに以下の説明から明らかである。
1つの態様は、対象の自動車で使用するために設定および設計された制御システムに関する。この制御システムは、対象の自動車に関連付けられた環境センサの少なくとも1つから取得された環境データに基づいて、車線、道路境界、道路標識、他の自動車および/または他の異なる物体を検出する。少なくとも1つの環境センサは、制御システムの電子コントローラに、対象の自動車の前方の、横方向に隣接する、および/または後方の領域を反映する環境データを提供するように設定される。制御システムは、提供された環境データに基づいて、対象の自動車および少なくとも別の自動車の、現在の運転状況に関する情報を取得するように少なくとも設定および設計される。さらに、制御システムは、少なくとも、対象の自動車および/または他の自動車の現在の運転状況に関する情報に基づいて、複数の横方向位置を判定し、対象の自動車および/または他の自動車の現在の運転状況に関する情報に基づいて、いくつかの縦方向位置および/または速度を判定するように設定および設計される。最後に、制御システムはまた、複数の横方向位置および複数の縦方向位置および/または速度から、運転操作を実行する場合に、対象の自動車が追従すべき、対象の自動車の軌道の停止点を判定し、判定された停止点間のスプラインベースの補間によって、および停止点における横方向位置に従って、対象の自動車の軌道を決定するように設定および設計される。
車線、道路境界、道路標識、他の自動車および/または他の異なる物体を判定するとき、制御システムは、たとえば、対象の自動車が位置する車線と、別の自動車が、対象の自動車の前方の、横方向に隣接する、および/または、後方の領域にある別の車線とを特定し、対象の自動車の前方の、横方向に隣接する、および/または、後方の領域にある他の自動車を、捕捉される別の自動車として判定するように設定および設計され得る。さらなる車線は、特定の車線に対応する場合もあれば、特定の車線に隣接する場合もある。これは、対象の自動車と同じ車線と、対象の自動車の車線に隣接する車線との両方を走行するさらなる車両が、捕捉される他の自動車として判定されることを保証する。
それに加えて、特に、対象の自動車および/または他の自動車が位置する車線の車線境界に向かう、対象の自動車および/または他の自動車の(縦軸の)横方向の移動を判定できる。特に、制御システムは、対象の自動車の前方、および/または、後方、および/または、横方向の前方および/または横方向の後方にあり、現在の運転状況(現在の時点)において対象の自動車から最短距離を有する他の自動車として、さらなる自動車を判定するために使用され得る。
制御システムは、たとえば、車線境界および/または車線標識などの提供された環境特徴に基づいて、特定の車線ならびに、さらなる車線を判定できる。制御システムはまた、少なくとも1つの環境センサによって取得された環境データに基づいて、これらの環境特徴を検出できる。それに加えて、制御システムは、GPSシステムなどの外部システムによって環境特徴を提供される。
他の自動車は、所定の期間にわたってまたは連続的に、対象の自動車の少なくとも1つの環境センサによって捕捉され得、対応するデータは、対象の自動車の制御システムへ提供され得る。そうすることで、制御システムは、所定の期間中または連続的に、他の自動車の縦軸と中心線との間の距離の変化、少なくとも1つの車線境界、または他の自動車が位置する関連付けられた車線の少なくとも1つの車線標識を判定するように設定および設計され得る。関連付けられた車線の中心線および車線境界は、制御システムによって判定される関連付けられた車線の仮想的な現在の中心線または現在の車線境界とすることができる。同様に、所定の期間中または連続的に、制御システムは、他の自動車の縦軸と、対象の自動車が位置する仮想的または実際の車線標識または車線境界との間の距離の変化を判定し得る。
制御システムは、対象の自動車と、対象の自動車の前方の、横方向に隣接する、および/または後方の別の自動車との間の距離、ならびに、対象の自動車と、他の自動車との間の速度差および/または加速度差を判定するように設定および設計され得、対象の自動車および他の自動車は、同じ車線または隣接する車線に位置できる。
対象の自動車と、他の自動車との間の、判定された距離、速度差、および/または加速度差は、任意に組み合わせることができ、制御システムによって相互に関連して設定することができる。
制御システムはまた、現在の交通状況を判定するために、所定の期間にわたって、または連続的に、少なくとも1つの環境センサによって交通に参加している他の自動車を捕捉するように設定および設計され得ることが理解される。したがって、制御システムはまた、前述した相対距離、速度差、および/または加速度差の変化を、所定の期間にわたって、または連続的に判定することができ、これは、対象の自動車のすぐ近くにおいて、現在の交通状況にある他のすべての自動車または他の物体を含む。
特定の実施形態では、システムはまた、提供された環境データに基づいて、対象の自動車が実行する基本運転操作を決定し、決定された基本操作に基づいて、複数の横方向位置のうちの少なくとも1つを判定し、および/または、基本操作クラスを特徴付ける値を、横方向位置の少なくとも1つに割り当てるように設定および設計され得、基本操作クラスは、左への車線変更、右への車線変更、および車線維持のための基本操作から少なくとも構成される一連の基本操作クラスに含まれる。
あるいは、または、それに加えて、一連の基本操作クラスは、左における車線維持、および/または、右における車線維持である、さらなる基本操作を含み得る。
制御システムはまた、対象の自動車および/または他の自動車の縦方向加速度に基づいて、複数の縦方向位置を判定するように設定および設計され得る。
これは、たとえば、対象の自動車のエンジン出力に基づく、対象の自動車の可能な最大加速度であり得る。あるいは、または、それに加えて、これらは、現在の運転状況に基づくか、そうでなければ適切な方式で事前に決定され得る、安全性および快適性の考慮から導出された、対象の自動車および/または他の自動車の最大加速度値であり得る。
特定の実施形態では、制御システムは、適応離散化によって複数の縦方向位置を判定するように設定および設計され得、対象の自動車および/または他の自動車の加速度が、適応離散化のための制御パラメータとして使用される。
これは、たとえば、上記の縦方向および/または横方向の加速度のうちの1つ、または、各々の場合における対応する最大値であり得る。
さらに、これは、特に、対象の自動車および/または他の自動車の、現在の運転状況のそれぞれの判定時点での、対象の自動車の走行方向、および/または、他の自動車の走行方向における加速度であり得る。
適応離散化によって、対象の自動車および/または他の自動車の、線形的にサンプリングされた縦方向位置および/または速度の非線形画像が生成され得る。
それに加えて、適応離散化は、特に、ハイウェイおよび/または高速道路における後部衝突シナリオを評価するときに、対象の自動車の軌道を決定する際に、対象の自動車および/または他の自動車の変動する縦方向加速度を考慮するために使用され得る。
制御システムはまた、静的な衝突チェックを考慮して、対象の自動車の軌道を決定するように設定および設計され得、静的な衝突チェックは、対象の自動車および/または他の自動車の、複数の横方向位置に基づく。
制御システムはさらに、動的な衝突チェックを考慮して、対象の自動車の軌道を決定するように設定および設計され得、動的な衝突チェックは、対象の自動車および/または他の自動車の、複数の横方向位置に、および/または、複数の縦方向位置および/または速度に基づく。
この点において、制御システムはまた、対象の自動車および/または他の自動車の最大加速度を考慮して、動的な衝突チェックを実行するように設定および設計され得る。
この場合、制御システムはさらに、分離定理を使用して、静的な衝突チェックおよび/または動的な衝突チェックを実行するように設定および設計され得る。
制御システムはまた、コスト関数に基づく目標関数によって、対象の自動車の軌道をチェックするように設定および設計され得る。
目標状態を目標関数に割り当てることができ、目標関数の、目標状態からの偏差を、目標関数の目標として使用できる。あるいは、または、それに加えて、対象の自動車の横方向および/または縦方向の加速度の形態で、および/または、対象の自動車の横方向および/または縦方向の衝撃の形態で、目標関数の他の目標を、目標関数の目標状態として使用することができる。
したがって、包括的で全体的な目標関数を決定することができ、その個々の項は、現在の運転状況ごとに、および各操作クラスごとに、対象の自動車の軌道を選択するために、対象の自動車12の現在の交通状況に対する動的衝突回避、静的衝突回避、実現可能性、および運転快適性をモデル化する。
制御システムはさらに、環境データによって対象の自動車の制御システムへ提供される基準車線に対して、曲線座標における、対象の自動車および/または他の自動車の複数の横方向位置および/または複数の縦方向位置および/または速度を判定し、直交座標における対象車両の軌道をチェックするように設定および設計され得る。
直交座標において補間を実行することもできる。
これにより、直線および曲がりくねった道路部分を運転するために、道路の形状とは無関係に軌道計画を実行できる。
したがって、曲線座標における候補軌道の評価とは対照的に、結果として、障害物(たとえば、他の自動車)に対して判定された軌道の、時間のかかるポイントワイズの変換は不要である。それに加えて、補間と評価を伴う停止点のみを、直交座標(自動車座標)に変換することにより、すべての単一の軌道点を変換する必要はない。精度の理由から、停止点の分解能は、道路の曲率に応じて選択できるため、補間によって生じる基準トラック(基準軌道)からの逸脱を最小限に抑えることができる。
制御システムはさらに、コスト関数に基づく目標関数によって軌道を決定するように設定および設計することができる。
制御システムはさらに、対象の自動車の軌道を決定する際に、静的な衝突チェックを実行するように設定および設計され得る。この静的な衝突チェックは、複数の第1のサンプリング値に基づく。
制御システムはまた、対象の自動車の軌道を決定する際に、動的な衝突チェックを実行するように設定および設計され得る。動的な衝突チェックは、複数の第2のサンプリング値に基づく。
制御システムはさらに、対象の自動車の最大加速度を考慮して、動的な衝突チェックを実行するように設定および設計され得る。
この場合、制御システムはさらに、分離定理を使用して静的な衝突チェックおよび/または動的な衝突チェックを実行するように設定および設計され得る。
さらなる態様は、対象の自動車に割り当てられた環境センサのうちの少なくとも1つから取得された環境データに基づいて、対象の自動車において、対象の自動車の前方の、横方向に隣接する、および/または、後方の領域内の道路境界、道路標識、他の自動車および/または物体を検出する制御方法に関し、この制御方法は、特に上記の制御システムによって実行される。制御方法は、少なくとも、
- 提供された環境データに基づいて、対象の自動車および少なくとも1つの他の自動車の現在の運転状況に関する情報を判定し、
- 対象の自動車および/または他の自動車の現在の運転状況に関する情報に基づいて、複数の横方向位置を判定し、
- 対象の自動車および/または他の自動車の現在の運転状況に関する情報に基づいて、複数の縦方向位置および/または速度を判定し、
- 運転操作を実行するときに対象の自動車が追従すべき、対象の自動車の軌道の停止点を判定し、
判定された停止点間のスプラインベースの補間によって、および、停止点における横方向位置に従って、対象の自動車の軌道を決定する、各ステップを含む。
別の態様は、上記の制御システムを含む自動車に関する。
従来の運転者支援システムと比較して、本明細書で提示される解決策は、対象の自動車およびさらなる自動車の、現在の運転状況の正確な推定と正確な認識を向上させる。それに加えて、リアルタイムで実行される軌道候補の2段階の計画および評価アプローチが提供され、これにより、対象の自動車の将来の運転操作に可能な最良な(最適な)軌道を正確かつ効率的に決定できる。
したがって、この可能な最良な軌道は、対象の自動車が自分自身を発見する現在の交通状況に対する適切な応答として決定することができる。少なくとも1つの環境センサによって取得される環境データは、実際の交通状況および運転状況に応じて絶えず変化し、定期的に更新することができる。
対象の自動車の将来の運転操作に可能な最良な軌道が使用される場合、軌道を決定する際に、静的および動的な衝突チェックが実行されるのみならず、対象の自動車の運転ダイナミクスも考慮されるため、これにより、対象の自動車の運転快適性および運転安全性が向上する。制御システムはまた、可能な最良な軌道の動的な実現可能性を保証することができ、それはさらに、運転安全性を高める。それに加えて、制御システムの他の実施形態では、対象の自動車の運転ダイナミクスを考慮することによって、軌道に従う場合に、対象の自動車の運転挙動を最適化することができる。運転ダイナミクスは、たとえば、対象の自動車の縦方向加速度および横方向加速度である。
前述した態様および特徴は、制御システムおよび/または制御方法において任意に組み合わせることができることが当業者に明らかである。上記の特徴のいくつかは、制御システムに関して説明されてきたが、これらの特徴は、制御方法にも適用され得ることが理解される。同様に、制御方法に関する上記の特徴は、対応する方式で制御システムに適合し得る。
さらなる目的、特徴、利点、および可能な用途は、対応する図面を参照して、非限定的であると見なされるべき例示的な実施形態の以下の説明から生じる。そうすることで、すべての説明されたおよび/または比喩的に示された特徴は、それ自体で、または任意の組合せで、本明細書に開示された目的を例示する。図示されるコンポーネントの寸法と比率は、原寸に比例していない。同一または機能的に同一のコンポーネントには、同じ参照文字が提供される。
制御システムおよび少なくとも1つの環境センサを有する、特定の例示的な実施形態による自動車を概略的に示す図である。 特定の例示的な実施形態に従って、候補軌道を計画および評価するための2段階のアプローチのアーキテクチャを概略的に示す図である。 特定の例示的な実施形態による、5つの異なる横方向操作クラスの概略的な横方向基準経路(基準軌道)を示す図である。 特定の例示的な実施形態に従って、制御パラメータとして異なる例示的な加速度値を使用する、線形から適応離散化への非線形表現を概略的に示す図である。 特定の例示的な実施形態に従って、異なる数の縦方向加速度に対する線形離散化と比較した、適応離散化の相対コストの概略的な図解である。 特定の例示的な実施形態による、曲線座標Kから車両座標Fへの変換を概略的に示す図である。 直線道路部分(上の絵)および曲がりくねった道路部分(下の絵)の特定の例示的な実施形態による、一連の決定された候補軌道を概略的に示す図である。 直線道路部分(上の絵)および曲がりくねった道路部分(下の絵)の特定の例示的な実施形態に従って決定された一連の候補軌道から、制御システムによって決定された、可能な最良な(最適な)軌道を概略的に示す図である。 特定の例示的な実施形態に従って適用された分離定理を概略的に示す図である。 特定の例示的な実施形態による動的な衝突チェックの平均実行時間を概略的に示す図である。 特定の例示的な実施形態に従って分離定理を使用する動的な衝突チェックの概略図である。 候補軌道のサンプリングベースの決定の第1段階(左)および衝突チェックの第2段階(右)を伴う特定の例示的な実施形態による、2段階の軌道計画および評価アプローチの概略図である。 2段階の軌道計画および評価アプローチを使用する特定の例示的な実施形態による、ハイウェイにおける後部シナリオからの接近の最初の5つの描写を(上から下に)概略的に示す図である。 2段階の軌道計画および評価アプローチを使用する特定の例示的な実施形態による、ハイウェイにおける後部シナリオからの接近の次の5つの描写を(上から下に)概略的に示す図である。 ハイウェイにおいて図13および図14に示される後部シナリオからの接近中の自動車の速度を概略的に示す図である。
以下の開示の文脈において、特定の態様は、主に制御システムに関して説明される。しかしながら、これらの態様は、もちろん、たとえば、自動車の中央制御デバイス(ECU)によって実行することができる、開示された制御方法の文脈においても有効である。これは、自動車に割り当てられたメモリに適切な書き込みおよび読み取りアクセスを行うことによって実行できる。制御方法は、ハードウェアとソフトウェアとの両方、およびハードウェアとソフトウェアの組合せで、自動車内で実施され得る。これは、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、および他の適切なスイッチングおよび計算コンポーネントを含む。
図1は、制御システム10を備える自動車12(対象の自動車)を概略的に示す。制御システム10は、自動車12に配置された少なくとも1つの環境センサ14、16、18から環境データを取得するために、少なくとも1つの環境センサ14、16、18に結合される。制御システム10は、電子コントローラECU(電子制御ユニット;図示せず)を含むことができる。たとえば、本制御システム10は、少なくともECUおよび/または他の電子制御システムによって、自動車12の軌道、および/または、対象の自動車12の現在の運転状況において、対象の自動車12の近傍にある別の自動車の軌道を判定するように設定および設計され得る。たとえば、ECUは、環境センサ14、16、18から信号を受信し、これらの信号および関連する環境データを処理し、制御および/または出力信号を生成する。
図1は、対応する信号を制御システム10または電子コントローラECUへ送信する3つの環境センサ14、16、18を示している。特に、少なくとも1つのセンサ14は、自動車12の走行方向において前方を向いて自動車12に配置され、自動車12の前方の領域22を検出する。この少なくとも1つの環境センサ14は、たとえば、自動車12のフロントバンパ、フロントランプ、および/またはフロントラジエータグリルの領域に配置され得る。その結果、環境センサ14は、自動車12の真正面の領域22を検出する。
同じく自動車12の走行方向において前方を向いている少なくとも1つの追加のまたは代替の環境センサ16が、自動車12のフロントガラスの領域に示される。たとえば、この環境センサ16は、自動車12の内側バックミラーとそのフロントガラスとの間に配置され得る。そのような環境センサ16は、自動車12の前方の領域24を検出し、自動車12の形状によっては、自動車12の真正面の領域24は、自動車12の前方部分(または、その形状)によって、検出できない。
さらに、少なくとも1つの環境センサ18は、自動車12の側面および/または後部に配置され得る。このオプションの環境センサ18は、自動車12の走行方向において自動車12の側面および/または後方に位置する領域26を検出する。たとえば、この少なくとも1つの環境センサ18のデータまたは信号を使用して、他の環境センサ14、16によって収集された情報を検証し、および/または、自動車12が走行している車線の曲率を判定することができる。
少なくとも1つの環境センサ14、16、18は、必要に応じて実装することができ、前方カメラ、後部カメラ、側面カメラ、レーダセンサ、ライダセンサ、超音波センサ、および/または慣性センサを含むことができる。たとえば、環境センサ14は、前方カメラ、レーダ、ライダ、または超音波センサの形態で実現することができる。より高い位置にある環境センサ16には、前方カメラが特に適している一方、車両12の後部に配置された環境センサ18は、後部カメラ、レーダセンサ、ライダセンサ、または超音波センサの形態で実施することができる。
電子コントローラECUは、自動車12の静的環境(道路境界などの不動の環境物体)、および動的環境(他の自動車や道路利用者などの移動環境物体)に関する情報を取得するために、自動車12、16、18に配置された環境センサ14、16、18から取得された環境データを処理する。
したがって、電子コントローラは、自動車12が走行している車線を、自動車12の前方の第1および第2の横方向の車線境界とともに捕捉するために、自動車12に配置された環境センサ14、16、18から取得された環境データを処理する。それに加えて、電子コントローラECUは、(対象の車両が走行している車線に隣接する、ここで隣接とは、1つまたは複数の他の車線も、隣接する車線の間に位置し得ることを意味する)別の物体が占める車線と、自動車12の前方の、横方向に隣接する、および/または、後方のそれらの横方向の車線境界とを捕捉するために、自動車12に配置された環境センサ14、16、18から取得された環境データを処理する。他の物体は、対象の自動車の車線に隣接する車線に沿って移動する別の自動車、または他の自動車の前方の車線内の他の考えられる障害物である。
この目的のために、環境センサ14、16、18は、電子コントローラECUに、車両の前方の、横方向に隣接する、および/または後方の領域を反映する環境データを提供する。この目的のために、制御システム10は、少なくとも1つのデータチャネルまたはバス(図1に点線で示される)を介して、少なくとも1つの環境センサ14、16、18へ接続される。データチャネルまたはバスは、ケーブルまたはワイヤレスで実現できる。
あるいは、または、それに加えて、制御システム10またはその電子コントローラECUはまた、自動車12の1つまたは複数の他の支援システム20または別のコントローラ20から、対象の自動車12、他の自動車、および、さらなる自動車が走行している車線を示すデータを、その横方向の車線境界とともに取得し得るか、または、横方向の車線境界から導出することができる。したがって、他のシステムによって既に決定されているデータおよび情報は、制御システム10によって使用することができる。
制御システム10またはその電子コントローラECUは、環境センサを用いて、すなわち、少なくとも1つの環境センサ14、16、18によって取得された環境データに基づいて、運転状況をさらに判定する。ここでも、既存の支援システム20または電子コントローラ20は、運転状況を定義する、または運転状況を迅速に導出することができるデータおよび/または情報を提供することができる。その後、判定された運転状況に応じて、少なくとも1つの可能な軌道が決定され、対象の自動車12は、走行のさらなるコースに従う。
運転者支援システム20または電子コントローラ20は、自動車を部分的に(自律的に)制御するようにさらに設定および設計することができる。この場合、制御システム10は、自律型運転のために運転者支援システム20または電子コントローラ20へデータを出力するように設定および設計される。特に、制御システム10(またはそのECU)は、対象の自動車12が(現在の交通状況に従って)さらなるコースに従う特定の軌道のコースを示すデータを、コンポーネント20へ出力し得る。データは、データチャネルまたはバスを介して有線またはワイヤレスで送信することもできる。
環境データから取得され、制御システム10へ提供される情報は、たとえば、対象の自動車12および/または他の自動車の、横方向、縦方向、または横方向と縦方向の組合せの各々における位置および/または速度および/または加速度を含む。さらに、この情報は、たとえば、対象の自動車12と、他の自動車との間の、言及されたそれぞれの方向における相対速度および/または相対加速度を含む。
図2は、対象の自動車12の1つまたは複数の軌道を計画し、対象の自動車のさらなる走行のコースのために計画された軌道のうちの可能な最良な(最適な)軌道を決定するために、制御システム10へ提供される環境データのリアルタイムサンプリングに基づいて、本明細書において提示されるアプローチの概要を提供し、これは、特に、本明細書で提示される制御システム10および制御方法に基づく。このことから、軌道候補は、最初に制御システム10によって生成されることが明らかになる。これらの軌道候補は、横方向の操作クラスに基づいて、左への車線変更(SWL)、左における車線維持(SHL)、中央における車線維持(SHM)、右における車線維持(SHR)、および右への車線変更(SWR)である。しかしながら、本開示はこれに限定されず、代わりに、多かれ少なかれ、または他の操作クラスを定義することができる。
次に、操作クラスに基づいた目標関数を使用して、軌道候補から制御システム/制御方法によって、可能な最良な軌道候補が選択される。目標関数は、現在の運転状況における対象の自動車12の動的および静的環境に影響を与える目標状態、ならびに可能な最良な軌道候補の運転快適性および実行可能性(実現可能性)を含む。たとえば、対象の自動車12の運転特性が、このために必要な加速度を適用できない場合、軌道は、本開示の文脈において実現可能であるとは見なされない。
その後、可能な最良な軌道候補の中から、対象の自動車12の最適な軌道を決定するために、静的および動的な衝突チェックが実行される。対象の自動車12は、その後、現在の交通状況のさらなるコースにおいて、この最適な軌道に従う。
提案されたサンプリング戦略はまた、独立した縦方向(走行方向に走る)操作戦略を可能にする。所望される高レベルの動作特性が、目標状態によって表される。それにも関わらず、軌道計画のレベルにおける最適な軌道に関する決定は、2つのレベルの候補選択戦略によって行われる。第1のレベルは、上記の目標関数を表す。これは、操作クラスから可能な最良な軌道を提供する。第2のレベルは、静的および動的な衝突チェックによって特徴付けられる。
しかしながら、サンプリング戦略を詳細に説明する前に、軌道計画で使用される数学的基礎を以下に説明する。
本開示の文脈で提示される制御システムおよび制御方法は、対応する時間状態tに関して停止点(また、支持点またはノード)xの例示的な状態(またはサンプル状態)を生成するのに適している。言い換えれば、少なくとも1つの停止点が、各時間状態tに割り当てられる。したがって、停止点の決定は、対象の自動車および/または他の自動車の少なくとも横方向および縦方向の位置値を含む。以下の開示および図の文脈において、地球座標系、自動車座標系、および曲線座標系は、それぞれ、表記E、FおよびKに従う。地球座標系および車両座標系は、直交(たとえば、デカルト)フレームワークに従う。それぞれの値の前にある上付き形式の対応する文字は、対応する座標系を示す。
サンプリングされた状態間を補間できるようにするために、スプラインが決定される。スプラインは、x(t)およびy(t)における対象の自動車12の移動を表し、補間x(t)は、以下のように定義される。
Figure 2022509420000002
η-1個のスプラインセグメントの場合、t∈{t,tl+1}が適用されるとすると、スプラインsは以下のように定義される。
(t)=cν,l(t-tν+cν,l(t-tν-1+...c1,l(t-t)+c0,l
スプラインの特性では、スプラインが、停止点s(t)=xを通過する必要がある。別の要件は、スプラインが、それぞれのスプライン間隔間で一定であることであり、つまり、s(tl+1)=sl+1(tl+1)で十分である。
スプライン係数c0...ν,lは、x=[および対応する導関数の適切な開始条件と終了条件を使用して決定できる。このようにして決定された各軌道のl=1...η個の支持点(以下の式において下線が引かれた)は、
Figure 2022509420000003
となる。
上記の関係では、Ν=(ν-1)/2も適合する。あるスプライン間隔から次のスプライン間隔への遷移のために最適な時間を決定するために、サンプリング中、時間インスタンス が使用される。一定のスプラインベースの定式化により、支持点や指定された予測範囲Tに依存しない、時間ΔTに関する分解能の選択も可能になる。この理由により、軌道点x=[は、補間n=T/ΔT+1によって取得される。これらの軌道点は、以下のように(候補軌道である)軌道において結合される。
ego=[x,t,x,t,...,x,t,...,x,T
このために、k=1...nの場合、一定の時間間隔t∈[t,t+1]が使用される。
本明細書で提示される軌道計画および評価への2段階のアプローチは、特にスプラインベースの定式化と上記の軌道の生成が、曲線座標変換と組み合わされるという点で、従来のアプローチよりも優れている。決定された停止点の横方向および縦方向の位置は、曲線座標でサンプリングされ、後に、車両座標に変換される。たとえば、現在走行中の車線の車線境界および/または車線標識は、車両座標への変換のための基準として機能する。変換された停止点は、上記のスプラインベースの補間に接続される。これにより、一連の候補軌道が生成され、車両座標で評価される。
図3は、対象の自動車12の例示的な運転状況を示す。対象の自動車12は、3車線道路(たとえば、ハイウェイ)32の中央車線30を移動している。道路32には、他の自動車のような障害物はない。それに加えて、側面(横方向)の基準経路(基準軌道)28a~28eが図3に示される。これは、左側における車線変更の開始(基準軌道28a)、左における車線維持(基準軌道28b)、中央における車線維持(基準軌道28c)、右における車線維持(基準軌道28d)、右における車線変更(基準軌道28d)で説明される操作を示す。
対象の自動車12の横方向位置をサンプリングする方法は、主に、対象の自動車12の現在の環境の構造に基づく。サンプリングされる値は、環境データから決定される。使用される一連の横方向(側面)操作クラスは、より高いレベルでの対象の自動車12の(たとえば、対象の自動車12の電子コントローラ20または他の任意の適切な電子コントローラによる)操作特性の計画に基づく。上記の操作クラスである左における車線変更(SWL)、左における車線維持(SHL)、中央における車線維持(SHM)、右における車線維持(SHR)、右における車線変更(SWR)は、選択された操作クラスを表すが、本開示はこれに限定されない。たとえば、制御システム10(および、制御方法)は、代わりに、3つの選択された操作クラス(たとえば、左における車線変更、右における車線維持および車線変更)で動作することもできる。
しかしながら、含まれる操作クラスの数が多いと、特に現在走行中の車線30に関して(たとえば、SWL、SWR、および車線維持のみに従って操作をクラス分けするシステムとは対照的に)、自動車12の操作の変動が大きくなる。たとえば、(たとえば、SHMおよびSHRを使用する)複雑な複合操作もクラス分けできる。そのような操作は、たとえば、そこでのギャップを埋めるために、対象の自動車12の(現在走行中の車線の左側または右側における)別の車線への接近を表す。5つの操作クラスの各々が、のために指定された値に直接関連付けられているため、曲線座標Kの使用は、横方向位置のサンプリングを大幅に簡素化する。言い換えれば、各サンプリング時間における(静的)車両環境の横方向サンプリングは、少なくとも、決定された操作クラスに基づくか、またはこの操作クラスに割り当てられる値を提供する。
次に、図4を参照して、走行方向におけるサンプリング(縦方向のサンプリング)について説明する。これは、適応離散化に対する線形離散化の非線形画像を示す。適応離散化は、縦方向のサンプリング、すなわち、対象の自動車12および/または他の自動車の縦方向位置(または位置値)および/または速度(または速度値)の判定に使用される。
部分的に(自律的な)自動車の計算リソースは限られているため、有限でありながら意味のある一連の可能な軌道(軌道候補)を生成する必要がある。この理由により、本開示の文脈において、横方向サンプリングのための状態ベースのサンプリング戦略に加えて、アクションベースのサンプリング戦略が、位置および/または速度νなどの縦方向パラメータをサンプリングするために使用される。対象の自動車および/または他の自動車の(自動車の走行方向における)縦方向加速度(t)が、制御パラメータとして使用される。2次モデルを使用して、以下の関係に従って、(以下の関係におけるそれぞれの値の前に再び上付けされる)曲線座標系Kに対する位置と速度νの縦方向サンプルを生成する。
Figure 2022509420000004
次に、一連の有限な制御入力∈Uが、適応離散化のために決定される。軌道計画の現在実行されている計画ステップ(計画サイクル)の可能な最良な制御入力が、最後の計画ステップの制御入力に時間的に近いと仮定すると、実際の縦方向加速度の領域において、より高い分解能が必要とされる。それでも、最小および最大の加速度値を考慮する必要がある。
したがって、これから導出された適応(状況適応)離散化戦略では、図4に示すように、2つの放物線fおよびfを使用して、(環境データから決定される)線形的にサンプリングされた値zを、オンラインで(すなわち、リアルタイムまたは実質的にリアルタイムで)、および対象の自動車12および/または他の自動車の実際の加速度値zaktに依存して変換する。これに必要な係数は、以下の条件から決定される。
(zmin)=zmin
Figure 2022509420000005
(zmax)=zmax
Figure 2022509420000006
ここで、
Figure 2022509420000007
は、
Figure 2022509420000008
と定義される。その後、適応(適応化された)サンプリングされた値f(z)が、以下のように決定される。
Figure 2022509420000009
(それぞれの有効なサンプリング状況のための)対象の自動車12および/または他の車両の現在の加速度値の適応離散化aakt=-2およびaakt=0の結果が図4に示される。図の密接に隣接する水平グリッド線は、aakt=-2に関する適応離散化の現在の値の領域において所望される、より高い分解能を示す。
適応離散化の利点は、ハイウェイおよび/または高速道路の後部シナリオからの接近を評価するときに明らかである。このシナリオは、動的な日々の交通にうまく対処するために必要な変動する縦方向加速度を含む。比較のために、準連続値を有する線形離散化された基準軌道が、図4に示され、これに対して、適応離散化4がプロットされる。これは、目標関数に関して可能な最良な解に近づく。
相対コストΔΦは、基準解Φoptと、対応する縦方向サンプリング戦略を使用したアプローチの次善の(可能な次に最良な)解Φとの間の開ループ結果の差から計算される。4つの変形がテストされ、各々が、サンプリングされた縦方向加速度ζ=5およびζ=10の数に関して線形離散化と適応離散化とを比較するために使用される。結果が図5に示される。これは、線形サンプリングと比較して相対コストが低いことによる、適応サンプリングの利点を示す。
適応サンプリング戦略(図5の右側の2つの部分ζad=5およびζad=10)を相互に比較すると、ζad=10の外れ値の数が減少することは、現在の計画ステップにおける離散化のために、(現在の計画ステップの前の最後の計画ステップで)決定された最後の可能な最良な加速度値を使用することで説明できる。
コスト関数Φoptのための基準解でさえ、ゼロ未満の相対コストを可能にするための可能な最良な(最適な)解の近似にすぎないことに留意されたい。動的環境における変化は、計画サイクルための計算時間よりも遅い(すなわち、比較的長い時間がかかる)ため、制御システムまたは制御方法は容易に適合し、現在の交通状況に応じて次善の加速度が見つけられる。
制御システム10の一部としての2段階の計画および評価アプローチは、縦方向および横方向の移動の同時計画のために設計される。なぜなら、対象の自動車12について計画される軌道が、任意の曲線に従うと同時に、対象の自動車12の真正面の、横方向に隣接した、および後方の交通状況を考慮しなければならないからである。したがって、横方向および縦方向のサンプリング状態が変換および結合されて、軌道候補が生成される。
この場合に使用される変換戦略は、図6を参照して以下に説明される。曲線座標を車両座標に変換するために、環境センサによって認識される基準車線標識(たとえば、図3における道路標識32を参照)が、制御システム10またはその電子コントローラによって選択される。基準車線標識32は、3次多項式frefとして定義される。弧長を計算するには、有限積分を近似し、台形公式を適用する。このようにして、等間隔のクエリのルックアップテーブルが、検出された車線標識∈[x,x]の領域内に生成される。これにより、変換Fxの初期解にxがマッピングされる。側面部分の初期値(開始値)は、=(f)によって与えられる。直交勾配m⊥=-1/f’refx)を使用すると、車両座標のx方向とy方向における変換された位置は、
Figure 2022509420000010

となる。
したがって、図6は、曲線座標系Kから車両座標Fへの変換がどのように行われるかを示す。x=Lのルックアップテーブルの評価は、位置(曲線座標におけるx方向位置)を返す。その後、基準多項式の数値積分によって弧長が計算される。これにより、位置(曲線座標におけるy方向位置)が決まる。法線距離y=Nを考慮すると、車両座標系Fにおける所望される座標は、三角法を考慮した結果になる。
位置が、車両座標に変換された後、停止点(支持点またはノードも)が、いわゆるサブサンプリングによって決定され、一連の軌道候補が、上記のスプライン補間を使用して計算される。そのような結果として得られる一連の軌道候補C(参照文字36)は、例示的な交通シナリオ(また、運転状況または交通状況)の文脈で図7に示される。いずれの場合も、対象の自動車12は、2車線の車線道路32’の右車線34内の別の自動車28に追従するので、見ることができる。図7の上側の画像は、他の自動車28が、道路の直線部分の(静的または動的な)障害物であるシナリオを示す。図7の下側の画像では、道路の曲がりくねった部分に対応するシナリオが説明される。
言い換えれば、図7は、複数の(また一連の)組み合わされた候補軌道36、すなわち、対象の自動車12の横方向および縦方向のサンプル(位置および/または速度)から構成されるか、またはそれらから決定されることを示す。一連の候補軌道36を構成する個々の軌道は、各々灰色の線として表され、点の形式で線上に示された停止点によって接続される。
サンプリングベースの軌道計画の重要な態様は、候補軌道36の正確かつ迅速な決定である。したがって、本開示の文脈では、上記の2段階の計画および評価アプローチが使用される。したがって、人々の快適な運転と、正確な衝突回避の態様が組み合わされる。これは、一方では、候補軌道36(および、とりわけ、最後に候補軌道から決定された対象の自動車12の現在の交通状況に最適な軌道)が、人間の運転挙動を反映すべきであり、他方では、安全で正確な操作を確保する必要があるという背後事情に反する。この理由により、各操作クラスの候補軌道36は、動的衝突回避のために物理的に着想を得た安全距離をモデル化し、静的衝突回避、実現可能性(実行可能性)、および対象の自動車12のそれぞれの現在の交通状況の快適目標を考慮する、包括的な目標関数によって評価(チェック)される。したがって、最適な(可能な最良な)軌道は、現在の運転状況ごとに、および操作クラスごとに選択される。
安全上の理由から、選択された最適な軌道ごとに、関与する車両の正確な幾何学的表現を使用して再チェックが実行される。再チェックが失敗した場合は、ここで詳細に説明されていない代替戦略に切り替えることができる。
軌道候補36から(グローバルに)最適な軌道を決定するために、個々の操作クラスの可能な最良な軌道が互いに比較される。この比較は、説明されたコスト関数Φによって行われる。それが、最適な軌道が、同時に対象の自動車12の現在の運転状況に対して最良の操作クラスを表す理由である。以下の式は、最適な軌道x egoを決定するための比較を表す。
Figure 2022509420000011

ここで、Φは目標関数のコストを示す。式bおよびbは、以下のように定義される。
Figure 2022509420000012

Figure 2022509420000013
それに加えて、式ωおよびωは、正確な衝突制御のための重み付けパラメータを表す。図8は、図7を参照して既に提示された道路部分または運転状況の軌道候補36のうち、グローバルに最適な軌道x egoの計算の結果を示す。最適な軌道x egoは、軌道候補36の他の軌道と比較して、太く暗い点で示される。
次に、対象の自動車12について可能な最良な軌道x egoを評価(決定)するための包括的な目標関数として定義される目標関数の計算について説明する。したがって、目標関数の個々の項は、動的フィールド(環境)による動的衝突回避、静的フィールド(環境)による静的衝突回避、可能な最良な軌道の実現可能性/実行可能性、および、最適な軌道x egoに従うときの対象の自動車12の運転快適性を考慮する。道路の直線部分に対して最適な軌道x egoが評価される図8の上側の画像と、道路の曲がりくねった部分に対して可能な最良な軌道x egoが評価される図8の下側の画像との両方において、評価が、左への車線変更操作となる場合、それが現在の交通状況のさらなるコースで、この決定された最適な軌道x egoに従う場合、対象の自動車12は、他の自動車28を追い抜くことができる。なぜなら、たとえば、他の自動車28は、対象の自動車12よりもゆっくりと走行しているか、および/または、対象の自動車12を回避操作に強制させる減速プロセスを実行しなければならないからである。
目標関数に含まれるコスト関数は、以下のように定義される。
Φ=eΩe
ここで、Ωは、重み行列
Figure 2022509420000014
を表す。式eは、以下のように決定される誤りベクトルを示す。
e=[o,o,...,o,χ(h),χ(h),...,χ(hn-1)]
表示oは各々、目標関数の目標を表す。不等式条件は、χ(h)=max{[0,h]}によって考慮される。このようにして、静的および動的環境によって対象の自動車12の現在の運転状況に課せられる条件が考慮される。それに加えて、ホロノミック車両特性ではなく、(たとえば、カム円によって定義され得る)その最大加速度などの対象の自動車12の車両ダイナミクスに関する条件が記録される。所望される目標状態からの偏差も、目標関数の目標として定式化される。この目標状態は、上位レベルの計画モジュールによって定義されるため、ここでは詳細に説明しない。運転快適性に関する目標(o)を達成するために、対象の自動車12の側面(横方向)の加速度、走行方向(縦方向)の加速度、ならびに横方向および縦方向における衝撃(時間に対する加速度の導関数)は、最適な軌道x egoに従う場合に、最小化される。
次に、本明細書で使用される衝突チェックの基本が、図9を参照して説明される。対象の自動車12の候補軌道36の衝突回避を保証するために、対象の自動車12および他の自動車28の正確な幾何学的モデル(すなわち、衝突する可能性のある自動車のモデルの一般的な場合)が重要である。本開示の文脈において、境界ボックスは、対象の自動車12および他の自動車28および/または現在の交通状況に関与するさらなる自動車の形状を表すために使用される。これは、たとえば、図9から確認できる。長方形の箱は、車体によく使われる凸形状を高精度で表現するのに特に適している。
動的な衝突チェックの文脈では、モデルの精度が高いと、衝突チェックを実行する制御システム(この場合、制御システム10)の計算量も多くなる。これを防ぐために、たとえば、発生する可能性のある衝突の階層的なプルーニングを実行できるが、これにより、正確な衝突チェックの数が減少する。対照的に、複数の干渉試験は、すべての障害物軌道、すなわち、対象の自動車12が、たとえば、その現在の運転挙動、および、対象の自動車12および/または他の自動車28の現在の運転状況に基づいて、他の自動車28について決定する軌道に対する、個々の候補軌道各々の、ポイントバイポイントでの検査を必要とする。このポイントバイポイントのチェックは、実行中の制御システムの計算リソースに関する最悪ケースのシナリオに対応し、安全性を考慮して、実行時間内にその計算を常に考慮する必要がある。動的環境を適切に評価するために、空間および時間において衝突チェックが実行される。分離定理(Eidelheit定理)は、2つの長方形間の時間的オーバラップを表すために使用される。
図9は、分離定理を示す。両方の長方形(すなわち物体)を投影できる線があり、この線上の物体がオーバラップしない場合、対象の自動車12は、(両方とも長方形として示される)他の自動車28と衝突しないことが分かる。これは、図9に示す例の場合である。動的な衝突チェックの文脈では、対象の自動車12のすべての軌道候補36は、対象の自動車12によって決定された他の自動車28の軌道データを用いて、各時間tについてオーバラップをチェックされる。
動的な衝突チェックの実行時間が図10に示される。本例示的な実施形態では、境界ボックスを使用する正確な動的な衝突チェックの平均実行時間が想定され、これは、31個の軌道点からなる軌道を用いた10000回のチェック実行について決定された。平均実行時間は、対象の自動車の近くにある障害物(たとえば、他の自動車)の数に依存することは明らかである。障害物の数が多い場合(たとえば、7つ)でも、平均持続時間は約100μ秒である。
図11は、分離定理を使用した時空間領域における正確な動的な衝突チェックの例を示す。対象の自動車12および他の自動車28は、長方形としてモデル化される。図示された個々の各長方形12(位置が時間とともにx方向に変化する図11における長方形)は、時空間領域における対象の自動車12の位置を表す。積み重ねられた長方形28は各々、時空間領域における他の自動車28の位置を表す。最適な軌道x egoは、他の自動車28について決定された1つまたは複数の軌道に対して、各時間tにおいて、オーバラップをチェックされる(対象の自動車12の制御システム10は、この目的のために設定および設計される)。検出されたオーバラップは、起こり得る衝突を示す。
静的な衝突チェックもまた、たとえば、対象の自動車12と道路境界との切迫した衝突を検出するために実行される。これは、対象の自動車12の境界ボックスと、対応する車線標識の境界ボックスとの間の最小距離を計算することによって達成される。
2段階または2レベルの軌道計画および評価アプローチと、その2つの計画段階とが、明確化のために図12に再度示される。丸数字の1で印される左側の画像は、第1の計画フェーズを示す。そこで、軌道候補36は、目標関数から決定される(図2および対応する説明も参照されたい)。第2の計画ステップは、上記の衝突チェック(静的および動的)に関し、図12の右側に示される。
図13および図14を参照して、制御システム10または2段階の軌道計画および評価アプローチの機能が、現実的な交通シナリオによって示される。図13および図14は各々、先頭から下まで順に表示される5つの画像で構成される。交通シナリオは、ハイウェイへの接近であり、他の自動車28のように、接近部分の領域に他のいくつかの自動車(図13および図14において番号12で参照されていないすべての自動車)がある。図10および図11において、5つの画像の各々の間に2秒ある。
図13および図14に示される対象の自動車12は、その特定の説明された例のために、その前方、後部、および側面にレーダセンサを備え、さらに、対象の自動車12の前方の領域を監視するカメラを有する。したがって、静的および動的な環境情報は、説明された方式で、制御システム10へ提供された環境データから取得される。曲線座標Kを直交車両座標Fへ変換するための基準車線は、カメラデータに基づいて、対象の自動車12の制御システム10によって現在の運転状況において選択される。現在の運転状況またはサンプリング状況では、対象の自動車12のカメラが、他の既存の車線標識と比較して最大の領域を検出することができる車線標識が、基準車線標識として選択される。たとえば、対象の自動車12において利用可能なナビゲーションシステムによって、またはワイヤレスまたは有線の他の適切な手法によって制御システム10へ提供される地図データをさらに含めることによって、結果の精度、したがって品質が向上する。
制御システム10は、軌道計画および衝突回避のために使用される環境データが周期的に更新されるため、たとえば、モデル予測制御(後退ホライズン制御)で動作する。
ここで制御システム10の機能を制限しないと見なされる例では、クロックレート3.30GHzのシングルコアプロセッサおよび6MBキャッシュのための一連の100個の軌道のために、平均実行時間40ミリ秒が使用される。候補軌道36を生成するためのスプラインベースの補間のためにν=5の次数が設定され、予測スコープTのために3秒が選択される。
基本的な中央車線維持(SM)操作のための軌道は、中間時間tl=2=1.5秒のη=3個の支持点を有するスプラインとしてモデル化される。他の操作クラスの軌道の場合、支持点の数はη=2である。
図13および図14に示されるハイウェイにおける操作の文脈において、図においてID:7で印される車両は、最初に、他の自動車28として制御システム10によって選択される。この選択は、制御システム10によって決定される、対象の自動車12の現在の運転状況に対する他のすべての自動車の関連性に基づく。対象の自動車12は、同じ車線34上に示される状況(図13の先頭から1番目の写真)において他の自動車28に追従し、現在、他の自動車28よりも高い運転速度を有している。車線34は、高速道路への曲がりくねったアクセス車線である。その後、対象の自動車12および他の自動車28は、車線34からハイウェイの右車線へ変更する。
このとき、対象の自動車12の運転者または運転者支援システム20は、対象の自動車12の縦方向速度を90km/hに上げたいと考えている。対象の自動車12によって実行される追い越しプロセスは、他の自動車28が現在、たとえば70km/hで、より遅く運転しているとしても、運転シナリオの開始時に不可能である。左への車線変更を引き起こす軌道は、おそらく追い越しをしている他の自動車36との衝突に至る。後のコース(図13の先頭から4番目の写真の開始時)では、対象の自動車12の追い越し操作は、さらなる自動車38によって阻止される。したがって、制御システム10は、車線維持(SHM)のための軌道を選択し、対象の自動車12は、前方の他の自動車28から一定の距離を維持するために(図13における先頭から2乃至5番目の図を参照)、たとえば、運転者支援システム20によって減速される。
図14の先頭の画像では、制御システム10が、現在の状況の追い越しプロセスを考慮していることが分かる。したがって、制御システム10は、軌道候補36から、左側を維持する車線の軌道(SHL、図3の基準経路28bも参照)を最適な軌道x egoとして選択する。したがって、対象の自動車12は、追い越しプロセスを開始するために、現在の車線の左側の車線に近づく運転操作を実行する。
図14の先頭から2番目の図では、中央における車線維持のための軌道が、軌道候補36から制御システム12によって再び選択されていることが分かる。したがって、追い越し操作は(たとえば、制御システム10および/または運転者支援システム20によって)中止され、対象の自動車12は、再び、実質的に現在走行している車線の中央にある。
この理由は、図14の中央の画像に示される。対象の自動車12よりも高速で走行する自動車40は、追い越し車線における後方から、対象の自動車12に接近する。再び衝突の危険性がある。それが、対象の自動車12を追い越すための操作が不可能である理由である。
図14の先頭から4番目の画像では、高速で移動する自動車40が、その間、対象の自動車12から縦方向に比較的大きな距離を確立していることが分かり(図13および図14のE)、これで、対象の自動車12の追い越し操作が可能となった。高速車線でも、この時点で、後方から、より高速の車両は接近してこない。
対象の自動車12は、90km/hの典型的な速度に加速されるべきであるが、他の自動車28はより遅く運転しているので、他の自動車28は、追い越し操作が可能になるや否や、軌道計画のために最も関連する道路利用者ではなくなる。したがって、制御システム10は、軌道計画のための基準(道路利用者)としてさらなる自動車40を選択し、上記のように、左側における車線変更である操作クラスから、最適な軌道x egoを計算する(図14の先頭から3番目および4番目の画像参照)。次に、対象の自動車12は、中央における車線維持である操作クラスからの最適な軌道x egoに基づいて、高速車線におけるさらなる自動車40を追い、低速で移動する他の自動車28を追い抜く。
図13および図14の個々の状況(画像)における対象の自動車12の速度が図15に示される。図13および図14に示される追い越し操作は、図15の時間t=8秒で開始し、図15の時間t=26秒で終了する。前述のように、図13および図14の個々の画像間は2秒である。図15から分かるように、対象の自動車は、所望される(たとえば、運転者支援システム10によって事前に決定された)90km/hを達成するために、t=26秒に達する直前に加速することができる。これは、対象の自動車12によって実行される、図14の(先頭から)最後の2つの写真に示される追い越しプロセスを特徴付ける。
本開示は、候補軌道のサンプリングベースの計画のための制御システム(10)を取り扱う。適切な軌道候補36が生成され、リアルタイムで評価される。横方向のサンプリングは、横方向の基本操作クラスに基づく。これは、半自律型運転のための車線離散構造を利用する。状態空間における横方向の値のこの横方向のサンプリングとは対照的に、縦方向のサンプル(すなわち、走行方向におけるサンプリング値)は、(動的)動作空間から生成され、ここで、対象の自動車12の縦方向加速度は、制御パラメータとして使用される。サンプリング効率は、適応離散化によって向上する。
スプラインベースの軌道の定式化および曲線座標におけるそれらの適用は、制御システム10が(実質的に)リアルタイムで機能し、湾曲した道路部分と、直線の道路部分との両方のために使用できるという利点を提供する。
軌道候補36の計画および評価への2段階のアプローチは、対象の自動車12の近くで現在の運転状況にある他の道路利用者の軌道との衝突を回避するために使用される。これらの軌道はまた、制御システム10によって決定される。それに加えて、評価は、必要な運転快適性と、可能な最適な軌道の実現可能性とを含む。
より高い制御システムは、目標状態を提供するだけであるため、対象の自動車12の横方向および縦方向の運転特性は、高度な制御システムによって事前に決定されない。したがって、提示されたサンプリングおよび評価戦略により、車線変更などの横方向の操作の軌道計画だけでなく、前方車両の追従や、車線数が少ない車線への流入など、本質的に他の運転操作の実行も可能になる。
上記で説明された例示的な実施形態は網羅的ではなく、本明細書に開示される主題を制限しないことが理解される。特に、当業者には、異なる実施形態の特徴を互いに組み合わせることができ、および/または本明細書に開示される主題から逸脱することなく、実施形態の様々な特徴を省略できることが明らかである。

Claims (14)

  1. 対象の自動車(12)で使用するために設定および設計された制御システム(10)であって、前記自動車に関連付けられた少なくとも1つの環境センサ(14,16,18)から取得された環境データに基づいて、車線、道路境界、道路標識、他の自動車、および/または、前記対象の自動車の前方の、横方向に隣接する、および/または後方の領域(22,24,26)における物体を検出し、前記少なくとも1つの環境センサは、前記制御システム(10)の電子コントローラに、前記対象の自動車の前方の、横方向に隣接する、および/または後方の前記領域を反映する環境データを提供するように設定および設計され、前記制御システムは少なくとも、
    - 提供された前記環境データに基づいて、前記対象の自動車(12)および少なくとも1つの他の自動車の現在の運転状況に関する情報を判定し、
    - 前記対象の自動車(12)および/または前記他の自動車の前記現在の運転状況に関する情報に基づいて、複数の横方向位置を判定し、
    - 前記対象の自動車(12)および/または前記他の自動車の前記現在の運転状況に関する情報に基づいて、いくつかの縦方向位置および/または速度を判定し、
    - 運転操作を実行するために前記対象の自動車(12)が追従すべき、前記対象の自動車(12)の軌道の停止点を判定し、
    - 前記判定された停止点間のスプラインベースの補間によって、および、前記停止点における前記横方向位置に対応する、前記対象の自動車(12)の前記軌道を決定するように設定および設計される、制御システム(10)。
  2. 請求項1に記載の制御システム(10)において、
    - 前記提供された環境データに基づいて、前記対象の自動車(12)が実行する基本運転操作を決定し、
    - 前記決定された基本操作に基づいて、少なくとも複数の横方向位置を判定し、および/または、基本操作クラスを示す値を、前記横方向位置の少なくとも1つに割り当てるようにさらに設定および設計され、前記基本操作クラスは、左への車線変更、右への車線変更、および車線維持のための基本操作から少なくとも構成される一連の基本操作クラスに含まれる、制御システム(10)。
  3. 請求項1または2に記載の制御システム(10)において、前記対象の自動車(12)および/または前記他の自動車の縦方向加速度に基づいて、前記複数の縦方向位置を判定するようにさらに設定および設計される、制御システム(10)。
  4. 請求項1から3のいずれか一項に記載の制御システム(10)において、適応離散化によって、前記複数の縦方向位置を判定するようにさらに設定および設計され、前記対象の自動車(12)および/または前記他の自動車の加速度が、前記適応離散化のための制御パラメータとして使用される、制御システム(10)。
  5. 請求項1から4のいずれか一項に記載の制御システム(10)において、静的な衝突チェックを考慮して、前記対象の自動車(12)の前記軌道の決定を実行するようにさらに設定および設計され、前記静的な衝突チェックは、前記対象の自動車および/または前記他の自動車の、多くの横方向位置に基づく、制御システム(10)。
  6. 請求項1から5のいずれか一項に記載の制御システム(10)において、動的な衝突チェックを考慮して、前記対象の自動車(12)の前記軌道を決定するようにさらに設定および設計され、前記動的な衝突チェックは、前記複数の横方向位置に、および/または、前記複数の縦方向位置および/または速度に基づく、制御システム(10)。
  7. 請求項6に記載の制御システム(10)において、前記対象の自動車(12)および/または前記他の自動車の最大加速度を考慮して、前記動的な衝突チェックを実行するようにさらに設定および設計される、制御システム(10)。
  8. 請求項5から7のいずれか一項に記載の制御システム(10)において、分離定理を使用して、前記静的な衝突チェックおよび/または前記動的な衝突チェックを実行するようにさらに設定および設計される、制御システム(10)。
  9. 請求項1から8のいずれか一項に記載の制御システム(10)において、コスト関数に基づく目標関数によって、前記対象の自動車(12)の前記軌道をチェックするようにさらに設定および設計される、制御システム(10)。
  10. 請求項9に記載の制御システム(10)において、目標状態が、前記目標関数に割り当てられ、前記目標関数の、前記目標状態からの偏差が、前記目標関数の目標として使用される、制御システム(10)。
  11. 請求項10に記載の制御システム(10)において、前記対象の自動車(12)の前記横方向および/または縦方向の加速度の形態で、および/または、前記対象の自動車の前記横方向および/または縦方向の衝撃の形態で、前記目標関数のさらなる目標が、前記目標関数の目標状態として使用される、制御システム(10)。
  12. 請求項1から11のいずれか一項に記載の制御システム(10)において、前記環境データによって前記対象の自動車(12)の前記制御システム(10)へ提供される基準車線に対して、曲線座標における、前記対象の自動車(12)および/または前記他の自動車の前記複数の横方向位置および/または前記複数の縦方向位置および/または速度を判定し、直交座標における前記対象の自動車の前記軌道をチェックするようにも設定および設計される、制御システム(10)。
  13. 対象の自動車(12)において、前記対象の自動車(12)に関連付けられた少なくとも1つの環境センサ(14,16,18)からの環境データに基づいて、前記対象の自動車(12)の前方の、横方向に隣接する、および/または、後方の領域内の車線、道路境界、道路標識、他の自動車および/または物体を検出する制御方法であって、前記制御方法は、特に、請求項1から12のいずれか一項に記載の制御システム(10)によって実行され、前記制御方法は、少なくとも、
    - 提供された前記環境データに基づいて、前記対象の自動車(12)および少なくとも1つの他の自動車の現在の運転状況に関する情報を判定するステップと、
    - 前記対象の自動車(12)および/または前記他の自動車の前記現在の運転状況に関する情報に基づいて、複数の横方向位置を判定するステップと、
    - 前記対象の自動車(12)および/または前記他の自動車の前記現在の運転状況に関する情報に基づいて、複数の縦方向位置および/または速度を判定するステップと、
    - 運転操作を実行するときに前記対象の自動車が追従すべき、前記対象の自動車の軌道の停止点を判定するステップと、
    前記判定された停止点間のスプラインベースの補間によって、および、前記停止点における前記横方向位置に従って、前記対象の自動車(12)の前記軌道を決定するステップとを含む、制御方法。
  14. 請求項1から11のいずれか一項に記載の制御システムを備える、自動車。
JP2021547930A 2018-10-31 2019-10-30 自動車の可能な軌道のサンプリングベースの計画のための制御システムおよび制御方法 Active JP7546580B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018008624.1 2018-10-31
DE102018008624.1A DE102018008624A1 (de) 2018-10-31 2018-10-31 Steuerungssystem und Steuerungsverfahren zum samplingbasierten Planen möglicher Trajektorien für Kraftfahrzeuge
PCT/EP2019/079696 WO2020089311A1 (de) 2018-10-31 2019-10-30 Steuerungssystem und steuerungsverfahren zum samplingbasierten planen möglicher trajektorien für kraftfahrzeuge

Publications (2)

Publication Number Publication Date
JP2022509420A true JP2022509420A (ja) 2022-01-20
JP7546580B2 JP7546580B2 (ja) 2024-09-06

Family

ID=68536784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021547930A Active JP7546580B2 (ja) 2018-10-31 2019-10-30 自動車の可能な軌道のサンプリングベースの計画のための制御システムおよび制御方法

Country Status (6)

Country Link
US (1) US20220080961A1 (ja)
EP (1) EP3873784A1 (ja)
JP (1) JP7546580B2 (ja)
CN (1) CN113165648A (ja)
DE (1) DE102018008624A1 (ja)
WO (1) WO2020089311A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018009927A1 (de) * 2018-12-17 2020-06-18 Trw Automotive Gmbh Steuerungssystem und Steuerungsverfahren für einen hybriden Ansatz zum Ermitteln einer möglichen Trajektorie für ein Kraftfahrzeug
DE102019206562A1 (de) * 2019-05-07 2020-11-12 Volkswagen Aktiengesellschaft Verfahren zum Ermitteln einer Fahrzeugtrajektorie
JP7194640B2 (ja) * 2019-05-16 2022-12-22 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
DE102019129879A1 (de) * 2019-11-06 2021-05-06 Zf Friedrichshafen Ag Verfahren sowie Steuergerät zum Steuern eines Kraftfahrzeugs
WO2021168058A1 (en) * 2020-02-19 2021-08-26 Nvidia Corporation Behavior planning for autonomous vehicles
JP7464425B2 (ja) * 2020-03-31 2024-04-09 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
US11618476B2 (en) * 2020-06-05 2023-04-04 Toyota Research Institute, Inc. Curvilinear coordinate systems for predicting vehicle behavior
US11520343B2 (en) * 2020-06-15 2022-12-06 Argo AI, LLC Methods and systems for performing inter-trajectory re-linearization about an evolving reference path for an autonomous vehicle
US11814075B2 (en) * 2020-08-26 2023-11-14 Motional Ad Llc Conditional motion predictions
DE102020214022A1 (de) 2020-11-09 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum automatischen Ausführen einer Fahrfunktion in einem Fahrzeug
DE102020215771A1 (de) 2020-12-14 2022-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen einer Trajektorie eines Fahrzeugs
CN112721952B (zh) * 2021-01-29 2022-07-05 重庆长安汽车股份有限公司 一种l3级自动驾驶汽车的复杂路段行驶控制方法、装置、汽车及计算机存储介质
US12024204B2 (en) 2021-04-09 2024-07-02 Direct Cursus Technology L.L.C Method of and system for predicting a maneuver of an object
US20220371613A1 (en) * 2021-05-21 2022-11-24 Zoox, Inc. Vehicle trajectory determination
CN113978465A (zh) * 2021-09-28 2022-01-28 阿波罗智能技术(北京)有限公司 一种变道轨迹规划方法、装置、设备以及存储介质
US20230159054A1 (en) * 2021-11-24 2023-05-25 Motional Ad Llc Encoding homotopy constraints in spatio-temporal grids
CN114291116B (zh) * 2022-01-24 2023-05-16 广州小鹏自动驾驶科技有限公司 周围车辆轨迹预测方法、装置、车辆及存储介质
CN115092177B (zh) * 2022-06-22 2024-06-25 重庆长安汽车股份有限公司 一种无人驾驶车辆匝道目标场景的id分配方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217891A1 (de) * 2015-09-17 2017-03-23 Volkswagen Aktiengesellschaft Bestimmen einer Soll-Trajektorie für ein Fahrzeug
JP2017165156A (ja) * 2016-03-14 2017-09-21 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
DE102016205442A1 (de) * 2016-04-01 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Optimierung einer Pfadplanung eines Fahrzeugs
DE102016211129A1 (de) * 2016-06-22 2017-12-28 Kuka Roboter Gmbh Verfahren zum Überprüfen einer Kollision zwischen zwei fahrerlosen Transportfahrzeugen, fahrerloses Transportfahrzeug und System mit mehreren fahrerlosen Transportfahrzeugen

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036276A1 (de) * 2000-07-26 2002-02-07 Daimler Chrysler Ag Automatisches Brems- und Lenksystem für ein Fahrzeug
DE102007013303A1 (de) * 2007-03-16 2008-09-18 Robert Bosch Gmbh Verfahren zur Berechnung einer kollisionsvermeidenden Trajektorie für ein Fahrmanöver eines Fahrzeugs
JP6128584B2 (ja) * 2013-01-16 2017-05-17 株式会社Soken 走行経路生成装置
EP2942250B1 (en) * 2014-05-08 2017-02-01 Volvo Car Corporation Method for determining an evasive path for a host vehicle
US9244462B2 (en) * 2014-05-30 2016-01-26 Nissan North America, Inc. Vehicle trajectory planning for autonomous vehicles
DE102014008353B4 (de) 2014-06-04 2016-09-15 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems zur automatisierten Führung eines Kraftfahrzeugs sowie zugeordnetes Kraftfahrzeug
EP2990290B1 (en) * 2014-09-01 2019-11-06 Honda Research Institute Europe GmbH Method and system for post-collision manoeuvre planning and vehicle equipped with such system
JP6356585B2 (ja) * 2014-11-28 2018-07-11 株式会社デンソー 車両の走行制御装置
US9285805B1 (en) * 2015-07-02 2016-03-15 Geodigital International Inc. Attributed roadway trajectories for self-driving vehicles
US10684133B2 (en) * 2015-07-22 2020-06-16 Honda Motor Co., Ltd. Route generator, route generation method, and route generation program
JP6344695B2 (ja) * 2015-10-28 2018-06-20 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
CN105549597B (zh) * 2016-02-04 2018-06-26 同济大学 一种基于环境不确定性的无人车动态路径规划方法
CN108778882B (zh) * 2016-03-15 2021-07-23 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
JP2017207885A (ja) * 2016-05-18 2017-11-24 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
WO2018008085A1 (ja) * 2016-07-05 2018-01-11 三菱電機株式会社 認知領域推定装置、認知領域推定方法および認知領域推定プログラム
DE102016009305A1 (de) * 2016-08-01 2018-02-01 Lucas Automotive Gmbh Steuerungs-System und Steuerungs-Verfahren zur Auswahl und Verfolgung eines Kraftfahrzeugs
DE102016009760A1 (de) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Steuerungssystem und Steuerungsverfahren zum Führen eines Kraftfahrzeugs entlang eines Pfades
EP3291202B1 (en) * 2016-08-29 2019-04-17 Volvo Car Corporation Method of road vehicle trajectory planning
JP6600418B2 (ja) * 2016-09-28 2019-10-30 本田技研工業株式会社 車両制御装置
CN109844669B (zh) * 2016-09-29 2022-03-11 本田技研工业株式会社 车辆控制装置
JP6637400B2 (ja) * 2016-10-12 2020-01-29 本田技研工業株式会社 車両制御装置
JP6558393B2 (ja) * 2017-04-06 2019-08-14 トヨタ自動車株式会社 進路設定装置及び進路設定方法
JP6799150B2 (ja) * 2017-05-25 2020-12-09 本田技研工業株式会社 車両制御装置
US11009884B2 (en) * 2017-09-29 2021-05-18 Direct Current Capital LLC Method for calculating nominal vehicle paths for lanes within a geographic region
US10705193B2 (en) * 2017-12-07 2020-07-07 Ouster, Inc. Monitoring of vehicles using light ranging systems
US20180150081A1 (en) * 2018-01-24 2018-05-31 GM Global Technology Operations LLC Systems and methods for path planning in autonomous vehicles
EP3546983B1 (en) * 2018-03-28 2021-12-08 Aptiv Technologies Limited Method for identifying objects in a traffic space
US10802492B2 (en) * 2018-04-05 2020-10-13 Ford Global Technologies, Llc Vehicle path identification
US10614717B2 (en) * 2018-05-17 2020-04-07 Zoox, Inc. Drive envelope determination
JP6958500B2 (ja) * 2018-07-20 2021-11-02 株式会社デンソー 移動物体検出装置
FR3086073B1 (fr) * 2018-09-19 2020-12-11 Transdev Group Dispositif electronique de determination d'une trajectoire d'arret d'urgence d'un vehicule autonome, vehicule et procede associes
US11001256B2 (en) * 2018-09-19 2021-05-11 Zoox, Inc. Collision prediction and avoidance for vehicles
US11041736B2 (en) * 2018-09-20 2021-06-22 Toyota Jidosha Kabushiki Kaisha Generating real-time high-definition (HD) maps using wireless vehicle data of a remote vehicle
GB2579414B (en) * 2018-11-30 2021-11-17 Thales Holdings Uk Plc Method and apparatus for determining a position of a vehicle
US11131993B2 (en) * 2019-05-29 2021-09-28 Argo AI, LLC Methods and systems for trajectory forecasting with recurrent neural networks using inertial behavioral rollout
US11520343B2 (en) * 2020-06-15 2022-12-06 Argo AI, LLC Methods and systems for performing inter-trajectory re-linearization about an evolving reference path for an autonomous vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217891A1 (de) * 2015-09-17 2017-03-23 Volkswagen Aktiengesellschaft Bestimmen einer Soll-Trajektorie für ein Fahrzeug
JP2017165156A (ja) * 2016-03-14 2017-09-21 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
DE102016205442A1 (de) * 2016-04-01 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Optimierung einer Pfadplanung eines Fahrzeugs
DE102016211129A1 (de) * 2016-06-22 2017-12-28 Kuka Roboter Gmbh Verfahren zum Überprüfen einer Kollision zwischen zwei fahrerlosen Transportfahrzeugen, fahrerloses Transportfahrzeug und System mit mehreren fahrerlosen Transportfahrzeugen

Also Published As

Publication number Publication date
WO2020089311A1 (de) 2020-05-07
CN113165648A (zh) 2021-07-23
EP3873784A1 (de) 2021-09-08
JP7546580B2 (ja) 2024-09-06
DE102018008624A1 (de) 2020-04-30
US20220080961A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7546580B2 (ja) 自動車の可能な軌道のサンプリングベースの計画のための制御システムおよび制御方法
US20220066457A1 (en) Trajectory setting device and trajectory setting method
CN107848531B (zh) 车辆控制装置、车辆控制方法及存储车辆控制程序的介质
US11462099B2 (en) Control system and control method for interaction-based long-term determination of trajectories for motor vehicles
US12077180B2 (en) Control system and control method for a hybrid approach for determining a possible trajectory for a motor vehicle
CN114074681B (zh) 基于概率的车道变更决策和运动规划系统及其方法
WO2017159539A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
US7974748B2 (en) Driver assistance system with vehicle states, environment and driver intention
US9708004B2 (en) Method for assisting a driver in driving an ego vehicle and corresponding driver assistance system
US11433897B2 (en) Method and apparatus for determination of optimal cruising lane in an assisted driving system
US10803307B2 (en) Vehicle control apparatus, vehicle, vehicle control method, and storage medium
CN114987498B (zh) 自动驾驶车辆的拟人化轨迹规划方法、装置、车辆及介质
EP3857327B1 (en) Implementation of dynamic cost function of self-driving vehicles
CN115465283A (zh) 自适应信任校准
JP7341806B2 (ja) 運転制御方法及び運転制御装置
CN113561992B (zh) 自动驾驶车辆轨迹生成方法、装置、终端设备及介质
US12017679B2 (en) Adaptive trust calibration
CN114877904A (zh) 一种道路曲率的估计方法、测量装置和计算机设备
JP2024532675A (ja) インテリジェント運転判断方法、車両走行制御方法及び装置、並びに車両
WO2023149003A1 (ja) 車両制御装置
Bourbakis et al. Smart cars as autonomous intelligent agents
RU2790105C2 (ru) Способ и электронное устройство для управления беспилотным автомобилем
US20240092365A1 (en) Estimation device, estimation method, and program
Michalke et al. Evolution in Advanced Driver Assistance: From Steering Support in Highway Construction Zones to Assistance in Urban Narrow Road Scenarios
CN114217601B (zh) 自驾车的混合决策方法及其系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240827

R150 Certificate of patent or registration of utility model

Ref document number: 7546580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150