JP2022504104A - 動的nefトンネル割り当てと関係するネットワークノード/機能とを提供する方法 - Google Patents

動的nefトンネル割り当てと関係するネットワークノード/機能とを提供する方法 Download PDF

Info

Publication number
JP2022504104A
JP2022504104A JP2021518135A JP2021518135A JP2022504104A JP 2022504104 A JP2022504104 A JP 2022504104A JP 2021518135 A JP2021518135 A JP 2021518135A JP 2021518135 A JP2021518135 A JP 2021518135A JP 2022504104 A JP2022504104 A JP 2022504104A
Authority
JP
Japan
Prior art keywords
node
tunnel
nef
upf
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021518135A
Other languages
English (en)
Other versions
JP7116846B2 (ja
Inventor
ハンス ベルティル ロンネケ,
チエン チェン,
ステファン ロンメル,
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2022504104A publication Critical patent/JP2022504104A/ja
Application granted granted Critical
Publication of JP7116846B2 publication Critical patent/JP7116846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Figure 2022504104000001
SMFノードを動作させるための方法が提供される。無線デバイスのためのセッションを作成するようにとの要求が受信される。無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、NEFノードに通信確立要求が送信され、通信確立要求は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を含む。NEFノードから通信確立応答が受信され、通信確立応答は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。通信確立応答を受信した後に、UPFノードにトンネル情報更新が送信され、トンネル情報更新は、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。
【選択図】図4

Description

本開示は、一般に通信に関し、より詳細には、通信ネットワーク、ならびに関係する方法およびネットワークノード/エンティティに関する。
3GPPは、TR23.724(参考文献[1])を通して、第5世代5Gsのためのモノのインターネット(IoT)研究アイテムを開始した。1つの問題点は、コアネットワークからNEFノードへのデータ配信(たとえば、NIDD、すなわち、非IPデータ配信)をどのようにハンドリングすべきかである。23.724v1.0.0中のソリューション35が、無線デバイスUEがユーザプレーンを通してデータを配信するときの1つの手法である。この手法では、UPF/NEFは組み合わせられたエンティティであり、UPFノードとNEFノードとの間に特定のインターフェースが規定されない。しかしながら、そのような手法は、十分なフレキシビリティを提供しないことがある。
発明概念のいくつかの実施形態によれば、無線通信ネットワークのセッション管理機能(SMF)ノードを動作させるための方法が提供される。無線デバイスのためのセッションを作成するようにとの要求が受信される。無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、ネットワーク露出機能(NEF)ノードに通信確立要求が送信され、通信確立要求は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を含む。NEFノードから通信確立応答が受信され、通信確立応答は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。通信確立応答を受信した後に、UPFノードにトンネル情報更新が送信され、トンネル情報更新は、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。
発明概念のいくつかの他の実施形態によれば、無線通信ネットワークのネットワーク露出機能(NEF)ノードを動作させるための方法が提供される。統合データ管理(UDM)ノードに設定情報が提供され、設定情報は、NEFノードに関連する無線デバイスUEの識別(identification)を含む。設定情報を提供した後に、セッション管理機能(SMF)ノードから通信確立要求が受信され、通信確立要求は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を含む。SMFノードに通信確立応答が送信され、通信確立応答は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。トンネルは、無線デバイスのためのセッションのために、NEFノードとUPFノードとの間で、トンネルについてのUPFノード情報を使用して確立され得る。無線デバイスのためのセッションのためのデータの通信が、そのトンネルを通して提供され得る。
発明概念のさらに他の実施形態によれば、無線通信ネットワークのユーザプレーン機能(UPF)ノードを動作させるための方法が提供される。セッション管理機能(SMF)ノードからトンネル情報更新が受信され、トンネル情報更新は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。トンネルは、無線デバイスのためのセッションのために、NEFノードとUPFノードとの間で、トンネルについてのNEFノード情報を使用して確立される。無線デバイスのためのセッションのためのデータの通信が、そのトンネルを通して提供される。
本明細書で開示されるある実施形態によれば、増加されたフレキシビリティとともに、および/またはネットワーク機能ノード間の通信シグナリングを著しく増加させることなしに、セッション確立中にトンネル割り当てが提供され得る。
本開示のさらなる理解を提供するために含まれ、本出願に組み込まれ、本出願の一部をなす、添付の図面は、発明概念のいくつかの非限定的な実施形態を示す。
5G非ローミングアーキテクチャを示すブロック図である。 ローミング5Gシステムアーキテクチャを示すブロック図である。 小データ転送経路セットアッププロシージャを示すメッセージ図である。 発明概念のいくつかの実施形態による、セットアッププロシージャを示すメッセージ図である。 発明概念のいくつかの実施形態による、SMFサービス/ノードを示すブロック図である。 発明概念のいくつかの実施形態による、UPFサービス/ノードを示すブロック図である。 発明概念のいくつかの実施形態による、NEFサービス/ノードを示すブロック図である。 いくつかの実施形態による、無線ネットワークのブロック図である。 いくつかの実施形態による、ユーザ機器のブロック図である。 いくつかの実施形態による、仮想化環境のブロック図である。 いくつかの実施形態による、中間ネットワークを介してホストコンピュータに接続された通信ネットワークのブロック図である。 いくつかの実施形態による、部分的無線接続上で基地局を介してユーザ機器と通信するホストコンピュータのブロック図である。 いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法のブロック図である。 いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法のブロック図である。 いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法のブロック図である。 いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法のブロック図である。 発明概念のいくつかの実施形態による、SMFノードの動作を示すフローチャートである。 発明概念のいくつかの実施形態による、NEFノードの動作を示すフローチャートである。 発明概念のいくつかの実施形態による、UPFノードの動作を示すフローチャートである。
次に、発明概念の実施形態の例が示されている添付の図面を参照しながら、発明概念が以下でより十分に説明される。しかしながら、発明概念は、多くの異なる形態で具現され得、本明細書に記載される実施形態に限定されるものとして解釈されるべきではない。むしろ、これらの実施形態は、本開示が徹底的かつ完全であり、本発明概念の範囲を当業者に十分に伝達するように提供される。これらの実施形態は相互排他的でないことにも留意されたい。一実施形態からの構成要素が、別の実施形態において存在する/使用されると暗に仮定され得る。
以下の説明は、開示される主題の様々な実施形態を提示する。これらの実施形態は、教示例として提示され、開示される主題の範囲を限定するものと解釈されるべきではない。たとえば、説明される実施形態のいくらかの詳細は、説明される主題の範囲から逸脱することなく、修正、省略、または拡大され得る。
図5は、発明概念のいくつかの実施形態による、セルラ通信をサポートするように設定されたSMFノード/エンティティ/機能/サーバ901のエレメントを示すブロック図である。図示のように、SMFノード901は、他のネットワークノード/エンティティ/機能/サーバとの通信を提供するように設定された(ネットワークインターフェースとも呼ばれる)ネットワークインターフェース回路1007を含み得る。SMFノード901は、ネットワークインターフェース回路1007に結合された(プロセッサとも呼ばれる)プロセッサ回路1003と、プロセッサ回路に結合された(メモリとも呼ばれる)メモリ回路1005とをも含み得る。メモリ回路1005は、プロセッサ回路1003によって実行されたとき、プロセッサ回路に、本明細書で開示される実施形態による動作(たとえば、図4に示されている動作、図17に示されている動作、および/またはSMFノードに関係するそれぞれの例示的な実施形態に関して以下で説明される動作)を実施させるコンピュータ可読プログラムコードを含み得る。他の実施形態によれば、プロセッサ回路1003は、別個のメモリ回路が必要とされないようなメモリを含むように規定され得る。
本明細書で説明されるように、SMFノード901の動作は、プロセッサ1003および/またはネットワークインターフェース1007によって実施され得る。たとえば、プロセッサ1003は、1つまたは複数の他のネットワークノード/エンティティ/機能/サーバに、ネットワークインターフェース1007を通して通信を送信し、および/または1つまたは複数の他のネットワークノード/エンティティ/サーバからネットワークインターフェースを通して通信を受信するように、ネットワークインターフェース1007を制御し得る。その上、モジュールがメモリ1005に記憶され得、これらのモジュールは、モジュールの命令がプロセッサ1003によって実行されたとき、プロセッサ1003がそれぞれの動作を実施するように、命令を提供し得る。SMFノード901の動作は、たとえば、1つのサーバによって実施されるか、または図5の構造を有する複数のネットワークサーバにわたって分散され得、複数のそのような分散サーバはサーバと総称され得る。いくつかの実施形態によれば、SMFノード901は仮想SMFノードとして提供され得る。
図6は、発明概念のいくつかの実施形態による、セルラ通信をサポートするように設定されたUPFノード/エンティティ/機能/サーバ903のエレメントを示すブロック図である。図示のように、UPFノード903は、他のネットワークノード/エンティティ/機能/サーバとの通信を提供するように設定された(ネットワークインターフェースとも呼ばれる)ネットワークインターフェース回路1107を含み得る。UPFノード903は、ネットワークインターフェース回路1107に結合された(プロセッサとも呼ばれる)プロセッサ回路1103と、プロセッサ回路に結合された(メモリとも呼ばれる)メモリ回路1105とをも含み得る。メモリ回路1105は、プロセッサ回路1103によって実行されたとき、プロセッサ回路に、本明細書で開示される実施形態による動作(たとえば、図4に示されている動作、図19に示されている動作、および/またはUPFノードに関係するそれぞれの例示的な実施形態に関して以下で説明される動作)を実施させるコンピュータ可読プログラムコードを含み得る。他の実施形態によれば、プロセッサ回路1103は、別個のメモリ回路が必要とされないようなメモリを含むように規定され得る。
本明細書で説明されるように、UPFノード903の動作は、プロセッサ1103および/またはネットワークインターフェース1107によって実施され得る。たとえば、プロセッサ1103は、1つまたは複数の他のネットワークノード/エンティティ/機能/サーバに、ネットワークインターフェース1107を通して通信を送信し、および/または1つまたは複数の他のネットワークノード/エンティティ/機能/サーバからネットワークインターフェースを通して通信を受信するように、ネットワークインターフェース1107を制御し得る。その上、モジュールがメモリ1105に記憶され得、これらのモジュールは、モジュールの命令がプロセッサ1103によって実行されたとき、プロセッサ1103がそれぞれの動作を実施するように、命令を提供し得る。UPFノード903の動作は、たとえば、1つのサーバによって実施されるか、または図6の構造を有する複数のネットワークサーバにわたって分散され得、複数のそのような分散サーバはサーバと総称され得る。いくつかの実施形態によれば、UPFノード903は仮想UPFノードとして提供され得る。
図7は、発明概念のいくつかの実施形態による、セルラ通信をサポートするように設定されたNEFノード/エンティティ/機能/サーバ905のエレメントを示すブロック図である。図示のように、NEFノード905は、他のネットワークノード/エンティティ/機能/サーバとの通信を提供するように設定された(ネットワークインターフェースとも呼ばれる)ネットワークインターフェース回路1207を含み得る。NEFノード905は、ネットワークインターフェース回路1207に結合された(プロセッサとも呼ばれる)プロセッサ回路1203と、プロセッサ回路に結合された(メモリとも呼ばれる)メモリ回路1205とをも含み得る。メモリ回路1205は、プロセッサ回路1203によって実行されたとき、プロセッサ回路に、本明細書で開示される実施形態による動作(たとえば、図4に示されている動作、図18に示されている動作、および/またはNEFノードに関係するそれぞれの例示的な実施形態に関して以下で説明される動作)を実施させるコンピュータ可読プログラムコードを含み得る。他の実施形態によれば、プロセッサ回路1203は、別個のメモリ回路が必要とされないようなメモリを含むように規定され得る。
本明細書で説明されるように、NEFノード905の動作は、プロセッサ1203および/またはネットワークインターフェース1207によって実施され得る。たとえば、プロセッサ1203は、1つまたは複数の他のネットワークノード/エンティティ/機能/サーバに、ネットワークインターフェース1207を通して通信を送信し、および/または1つまたは複数の他のネットワークノード/エンティティ/機能/サーバからネットワークインターフェースを通して通信を受信するように、ネットワークインターフェース1207を制御し得る。その上、モジュールがメモリ1205に記憶され得、これらのモジュールは、モジュールの命令がプロセッサ1203によって実行されたとき、プロセッサ1203がそれぞれの動作を実施するように、命令を提供し得る。NEFノード905の動作は、たとえば、1つのサーバによって実施されるか、または図12の構造を有する複数のネットワークサーバにわたって分散され得、複数のそのような分散サーバはサーバと総称され得る。いくつかの実施形態によれば、NEFノード905は仮想NEFノードとして提供され得る。
それぞれ、図5はSMFノード/エンティティ/機能/サーバの構造を示し、図6はUPFノード/エンティティ/機能/サーバの構造を示し、図7はNEFノード/エンティティ/機能/サーバの構造を示すが、他のネットワークノード/エンティティ/機能/サーバは、ネットワークインターフェースと、プロセッサと、メモリとを含む同じ/同様の構造を有し得る。たとえば、ネットワークインターフェースと、プロセッサと、メモリとを含むそのような構造は、AMFノード/エンティティ/機能/サーバ、UDMノード/エンティティ/機能/サーバ、AFノード/エンティティ/機能/サーバ、SCSノード/エンティティ/機能/サーバ、ASノード/エンティティ/機能/サーバ、および/または無線通信ネットワークの任意の他のノード/エンティティ/機能/サーバのために使用され得る。無線インターフェース上で、1つまたは複数の(UE、ユーザ機器、ユーザ機器ノード、無線端末などとも呼ばれる)無線デバイスとの無線通信を提供するために、プロセッサにも結合された、トランシーバをもつ同様の構造を使用して、RANノードが提供され得る。
UPFノードとNEFノードとの間の論理インターフェースが、UPF/NEFが共同サイト式(collocated)である現在の手法の代替展開候補として、3GPPによって規定され得る。
図1は、UPFノードとNEFノードとが別々に配置される場合を示す。この場合、NEFは、DNにおけるアプリケーションサーバとして働き、N6インターフェースを介してUPFに/からデータを転送する。
図2に示されているように、ローミングがサポートされ得る。ホームルーテッド(home-routed)ローミングの場合、VPLMNにおけるUPFは、N6を介した、HPLMNにおけるNEFとのコネクティビティを有する、HPLMNにおけるUPFに、N9インターフェースを用いて接続する。ローカルブレークアウトローミングの場合、VPLMNにおけるUPFは、HPLMNにおけるNEFに接続する、VPLMNにおけるIWK-NEFとのN6インターフェースを確立する。
図1は、5G非ローミングアーキテクチャ参照モデルを示す。
図2は、ローミング5Gシステムアーキテクチャを示す。
UPFとNEFとが分離されるとき、UPFとNEFとの間のトンネルがどのように確立されるかを示すために、図3のプロシージャが追加され得る。図3は、UPFとNEFとが別々に配置されるとき、T8を使用する、小データ通信のための接続セットアップ/確立プロシージャを示す。IP(IPv4、IPv6)または非構造化(非IP)PDUセッションタイプがサポートされ得る。
図3は、小データ転送経路セットアッププロシージャを示す。
NEFとAFとの間のNIDD設定が、動作0において(すなわち、動作1~8の前に)すでに実施されたと仮定される。NIDD設定中に、NEFは、UEのSMサブスクリプションデータに、NEFのルーティング情報(たとえば、IPv6アドレス、ポート番号など)とともにNIDD設定パラメータを記憶する。T8を使用する小データ通信のためのNEFへのデータ経路は、UEが、プロトコルデータユニット(PDU)セッション確立プロシージャを実施することによって確立される。
PDUセッション確立プロシージャは、図3に示されている以下の追加を伴って、TS23.502(参考文献[3])において規定されているように実施される。
動作1. UEは、UEルート選択ポリシ(URSP)に従って、T8を使用する小データ通信サービスのための特定のデータネットワーク名(DNN)を、PDUセッション確立要求中に含める。
動作2. AMFは、TS23.502(参考文献[3])において指定されているように、他のパラメータとともに、UEによって要求された特定のDNNに基づいて、SMFを選択する。
動作4. SMFは、たとえば、DNNまたはローカルDNN設定に基づいて、PDUセッションが、T8を使用する小データ通信のために使用されると決定する。SMFは、UDMにおけるUEのサブスクリプションデータからNEF情報、すなわち、NEFのIPv6アドレスおよびUDPポートを取り出す。
動作5. SMFは、T8を使用する小データ通信をサポートするUPFを選択する。UEがIP PDUセッションタイプ(たとえば、IPv4、IPv6)を要求する場合、SMFは、TS23.501(参考文献[2])節5.8.1に記載されているように、PDUセッションのためのIPアドレス/プレフィックスを割り当てる。UEが非構造化PDUセッションタイプを要求する場合、SMFは、UEに関与することなしにPDUセッションのためのIPv6プレフィックスを割り当てる。SMFは、PDUセッションのためのIPアドレスをもつ、UPF N6ポイントツーポイントトンネリング情報(たとえば、NEFのためのIPv6アドレス、UDPポート)を設定する。
動作6. PDUセッションタイプがIPである場合、SMFは、NIDD設定パラメータ、たとえば、外部識別子、AF ID(すなわち、T8宛先アドレス)、およびステップ4において取り出されたDNNとともに、PDUセッションのためのUEのための割り当てられたIPアドレス/プレフィックスをNEFに提供する。NEFは、UEのためのNIDD設定を、PDUセッションのためのUEのための割り当てられたIPアドレス/プレフィックスに関連付ける。
PDUセッションタイプが非構造化である場合、SMFは、NIDD設定パラメータ、たとえば、外部識別子、AF ID(すなわち、T8宛先アドレス)、およびステップ4において取り出されたDNNとともに、UPFのN6ポイントツーポイントトンネリング情報をNEFに送る。NEFは、UEのためのNIDD設定を、UPFのためのN6ポイントツーポイントトンネリング情報に関連付ける。
動作7. UEがIP PDUセッションタイプを要求する場合、SMFは、PCOにおけるNEF情報(すなわち、NEFのIPアドレスまたはポート番号)をUEに送る。UEは、UEがデータを送るとき、NEF情報を宛先アドレスとして使用する。
図3の手法は、PDUセッションが確立される前に(すなわち、図3の動作1において)、NEFが、PDUセッションのUPFとNEFとの間のかなり静的なトンネル情報(たとえばIPアドレス、UDPポート番号)を割り当てることになる(すなわち図3の動作0において)という論理に基づく。次いで、トンネルインフォ(tunnel info)が、サブスクリプションデータの一部として、NEFからUDMにプッシュされ、SMFが動作4においてトンネルインフォを取り出すのを待つ。
SBAベースアーキテクチャをもつ5GSでは、NEFインスタンスの展開およびNEFインスタンスのリソース割り当てが、より/極めてフレキシブルおよび動的であり得る。図3の手法は、5GS SBA概念とうまく適合しないことがある。
本明細書で開示されるいくつかの実施形態によれば、NEFは、PDUセッション確立中にトンネルリソースをより動的に割り当て得る。
1) AFがNEFを通してNIDD設定を実施するとき、NEFは、UDMにNEF ID情報を提供する必要があるにすぎないことがある。
2) SMFが、UPFとNEFとの間のトンネルを確立することを試みるとき、SMFは、NEFにUPFトンネルインフォを提供するにすぎないことがある。また、NEFは、応答においてNEFトンネルインフォを割り当てることができる。
3) SMFは、1つのシグナリング中で、N3 RANトンネルインフォとNEFからのトンネルインフォの両方を用いて、UPFを更新し得る。
いくつかの実施形態は、NF間の通信シグナリングを必ずしも増加させることなしに、NEF動的リソース割り当てを考慮しながら、PDUセッション確立中に、フレキシブルなNEFトンネル割り当て論理を提供し得る。
発明概念のいくつかの実施形態が、図4のメッセージ図に関して以下で説明される。図4では、NEFとAFとの間のNIDD設定が、動作1~10を実施する前の動作0において実施され得る。NIDD設定中に、NEFは、UEのSMサブスクリプションデータに、NEFのIDとともにNIDD設定パラメータを記憶する。T8を使用する小データ通信のためのNEFへのデータ経路は、UEが、PDUセッション確立プロシージャを実施することによって確立され得る。
PDUセッション確立プロシージャは、以下の追加を伴って、TS23.502(参考文献[3])において規定されているように実施される。
動作1. UEは、URSPに従って、T8を使用する小データ通信サービスのための特定のDNNを、PDUセッション確立要求中に含める。
動作2~3. AMFは、TS23.502(参考文献[3])において指定されているように、他のパラメータとともに、UEによって要求された特定のDNNに基づいて、SMFを選択する。
動作4. SMFは、たとえば、DNNまたはローカルDNN設定に基づいて、PDUセッションが、T8を使用する小データ通信のために使用されると決定する。SMFは、UDMにおけるUEのサブスクリプションデータからNEF情報、すなわち、NEF IDを取り出す。
動作5. SMFは、T8を使用する小データ通信をサポートするUPFを選択する。UEがIP PDUセッションタイプ(たとえば、IPv4、IPv6)を要求する場合、SMFは、TS23.501(参考文献[2])節5.8.1に記載されているように、PDUセッションのためのIPアドレス/プレフィックスを割り当てる(またはUPFを通して割り当てる)。UEが非構造化PDUセッションタイプを要求する場合、SMFは、UEに関与することなしにPDUセッションのためのIPv6プレフィックスを割り当てる。
動作6. PDUセッションタイプがIPである場合、SMFは、NIDD設定パラメータ、たとえば、外部識別子、AF ID(すなわち、T8宛先アドレス)、およびステップ4において取り出されたDNN、および/またはUPFのN6ポイントツーポイントトンネリング情報とともに、PDUセッションのためのUEのための割り当てられたIPアドレス/プレフィックスをNEFに提供する。NEFは、UEのためのNIDD設定を、PDUセッションのためのUEのための割り当てられたIPアドレス/プレフィックスに関連付ける。NEFはまた、PDUセッションのためのトンネル情報(たとえば、NEFのIPアドレスUDPポートをもつN6 UPF-NEFポイントツーポイントトンネル情報、および随意に、無線デバイスのためのIPアドレスまたはポート番号をもつ直接NEF情報)を割り当てる。
PDUセッションタイプが非構造化である場合、SMFは、NIDD設定パラメータ、たとえば、外部識別子、AF ID(すなわち、T8宛先アドレス)、およびステップ4において取り出されたDNNとともに、UPFのN6ポイントツーポイントトンネリング情報をNEFに送る。NEFは、UEのためのNIDD設定を、UPFのためのN6ポイントツーポイントトンネリング情報に関連付ける。NEFは、PDUセッションのためのトンネル情報(たとえば、NEFのIPアドレスUDPポートをもつN6 UPF-NEFポイントツーポイントトンネル情報)をも割り当てる。
動作7. SMFは、UPプレーンが、UE/RAN/UPFの間の小データ配信のために使用される場合、RANへのN3トンネルセットアップ要求、ならびにAMFを介したRANへのN1 PDUセッション確立受付メッセージおよび配信を構築する。
UEがIP PDUセッションタイプを要求する場合、SMFは、PCOにおけるNEF情報(すなわち、動作6において受信された、無線デバイスのためのIPアドレスまたはポート番号をもつ直接NEF情報)をUEに送る。UEは、UEがデータを送るとき、NEF情報を宛先アドレスとして使用する。
動作8. RANは、AMFを介してN3トンネル情報をSMFに提供する。
動作9. SMFは、N4インターフェースメッセージを介して、RANからのN3トンネル情報と、ステップ6からのNEFトンネルインフォの両方をUPFに提供する。これは、両方のトンネルについての情報(ステップ8からのRAN N3トンネル情報、およびステップ6からのNEFのN6 UPF-NEFポイントツーポイントトンネル情報)を、単一のN4メッセージを使用して、または代替的に2つの異なるN4メッセージを使用して行われ得る。
注:RAN N3メッセージをUPFに提供するN4メッセージ/サービスは、TR23.724(参考文献[1])におけるソリューション35の手法からの「PFCPセッション確立要求/応答メッセージ」を使用して提供され得る。
動作10. AFおよびUEは、NEF/UPFを通してデータ配信を開始することができる。無線デバイスUEのためのアップリンク/ダウンリンクデータは、RANノードとUPFノードとの間のN3トンネル、およびUPFノードとNEFノードとの間のN6トンネルを使用して通信され得る。
したがって、PDUセッション確立中の動的N6 UPF-NEFポイントツーポイントトンネルリソース割り当ては、T8上で小データ通信のために提供され得る。
SMFノードは、UPFからUPF N6トンネル情報を割り当て、および/または取り出し得る。(NEFは、UDMから受信されたNEF IDに基づいて選択される)。SMFは、次いで、NEFサービス(またはメッセージ)を使用して、NEFとの対話によって、UPF-NEFトンネルを確立する。NEFは、UPF N6トンネル情報を受信し、UPF N6トンネル情報を記憶し、対応するNEF N6トンネル情報を割り当て、NEF N6トンネル情報はSMFに受け渡される。SMFは、応答においてNEF N6トンネル情報を受信し、SMFは、次のステップにおいて、NEF N6トンネル情報をUPFに提供する。それにより、UPF-NEF N6トンネルが確立される。
次に、発明概念のいくつかの実施形態による、図17のフローチャートを参照しながら、(図5の構造を使用して実装される)SMFノード901の動作が説明される。たとえば、モジュールは、図5のメモリ1005に記憶され得、これらのモジュールは、モジュールの命令が(処理回路とも呼ばれる)それぞれのSMFノードプロセッサ1003によって実行されたとき、プロセッサ1003がフローチャートのそれぞれの動作を実施するような命令を提供し得る。
ブロック1705において、プロセッサ1003は、たとえば、図4の動作3に関して上記で説明されたように、無線デバイスUEのためのセッションを作成するようにとの要求を(ネットワークインターフェース1007を通して)受信し得る。
ブロック1709において、プロセッサ1003は、たとえば、図4の動作4に関して上記で説明されたように、無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、無線デバイスについてのサブスクリプション情報を取得し得、無線デバイスについてのサブスクリプション情報は、無線デバイスに関連するNEF情報を含む。無線デバイスに関連するNEF情報は、たとえば、無線デバイスに関連するNEFノードのNEF識別子を含み得る。その上、サブスクリプション情報を取得することは、統合データ管理(UDM)ノードにサブスクリプション情報についての要求を(ネットワークインターフェース1007を通して)送信することと、UDMノードからサブスクリプション情報を(ネットワークインターフェース1007を通して)受信することとを含み得る。
ブロック1715において、プロセッサ1003は、たとえば、図4の動作5に関して上記で説明されたように、無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、セッションのためにユーザプレーン機能UPFノードを選択し得る。また、UPFノードを選択することは、通信確立要求中に含まれる、UPFノードとNEFノードとの間の第1のトンネルについてのUPFノード情報を取得することを含み得る。さらに、UPFノードを選択することは、UPFノードと無線デバイスに関連する無線アクセスノードRANとの間の第2のトンネルについてのUPFノード情報を取得することを含み得、第2のトンネルは、無線デバイスのためのセッションのために使用されるべきである。
ブロック1717において、プロセッサ1003は、たとえば、図4の動作6に関して上記で説明されたように、無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、ネットワーク露出機能NEFノードに通信確立要求を(ネットワークインターフェース1007を通して)送信し得、通信確立要求は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間の第1のトンネルについてのUPFノード情報を含む。その上、通信確立要求は、無線デバイスに関連するNEF情報に基づいて、NEFノードに送信され得る。
ブロック1719において、プロセッサ1003は、たとえば、図4の動作6に関して上記で説明されたように、NEFノードから通信確立応答を(ネットワークインターフェース1007を通して)受信し得、通信確立応答は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間の第1のトンネルについてのNEFノード情報を含む。
ブロック1725において、プロセッサ1003は、たとえば、図4の動作7aに関して上記で説明されたように、RANにトンネルセットアップ要求を(ネットワークインターフェース1007を通して)送信し得、トンネルセットアップ要求は、UPFノードとRANとの間の第2のトンネルについてのUPFノード情報を含む。
ブロック1729において、プロセッサ1003は、たとえば、図4の動作8に関して上記で説明されたように、RANからセッション確立受付メッセージを(ネットワークインターフェース1007を通して)受信し得、セッション確立受付メッセージは、UPFノードとRANとの間の第2のトンネルについてのRAN情報を含む。
ブロック1735において、プロセッサ1003は、たとえば、図4の動作9に関して上記で説明されたように、通信確立応答を受信した後に、UPFノードにトンネル情報更新を(ネットワークインターフェース1007を通して)送信し得、トンネル情報更新は、UPFノードとNEFノードとの間の第1のトンネルについてのNEFノード情報と、第2のトンネルについてのRAN情報とを含む。
図17のフローチャートからの様々な動作は、SMFノードおよび関係する方法のいくつかの実施形態に関して随意であり得る。(以下に記載される)例示的な実施形態1の方法に関して、たとえば、図17のブロック1709、1715、1725、および1729の動作は随意であり得る。
次に、発明概念のいくつかの実施形態による、図18のフローチャートを参照しながら、(図7の構造を使用して実装される)NEFノード905の動作が説明される。たとえば、モジュールは、図7のメモリ1205に記憶され得、これらのモジュールは、モジュールの命令が(処理回路とも呼ばれる)それぞれのNEFノードプロセッサ1203によって実行されたとき、プロセッサ1203がフローチャートのそれぞれの動作を実施するような命令を提供し得る。
ブロック1805において、プロセッサ1203は、たとえば、図4の動作0に関して上記で説明されたように、統合データ管理(UDM)ノードに設定情報を提供し得、設定情報は、NEFノードに関連する無線デバイスUEの識別を含む。
ブロック1809において、プロセッサ1203は、たとえば、図4の動作6に関して上記で説明されたように、設定情報を提供した後に、セッション管理機能(SMF)ノードから通信確立要求を(ネットワークインターフェース1207を通して)受信し得、通信確立要求は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を含む。UPFノード情報は、たとえば、トンネルのために使用されるべき、UPFノードのUPFアドレスおよび/またはUPFポート番号を含み得る。その上、通信確立要求は無線デバイスの識別を含み得る。
ブロック1815において、プロセッサ1203は、たとえば、図4の動作6に関して上記で説明されたように、SMFノードに通信確立応答を(ネットワークインターフェース1207を通して)送信し得、通信確立応答は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む。 NEFノード情報は、トンネルのために使用されるべき、NEFノードのNEFアドレスおよび/またはNEFポート番号を含み得る。その上、通信確立応答は無線デバイスの識別を含み得る。
ブロック1819において、プロセッサ1203は、たとえば、図4の動作10に関して上記で説明されたように、無線デバイスのためのセッションのためのNEFノードとUPFノードとの間のトンネルを、トンネルについてのUPFノード情報を使用して確立し得る。 たとえば、UPFノードとNEFノードとの間のトンネルは、UPFノードとNEFノードとの間のN6インターフェースを介したトンネルであり得る。
ブロック1825において、プロセッサ1203は、トンネルを通して無線デバイスのためのセッションのためのデータの通信を提供し得る。
図18のフローチャートからの様々な動作は、NEFノードおよび関係する方法のいくつかの実施形態に関して随意であり得る。
次に、発明概念のいくつかの実施形態による、図19のフローチャートを参照しながら、(図6の構造を使用して実装される)UPFノード903の動作が説明される。たとえば、モジュールは、図6のメモリ1105に記憶され得、これらのモジュールは、モジュールの命令がそれぞれのUPFノード処理回路1103によって実行されたとき、処理回路1103がフローチャートのそれぞれの動作を実施するような命令を提供し得る。
ブロック1905において、プロセッサ1103は、たとえば、図4の動作5に関して上記で説明されたように、SMFノードに、UPFノードとNEFノードとの間の第1のトンネルについてのUPFノード情報を(ネットワークインターフェース1107を通して)送信し得る。たとえば、UPFノード情報は、第1のトンネルのために使用されるべき、UPFノードのUPFアドレスおよび/またはUPFポート番号を含み得る。
ブロック1909において、プロセッサ1103は、たとえば、図4の動作9に関して上記で説明されたように、セッション管理機能(SMF)ノードからトンネル情報更新を(ネットワークインターフェース1107を通して)受信し得、トンネル情報更新は、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間の第1のトンネルについてのNEFノード情報を含む。
ブロック1915において、プロセッサ1103は、たとえば、図4の動作9に関して上記で説明されたように、無線アクセスネットワーク(RAN)ノードとUPFノードとの間の第2のトンネルについてのRAN情報を(ネットワークインターフェース1107を通して)受信し得る。いくつかの実施形態によれば、トンネル情報更新は、第2のトンネルについてのRAN情報と、第1のトンネルについてのNEFノード情報とを含み得、したがって、第2のトンネルについてのRAN情報と第1のトンネルについてのNEFノード情報とが単一のメッセージ中で受信される。言い換えれば、ブロック1909の動作とブロック1915の動作とは組み合わせられ得る。RANとUPFノードとの間の第2のトンネルは、たとえば、RANノードとUPFノードとの間のN3インターフェースを介したトンネルであり得、RAN情報は、第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含み得る。
ブロック1919において、プロセッサ1103は、たとえば、図4の動作10に関して上記で説明されたように、無線デバイスのためのセッションのためのNEFノードとUPFノードとの間のトンネルを、トンネルについてのNEFノード情報を使用して確立し得る。
ブロック1925において、プロセッサ1103は、トンネルを通して無線デバイスのためのセッションのためのデータの通信を提供し得る。
図19のフローチャートからの様々な動作は、UPFノードおよび関係する方法のいくつかの実施形態に関して随意であり得る。(以下に記載される)例示的な実施形態35の方法に関して、たとえば、図19のブロック1905および1915の動作は随意であり得る。
発明概念の例示的な実施形態が、以下に記載される。
1.無線通信ネットワークのセッション管理機能(SMF)ノード(901)を動作させる方法であって、方法は、無線デバイス(UE)のためのセッションを作成するようにとの要求を受信すること(図4、動作3)と、無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、ネットワーク露出機能(NEF)ノード(905)に通信確立要求を送信すること(図4、動作6)であって、通信確立要求が、無線デバイスのためのセッションのために使用されるべき、UPFノード(903)とNEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を送信すること(図4、動作6)と、NEFノードから通信確立応答を受信すること(図4、動作6)であって、通信確立応答が、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む、通信確立応答を受信すること(図4、動作6)と、通信確立応答を受信した後に、UPFノードにトンネル情報更新を送信すること(図4、動作9)であって、トンネル情報更新が、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む、トンネル情報更新を送信すること(図4、動作9)とを含む、方法。
2.無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、無線デバイスについてのサブスクリプション情報を取得すること(図4、動作4)であって、無線デバイスについてのサブスクリプション情報が、無線デバイスに関連するNEF情報を含む、サブスクリプション情報を取得すること(図4、動作4)をさらに含み、通信確立要求を送信することが、無線デバイスに関連するNEF情報に基づいて、NEFノードに通信確立要求を送信することを含む、実施形態1に記載の方法。
3.無線デバイスに関連するNEF情報が、無線デバイスに関連するNEFノードのNEF識別子を含む、実施形態2に記載の方法。
4.サブスクリプション情報を取得することが、統合データ管理(UDM)ノードにサブスクリプション情報についての要求を送信することと、UDMノードからサブスクリプション情報を受信することとを含む、実施形態2または3に記載の方法。
5.無線デバイスのためのセッションを作成するようにとの要求を受信したことに応答して、セッションのためにユーザプレーン機能(UPF)ノードを選択すること(図4、動作5)をさらに含む、実施形態2から4のいずれか1つに記載の方法。
6.UPFノードを選択することが、通信確立要求中に含まれる、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を取得することを含む、実施形態5に記載の方法。
7.UPFノードを選択することが、UPFノードにセッションのためのUPF選択メッセージを送信することと、通信確立応答中に含まれる、UPFノードとNEFノードとの間のトンネルについてのUPFノード情報を含むUPF選択応答を受信することとを含む、実施形態5に記載の方法。
8.セッションを作成するようにとの要求が、セッションのために使用されるべきデータネットワーク名(DNN)の指示を含み、UPFノードを選択することが、セッションのために使用されるべきDNNに基づいて、UPFノードを選択することを含む、実施形態5から7のいずれか1つに記載の方法。
9.セッションを作成するようにとの要求が、無線通信ネットワークのアクセスおよびモビリティ管理機能(AMF)ノードから受信される、実施形態1から8のいずれか1つに記載の方法。
10.UPFノードとNEFノードとの間のトンネルが第1のトンネルであり、UPFノードを選択することが、UPFノードと無線デバイスに関連する無線アクセスノード(RAN)との間の第2のトンネルについてのUPFノード情報を取得することを含み、第2のトンネルが、無線デバイスのためのセッションのために使用されるべきであり、方法は、RANにトンネルセットアップ要求を送信すること(図4、動作7a)であって、トンネルセットアップ要求が、UPFノードとRANとの間の第2のトンネルについてのUPFノード情報を含む、トンネルセットアップ要求を送信すること(図4、動作7a)と、RANからセッション確立受付メッセージを受信すること(図4、動作8)であって、セッション確立受付メッセージが、UPFノードとRANとの間の第2のトンネルについてのRAN情報を含む、セッション確立受付メッセージを受信すること(図4、動作8)と、UPFノードに第2のトンネルについてのRAN情報を送信すること(図4、動作9)とをさらに含む、実施形態5から8のいずれか1つに記載の方法。
11.トンネル情報更新が、第2のトンネルについてのRAN情報と、第1のトンネルについてのNEFノード情報とを含み、したがって、第2のトンネルについてのRAN情報と第1のトンネルについてのNEFノード情報とが単一のメッセージ中で送信される、実施形態10に記載の方法。
12.RANとUPFノードとの間の第2のトンネルが、RANとUPFノードとの間のN3インターフェースを介したトンネルである、実施形態10または11に記載の方法。
13.RANノード情報が、第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含む、実施形態10から12のいずれか1つに記載の方法。
14.UPFノード情報が、トンネルのために使用されるべき、UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態1から13のいずれか1つに記載の方法。
15.NEFノード情報が、トンネルのために使用されるべき、NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態1から14のいずれか1つに記載の方法。
16.UPFノードとNEFノードとの間のトンネルが、UPFノードとNEFノードとの間のN6インターフェースを介したトンネルである、実施形態1から15のいずれか1つに記載の方法。
17.セッションを作成するようにとの要求、通信確立要求、通信確立応答、および/またはトンネル情報更新が、無線デバイスの識別を含む、実施形態1から16のいずれか1つに記載の方法。
18.無線デバイスの識別が、IMSIおよび/またはSUPIのうちの少なくとも1つを備える、実施形態17に記載の方法。
19.通信確立要求が、無線デバイスのためのセッションのために割り当てられた無線デバイスのIPアドレスをさらに含む、実施形態1から18のいずれか1つに記載の方法。
20.NEFノード情報が、無線デバイスのためのセッションのために割り当てられた、NEFノードのIPアドレスおよび/またはNEFノードのポート番号を含む、実施形態1から19のいずれか1つに記載の方法。
21.通信ネットワークのためのSMFノード(901)であって、SMFノードが、実施形態1から20のいずれか1つに記載の動作を実施するように適応された、SMFノード(901)。
22.通信ネットワークのためのセッション管理機能(SMF)ノード(901)であって、SMFノードが、プロセッサ(1003)と、プロセッサに結合されたメモリ(1005)とを備え、メモリが、プロセッサによって実行されたとき、プロセッサに、実施形態1から20のいずれか1つに記載の動作を実施させる命令を備える、セッション管理機能(SMF)ノード(901)。
23.無線通信ネットワークのネットワーク露出機能(NEF)ノード(905)を動作させる方法であって、方法は、統合データ管理(UDM)ノードに設定情報を提供すること(図4、動作0)であって、設定情報が、NEFノードに関連する無線デバイス(UE)の識別を含む、設定情報を提供すること(図4、動作0)と、設定情報を提供した後に、セッション管理機能(SMF)ノード(901)から通信確立要求を受信すること(図4、動作6)であって、通信確立要求が、無線デバイスのためのセッションのために使用されるべき、UPFノード(903)とNEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を受信すること(図4、動作6)と、SMFノードに通信確立応答を送信すること(図4、動作6)であって、通信確立応答が、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む、通信確立応答を送信すること(図4、動作6)と、無線デバイスのためのセッションのためのNEFノードとUPFノードとの間のトンネルを、トンネルについてのUPFノード情報を使用して確立すること(図4、動作10)と、トンネルを通して無線デバイスのためのセッションのためのデータの通信を提供することとを含む、方法。
24.トンネルが第1のトンネルであり、通信を提供することが、UPFノードとNEFノードとの間の第1のトンネルを通して、およびNEFノードと別のノード(AF/SCS/AS)との間の第2のトンネルを通して、無線デバイスのためのセッションのためのデータの通信を提供することを含む、実施形態23に記載の方法。
25.第2のトンネルがNIDD APIインターフェースを使用して提供される、実施形態24に記載の方法。
26.UPFノード情報が、トンネルのために使用されるべき、UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態23から25のいずれか1つに記載の方法。
27.NEFノード情報が、トンネルのために使用されるべき、NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態23から26のいずれか1つに記載の方法。
28.UPFノードとNEFノードとの間のトンネルが、UPFノードとNEFノードとの間のN6インターフェースを介したトンネルである、実施形態23から27のいずれか1つに記載の方法。
29.通信確立要求および/または通信確立応答が、無線デバイスの識別を含む、実施形態23から28のいずれか1つに記載の方法。
30.無線デバイスの識別が、IMSIおよび/またはSUPIのうちの少なくとも1つを備える、実施形態29に記載の方法。
31.通信確立要求が、無線デバイスのためのセッションのためにSMF/UPFによって割り当てられた無線デバイスのIPアドレスをさらに含む、実施形態23から30のいずれか1つに記載の方法。
32.NEFノード情報が、無線デバイスのためのセッションのために割り当てられた、NEFノードのIPアドレスおよび/またはNEFノードのポート番号を含む、実施形態23から31のいずれか1つに記載の方法。
33.通信ネットワークのためのネットワーク露出機能(NEF)ノード(905)であって、NEFノードが、実施形態23から32のいずれか1つに記載の動作を実施するように適応された、NEFノード(905)。
34.通信ネットワークのためのネットワーク露出機能(NEF)ノード(905)であって、NEFノードが、プロセッサ(1203)と、プロセッサに結合されたメモリ(1205)とを備え、メモリが、プロセッサによって実行されたとき、プロセッサに、実施形態23から32のいずれか1つに記載の動作を実施させる命令を備える、ネットワーク露出機能(NEF)ノード(905)。
35.無線通信ネットワークのユーザプレーン機能(UPF)ノード(903)を動作させる方法であって、方法は、セッション管理機能(SMF)ノード(901)からトンネル情報更新を受信すること(図4、動作9)であって、トンネル情報更新が、無線デバイスのためのセッションのために使用されるべき、UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む、トンネル情報更新を受信すること(図4、動作9)と、無線デバイスのためのセッションのためのNEFノードとUPFノードとの間のトンネルを、トンネルについてのNEFノード情報を使用して確立すること(図4、動作10)と、トンネルを通して無線デバイスのためのセッションのためのデータの通信を提供することとを含む、方法。
36.SMFノードにUPFノードとNEFノードとの間のトンネルについてのUPFノード情報を送信すること(図4、動作5)をさらに含む、実施形態35に記載の方法。
37.UPFノード情報が、トンネルのために使用されるべき、UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態36に記載の方法。
38.トンネルが第1のトンネルであり、方法が、無線アクセスネットワーク(RAN)ノードとUPFノードとの間の第2のトンネルについてのRAN情報を受信すること(図4、動作9)をさらに含む、実施形態35から37のいずれか1つに記載の方法。
39.トンネル情報更新が、第2のトンネルについてのRAN情報と、第1のトンネルについてのNEFノード情報とを含み、したがって、第2のトンネルについてのRAN情報と第1のトンネルについてのNEFノード情報とが単一のメッセージ中で受信される、実施形態38に記載の方法。
40.RANとUPFノードとの間の第2のトンネルが、RANノードとUPFノードとの間のN3インターフェースを介したトンネルである、実施形態38または39に記載の方法。
41.RAN情報が、第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含む、実施形態38から40のいずれか1つに記載の方法。
42.通信を提供することが、UPFノードとNEFノードとの間の第1のトンネルを通して、およびUPFノードとRANノードとの間の第2のトンネルを通して、無線デバイスのためのセッションのためのデータの通信を提供することを含む、実施形態38から41のいずれか1つに記載の方法。
43.NEFノード情報が、トンネルのために使用されるべき、NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態35から42のいずれか1つに記載の方法。
44.UPFノードとNEFノードとの間のトンネルが、UPFノードとNEFノードとの間のN6インターフェースを介したトンネルである、実施形態35から43のいずれか1つに記載の方法。
45.トンネル情報更新が無線デバイスの識別を含む、実施形態35から44のいずれか1つに記載の方法。
46.無線デバイスの識別が、IMSIおよび/またはSUPIのうちの少なくとも1つを備える、実施形態45に記載の方法。
47.通信ネットワークのためのユーザプレーン機能(UPF)ノード(903)であって、NEFノードが、実施形態35から46のいずれか1つに記載の動作を実施するように適応された、UPFノード(903)。
48.通信ネットワークのためのユーザプレーン機能(UPF)ノード(903)であって、NEFノードが、プロセッサ(1103)と、プロセッサに結合されたメモリ(1105)とを備え、メモリが、プロセッサによって実行されたとき、プロセッサに、実施形態35から46のいずれか1つに記載の動作を実施させる命令を備える、ユーザプレーン機能(UPF)ノード(903)。
上記の開示からの略語についての説明が以下で提供される。
略語 説明
5G 第5世代
AF アプリケーション機能
AMF アクセスおよびモビリティ管理機能
API アプリケーションプログラミングインターフェース
AS アプリケーションサーバ
DN データネットワーク
DNN データネットワーク名
HPLM ホームパブリックランドモバイル
ID 識別子
IoT モノのインターネット
IMSI 国際モバイル加入者識別情報
IP インターネットプロトコル
NEF ネットワーク露出機能
NIDD 非IPデータ配信
PFCP パケットフォワーディング制御プロトコル
PCO プロトコル設定オプション
PDU プロトコルデータユニット
RAN 無線アクセスネットワーク
SBA サービスベースアーキテクチャ
SCS サービス能力サーバ
SM ショートメッセージ
SMF セッション管理機能
SUPI 加入者永久識別子
UDM 統合データ管理
UDP ユーザデータグラムプロトコル
UE ユーザ機器
URSP UEルート選択ポリシ
UP ユーザプレーン
UPF ユーザプレーン機能
VPLM 訪問先パブリックランドモバイル
上記の開示からの参考文献についての引用が以下で提供される。
参考文献[1] 3GPP TR23.724v1.0.0
参考文献[2] 3GPP TR23.501v15.3.0
参考文献[3] 3GPP TR23.502v15.3.0
参考文献[4] Samsung、Ericsson、SK Telecom、ソリューション35更新:NIDDのためのUPFとNEFとの間のコネクティビティ、SA WG2会議#129、S2-1810336、2018年10月15日~10月19日、Dongguan、China。
さらなる規定および実施形態が以下で説明される。
本発明概念の様々な実施形態の上記の説明では、本明細書で使用される専門用語は、特定の実施形態を説明するためのものにすぎず、本発明概念を限定するものではないことを理解されたい。別段に規定されていない限り、本明細書で使用される(技術用語および科学用語を含む)すべての用語は、本発明概念が属する技術の当業者によって通常理解されるものと同じ意味を有する。通常使用される辞書において規定される用語など、用語は、本明細書および関連技術の文脈におけるそれらの用語の意味に従う意味を有するものとして解釈されるべきであり、明確にそのように本明細書で規定されない限り、理想的なまたは過度に形式的な意味において解釈されないことをさらに理解されよう。
エレメントが、別のエレメントに「接続された」、「結合された」、「応答する」、またはそれらの変形態であると呼ばれるとき、そのエレメントは、別のエレメントに直接、接続され、結合され、または応答し得、あるいは介在するエレメントが存在し得る。対照的に、エレメントが、別のエレメントに「直接接続された」、「直接結合された」、「直接応答する」、またはそれらの変形態であると呼ばれるとき、介在するエレメントが存在しない。同様の番号は、全体を通して同様のエレメントを指す。さらに、本明細書で使用される、「結合された」、「接続された」、「応答する」、またはそれらの変形態は、無線で結合された、無線で接続された、または無線で応答する、を含み得る。本明細書で使用される単数形「a」、「an」および「the」は、文脈が別段に明確に指示するのでなければ、複数形をも含むものとする。簡潔および/または明快のために、よく知られている機能または構築が詳細に説明されないことがある。「および/または」という用語は、関連するリストされた項目のうちの1つまたは複数の任意のおよび全部の組合せを含む。
様々なエレメント/動作を説明するために、第1の、第2の、第3の、などの用語が本明細書で使用され得るが、これらのエレメント/動作は、これらの用語によって限定されるべきでないことを理解されよう。これらの用語は、あるエレメント/動作を別のエレメント/動作と区別するために使用されるにすぎない。したがって、本発明概念の教示から逸脱することなしに、いくつかの実施形態における第1のエレメント/動作が、他の実施形態において第2のエレメント/動作と呼ばれることがある。同じ参照番号または同じ参照符号は、本明細書全体にわたって同じまたは同様のエレメントを示す。
本明細書で使用される、「備える、含む(comprise)」、「備える、含む(comprising)」、「備える、含む(comprises)」、「含む(include)」、「含む(including)」、「含む(includes)」、「有する(have)」、「有する(has)」、「有する(having)」という用語、またはそれらの変形態は、オープンエンドであり、1つまたは複数の述べられた特徴、整数、エレメント、ステップ、構成要素または機能を含むが、1つまたは複数の他の特徴、整数、エレメント、ステップ、構成要素、機能またはそれらのグループの存在または追加を排除しない。さらに、本明細書で使用される、「たとえば(exempli gratia)」というラテン語句に由来する「たとえば(e.g.)」という通例の略語は、前述の項目の一般的な1つまたは複数の例を紹介するかまたは具体的に挙げるために使用され得、そのような項目を限定するものではない。「すなわち(id est)」というラテン語句に由来する「すなわち(i.e.)」という通例の略語は、より一般的な具陳から特定の項目を具体的に挙げるために使用され得る。
例示的な実施形態が、コンピュータ実装方法、装置(システムおよび/またはデバイス)および/またはコンピュータプログラム製品のブロック図および/またはフローチャート例示を参照しながら本明細書で説明される。ブロック図および/またはフローチャート例示のブロック、ならびにブロック図および/またはフローチャート例示中のブロックの組合せが、1つまたは複数のコンピュータ回路によって実施されるコンピュータプログラム命令によって実装され得ることを理解されたい。これらのコンピュータプログラム命令は、汎用コンピュータ回路、専用コンピュータ回路、および/またはマシンを作り出すための他のプログラマブルデータ処理回路のプロセッサ回路に提供され得、したがって、コンピュータおよび/または他のプログラマブルデータ処理装置のプロセッサを介して実行する命令は、ブロック図および/またはフローチャートの1つまたは複数のブロックにおいて指定された機能/行為を実装するために、およびそれにより、ブロック図および/またはフローチャートの(1つまたは複数の)ブロックにおいて指定された機能/行為を実装するための手段(機能)および/または構造を作成するために、トランジスタ、メモリロケーションに記憶された値、およびそのような回路内の他のハードウェア構成要素を変換および制御する。
これらのコンピュータプログラム命令はまた、コンピュータまたは他のプログラマブルデータ処理装置に特定の様式で機能するように指示することができる、有形コンピュータ可読媒体に記憶され得、したがって、コンピュータ可読媒体に記憶された命令は、ブロック図および/またはフローチャートの1つまたは複数のブロックにおいて指定された機能/行為を実装する命令を含む製造品を作り出す。したがって、本発明概念の実施形態は、ハードウェアで、および/または「回路」、「モジュール」またはそれらの変形態と総称して呼ばれることがある、デジタル信号プロセッサなどのプロセッサ上で稼働する(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)ソフトウェアで具現され得る。
また、いくつかの代替実装形態では、ブロック中で言及される機能/行為は、フローチャート中で言及される順序から外れて行われ得ることに留意されたい。たとえば、関与する機能/行為に応じて、連続して示されている2つのブロックが、事実上、実質的にコンカレントに実行され得るか、またはブロックが、時々、逆の順序で実行され得る。その上、フローチャートおよび/またはブロック図の所与のブロックの機能が、複数のブロックに分離され得、ならびに/あるいはフローチャートおよび/またはブロック図の2つまたはそれ以上のブロックの機能が、少なくとも部分的に統合され得る。最後に、他のブロックが、示されているブロック間に追加/挿入され得、および/または発明概念の範囲から逸脱することなく、ブロック/動作が省略され得る。その上、図のうちのいくつかが、通信の主要な方向を示すために通信経路上に矢印を含むが、通信が、図示された矢印と反対方向に行われ得ることを理解されたい。
本発明概念の原理から実質的に逸脱することなしに、実施形態に対して多くの変形および修正が行われ得る。すべてのそのような変形および修正は、本発明概念の範囲内で本明細書に含まれるものとする。したがって、上記で開示された主題は、例示であり、限定するものではないと見なされるべきであり、実施形態の例は、本発明概念の趣旨および範囲内に入る、すべてのそのような修正、拡張、および他の実施形態をカバーするものとする。したがって、法によって最大限に許容される限りにおいて、本発明概念の範囲は、実施形態およびそれらの等価物の例を含む、本開示の最も広い許容可能な解釈によって決定されるべきであり、上記の詳細な説明によって制限または限定されるべきでない。
追加の説明が以下で提供される。
概して、本明細書で使用されるすべての用語は、異なる意味が、明確に与えられ、および/またはその用語が使用されるコンテキストから暗示されない限り、関連する技術分野における、それらの用語の通常の意味に従って解釈されるべきである。1つの(a/an)/その(the)エレメント、装置、構成要素、手段、ステップなどへのすべての言及は、別段明示的に述べられていない限り、そのエレメント、装置、構成要素、手段、ステップなどの少なくとも1つの事例に言及しているものとしてオープンに解釈されるべきである。本明細書で開示されるいずれの方法のステップも、ステップが、別のステップに後続するかまたは先行するものとして明示的に説明されない限り、および/あるいはステップが別のステップに後続するかまたは先行しなければならないことが暗黙的である場合、開示される厳密な順序で実施される必要はない。本明細書で開示される実施形態のうちのいずれかの任意の特徴は、適切であればいかなる場合も、任意の他の実施形態に適用され得る。同じように、実施形態のうちのいずれかの任意の利点は、任意の他の実施形態に適用され得、その逆も同様である。同封の実施形態の他の目的、特徴、および利点は、以下の説明から明らかになる。
添付の図面を参照しながら、次に、本明細書で企図される実施形態のうちのいくつかがより十分に説明される。しかしながら、他の実施形態は、本明細書で開示される主題の範囲内に含まれており、開示される主題は、本明細書に記載される実施形態のみに限定されるものとして解釈されるべきではなく、むしろ、これらの実施形態は、当業者に主題の範囲を伝達するために、例として提供される。
図8:いくつかの実施形態による無線ネットワーク。
本明細書で説明される主題は、任意の好適な構成要素を使用する任意の適切なタイプのシステムにおいて実装され得るが、本明細書で開示される実施形態は、図8に示されている例示的な無線ネットワークなどの無線ネットワークに関して説明される。簡単のために、図8の無線ネットワークは、ネットワークQQ106、ネットワークノードQQ160およびQQ160b、ならびに(モバイル端末とも呼ばれる)WD QQ110、QQ110b、およびQQ110cのみを図示する。実際には、無線ネットワークは、無線デバイス間の通信、あるいは無線デバイスと、固定電話、サービスプロバイダ、または任意の他のネットワークノードもしくはエンドデバイスなどの別の通信デバイスとの間の通信をサポートするのに好適な任意の追加のエレメントをさらに含み得る。示されている構成要素のうち、ネットワークノードQQ160および無線デバイス(WD)QQ110は、追加の詳細とともに図示される。無線ネットワークは、1つまたは複数の無線デバイスに通信および他のタイプのサービスを提供して、無線デバイスの、無線ネットワークへのアクセス、および/あるいは、無線ネットワークによってまたは無線ネットワークを介して提供されるサービスの使用を容易にし得る。
無線ネットワークは、任意のタイプの通信(communication)、通信(telecommunication)、データ、セルラ、および/または無線ネットワーク、あるいは他の同様のタイプのシステムを備え、および/またはそれらとインターフェースし得る。いくつかの実施形態では、無線ネットワークは、特定の規格あるいは他のタイプのあらかじめ規定されたルールまたはプロシージャに従って動作するように設定され得る。したがって、無線ネットワークの特定の実施形態は、汎欧州デジタル移動電話方式(GSM)、Universal Mobile Telecommunications System(UMTS)、Long Term Evolution(LTE)、ならびに/あるいは他の好適な2G、3G、4G、または5G規格などの通信規格、IEEE802.11規格などの無線ローカルエリアネットワーク(WLAN)規格、ならびに/あるいは、マイクロ波アクセスのための世界的相互運用性(WiMax)、Bluetooth、Z-Waveおよび/またはZigBee規格など、任意の他の適切な無線通信規格を実装し得る。
ネットワークQQ106は、1つまたは複数のバックホールネットワーク、コアネットワーク、IPネットワーク、公衆交換電話網(PSTN)、パケットデータネットワーク、光ネットワーク、ワイドエリアネットワーク(WAN)、ローカルエリアネットワーク(LAN)、無線ローカルエリアネットワーク(WLAN)、有線ネットワーク、無線ネットワーク、メトロポリタンエリアネットワーク、およびデバイス間の通信を可能にするための他のネットワークを備え得る。
ネットワークノードQQ160およびWD QQ110は、以下でより詳細に説明される様々な構成要素を備える。これらの構成要素は、無線ネットワークにおいて無線接続を提供することなど、ネットワークノードおよび/または無線デバイス機能を提供するために協働する。異なる実施形態では、無線ネットワークは、任意の数の有線または無線ネットワーク、ネットワークノード、基地局、コントローラ、無線デバイス、中継局、ならびに/あるいは有線接続を介してかまたは無線接続を介してかにかかわらず、データおよび/または信号の通信を容易にするかまたはその通信に参加し得る、任意の他の構成要素またはシステムを備え得る。
本明細書で使用されるネットワークノードは、無線デバイスと、ならびに/あるいは、無線デバイスへの無線アクセスを可能にし、および/または提供するための、および/または、無線ネットワークにおいて他の機能(たとえば、アドミニストレーション)を実施するための、無線ネットワーク中の他のネットワークノードまたは機器と、直接または間接的に通信することが可能な、そうするように設定された、構成された、および/または動作可能な機器を指す。ネットワークノードの例は、限定はしないが、アクセスポイント(AP)(たとえば、無線アクセスポイント)、基地局(BS)(たとえば、無線基地局、ノードB、エボルブドノードB(eNB)およびNRノードB(gNB))を含む。基地局は、基地局が提供するカバレッジの量(または、言い方を変えれば、基地局の送信電力レベル)に基づいてカテゴリー分類され得、その場合、フェムト基地局、ピコ基地局、マイクロ基地局、またはマクロ基地局と呼ばれることもある。基地局は、リレーを制御する、リレーノードまたはリレードナーノードであり得る。ネットワークノードは、リモート無線ヘッド(RRH)と呼ばれることがある、集中型デジタルユニットおよび/またはリモートラジオユニット(RRU)など、分散無線基地局の1つまたは複数(またはすべて)の部分をも含み得る。そのようなリモートラジオユニットは、アンテナ統合無線機としてアンテナと統合されることも統合されないこともある。分散無線基地局の部分は、分散アンテナシステム(DAS)において、ノードと呼ばれることもある。ネットワークノードのまたさらなる例は、マルチ規格無線(MSR)BSなどのMSR機器、無線ネットワークコントローラ(RNC)または基地局コントローラ(BSC)などのネットワークコントローラ、基地トランシーバ局(BTS)、送信ポイント、送信ノード、マルチセル/マルチキャスト協調エンティティ(MCE)、コアネットワークノード(たとえば、MSC、MME)、O&Mノード、OSSノード、SONノード、測位ノード(たとえば、E-SMLC)、および/あるいはMDTを含む。別の例として、ネットワークノードは、以下でより詳細に説明されるように、仮想ネットワークノードであり得る。しかしながら、より一般的には、ネットワークノードは、無線ネットワークへのアクセスを可能にし、および/または無線デバイスに提供し、あるいは、無線ネットワークにアクセスした無線デバイスに何らかのサービスを提供することが可能な、そうするように設定された、構成された、および/または動作可能な任意の好適なデバイス(またはデバイスのグループ)を表し得る。
図8では、ネットワークノードQQ160は、処理回路QQ170と、デバイス可読媒体QQ180と、インターフェースQQ190と、補助機器QQ184と、電源QQ186と、電力回路QQ187と、アンテナQQ162とを含む。図8の例示的な無線ネットワーク中に示されているネットワークノードQQ160は、ハードウェア構成要素の示されている組合せを含むデバイスを表し得るが、他の実施形態は、構成要素の異なる組合せをもつネットワークノードを備え得る。ネットワークノードが、本明細書で開示されるタスク、特徴、機能および方法を実施するために必要とされるハードウェアおよび/またはソフトウェアの任意の好適な組合せを備えることを理解されたい。その上、ネットワークノードQQ160の構成要素が、より大きいボックス内に位置する単一のボックスとして、または複数のボックス内で入れ子にされている単一のボックスとして図示されているが、実際には、ネットワークノードは、単一の示されている構成要素を組成する複数の異なる物理構成要素を備え得る(たとえば、デバイス可読媒体QQ180は、複数の別個のハードドライブならびに複数のRAMモジュールを備え得る)。
同様に、ネットワークノードQQ160は、複数の物理的に別個の構成要素(たとえば、ノードB構成要素およびRNC構成要素、またはBTS構成要素およびBSC構成要素など)から組み立てられ得、これらは各々、それら自体のそれぞれの構成要素を有し得る。ネットワークノードQQ160が複数の別個の構成要素(たとえば、BTS構成要素およびBSC構成要素)を備えるいくつかのシナリオでは、別個の構成要素のうちの1つまたは複数が、いくつかのネットワークノードの間で共有され得る。たとえば、単一のRNCが、複数のノードBを制御し得る。そのようなシナリオでは、各一意のノードBとRNCとのペアは、いくつかの事例では、単一の別個のネットワークノードと見なされ得る。いくつかの実施形態では、ネットワークノードQQ160は、複数の無線アクセス技術(RAT)をサポートするように設定され得る。そのような実施形態では、いくつかの構成要素は複製され得(たとえば、異なるRATのための別個のデバイス可読媒体QQ180)、いくつかの構成要素は再使用され得る(たとえば、同じアンテナQQ162がRATによって共有され得る)。ネットワークノードQQ160は、ネットワークノードQQ160に統合された、たとえば、GSM、WCDMA、LTE、NR、WiFi、またはBluetooth無線技術など、異なる無線技術のための様々な示されている構成要素の複数のセットをも含み得る。これらの無線技術は、同じまたは異なるチップまたはチップのセット、およびネットワークノードQQ160内の他の構成要素に統合され得る。
処理回路QQ170は、ネットワークノードによって提供されるものとして本明細書で説明される、任意の決定動作、計算動作、または同様の動作(たとえば、いくつかの取得動作)を実施するように設定される。処理回路QQ170によって実施されるこれらの動作は、処理回路QQ170によって取得された情報を、たとえば、取得された情報を他の情報にコンバートすることによって、処理すること、取得された情報またはコンバートされた情報をネットワークノードに記憶された情報と比較すること、ならびに/あるいは、取得された情報またはコンバートされた情報に基づいて、および前記処理が決定を行ったことの結果として、1つまたは複数の動作を実施することを含み得る。
処理回路QQ170は、単体で、またはデバイス可読媒体QQ180などの他のネットワークノードQQ160構成要素と併せてのいずれかで、ネットワークノードQQ160機能を提供するように動作可能な、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理ユニット、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または任意の他の好適なコンピューティングデバイス、リソースのうちの1つまたは複数の組合せ、あるいはハードウェア、ソフトウェアおよび/または符号化された論理の組合せを備え得る。たとえば、処理回路QQ170は、デバイス可読媒体QQ180に記憶された命令、または処理回路QQ170内のメモリに記憶された命令を実行し得る。そのような機能は、本明細書で説明される様々な無線特徴、機能、または利益のうちのいずれかを提供することを含み得る。いくつかの実施形態では、処理回路QQ170は、システムオンチップ(SOC)を含み得る。
いくつかの実施形態では、処理回路QQ170は、無線周波数(RF)トランシーバ回路QQ172とベースバンド処理回路QQ174とのうちの1つまたは複数を含み得る。いくつかの実施形態では、無線周波数(RF)トランシーバ回路QQ172とベースバンド処理回路QQ174とは、別個のチップ(またはチップのセット)、ボード、または無線ユニットおよびデジタルユニットなどのユニット上にあり得る。代替実施形態では、RFトランシーバ回路QQ172とベースバンド処理回路QQ174との一部または全部は、同じチップまたはチップのセット、ボード、あるいはユニット上にあり得る。
いくつかの実施形態では、ネットワークノード、基地局、eNBまたは他のそのようなネットワークデバイスによって提供されるものとして本明細書で説明される機能の一部または全部は、デバイス可読媒体QQ180、または処理回路QQ170内のメモリに記憶された、命令を実行する処理回路QQ170によって実施され得る。代替実施形態では、機能の一部または全部は、ハードワイヤード様式などで、別個のまたは個別のデバイス可読媒体に記憶された命令を実行することなしに、処理回路QQ170によって提供され得る。それらの実施形態のいずれでも、デバイス可読記憶媒体に記憶された命令を実行するか否かにかかわらず、処理回路QQ170は、説明される機能を実施するように設定され得る。そのような機能によって提供される利益は、処理回路QQ170単独に、またはネットワークノードQQ160の他の構成要素に限定されないが、全体としてネットワークノードQQ160によって、ならびに/または概してエンドユーザおよび無線ネットワークによって、享受される。
デバイス可読媒体QQ180は、限定はしないが、永続記憶域、固体メモリ、リモートマウントメモリ、磁気媒体、光媒体、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、大容量記憶媒体(たとえば、ハードディスク)、リムーバブル記憶媒体(たとえば、フラッシュドライブ、コンパクトディスク(CD)またはデジタルビデオディスク(DVD))を含む、任意の形態の揮発性または不揮発性コンピュータ可読メモリ、ならびに/あるいは、処理回路QQ170によって使用され得る情報、データ、および/または命令を記憶する、任意の他の揮発性または不揮発性、非一時的デバイス可読および/またはコンピュータ実行可能メモリデバイスを備え得る。デバイス可読媒体QQ180は、コンピュータプログラム、ソフトウェア、論理、ルール、コード、テーブルなどのうちの1つまたは複数を含むアプリケーション、および/または処理回路QQ170によって実行されることが可能であり、ネットワークノードQQ160によって利用される、他の命令を含む、任意の好適な命令、データまたは情報を記憶し得る。デバイス可読媒体QQ180は、処理回路QQ170によって行われた計算および/またはインターフェースQQ190を介して受信されたデータを記憶するために使用され得る。いくつかの実施形態では、処理回路QQ170およびデバイス可読媒体QQ180は、統合されていると見なされ得る。
インターフェースQQ190は、ネットワークノードQQ160、ネットワークQQ106、および/またはWD QQ110の間のシグナリングおよび/またはデータの有線または無線通信において使用される。示されているように、インターフェースQQ190は、たとえば有線接続上でネットワークQQ106との間でデータを送るおよび受信するための(1つまたは複数の)ポート/(1つまたは複数の)端末QQ194を備える。インターフェースQQ190は、アンテナQQ162に結合されるか、またはいくつかの実施形態では、アンテナQQ162の一部であり得る、無線フロントエンド回路QQ192をも含む。無線フロントエンド回路QQ192は、フィルタQQ198と増幅器QQ196とを備える。無線フロントエンド回路QQ192は、アンテナQQ162および処理回路QQ170に接続され得る。無線フロントエンド回路は、アンテナQQ162と処理回路QQ170との間で通信される信号を調整するように設定され得る。無線フロントエンド回路QQ192は、無線接続を介して他のネットワークノードまたはWDに送出されるべきであるデジタルデータを受信し得る。無線フロントエンド回路QQ192は、デジタルデータを、フィルタQQ198および/または増幅器QQ196の組合せを使用して適切なチャネルおよび帯域幅パラメータを有する無線信号にコンバートし得る。無線信号は、次いで、アンテナQQ162を介して送信され得る。同様に、データを受信するとき、アンテナQQ162は無線信号を収集し得、次いで、無線信号は無線フロントエンド回路QQ192によってデジタルデータにコンバートされる。デジタルデータは、処理回路QQ170に受け渡され得る。他の実施形態では、インターフェースは、異なる構成要素および/または構成要素の異なる組合せを備え得る。
いくつかの代替実施形態では、ネットワークノードQQ160は別個の無線フロントエンド回路QQ192を含まないことがあり、代わりに、処理回路QQ170は、無線フロントエンド回路を備え得、別個の無線フロントエンド回路QQ192なしでアンテナQQ162に接続され得る。同様に、いくつかの実施形態では、RFトランシーバ回路QQ172の全部または一部が、インターフェースQQ190の一部と見なされ得る。さらに他の実施形態では、インターフェースQQ190は、無線ユニット(図示せず)の一部として、1つまたは複数のポートまたは端末QQ194と、無線フロントエンド回路QQ192と、RFトランシーバ回路QQ172とを含み得、インターフェースQQ190は、デジタルユニット(図示せず)の一部であるベースバンド処理回路QQ174と通信し得る。
アンテナQQ162は、無線信号を送り、および/または受信するように設定された、1つまたは複数のアンテナまたはアンテナアレイを含み得る。アンテナQQ162は、無線フロントエンド回路QQ190に結合され得、データおよび/または信号を無線で送信および受信することが可能な任意のタイプのアンテナであり得る。いくつかの実施形態では、アンテナQQ162は、たとえば、2GHzから66GHzの間の無線信号を送信/受信するように動作可能な1つまたは複数の全方向、セクタまたはパネルアンテナを備え得る。全方向アンテナは、任意の方向に無線信号を送信/受信するために使用され得、セクタアンテナは、特定のエリア内のデバイスから無線信号を送信/受信するために使用され得、パネルアンテナは、比較的直線ラインで無線信号を送信/受信するために使用される見通し線アンテナであり得る。いくつかの事例では、2つ以上のアンテナの使用は、MIMOと呼ばれることがある。いくつかの実施形態では、アンテナQQ162は、ネットワークノードQQ160とは別個であり得、インターフェースまたはポートを通してネットワークノードQQ160に接続可能であり得る。
アンテナQQ162、インターフェースQQ190、および/または処理回路QQ170は、ネットワークノードによって実施されるものとして本明細書で説明される任意の受信動作および/またはいくつかの取得動作を実施するように設定され得る。任意の情報、データおよび/または信号が、無線デバイス、別のネットワークノードおよび/または任意の他のネットワーク機器から受信され得る。同様に、アンテナQQ162、インターフェースQQ190、および/または処理回路QQ170は、ネットワークノードによって実施されるものとして本明細書で説明される任意の送信動作を実施するように設定され得る。任意の情報、データおよび/または信号が、無線デバイス、別のネットワークノードおよび/または任意の他のネットワーク機器に送信され得る。
電力回路QQ187は、電力管理回路を備えるか、または電力管理回路に結合され得、本明細書で説明される機能を実施するための電力を、ネットワークノードQQ160の構成要素に供給するように設定される。電力回路QQ187は、電源QQ186から電力を受信し得る。電源QQ186および/または電力回路QQ187は、それぞれの構成要素に好適な形態で(たとえば、各それぞれの構成要素のために必要とされる電圧および電流レベルにおいて)、ネットワークノードQQ160の様々な構成要素に電力を提供するように設定され得る。電源QQ186は、電力回路QQ187および/またはネットワークノードQQ160中に含まれるか、あるいは電力回路QQ187および/またはネットワークノードQQ160の外部にあるかのいずれかであり得る。たとえば、ネットワークノードQQ160は、電気ケーブルなどの入力回路またはインターフェースを介して外部電源(たとえば、電気コンセント)に接続可能であり得、それにより、外部電源は電力回路QQ187に電力を供給する。さらなる例として、電源QQ186は、電力回路QQ187に接続された、または電力回路QQ187中で統合された、バッテリーまたはバッテリーパックの形態の電力源を備え得る。バッテリーは、外部電源が落ちた場合、バックアップ電力を提供し得る。光起電力デバイスなどの他のタイプの電源も使用され得る。
ネットワークノードQQ160の代替実施形態は、本明細書で説明される機能、および/または本明細書で説明される主題をサポートするために必要な機能のうちのいずれかを含む、ネットワークノードの機能のいくつかの態様を提供することを担当し得る、図8に示されている構成要素以外の追加の構成要素を含み得る。たとえば、ネットワークノードQQ160は、ネットワークノードQQ160への情報の入力を可能にするための、およびネットワークノードQQ160からの情報の出力を可能にするための、ユーザインターフェース機器を含み得る。これは、ユーザが、ネットワークノードQQ160のための診断、メンテナンス、修復、および他のアドミニストレーティブ機能を実施することを可能にし得る。
本明細書で使用される無線デバイス(WD)は、ネットワークノードおよび/または他の無線デバイスと無線で通信することが可能な、そうするように設定された、構成された、および/または動作可能なデバイスを指す。別段に記載されていない限り、WDという用語は、本明細書ではユーザ機器(UE)と互換的に使用され得る。無線で通信することは、空中で情報を伝達するのに好適な、電磁波、電波、赤外波、および/または他のタイプの信号を使用して無線信号を送信および/または受信することを伴い得る。いくつかの実施形態では、WDは、直接人間対話なしに情報を送信および/または受信するように設定され得る。たとえば、WDは、内部または外部イベントによってトリガされたとき、あるいはネットワークからの要求に応答して、所定のスケジュールでネットワークに情報を送信するように設計され得る。WDの例は、限定はしないが、スマートフォン、モバイルフォン、セルフォン、ボイスオーバーIP(VoIP)フォン、無線ローカルループ電話、デスクトップコンピュータ、携帯情報端末(PDA)、無線カメラ、ゲーミングコンソールまたはデバイス、音楽記憶デバイス、再生器具、ウェアラブル端末デバイス、無線エンドポイント、移動局、タブレット、ラップトップコンピュータ、ラップトップ組込み機器(LEE)、ラップトップ搭載機器(LME)、スマートデバイス、無線顧客構内機器(CPE:customer premise equipment)、車載無線端末デバイスなどを含む。WDは、たとえばサイドリンク通信、V2V(Vehicle-to-Vehicle)、V2I(Vehicle-to-Infrastructure)、V2X(Vehicle-to-Everything)のための3GPP規格を実装することによって、D2D(device-to-device)通信をサポートし得、この場合、D2D通信デバイスと呼ばれることがある。また別の特定の例として、モノのインターネット(IoT)シナリオでは、WDは、監視および/または測定を実施し、そのような監視および/または測定の結果を別のWDおよび/またはネットワークノードに送信する、マシンまたは他のデバイスを表し得る。WDは、この場合、マシンツーマシン(M2M)デバイスであり得、M2Mデバイスは、3GPPコンテキストではMTCデバイスと呼ばれることがある。1つの特定の例として、WDは、3GPP狭帯域モノのインターネット(NB-IoT)規格を実装するUEであり得る。そのようなマシンまたはデバイスの特定の例は、センサー、電力計などの計量デバイス、産業用機械類、あるいは家庭用または個人用電気器具(たとえば冷蔵庫、テレビジョンなど)、個人用ウェアラブル(たとえば、時計、フィットネストラッカーなど)である。他のシナリオでは、WDは車両または他の機器を表し得、車両または他の機器は、その動作ステータスを監視することおよび/またはその動作ステータスに関して報告すること、あるいはその動作に関連する他の機能が可能である。上記で説明されたWDは無線接続のエンドポイントを表し得、その場合、デバイスは無線端末と呼ばれることがある。さらに、上記で説明されたWDはモバイルであり得、その場合、デバイスはモバイルデバイスまたはモバイル端末と呼ばれることもある。
示されているように、無線デバイスQQ110は、アンテナQQ111、インターフェースQQ114、処理回路QQ120、デバイス可読媒体QQ130、ユーザインターフェース機器QQ132、補助機器QQ134、電源QQ136、および電力回路QQ137を含む。WD QQ110は、WD QQ110によってサポートされる、たとえば、ほんの数個を挙げると、GSM、WCDMA、LTE、NR、WiFi、WiMAX、またはBluetooth無線技術など、異なる無線技術のための示されている構成要素のうちの1つまたは複数の複数のセットを含み得る。これらの無線技術は、WD QQ110内の他の構成要素と同じまたは異なるチップまたはチップのセットに統合され得る。
アンテナQQ111は、無線信号を送り、および/または受信するように設定された、1つまたは複数のアンテナまたはアンテナアレイを含み得、インターフェースQQ114に接続される。いくつかの代替実施形態では、アンテナQQ111は、WD QQ110とは別個であり、インターフェースまたはポートを通してWD QQ110に接続可能であり得る。アンテナQQ111、インターフェースQQ114、および/または処理回路QQ120は、WDによって実施されるものとして本明細書で説明される任意の受信動作または送信動作を実施するように設定され得る。任意の情報、データおよび/または信号が、ネットワークノードおよび/または別のWDから受信され得る。いくつかの実施形態では、無線フロントエンド回路および/またはアンテナQQ111は、インターフェースと見なされ得る。
示されているように、インターフェースQQ114は、無線フロントエンド回路QQ112とアンテナQQ111とを備える。無線フロントエンド回路QQ112は、1つまたは複数のフィルタQQ118と増幅器QQ116とを備える。無線フロントエンド回路QQ114は、アンテナQQ111および処理回路QQ120に接続され、アンテナQQ111と処理回路QQ120との間で通信される信号を調整するように設定される。無線フロントエンド回路QQ112は、アンテナQQ111に結合されるか、またはアンテナQQ111の一部であり得る。いくつかの実施形態では、WD QQ110は別個の無線フロントエンド回路QQ112を含まないことがあり、むしろ、処理回路QQ120は、無線フロントエンド回路を備え得、アンテナQQ111に接続され得る。同様に、いくつかの実施形態では、RFトランシーバ回路QQ122の一部または全部が、インターフェースQQ114の一部と見なされ得る。無線フロントエンド回路QQ112は、無線接続を介して他のネットワークノードまたはWDに送出されるべきであるデジタルデータを受信し得る。無線フロントエンド回路QQ112は、デジタルデータを、フィルタQQ118および/または増幅器QQ116の組合せを使用して適切なチャネルおよび帯域幅パラメータを有する無線信号にコンバートし得る。無線信号は、次いで、アンテナQQ111を介して送信され得る。同様に、データを受信するとき、アンテナQQ111は無線信号を収集し得、次いで、無線信号は無線フロントエンド回路QQ112によってデジタルデータにコンバートされる。デジタルデータは、処理回路QQ120に受け渡され得る。他の実施形態では、インターフェースは、異なる構成要素および/または構成要素の異なる組合せを備え得る。
処理回路QQ120は、単体で、またはデバイス可読媒体QQ130などの他のWD QQ110構成要素と併せてのいずれかで、WD QQ110機能を提供するように動作可能な、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理ユニット、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または任意の他の好適なコンピューティングデバイス、リソースのうちの1つまたは複数の組合せ、あるいはハードウェア、ソフトウェアおよび/または符号化された論理の組合せを備え得る。そのような機能は、本明細書で説明される様々な無線特徴または利益のうちのいずれかを提供することを含み得る。たとえば、処理回路QQ120は、本明細書で開示される機能を提供するために、デバイス可読媒体QQ130に記憶された命令、または処理回路QQ120内のメモリに記憶された命令を実行し得る。
示されているように、処理回路QQ120は、RFトランシーバ回路QQ122、ベースバンド処理回路QQ124、およびアプリケーション処理回路QQ126のうちの1つまたは複数を含む。他の実施形態では、処理回路は、異なる構成要素および/または構成要素の異なる組合せを備え得る。いくつかの実施形態では、WD QQ110の処理回路QQ120は、SOCを備え得る。いくつかの実施形態では、RFトランシーバ回路QQ122、ベースバンド処理回路QQ124、およびアプリケーション処理回路QQ126は、別個のチップまたはチップのセット上にあり得る。代替実施形態では、ベースバンド処理回路QQ124およびアプリケーション処理回路QQ126の一部または全部は1つのチップまたはチップのセットになるように組み合わせられ得、RFトランシーバ回路QQ122は別個のチップまたはチップのセット上にあり得る。さらに代替の実施形態では、RFトランシーバ回路QQ122およびベースバンド処理回路QQ124の一部または全部は同じチップまたはチップのセット上にあり得、アプリケーション処理回路QQ126は別個のチップまたはチップのセット上にあり得る。また他の代替実施形態では、RFトランシーバ回路QQ122、ベースバンド処理回路QQ124、およびアプリケーション処理回路QQ126の一部または全部は、同じチップまたはチップのセット中で組み合わせられ得る。いくつかの実施形態では、RFトランシーバ回路QQ122は、インターフェースQQ114の一部であり得る。RFトランシーバ回路QQ122は、処理回路QQ120のためのRF信号を調整し得る。
いくつかの実施形態では、WDによって実施されるものとして本明細書で説明される機能の一部または全部は、デバイス可読媒体QQ130に記憶された命令を実行する処理回路QQ120によって提供され得、デバイス可読媒体QQ130は、いくつかの実施形態では、コンピュータ可読記憶媒体であり得る。代替実施形態では、機能の一部または全部は、ハードワイヤード様式などで、別個のまたは個別のデバイス可読記憶媒体に記憶された命令を実行することなしに、処理回路QQ120によって提供され得る。それらの特定の実施形態のいずれでも、デバイス可読記憶媒体に記憶された命令を実行するか否かにかかわらず、処理回路QQ120は、説明される機能を実施するように設定され得る。そのような機能によって提供される利益は、処理回路QQ120単独に、またはWD QQ110の他の構成要素に限定されないが、全体としてWD QQ110によって、ならびに/または概してエンドユーザおよび無線ネットワークによって、享受される。
処理回路QQ120は、WDによって実施されるものとして本明細書で説明される、任意の決定動作、計算動作、または同様の動作(たとえば、いくつかの取得動作)を実施するように設定され得る。処理回路QQ120によって実施されるようなこれらの動作は、処理回路QQ120によって取得された情報を、たとえば、取得された情報を他の情報にコンバートすることによって、処理すること、取得された情報またはコンバートされた情報をWD QQ110によって記憶された情報と比較すること、ならびに/あるいは、取得された情報またはコンバートされた情報に基づいて、および前記処理が決定を行ったことの結果として、1つまたは複数の動作を実施することを含み得る。
デバイス可読媒体QQ130は、コンピュータプログラム、ソフトウェア、論理、ルール、コード、テーブルなどのうちの1つまたは複数を含むアプリケーション、および/または処理回路QQ120によって実行されることが可能な他の命令を記憶するように動作可能であり得る。デバイス可読媒体QQ130は、コンピュータメモリ(たとえば、ランダムアクセスメモリ(RAM)または読取り専用メモリ(ROM))、大容量記憶媒体(たとえば、ハードディスク)、リムーバブル記憶媒体(たとえば、コンパクトディスク(CD)またはデジタルビデオディスク(DVD))、ならびに/あるいは、処理回路QQ120によって使用され得る情報、データ、および/または命令を記憶する、任意の他の揮発性または不揮発性、非一時的デバイス可読および/またはコンピュータ実行可能メモリデバイスを含み得る。いくつかの実施形態では、処理回路QQ120およびデバイス可読媒体QQ130は、統合されていると見なされ得る。
ユーザインターフェース機器QQ132は、人間のユーザがWD QQ110と対話することを可能にする構成要素を提供し得る。そのような対話は、視覚、聴覚、触覚など、多くの形態のものであり得る。ユーザインターフェース機器QQ132は、ユーザへの出力を作り出すように、およびユーザがWD QQ110への入力を提供することを可能にするように動作可能であり得る。対話のタイプは、WD QQ110にインストールされるユーザインターフェース機器QQ132のタイプに応じて変動し得る。たとえば、WD QQ110がスマートフォンである場合、対話はタッチスクリーンを介したものであり得、WD QQ110がスマートメーターである場合、対話は、使用量(たとえば、使用されたガロンの数)を提供するスクリーン、または(たとえば、煙が検出された場合)可聴警報を提供するスピーカーを通したものであり得る。ユーザインターフェース機器QQ132は、入力インターフェース、デバイスおよび回路、ならびに、出力インターフェース、デバイスおよび回路を含み得る。ユーザインターフェース機器QQ132は、WD QQ110への情報の入力を可能にするように設定され、処理回路QQ120が入力情報を処理することを可能にするために、処理回路QQ120に接続される。ユーザインターフェース機器QQ132は、たとえば、マイクロフォン、近接度または他のセンサー、キー/ボタン、タッチディスプレイ、1つまたは複数のカメラ、USBポート、あるいは他の入力回路を含み得る。ユーザインターフェース機器QQ132はまた、WD QQ110からの情報の出力を可能にするように、および処理回路QQ120がWD QQ110からの情報を出力することを可能にするように設定される。ユーザインターフェース機器QQ132は、たとえば、スピーカー、ディスプレイ、振動回路、USBポート、ヘッドフォンインターフェース、または他の出力回路を含み得る。ユーザインターフェース機器QQ132の1つまたは複数の入力および出力インターフェース、デバイス、および回路を使用して、WD QQ110は、エンドユーザおよび/または無線ネットワークと通信し、エンドユーザおよび/または無線ネットワークが本明細書で説明される機能から利益を得ることを可能にし得る。
補助機器QQ134は、概してWDによって実施されないことがある、より特定の機能を提供するように動作可能である。これは、様々な目的のために測定を行うための特殊化されたセンサー、有線通信などのさらなるタイプの通信のためのインターフェースなどを備え得る。補助機器QQ134の構成要素の包含およびタイプは、実施形態および/またはシナリオに応じて変動し得る。
電源QQ136は、いくつかの実施形態では、バッテリーまたはバッテリーパックの形態のものであり得る。外部電源(たとえば、電気コンセント)、光起電力デバイスまたは電池など、他のタイプの電源も使用され得る。WD QQ110は、電源QQ136から、本明細書で説明または指示される任意の機能を行うために電源QQ136からの電力を必要とする、WD QQ110の様々な部分に電力を配信するための、電力回路QQ137をさらに備え得る。電力回路QQ137は、いくつかの実施形態では、電力管理回路を備え得る。電力回路QQ137は、追加または代替として、外部電源から電力を受信するように動作可能であり得、その場合、WD QQ110は、電力ケーブルなどの入力回路またはインターフェースを介して(電気コンセントなどの)外部電源に接続可能であり得る。電力回路QQ137はまた、いくつかの実施形態では、外部電源から電源QQ136に電力を配信するように動作可能であり得る。これは、たとえば、電源QQ136の充電のためのものであり得る。電力回路QQ137は、電源QQ136からの電力に対して、その電力を、電力が供給されるWD QQ110のそれぞれの構成要素に好適であるようにするために、任意のフォーマッティング、コンバート、または他の修正を実施し得る。
図9:いくつかの実施形態によるユーザ機器。
図9は、本明細書で説明される様々な態様による、UEの一実施形態を示す。本明細書で使用されるユーザ機器またはUEは、必ずしも、関連するデバイスを所有し、および/または動作させる人間のユーザという意味におけるユーザを有するとは限らない。代わりに、UEは、人間のユーザへの販売、または人間のユーザによる動作を意図されるが、特定の人間のユーザに関連しないことがあるか、または特定の人間のユーザに初めに関連しないことがある、デバイス(たとえば、スマートスプリンクラーコントローラ)を表し得る。代替的に、UEは、エンドユーザへの販売、またはエンドユーザによる動作を意図されないが、ユーザに関連するか、またはユーザの利益のために動作され得る、デバイス(たとえば、スマート電力計)を表し得る。UE QQ2200は、NB-IoT UE、マシン型通信(MTC)UE、および/または拡張MTC(eMTC)UEを含む、第3世代パートナーシッププロジェクト(3GPP)によって識別される任意のUEであり得る。図9に示されているUE QQ200は、第3世代パートナーシッププロジェクト(3GPP)のGSM、UMTS、LTE、および/または5G規格など、3GPPによって公表された1つまたは複数の通信規格による通信のために設定されたWDの一例である。前述のように、WDおよびUEという用語は、互換的に使用され得る。したがって、図9はUEであるが、本明細書で説明される構成要素は、WDに等しく適用可能であり、その逆も同様である。
図9では、UE QQ200は、入出力インターフェースQQ205、無線周波数(RF)インターフェースQQ209、ネットワーク接続インターフェースQQ211、ランダムアクセスメモリ(RAM)QQ217と読取り専用メモリ(ROM)QQ219と記憶媒体QQ221などとを含むメモリQQ215、通信サブシステムQQ231、電源QQ233、および/または他の構成要素、あるいはそれらの任意の組合せに動作可能に結合された、処理回路QQ201を含む。記憶媒体QQ221は、オペレーティングシステムQQ223と、アプリケーションプログラムQQ225と、データQQ227とを含む。他の実施形態では、記憶媒体QQ221は、他の同様のタイプの情報を含み得る。いくつかのUEは、図9に示されている構成要素のすべてを利用するか、またはそれらの構成要素のサブセットのみを利用し得る。構成要素間の統合のレベルは、UEごとに変動し得る。さらに、いくつかのUEは、複数のプロセッサ、メモリ、トランシーバ、送信機、受信機など、構成要素の複数のインスタンスを含んでいることがある。
図9では、処理回路QQ201は、コンピュータ命令およびデータを処理するように設定され得る。処理回路QQ201は、(たとえば、ディスクリート論理、FPGA、ASICなどにおける)1つまたは複数のハードウェア実装状態機械など、機械可読コンピュータプログラムとしてメモリに記憶された機械命令を実行するように動作可能な任意の逐次状態機械、適切なファームウェアと一緒のプログラマブル論理、適切なソフトウェアと一緒のマイクロプロセッサまたはデジタル信号プロセッサ(DSP)など、1つまたは複数のプログラム内蔵、汎用プロセッサ、あるいは上記の任意の組合せを実装するように設定され得る。たとえば、処理回路QQ201は、2つの中央処理ユニット(CPU)を含み得る。データは、コンピュータによる使用に好適な形態での情報であり得る。
図示された実施形態では、入出力インターフェースQQ205は、入力デバイス、出力デバイス、または入出力デバイスに通信インターフェースを提供するように設定され得る。UE QQ200は、入出力インターフェースQQ205を介して出力デバイスを使用するように設定され得る。出力デバイスは、入力デバイスと同じタイプのインターフェースポートを使用し得る。たとえば、UE QQ200への入力およびUE QQ200からの出力を提供するために、USBポートが使用され得る。出力デバイスは、スピーカー、サウンドカード、ビデオカード、ディスプレイ、モニタ、プリンタ、アクチュエータ、エミッタ、スマートカード、別の出力デバイス、またはそれらの任意の組合せであり得る。UE QQ200は、ユーザがUE QQ200に情報をキャプチャすることを可能にするために、入出力インターフェースQQ205を介して入力デバイスを使用するように設定され得る。入力デバイスは、タッチセンシティブまたはプレゼンスセンシティブディスプレイ、カメラ(たとえば、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなど)、マイクロフォン、センサー、マウス、トラックボール、方向パッド、トラックパッド、スクロールホイール、スマートカードなどを含み得る。プレゼンスセンシティブディスプレイは、ユーザからの入力を検知するための容量性または抵抗性タッチセンサーを含み得る。センサーは、たとえば、加速度計、ジャイロスコープ、チルトセンサー、力センサー、磁力計、光センサー、近接度センサー、別の同様のセンサー、またはそれらの任意の組合せであり得る。たとえば、入力デバイスは、加速度計、磁力計、デジタルカメラ、マイクロフォン、および光センサーであり得る。
図9では、RFインターフェースQQ209は、送信機、受信機、およびアンテナなど、RF構成要素に通信インターフェースを提供するように設定され得る。ネットワーク接続インターフェースQQ211は、ネットワークQQ243aに通信インターフェースを提供するように設定され得る。ネットワークQQ243aは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、無線ネットワーク、通信ネットワーク、別の同様のネットワークまたはそれらの任意の組合せなど、有線および/または無線ネットワークを包含し得る。たとえば、ネットワークQQ243aは、Wi-Fiネットワークを備え得る。ネットワーク接続インターフェースQQ211は、イーサネット、TCP/IP、SONET、ATMなど、1つまたは複数の通信プロトコルに従って通信ネットワーク上で1つまたは複数の他のデバイスと通信するために使用される、受信機および送信機インターフェースを含むように設定され得る。ネットワーク接続インターフェースQQ211は、通信ネットワークリンク(たとえば、光学的、電気的など)に適した受信機および送信機機能を実装し得る。送信機および受信機機能は、回路構成要素、ソフトウェアまたはファームウェアを共有し得るか、あるいは、代替的に、別個に実装され得る。
RAM QQ217は、オペレーティングシステム、アプリケーションプログラム、およびデバイスドライバなど、ソフトウェアプログラムの実行中に、データまたはコンピュータ命令の記憶またはキャッシングを提供するために、バスQQ202を介して処理回路QQ201にインターフェースするように設定され得る。ROM QQ219は、処理回路QQ201にコンピュータ命令またはデータを提供するように設定され得る。たとえば、ROM QQ219は、不揮発性メモリに記憶される、基本入出力(I/O)、起動、またはキーボードからのキーストロークの受信など、基本システム機能のための、不変低レベルシステムコードまたはデータを記憶するように設定され得る。記憶媒体QQ221は、RAM、ROM、プログラマブル読取り専用メモリ(PROM)、消去可能プログラマブル読取り専用メモリ(EPROM)、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、磁気ディスク、光ディスク、フロッピーディスク、ハードディスク、取外し可能カートリッジ、またはフラッシュドライブなど、メモリを含むように設定され得る。一例では、記憶媒体QQ221は、オペレーティングシステムQQ223と、ウェブブラウザアプリケーション、ウィジェットまたはガジェットエンジン、あるいは別のアプリケーションなどのアプリケーションプログラムQQ225と、データファイルQQ227とを含むように設定され得る。記憶媒体QQ221は、UE QQ200による使用のために、多様な様々なオペレーティングシステムまたはオペレーティングシステムの組合せのうちのいずれかを記憶し得る。
記憶媒体QQ221は、独立ディスクの冗長アレイ(RAID)、フロッピーディスクドライブ、フラッシュメモリ、USBフラッシュドライブ、外部ハードディスクドライブ、サムドライブ、ペンドライブ、キードライブ、高密度デジタル多用途ディスク(HD-DVD)光ディスクドライブ、内蔵ハードディスクドライブ、Blu-Ray光ディスクドライブ、ホログラフィックデジタルデータ記憶(HDDS)光ディスクドライブ、外部ミニデュアルインラインメモリモジュール(DIMM)、シンクロナスダイナミックランダムアクセスメモリ(SDRAM)、外部マイクロDIMM SDRAM、加入者識別モジュールまたはリムーバブルユーザ識別情報(SIM/RUIM)モジュールなどのスマートカードメモリ、他のメモリ、あるいはそれらの任意の組合せなど、いくつかの物理ドライブユニットを含むように設定され得る。記憶媒体QQ221は、UE QQ200が、一時的または非一時的メモリ媒体に記憶されたコンピュータ実行可能命令、アプリケーションプログラムなどにアクセスすること、データをオフロードすること、またはデータをアップロードすることを可能にし得る。通信システムを利用する製造品などの製造品は、記憶媒体QQ221中に有形に具現され得、記憶媒体QQ221はデバイス可読媒体を備え得る。
図9では、処理回路QQ201は、通信サブシステムQQ231を使用してネットワークQQ243bと通信するように設定され得る。ネットワークQQ243aとネットワークQQ243bとは、同じ1つまたは複数のネットワークまたは異なる1つまたは複数のネットワークであり得る。通信サブシステムQQ231は、ネットワークQQ243bと通信するために使用される1つまたは複数のトランシーバを含むように設定され得る。たとえば、通信サブシステムQQ231は、IEEE802.QQ2、CDMA、WCDMA、GSM、LTE、UTRAN、WiMaxなど、1つまたは複数の通信プロトコルに従って、無線アクセスネットワーク(RAN)の別のWD、UE、または基地局など、無線通信が可能な別のデバイスの1つまたは複数のリモートトランシーバと通信するために使用される、1つまたは複数のトランシーバを含むように設定され得る。各トランシーバは、RANリンク(たとえば、周波数割り当てなど)に適した送信機機能または受信機機能をそれぞれ実装するための、送信機QQ233および/または受信機QQ235を含み得る。さらに、各トランシーバの送信機QQ233および受信機QQ235は、回路構成要素、ソフトウェアまたはファームウェアを共有し得るか、または、代替的に、別個に実装され得る。
示されている実施形態では、通信サブシステムQQ231の通信機能は、データ通信、ボイス通信、マルチメディア通信、Bluetoothなどの短距離通信、ニアフィールド通信、ロケーションを決定するための全地球測位システム(GPS)の使用などのロケーションベース通信、別の同様の通信機能、またはそれらの任意の組合せを含み得る。たとえば、通信サブシステムQQ231は、セルラ通信と、Wi-Fi通信と、Bluetooth通信と、GPS通信とを含み得る。ネットワークQQ243bは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、無線ネットワーク、通信ネットワーク、別の同様のネットワークまたはそれらの任意の組合せなど、有線および/または無線ネットワークを包含し得る。たとえば、ネットワークQQ243bは、セルラネットワーク、Wi-Fiネットワーク、および/またはニアフィールドネットワークであり得る。電源QQ213は、UE QQ200の構成要素に交流(AC)または直流(DC)電力を提供するように設定され得る。
本明細書で説明される特徴、利益および/または機能は、UE QQ200の構成要素のうちの1つにおいて実装されるか、またはUE QQ200の複数の構成要素にわたって分割され得る。さらに、本明細書で説明される特徴、利益、および/または機能は、ハードウェア、ソフトウェアまたはファームウェアの任意の組合せで実装され得る。一例では、通信サブシステムQQ231は、本明細書で説明される構成要素のうちのいずれかを含むように設定され得る。さらに、処理回路QQ201は、バスQQ202上でそのような構成要素のうちのいずれかと通信するように設定され得る。別の例では、そのような構成要素のうちのいずれかは、処理回路QQ201によって実行されたとき、本明細書で説明される対応する機能を実施する、メモリに記憶されたプログラム命令によって表され得る。別の例では、そのような構成要素のうちのいずれかの機能は、処理回路QQ201と通信サブシステムQQ231との間で分割され得る。別の例では、そのような構成要素のうちのいずれかの非計算集約的機能が、ソフトウェアまたはファームウェアで実装され得、計算集約的機能がハードウェアで実装され得る。
図10:いくつかの実施形態による仮想化環境。
図10は、いくつかの実施形態によって実装される機能が仮想化され得る、仮想化環境QQ300を示す概略ブロック図である。本コンテキストでは、仮想化することは、ハードウェアプラットフォーム、記憶デバイスおよびネットワーキングリソースを仮想化することを含み得る、装置またはデバイスの仮想バージョンを作成することを意味する。本明細書で使用される仮想化は、ノード(たとえば、仮想化された基地局または仮想化された無線アクセスノード)に、あるいはデバイス(たとえば、UE、無線デバイスまたは任意の他のタイプの通信デバイス)またはそのデバイスの構成要素に適用され得、機能の少なくとも一部分が、(たとえば、1つまたは複数のネットワークにおいて1つまたは複数の物理処理ノード上で実行する、1つまたは複数のアプリケーション、構成要素、機能、仮想マシンまたはコンテナを介して)1つまたは複数の仮想構成要素として実装される、実装形態に関する。
いくつかの実施形態では、本明細書で説明される機能の一部または全部は、ハードウェアノードQQ330のうちの1つまたは複数によってホストされる1つまたは複数の仮想環境QQ300において実装される1つまたは複数の仮想マシンによって実行される、仮想構成要素として実装され得る。さらに、仮想ノードが、無線アクセスノードではないか、または無線コネクティビティ(たとえば、コアネットワークノード)を必要としない実施形態では、ネットワークノードは完全に仮想化され得る。
機能は、本明細書で開示される実施形態のうちのいくつかの特徴、機能、および/または利益のうちのいくつかを実装するように動作可能な、(代替的に、ソフトウェアインスタンス、仮想アプライアンス、ネットワーク機能、仮想ノード、仮想ネットワーク機能などと呼ばれることがある)1つまたは複数のアプリケーションQQ320によって実装され得る。アプリケーションQQ320は、処理回路QQ360とメモリQQ390とを備えるハードウェアQQ330を提供する、仮想化環境QQ300において稼働される。メモリQQ390は、処理回路QQ360によって実行可能な命令QQ395を含んでおり、それにより、アプリケーションQQ320は、本明細書で開示される特徴、利益、および/または機能のうちの1つまたは複数を提供するように動作可能である。
仮想化環境QQ300は、1つまたは複数のプロセッサのセットまたは処理回路QQ360を備える、汎用または専用のネットワークハードウェアデバイスQQ330を備え、1つまたは複数のプロセッサのセットまたは処理回路QQ360は、商用オフザシェルフ(COTS)プロセッサ、専用の特定用途向け集積回路(ASIC)、あるいは、デジタルもしくはアナログハードウェア構成要素または専用プロセッサを含む任意の他のタイプの処理回路であり得る。各ハードウェアデバイスはメモリQQ390-1を備え得、メモリQQ390-1は、処理回路QQ360によって実行される命令QQ395またはソフトウェアを一時的に記憶するための非永続的メモリであり得る。各ハードウェアデバイスは、ネットワークインターフェースカードとしても知られる、1つまたは複数のネットワークインターフェースコントローラ(NIC)QQ370を備え得、ネットワークインターフェースコントローラ(NIC)QQ370は物理ネットワークインターフェースQQ380を含む。各ハードウェアデバイスは、処理回路QQ360によって実行可能なソフトウェアQQ395および/または命令を記憶した、非一時的、永続的、機械可読記憶媒体QQ390-2をも含み得る。ソフトウェアQQ395は、1つまたは複数の(ハイパーバイザとも呼ばれる)仮想化レイヤQQ350をインスタンス化するためのソフトウェア、仮想マシンQQ340を実行するためのソフトウェア、ならびに、それが、本明細書で説明されるいくつかの実施形態との関係において説明される機能、特徴および/または利益を実行することを可能にする、ソフトウェアを含む、任意のタイプのソフトウェアを含み得る。
仮想マシンQQ340は、仮想処理、仮想メモリ、仮想ネットワーキングまたはインターフェース、および仮想記憶域を備え、対応する仮想化レイヤQQ350またはハイパーバイザによって稼働され得る。仮想アプライアンスQQ320の事例の異なる実施形態が、仮想マシンQQ340のうちの1つまたは複数上で実装され得、実装は異なるやり方で行われ得る。
動作中に、処理回路QQ360は、ソフトウェアQQ395を実行してハイパーバイザまたは仮想化レイヤQQ350をインスタンス化し、ハイパーバイザまたは仮想化レイヤQQ350は、時々、仮想マシンモニタ(VMM)と呼ばれることがある。仮想化レイヤQQ350は、仮想マシンQQ340に、ネットワーキングハードウェアのように見える仮想動作プラットフォームを提示し得る。
図10に示されているように、ハードウェアQQ330は、一般的なまたは特定の構成要素をもつスタンドアロンネットワークノードであり得る。ハードウェアQQ330は、アンテナQQ3225を備え得、仮想化を介していくつかの機能を実装し得る。代替的に、ハードウェアQQ330は、多くのハードウェアノードが協働し、特に、アプリケーションQQ320のライフサイクル管理を監督する、管理およびオーケストレーション(MANO)QQ3100を介して管理される、(たとえば、データセンタまたは顧客構内機器(CPE)の場合のような)ハードウェアのより大きいクラスタの一部であり得る。
ハードウェアの仮想化は、いくつかのコンテキストにおいて、ネットワーク機能仮想化(NFV)と呼ばれる。NFVは、多くのネットワーク機器タイプを、データセンタおよび顧客構内機器中に位置し得る、業界標準高ボリュームサーバハードウェア、物理スイッチ、および物理記憶域上にコンソリデートするために使用され得る。
NFVのコンテキストでは、仮想マシンQQ340は、プログラムを、それらのプログラムが、物理的な仮想化されていないマシン上で実行しているかのように稼働する、物理マシンのソフトウェア実装形態であり得る。仮想マシンQQ340の各々と、その仮想マシンに専用のハードウェアであろうと、および/またはその仮想マシンによって仮想マシンQQ340のうちの他の仮想マシンと共有されるハードウェアであろうと、その仮想マシンを実行するハードウェアQQ330のその一部とは、別個の仮想ネットワークエレメント(VNE)を形成する。
さらにNFVのコンテキストでは、仮想ネットワーク機能(VNF)は、ハードウェアネットワーキングインフラストラクチャQQ330の上の1つまたは複数の仮想マシンQQ340において稼働する特定のネットワーク機能をハンドリングすることを担当し、図10中のアプリケーションQQ320に対応する。
いくつかの実施形態では、各々、1つまたは複数の送信機QQ3220と1つまたは複数の受信機QQ3210とを含む、1つまたは複数の無線ユニットQQ3200は、1つまたは複数のアンテナQQ3225に結合され得る。無線ユニットQQ3200は、1つまたは複数の適切なネットワークインターフェースを介してハードウェアノードQQ330と直接通信し得、無線アクセスノードまたは基地局など、無線能力をもつ仮想ノードを提供するために仮想構成要素と組み合わせて使用され得る。
いくつかの実施形態では、何らかのシグナリングが、ハードウェアノードQQ330と無線ユニットQQ3200との間の通信のために代替的に使用され得る制御システムQQ3230を使用して、実現され得る。
図11:いくつかの実施形態による、中間ネットワークを介してホストコンピュータに接続された通信ネットワーク。
図11を参照すると、一実施形態によれば、通信システムが、無線アクセスネットワークなどのアクセスネットワークQQ411とコアネットワークQQ414とを備える、3GPPタイプセルラネットワークなどの通信ネットワークQQ410を含む。アクセスネットワークQQ411は、NB、eNB、gNBまたは他のタイプの無線アクセスポイントなど、複数の基地局QQ412a、QQ412b、QQ412cを備え、各々が、対応するカバレッジエリアQQ413a、QQ413b、QQ413cを規定する。各基地局QQ412a、QQ412b、QQ412cは、有線接続または無線接続QQ415上でコアネットワークQQ414に接続可能である。カバレッジエリアQQ413c中に位置する第1のUE QQ491が、対応する基地局QQ412cに無線で接続するか、または対応する基地局QQ412cによってページングされるように設定される。カバレッジエリアQQ413a中の第2のUE QQ492が、対応する基地局QQ412aに無線で接続可能である。この例では複数のUE QQ491、QQ492が示されているが、開示される実施形態は、唯一のUEがカバレッジエリア中にある状況、または唯一のUEが、対応する基地局QQ412に接続している状況に等しく適用可能である。
通信ネットワークQQ410は、それ自体、ホストコンピュータQQ430に接続され、ホストコンピュータQQ430は、スタンドアロンサーバ、クラウド実装サーバ、分散サーバのハードウェアおよび/またはソフトウェアにおいて、あるいはサーバファーム中の処理リソースとして具現され得る。ホストコンピュータQQ430は、サービスプロバイダの所有または制御下にあり得、あるいはサービスプロバイダによってまたはサービスプロバイダに代わって動作され得る。通信ネットワークQQ410とホストコンピュータQQ430との間の接続QQ421およびQQ422は、コアネットワークQQ414からホストコンピュータQQ430に直接延び得るか、または随意の中間ネットワークQQ420を介して進み得る。中間ネットワークQQ420は、パブリックネットワーク、プライベートネットワーク、またはホストされたネットワークのうちの1つ、またはそれらのうちの2つ以上の組合せであり得、中間ネットワークQQ420は、もしあれば、バックボーンネットワークまたはインターネットであり得、特に、中間ネットワークQQ420は、2つまたはそれ以上のサブネットワーク(図示せず)を備え得る。
図11の通信システムは全体として、接続されたUE QQ491、QQ492とホストコンピュータQQ430との間のコネクティビティを可能にする。コネクティビティは、オーバーザトップ(OTT)接続QQ450として説明され得る。ホストコンピュータQQ430および接続されたUE QQ491、QQ492は、アクセスネットワークQQ411、コアネットワークQQ414、任意の中間ネットワークQQ420、および考えられるさらなるインフラストラクチャ(図示せず)を媒介として使用して、OTT接続QQ450を介して、データおよび/またはシグナリングを通信するように設定される。OTT接続QQ450は、OTT接続QQ450が通過する、参加する通信デバイスが、アップリンクおよびダウンリンク通信のルーティングに気づいていないという意味で、透過的であり得る。たとえば、基地局QQ412は、接続されたUE QQ491にフォワーディング(たとえば、ハンドオーバ)されるべき、ホストコンピュータQQ430から発生したデータを伴う着信ダウンリンク通信の過去のルーティングについて、知らされないことがあるかまたは知らされる必要がない。同様に、基地局QQ412は、UE QQ491から発生してホストコンピュータQQ430に向かう発信アップリンク通信の将来のルーティングに気づいている必要がない。
図12:いくつかの実施形態による、部分的無線接続上で基地局を介してユーザ機器と通信するホストコンピュータ。
次に、一実施形態による、前の段落において説明されたUE、基地局およびホストコンピュータの例示的な実装形態が、図12を参照しながら説明される。通信システムQQ500では、ホストコンピュータQQ510が、通信システムQQ500の異なる通信デバイスのインターフェースとの有線接続または無線接続をセットアップおよび維持するように設定された通信インターフェースQQ516を含む、ハードウェアQQ515を備える。ホストコンピュータQQ510は、記憶能力および/または処理能力を有し得る、処理回路QQ518をさらに備える。特に、処理回路QQ518は、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または、命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る。ホストコンピュータQQ510は、ホストコンピュータQQ510に記憶されるかまたはホストコンピュータQQ510によってアクセス可能であり、処理回路QQ518によって実行可能である、ソフトウェアQQ511をさらに備える。ソフトウェアQQ511は、ホストアプリケーションQQ512を含む。ホストアプリケーションQQ512は、UE QQ530およびホストコンピュータQQ510において終端するOTT接続QQ550を介して接続するUE QQ530など、リモートユーザにサービスを提供するように動作可能であり得る。リモートユーザにサービスを提供する際に、ホストアプリケーションQQ512は、OTT接続QQ550を使用して送信されるユーザデータを提供し得る。
通信システムQQ500は、通信システム中に提供される基地局QQ520をさらに含み、基地局QQ520は、基地局QQ520がホストコンピュータQQ510およびUE QQ530と通信することを可能にするハードウェアQQ525を備える。ハードウェアQQ525は、通信システムQQ500の異なる通信デバイスのインターフェースとの有線接続または無線接続をセットアップおよび維持するための通信インターフェースQQ526、ならびに基地局QQ520によってサーブされるカバレッジエリア(図12に図示せず)中に位置するUE QQ530との少なくとも無線接続QQ570をセットアップおよび維持するための無線インターフェースQQ527を含み得る。通信インターフェースQQ526は、ホストコンピュータQQ510への接続QQ560を容易にするように設定され得る。接続QQ560は直接であり得るか、あるいは、接続QQ560は、通信システムのコアネットワーク(図12に図示せず)を、および/または通信システムの外部の1つまたは複数の中間ネットワークを通過し得る。図示の実施形態では、基地局QQ520のハードウェアQQ525は、処理回路QQ528をさらに含み、処理回路QQ528は、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または、命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る。基地局QQ520は、内部的に記憶されるかまたは外部接続を介してアクセス可能なソフトウェアQQ521をさらに有する。
通信システムQQ500は、すでに言及されたUE QQ530をさらに含む。UE QQ530のハードウェアQQ535は、UE QQ530が現在位置するカバレッジエリアをサーブする基地局との無線接続QQ570をセットアップおよび維持するように設定された、無線インターフェースQQ537を含み得る。UE QQ530のハードウェアQQ535は、処理回路QQ538をさらに含み、処理回路QQ538は、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または、命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る。UE QQ530は、UE QQ530に記憶されるかまたはUE QQ530によってアクセス可能であり、処理回路QQ538によって実行可能である、ソフトウェアQQ531をさらに備える。ソフトウェアQQ531は、クライアントアプリケーションQQ532を含む。クライアントアプリケーションQQ532は、ホストコンピュータQQ510のサポートのもとに、UE QQ530を介して人間のまたは人間でないユーザにサービスを提供するように動作可能であり得る。ホストコンピュータQQ510では、実行しているホストアプリケーションQQ512は、UE QQ530およびホストコンピュータQQ510において終端するOTT接続QQ550を介して、実行しているクライアントアプリケーションQQ532と通信し得る。ユーザにサービスを提供する際に、クライアントアプリケーションQQ532は、ホストアプリケーションQQ512から要求データを受信し、要求データに応答してユーザデータを提供し得る。OTT接続QQ550は、要求データとユーザデータの両方を転送し得る。クライアントアプリケーションQQ532は、クライアントアプリケーションQQ532が提供するユーザデータを生成するためにユーザと対話し得る。
図12に示されているホストコンピュータQQ510、基地局QQ520およびUE QQ530は、それぞれ、図11のホストコンピュータQQ430、基地局QQ412a、QQ412b、QQ412cのうちの1つ、およびUE QQ491、QQ492のうちの1つと同様または同等であり得ることに留意されたい。つまり、これらのエンティティの内部の働きは、図12に示されているようなものであり得、別個に、周囲のネットワークトポロジーは、図11のものであり得る。
図12では、OTT接続QQ550は、仲介デバイスとこれらのデバイスを介したメッセージの正確なルーティングとへの明示的言及なしに、基地局QQ520を介したホストコンピュータQQ510とUE QQ530との間の通信を示すために抽象的に描かれている。ネットワークインフラストラクチャが、ルーティングを決定し得、ネットワークインフラストラクチャは、UE QQ530からまたはホストコンピュータQQ510を動作させるサービスプロバイダから、またはその両方からルーティングを隠すように設定され得る。OTT接続QQ550がアクティブである間、ネットワークインフラストラクチャは、さらに、ネットワークインフラストラクチャが(たとえば、ネットワークの負荷分散考慮または再設定に基づいて)ルーティングを動的に変更する判定を行い得る。
UE QQ530と基地局QQ520との間の無線接続QQ570は、本開示全体にわたって説明される実施形態の教示に従う。様々な実施形態のうちの1つまたは複数は、無線接続QQ570が最後のセグメントを形成するOTT接続QQ550を使用して、UE QQ530に提供されるOTTサービスの性能を改善し得る。より正確には、これらの実施形態の教示は、ビデオ処理のためのデブロックフィルタ処理を改善し、それにより、改善されたビデオ符号化および/または復号などの利益を提供し得る。
1つまたは複数の実施形態が改善する、データレート、レイテンシおよび他のファクタを監視する目的での、測定プロシージャが提供され得る。測定結果の変動に応答して、ホストコンピュータQQ510とUE QQ530との間のOTT接続QQ550を再設定するための随意のネットワーク機能がさらにあり得る。測定プロシージャおよび/またはOTT接続QQ550を再設定するためのネットワーク機能は、ホストコンピュータQQ510のソフトウェアQQ511およびハードウェアQQ515でまたはUE QQ530のソフトウェアQQ531およびハードウェアQQ535で、またはその両方で実装され得る。実施形態では、OTT接続QQ550が通過する通信デバイスにおいてまたはそれに関連して、センサー(図示せず)が展開され得、センサーは、上記で例示された監視された量の値を供給すること、またはソフトウェアQQ511、QQ531が監視された量を算出または推定し得る他の物理量の値を供給することによって、測定プロシージャに参加し得る。OTT接続QQ550の再設定は、メッセージフォーマット、再送信セッティング、好ましいルーティングなどを含み得、再設定は、基地局QQ520に影響を及ぼす必要がなく、再設定は、基地局QQ520に知られていないかまたは知覚不可能であり得る。そのようなプロシージャおよび機能は、当技術分野において知られ、実施され得る。いくつかの実施形態では、測定は、スループット、伝搬時間、レイテンシなどのホストコンピュータQQ510の測定を容易にするプロプライエタリUEシグナリングを伴い得る。測定は、ソフトウェアQQ511およびQQ531が、ソフトウェアQQ511およびQQ531が伝搬時間、エラーなどを監視する間にOTT接続QQ550を使用して、メッセージ、特に空のまたは「ダミー」メッセージが送信されることを引き起こすことにおいて、実装され得る。
図13:いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法。
図13は、一実施形態による、通信システムにおいて実装される方法を示すフローチャートである。通信システムは、図11および図12を参照しながら説明されたものであり得る、ホストコンピュータと基地局とUEとを含む。本開示の簡単のために、図13への図面参照のみがこのセクションに含まれる。ステップQQ610において、ホストコンピュータはユーザデータを提供する。ステップQQ610の(随意であり得る)サブステップQQ611において、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップQQ620において、ホストコンピュータは、UEにユーザデータを搬送する送信を始動する。(随意であり得る)ステップQQ630において、基地局は、本開示全体にわたって説明される実施形態の教示に従って、ホストコンピュータが始動した送信において搬送されたユーザデータをUEに送信する。(また、随意であり得る)ステップQQ640において、UEは、ホストコンピュータによって実行されるホストアプリケーションに関連するクライアントアプリケーションを実行する。
図14:いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法。
図14は、一実施形態による、通信システムにおいて実装される方法を示すフローチャートである。通信システムは、図11および図12を参照しながら説明されたものであり得る、ホストコンピュータと基地局とUEとを含む。本開示の簡単のために、図14への図面参照のみがこのセクションに含まれる。方法のステップQQ710において、ホストコンピュータはユーザデータを提供する。随意のサブステップ(図示せず)において、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップQQ720において、ホストコンピュータは、UEにユーザデータを搬送する送信を始動する。送信は、本開示全体にわたって説明される実施形態の教示に従って、基地局を介して進み得る。(随意であり得る)ステップQQ730において、UEは、送信において搬送されたユーザデータを受信する。
図15:いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法。
図15は、一実施形態による、通信システムにおいて実装される方法を示すフローチャートである。通信システムは、図11および図12を参照しながら説明されたものであり得る、ホストコンピュータと基地局とUEとを含む。本開示の簡単のために、図15への図面参照のみがこのセクションに含まれる。(随意であり得る)ステップQQ810において、UEは、ホストコンピュータによって提供された入力データを受信する。追加または代替として、ステップQQ820において、UEはユーザデータを提供する。ステップQQ820の(随意であり得る)サブステップQQ821において、UEは、クライアントアプリケーションを実行することによって、ユーザデータを提供する。ステップQQ810の(随意であり得る)サブステップQQ811において、UEは、ホストコンピュータによって提供された受信された入力データに反応してユーザデータを提供する、クライアントアプリケーションを実行する。ユーザデータを提供する際に、実行されたクライアントアプリケーションは、ユーザから受信されたユーザ入力をさらに考慮し得る。ユーザデータが提供された特定の様式にかかわらず、UEは、(随意であり得る)サブステップQQ830において、ホストコンピュータへのユーザデータの送信を始動する。方法のステップQQ840において、ホストコンピュータは、本開示全体にわたって説明される実施形態の教示に従って、UEから送信されたユーザデータを受信する。
図16:いくつかの実施形態による、ホストコンピュータと、基地局と、ユーザ機器とを含む通信システムにおいて実装される方法。
図16は、一実施形態による、通信システムにおいて実装される方法を示すフローチャートである。通信システムは、図11および図12を参照しながら説明されたものであり得る、ホストコンピュータと基地局とUEとを含む。本開示の簡単のために、図16への図面参照のみがこのセクションに含まれる。(随意であり得る)ステップQQ910において、本開示全体にわたって説明される実施形態の教示に従って、基地局は、UEからユーザデータを受信する。(随意であり得る)ステップQQ920において、基地局は、ホストコンピュータへの、受信されたユーザデータの送信を始動する。(随意であり得る)ステップQQ930において、ホストコンピュータは、基地局によって始動された送信において搬送されたユーザデータを受信する。
本明細書で開示される任意の適切なステップ、方法、特徴、機能、または利益は、1つまたは複数の仮想装置の1つまたは複数の機能ユニットまたはモジュールを通して実施され得る。各仮想装置は、いくつかのこれらの機能ユニットを備え得る。これらの機能ユニットは、1つまたは複数のマイクロプロセッサまたはマイクロコントローラを含み得る、処理回路、ならびに、デジタル信号プロセッサ(DSP)、専用デジタル論理などを含み得る、他のデジタルハードウェアを介して実装され得る。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなど、1つまたはいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。メモリに記憶されたプログラムコードは、1つまたは複数の通信および/またはデータ通信プロトコルを実行するためのプログラム命令、ならびに本明細書で説明される技法のうちの1つまたは複数を行うための命令を含む。いくつかの実装形態では、処理回路は、それぞれの機能ユニットに、本開示の1つまたは複数の実施形態による、対応する機能を実施させるために使用され得る。
ユニットという用語は、エレクトロニクス、電気デバイス、および/または電子デバイスの分野での通常の意味を有し得、たとえば、本明細書で説明されるものなど、それぞれのタスク、プロシージャ、算出、出力、および/または表示機能を行うための、電気および/または電子回路、デバイス、モジュール、プロセッサ、メモリ、論理固体および/または個別デバイス、コンピュータプログラムまたは命令などを含み得る。

Claims (57)

  1. 無線通信ネットワークのセッション管理機能(SMF)ノード(901)を動作させる方法であって、前記方法は、
    無線デバイス(UE)のためのセッションを作成するようにとの要求を受信すること(1705)と、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、ネットワーク露出機能(NEF)ノード(905)に通信確立要求を送信すること(1717)であって、前記通信確立要求が、前記無線デバイスのための前記セッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を送信すること(1717)と、
    前記NEFノードから通信確立応答を受信すること(1719)であって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を受信すること(1719)と、
    前記通信確立応答を受信した後に、前記UPFノードにトンネル情報更新を送信すること(1735)であって、前記トンネル情報更新が、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記NEFノード情報を含む、トンネル情報更新を送信すること(1735)と
    を含む、方法。
  2. 前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記無線デバイスについてのサブスクリプション情報を取得すること(1709)であって、前記無線デバイスについての前記サブスクリプション情報が、前記無線デバイスに関連するNEF情報を含む、サブスクリプション情報を取得すること(1709)
    をさらに含み、
    前記通信確立要求を送信することが、前記無線デバイスに関連する前記NEF情報に基づいて、前記NEFノードに前記通信確立要求を送信することを含む、
    実施形態1に記載の方法。
  3. 前記無線デバイスに関連する前記NEF情報が、前記無線デバイスに関連するNEFノードのNEF識別子を含む、実施形態2に記載の方法。
  4. 前記サブスクリプション情報を取得することが、統合データ管理(UDM)ノードに前記サブスクリプション情報についての要求を送信することと、前記UDMノードから前記サブスクリプション情報を受信することとを含む、実施形態2または3に記載の方法。
  5. 前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記セッションのためにユーザプレーン機能(UPF)ノードを選択すること(1715)
    をさらに含む、実施形態2から4のいずれか1つに記載の方法。
  6. 前記UPFノードを選択することが、前記通信確立要求中に含まれる、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記UPFノード情報を取得することを含む、実施形態5に記載の方法。
  7. 前記UPFノードと前記NEFノードとの間の前記トンネルが第1のトンネルであり、前記UPFノードを選択することが、前記UPFノードと前記無線デバイスに関連する無線アクセスノード(RAN)との間の第2のトンネルについてのUPFノード情報を取得することを含み、前記第2のトンネルが、前記無線デバイスのための前記セッションのために使用されるべきであり、前記方法は、
    前記RANにトンネルセットアップ要求を送信すること(1725)であって、前記トンネルセットアップ要求が、前記UPFノードと前記RANとの間の前記第2のトンネルについての前記UPFノード情報を含む、トンネルセットアップ要求を送信すること(1725)と、
    前記RANからセッション確立受付メッセージを受信すること(1729)であって、前記セッション確立受付メッセージが、前記UPFノードと前記RANとの間の前記第2のトンネルについてのRAN情報を含む、セッション確立受付メッセージを受信すること(1729)と
    をさらに含み、
    前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で送信される、
    実施形態5または6に記載の方法。
  8. 無線通信ネットワークのネットワーク露出機能(NEF)ノード(905)を動作させる方法であって、前記方法は、
    統合データ管理(UDM)ノードに設定情報を提供すること(1805)であって、前記設定情報が、前記NEFノードに関連する無線デバイス(UE)の識別を含む、設定情報を提供すること(1805)と、
    前記設定情報を提供した後に、セッション管理機能(SMF)ノード(901)から通信確立要求を受信すること(1809)であって、前記通信確立要求が、前記無線デバイスのためのセッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を受信すること(1809)と、
    前記SMFノードに通信確立応答を送信すること(1815)であって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を送信すること(1815)と、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記UPFノード情報を使用して確立すること(1819)と、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供すること(1825)と
    を含む、方法。
  9. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態8に記載の方法。
  10. 前記NEFノード情報が、前記トンネルのために使用されるべき、前記NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態8または9に記載の方法。
  11. 前記UPFノードと前記NEFノードとの間の前記トンネルが、前記UPFノードと前記NEFノードとの間のN6インターフェースを介したトンネルである、実施形態8から10のいずれか1つに記載の方法。
  12. 前記通信確立要求および/または前記通信確立応答が、前記無線デバイスの識別を含む、実施形態8から11のいずれか1つに記載の方法。
  13. 無線通信ネットワークのユーザプレーン機能(UPF)ノード(903)を動作させる方法であって、前記方法は、
    セッション管理機能(SMF)ノード(901)からトンネル情報更新を受信すること(1909)であって、前記トンネル情報更新が、無線デバイスのためのセッションのために使用されるべき、前記UPFノードとNEFノードとの間のトンネルについてのNEFノード情報を含む、トンネル情報更新を受信すること(1909)と、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記NEFノード情報を使用して確立すること(1919)と、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供すること(1925)と
    を含む、方法。
  14. 前記SMFノードに前記UPFノードと前記NEFノードとの間の前記トンネルについてのUPFノード情報を送信すること(1905)
    をさらに含む、実施形態13に記載の方法。
  15. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態14に記載の方法。
  16. 前記トンネルが第1のトンネルであり、前記方法が、
    無線アクセスネットワーク(RAN)ノードと前記UPFノードとの間の第2のトンネルについてのRAN情報を受信すること(1915)
    をさらに含む、実施形態13から15のいずれか1つに記載の方法。
  17. 前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で受信される、実施形態16に記載の方法。
  18. 前記RANと前記UPFノードとの間の前記第2のトンネルが、前記RANノードと前記UPFノードとの間のN3インターフェースを介したトンネルである、実施形態16または17に記載の方法。
  19. 前記RAN情報が、前記第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含む、実施形態16から18のいずれか1つに記載の方法。
  20. 通信ネットワークのためのSMFノード(901)であって、前記SMFノードは、
    無線デバイス(UE)のためのセッションを作成するようにとの要求を受信することと、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、ネットワーク露出機能(NEF)ノード(905)に通信確立要求を送信することであって、前記通信確立要求が、前記無線デバイスのための前記セッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を送信することと、
    前記NEFノードから通信確立応答を受信することであって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を受信することと、
    前記通信確立応答を受信した後に、前記UPFノードにトンネル情報更新を送信することであって、前記トンネル情報更新が、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記NEFノード情報を含む、トンネル情報更新を送信することと
    を行うように適応された、SMFノード(901)。
  21. 前記SMFノードは、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記無線デバイスについてのサブスクリプション情報を取得することであって、前記無線デバイスについての前記サブスクリプション情報が、前記無線デバイスに関連するNEF情報を含む、サブスクリプション情報を取得すること
    を行うようにさらに適応され、
    前記通信確立要求を送信することが、前記無線デバイスに関連する前記NEF情報に基づいて、前記NEFノードに前記通信確立要求を送信することを含む、
    実施形態20に記載のSMFノード。
  22. 前記無線デバイスに関連する前記NEF情報が、前記無線デバイスに関連するNEFノードのNEF識別子を含む、実施形態21に記載のSMFノード。
  23. 前記サブスクリプション情報を取得することが、統合データ管理(UDM)ノードに前記サブスクリプション情報についての要求を送信することと、前記UDMノードから前記サブスクリプション情報を受信することとを含む、実施形態21または22に記載のSMFノード。
  24. 前記SMFノードが、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記セッションのためにユーザプレーン機能(UPF)ノードを選択すること
    を行うようにさらに適応された、実施形態21から23のいずれか1つに記載のSMFノード。
  25. 前記UPFノードを選択することが、前記通信確立要求中に含まれる、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記UPFノード情報を取得することを含む、実施形態24に記載のSMFノード。
  26. 前記UPFノードと前記NEFノードとの間の前記トンネルが第1のトンネルであり、前記UPFノードを選択することが、前記UPFノードと前記無線デバイスに関連する無線アクセスノード(RAN)との間の第2のトンネルについてのUPFノード情報を取得することを含み、前記第2のトンネルが、前記無線デバイスのための前記セッションのために使用されるべきであり、前記SMFノードは、
    前記RANにトンネルセットアップ要求を送信することであって、前記トンネルセットアップ要求が、前記UPFノードと前記RANとの間の前記第2のトンネルについての前記UPFノード情報を含む、トンネルセットアップ要求を送信することと、
    前記RANからセッション確立受付メッセージを受信することであって、前記セッション確立受付メッセージが、前記UPFノードと前記RANとの間の前記第2のトンネルについてのRAN情報を含む、セッション確立受付メッセージを受信することと
    を行うようにさらに適応され、
    前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で送信される、
    実施形態24または25に記載のSMFノード。
  27. 通信ネットワークのためのネットワーク露出機能(NEF)ノード(905)であって、前記NEFノードは、
    統合データ管理(UDM)ノードに設定情報を提供することであって、前記設定情報が、前記NEFノードに関連する無線デバイス(UE)の識別を含む、設定情報を提供することと、
    前記設定情報を提供した後に、セッション管理機能(SMF)ノード(901)から通信確立要求を受信することであって、前記通信確立要求が、前記無線デバイスのためのセッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を受信することと、
    前記SMFノードに通信確立応答を送信することであって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を送信することと、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記UPFノード情報を使用して確立することと、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供することと
    を行うように適応された、ネットワーク露出機能(NEF)ノード(905)。
  28. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態27に記載のNEFノード。
  29. 前記NEFノード情報が、前記トンネルのために使用されるべき、前記NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態27または28に記載のNEFノード。
  30. 前記UPFノードと前記NEFノードとの間の前記トンネルが、前記UPFノードと前記NEFノードとの間のN6インターフェースを介したトンネルである、実施形態27から29のいずれか1つに記載のNEFノード。
  31. 前記通信確立要求および/または前記通信確立応答が、前記無線デバイスの識別を含む、実施形態27から30のいずれか1つに記載のNEFノード。
  32. 通信ネットワークのためのユーザプレーン機能(UPF)ノード(903)であって、NEFノードは、
    セッション管理機能(SMF)ノード(901)からトンネル情報更新を受信することであって、前記トンネル情報更新が、無線デバイスのためのセッションのために使用されるべき、前記UPFノードと前記NEFノードとの間のトンネルについてのNEFノード情報を含む、トンネル情報更新を受信することと、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記NEFノード情報を使用して確立することと、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供することと
    を行うように適応された、ユーザプレーン機能(UPF)ノード(903)。
  33. 前記NEFノードが、
    前記SMFノードに前記UPFノードと前記NEFノードとの間の前記トンネルについてのUPFノード情報を送信すること
    を行うようにさらに適応された、実施形態32に記載のUPFノード。
  34. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態33に記載のUPFノード。
  35. 前記トンネルが第1のトンネルであり、前記NEFノードが、
    無線アクセスネットワーク(RAN)ノードと前記UPFノードとの間の第2のトンネルについてのRAN情報を受信すること
    を行うようにさらに適応された、実施形態32から34のいずれか1つに記載のUPFノード。
  36. 前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で受信される、実施形態35に記載のUPFノード。
  37. 前記RANと前記UPFノードとの間の前記第2のトンネルが、前記RANノードと前記UPFノードとの間のN3インターフェースを介したトンネルである、実施形態35または36に記載のUPFノード。
  38. 前記RAN情報が、前記第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含む、実施形態35から37のいずれか1つに記載のUPFノード。
  39. 通信ネットワークのためのセッション管理機能(SMF)ノード(901)であって、前記SMFノードが、
    プロセッサ(1003)と、
    前記プロセッサに結合されたメモリ(1005)と
    を備え、前記メモリは、前記プロセッサによって実行されたとき、前記プロセッサに、
    無線デバイス(UE)のためのセッションを作成するようにとの要求を受信することと、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、ネットワーク露出機能(NEF)ノード(905)に通信確立要求を送信することであって、前記通信確立要求が、前記無線デバイスのための前記セッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を送信することと、
    前記NEFノードから通信確立応答を受信することであって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を受信することと、
    前記通信確立応答を受信した後に、前記UPFノードにトンネル情報更新を送信することであって、前記トンネル情報更新が、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記NEFノード情報を含む、トンネル情報更新を送信することと
    を行わせる命令を備える、
    セッション管理機能(SMF)ノード(901)。
  40. 前記メモリは、前記プロセッサによって実行されたとき、前記プロセッサに、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記無線デバイスについてのサブスクリプション情報を取得することであって、前記無線デバイスについての前記サブスクリプション情報が、前記無線デバイスに関連するNEF情報を含む、サブスクリプション情報を取得すること
    を行わせる命令をさらに備え、
    前記通信確立要求を送信することが、前記無線デバイスに関連する前記NEF情報に基づいて、前記NEFノードに前記通信確立要求を送信することを含む、
    実施形態39に記載のSMFノード。
  41. 前記無線デバイスに関連する前記NEF情報が、前記無線デバイスに関連するNEFノードのNEF識別子を含む、実施形態40に記載のSMFノード。
  42. 前記サブスクリプション情報を取得することが、統合データ管理(UDM)ノードに前記サブスクリプション情報についての要求を送信することと、前記UDMノードから前記サブスクリプション情報を受信することとを含む、実施形態40または41に記載のSMFノード。
  43. 前記メモリが、前記プロセッサによって実行されたとき、前記プロセッサに、
    前記無線デバイスのための前記セッションを作成するようにとの前記要求を受信したことに応答して、前記セッションのためにユーザプレーン機能(UPF)ノードを選択すること
    を行わせる命令をさらに備える、実施形態40から42のいずれか1つに記載のSMFノード。
  44. 前記UPFノードを選択することが、前記通信確立要求中に含まれる、前記UPFノードと前記NEFノードとの間の前記トンネルについての前記UPFノード情報を取得することを含む、実施形態43に記載のSMFノード。
  45. 前記UPFノードと前記NEFノードとの間の前記トンネルが第1のトンネルであり、前記UPFノードを選択することが、前記UPFノードと前記無線デバイスに関連する無線アクセスノード(RAN)との間の第2のトンネルについてのUPFノード情報を取得することを含み、前記第2のトンネルが、前記無線デバイスのための前記セッションのために使用されるべきであり、前記メモリは、前記プロセッサによって実行されたとき、前記プロセッサに、
    前記RANにトンネルセットアップ要求を送信することであって、前記トンネルセットアップ要求が、前記UPFノードと前記RANとの間の前記第2のトンネルについての前記UPFノード情報を含む、トンネルセットアップ要求を送信することと、
    前記RANからセッション確立受付メッセージを受信することであって、前記セッション確立受付メッセージが、前記UPFノードと前記RANとの間の前記第2のトンネルについてのRAN情報を含む、セッション確立受付メッセージを受信することと
    を行わせる命令をさらに備え、
    前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で送信される、
    実施形態43または44に記載のSMFノード。
  46. 通信ネットワークのためのネットワーク露出機能(NEF)ノード(905)であって、前記NEFノードが、
    プロセッサ(1203)と、
    前記プロセッサに結合されたメモリ(1205)と
    を備え、前記メモリは、前記プロセッサによって実行されたとき、前記プロセッサに、
    統合データ管理(UDM)ノードに設定情報を提供することであって、前記設定情報が、前記NEFノードに関連する無線デバイス(UE)の識別を含む、設定情報を提供することと、
    前記設定情報を提供した後に、セッション管理機能(SMF)ノード(901)から通信確立要求を受信することであって、前記通信確立要求が、前記無線デバイスのためのセッションのために使用されるべき、UPFノード(903)と前記NEFノードとの間のトンネルについてのUPFノード情報を含む、通信確立要求を受信することと、
    前記SMFノードに通信確立応答を送信することであって、前記通信確立応答が、前記無線デバイスのための前記セッションのために使用されるべき、前記UPFノードと前記NEFノードとの間の前記トンネルについてのNEFノード情報を含む、通信確立応答を送信することと、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記UPFノード情報を使用して確立することと、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供することと
    を行わせる命令を備える、
    ネットワーク露出機能(NEF)ノード(905)。
  47. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態46に記載のNEFノード。
  48. 前記NEFノード情報が、前記トンネルのために使用されるべき、前記NEFノードのNEFアドレスおよび/またはNEFポート番号を含む、実施形態46または47に記載のNEFノード。
  49. 前記UPFノードと前記NEFノードとの間の前記トンネルが、前記UPFノードと前記NEFノードとの間のN6インターフェースを介したトンネルである、実施形態46から48のいずれか1つに記載のNEFノード。
  50. 前記通信確立要求および/または前記通信確立応答が、前記無線デバイスの識別を含む、実施形態46から49のいずれか1つに記載のNEFノード。
  51. 通信ネットワークのためのユーザプレーン機能(UPF)ノード(903)であって、NEFノードが、
    プロセッサ(1103)と、
    前記プロセッサに結合されたメモリ(1105)と
    を備え、前記メモリは、前記プロセッサによって実行されたとき、前記プロセッサに、
    セッション管理機能(SMF)ノード(901)からトンネル情報更新を受信することであって、前記トンネル情報更新が、無線デバイスのためのセッションのために使用されるべき、前記UPFノードと前記NEFノードとの間のトンネルについてのNEFノード情報を含む、トンネル情報更新を受信することと、
    前記無線デバイスのための前記セッションのための前記NEFノードと前記UPFノードとの間の前記トンネルを、前記トンネルについての前記NEFノード情報を使用して確立することと、
    前記トンネルを通して前記無線デバイスのための前記セッションのためのデータの通信を提供することと
    を行わせる命令を備える、
    ユーザプレーン機能(UPF)ノード(903)。
  52. 前記メモリが、前記プロセッサによって実行されたとき、前記プロセッサに、
    前記SMFノードに前記UPFノードと前記NEFノードとの間の前記トンネルについてのUPFノード情報を送信すること
    を行わせる命令をさらに備える、実施形態51に記載のUPFノード。
  53. 前記UPFノード情報が、前記トンネルのために使用されるべき、前記UPFノードのUPFアドレスおよび/またはUPFポート番号を含む、実施形態52に記載のUPFノード。
  54. 前記トンネルが第1のトンネルであり、前記メモリが、前記プロセッサによって実行されたとき、前記プロセッサに、
    無線アクセスネットワーク(RAN)ノードと前記UPFノードとの間の第2のトンネルについてのRAN情報を受信すること
    を行わせる命令をさらに備える、実施形態51から53のいずれか1つに記載のUPFノード。
  55. 前記トンネル情報更新が、前記第2のトンネルについての前記RAN情報と、前記第1のトンネルについての前記NEFノード情報とを含み、したがって、前記第2のトンネルについての前記RAN情報と前記第1のトンネルについての前記NEFノード情報とが単一のメッセージ中で受信される、実施形態54に記載のUPFノード。
  56. 前記RANと前記UPFノードとの間の前記第2のトンネルが、前記RANノードと前記UPFノードとの間のN3インターフェースを介したトンネルである、実施形態54または55に記載のUPFノード。
  57. 前記RAN情報が、前記第2のトンネルのために使用されるべき、RANアドレスおよび/またはRANポート番号を含む、実施形態54から56のいずれか1つに記載のUPFノード。
JP2021518135A 2018-10-04 2019-08-05 動的nefトンネル割り当てと関係するネットワークノード/機能とを提供する方法 Active JP7116846B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862741179P 2018-10-04 2018-10-04
US62/741,179 2018-10-04
PCT/EP2019/071036 WO2020069785A1 (en) 2018-10-04 2019-08-05 Methods providing dynamic nef tunnel allocation and related network nodes/functions

Publications (2)

Publication Number Publication Date
JP2022504104A true JP2022504104A (ja) 2022-01-13
JP7116846B2 JP7116846B2 (ja) 2022-08-10

Family

ID=67551384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021518135A Active JP7116846B2 (ja) 2018-10-04 2019-08-05 動的nefトンネル割り当てと関係するネットワークノード/機能とを提供する方法

Country Status (6)

Country Link
US (2) US11722568B2 (ja)
EP (1) EP3861826B1 (ja)
JP (1) JP7116846B2 (ja)
CN (1) CN112823564B (ja)
MX (1) MX2021003676A (ja)
WO (1) WO2020069785A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823564B (zh) * 2018-10-04 2024-05-14 瑞典爱立信有限公司 提供动态nef隧道分配的方法和相关的网络节点
US11516263B2 (en) * 2019-03-14 2022-11-29 T-Mobile Usa, Inc. Secure and transparent transport of application level protocols to non-IP data delivery communication channels
US11470505B2 (en) * 2019-08-30 2022-10-11 Parallel Wireless, Inc. Support for linking of packet detection rules (PDR) for optimizing throughput of combined serving gateway (SGW)/packet gateway (PGW) architecture
US11895716B2 (en) * 2020-12-02 2024-02-06 Oracle International Corporation Methods, systems, and computer readable media for providing a unified interface configured to support infrequent data communications via a network exposure function
CN116528398A (zh) * 2022-01-21 2023-08-01 大唐移动通信设备有限公司 一种隧道信息发送方法及装置
CN114980064B (zh) * 2022-05-16 2023-10-03 中国电信股份有限公司 信息关联方法、装置、电子设备及存储介质
CN115396979B (zh) * 2022-08-23 2024-09-27 中国联合网络通信集团有限公司 一种通信方法、装置、服务器及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925631A (zh) * 2016-02-17 2018-04-17 日本电气株式会社 基于服务开放功能实施非ip数据监管的方法
US20180219981A1 (en) * 2015-08-21 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Communication of non-ip data over packet data networks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904914B1 (fr) * 2006-08-09 2008-09-26 Alcatel Sa Procede de gestion d'interfonctionnement pour le transfert de sessions de service d'un reseau local sans fil vers un reseau mobile, et noeuds sgsn correspondants
FR2904913B1 (fr) * 2006-08-09 2008-09-26 Alcatel Sa Procede de gestion d'interfonctionnement pour le transfert de sessions de service multiples entre un reseau mobile et un reseau local sans fil, et equipement correspondant
CN101237699B (zh) * 2008-02-29 2010-12-08 中兴通讯股份有限公司 无线网络节点与接入服务器之间建立多隧道的控制方法
US10531420B2 (en) * 2017-01-05 2020-01-07 Huawei Technologies Co., Ltd. Systems and methods for application-friendly protocol data unit (PDU) session management
WO2018232241A1 (en) * 2017-06-16 2018-12-20 Convida Wireless, Llc Small data transfer, data buffering, and data management as a service in a communications network
US11533594B2 (en) * 2017-12-15 2022-12-20 Sony Corporation Enhanced NEF function, MEC and 5G integration
US11013052B2 (en) * 2018-01-15 2021-05-18 Huawei Technologies Co., Ltd. Methods and systems for multicast-broadcast session release and modification
US10609154B2 (en) * 2018-03-30 2020-03-31 Ofinno, Llc Data transmission over user plane for cellular IoT
US11019668B2 (en) * 2018-04-09 2021-05-25 Ofinno, Llc PDU session establishment for cellular IoT
WO2019212543A1 (en) * 2018-05-02 2019-11-07 Nokia Technologies Oy Direct user equipment to user equipment without data network access identifier
CN110519171B (zh) * 2018-05-21 2021-02-12 华为技术有限公司 通信的方法和设备
CN110621045B (zh) * 2018-06-20 2022-05-13 华为云计算技术有限公司 一种物联网业务路由的方法
CN112823564B (zh) * 2018-10-04 2024-05-14 瑞典爱立信有限公司 提供动态nef隧道分配的方法和相关的网络节点
EP3881635B1 (en) * 2018-11-16 2023-05-03 Ofinno, LLC Application triggering for a wireless device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180219981A1 (en) * 2015-08-21 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Communication of non-ip data over packet data networks
CN107925631A (zh) * 2016-02-17 2018-04-17 日本电气株式会社 基于服务开放功能实施非ip数据监管的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP TS 23.502 V15.3.0 (2018-09), vol. P.60-69, JPN6022027137, 17 September 2018 (2018-09-17), ISSN: 0004820048 *
NOKIA, NOKIA SHANGHAI BELL: "TR 23.791: Key issue on Analytic Information Exposure to AF[online]", 3GPP TSG SA WG2 #126 S2-182405, JPN6022027136, 2 March 2018 (2018-03-02), ISSN: 0004820047 *
SAMSUNG, ERICSSON, SK TELECOM: "Solution 35 update: connectivity between UPF and NEF for NIDD[online]", 3GPP TSG SA WG2 #129 S2-1810336, JPN6022027140, 19 October 2018 (2018-10-19), ISSN: 0004820050 *
SAMSUNG: "Solution for NIDD[online]", 3GPP TSG SA WG2 #128BIS S2-188185, JPN6022027135, 24 August 2018 (2018-08-24), ISSN: 0004820046 *
SAMSUNG: "Solution update: NIDD service activation for AMF and SMF[online]", 3GPP TSG SA WG2 #128 S2-187188, JPN6022027138, 6 July 2018 (2018-07-06), ISSN: 0004820049 *

Also Published As

Publication number Publication date
US11722568B2 (en) 2023-08-08
US20220131941A1 (en) 2022-04-28
CN112823564B (zh) 2024-05-14
WO2020069785A1 (en) 2020-04-09
EP3861826A1 (en) 2021-08-11
US20230421641A1 (en) 2023-12-28
CN112823564A (zh) 2021-05-18
JP7116846B2 (ja) 2022-08-10
EP3861826B1 (en) 2024-10-02
MX2021003676A (es) 2021-05-31

Similar Documents

Publication Publication Date Title
US20230156580A1 (en) Session mangement function service area information provision
CN111133801B (zh) 基于切片可用性的频率或无线电接入技术(rat)选择
JP7116846B2 (ja) 動的nefトンネル割り当てと関係するネットワークノード/機能とを提供する方法
JP7455217B2 (ja) 認証および鍵管理における認証サーバー機能の選択
CN113396610A (zh) 用于归属路由漫游的pdu会话建立时的辅助授权
JP2022528801A (ja) Pdschのためのharqタイミングを保留中のpdsch-harqタイミングインジケータでセットすること
JP7062787B2 (ja) 5gシステムにおけるユーザプレーン保護のためのセキュリティポリシーのue制御ハンドリング
US11659451B2 (en) Serving gateway control plane function to manage a plurality of serving gateway user plane functions, and mobility management entity to communicate with the same
JP2021522743A (ja) 再開要求の拒否に伴うue挙動
JP2021503852A (ja) Mcsおよびcqiテーブルを識別すること
JP2022530238A (ja) ユーザプレーン完全性保護
US20230232356A1 (en) Storage of network slice authorization status
JP2021520722A (ja) 5gネットワークでの接続セットアップ中における拡張された長さを有する一時的加入者識別子の管理
JP2022530487A (ja) 4gシステムにおけるユーザプレーン完全性保護
CN111955021A (zh) 5g系统中用于用户平面保护的安全策略的amf控制处理
JP2022522528A (ja) 5gにおける複数の認証手続のハンドリング
KR20230129185A (ko) 사용자 장비(ue) 식별자 요청
CN113455030B (zh) 5g核心网络(5gc)中的组数据管理
US20240172097A1 (en) Method and system to support restricted proximity-based services (prose) direct discovery based on ue identifier (ue id)
JP2022510626A (ja) 下位レイヤスプリットにおける参照シンボルおよびユーザデータを分離するための方法
JP2024502592A (ja) Ue対ネットワークリレーディスカバリのためのディスカバリキーハンドリング
US11751269B2 (en) Methods providing UE state indication upon delivery failure and related networks and network nodes
US20220345941A1 (en) DNN Manipulation Using Selection Priority
JP2021523635A (ja) 無線接続を安全にする方法、装置、およびシステム
US11445474B2 (en) Mobile switching node and mobility management node to page terminal device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7116846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150