JP2022187792A - 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム - Google Patents

制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム Download PDF

Info

Publication number
JP2022187792A
JP2022187792A JP2021095972A JP2021095972A JP2022187792A JP 2022187792 A JP2022187792 A JP 2022187792A JP 2021095972 A JP2021095972 A JP 2021095972A JP 2021095972 A JP2021095972 A JP 2021095972A JP 2022187792 A JP2022187792 A JP 2022187792A
Authority
JP
Japan
Prior art keywords
power
control parameter
calculating
value
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095972A
Other languages
English (en)
Inventor
裕 小林
Yutaka Kobayashi
祐亮 彌城
Yusuke Yashiro
雅之 橋本
Masayuki Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2021095972A priority Critical patent/JP2022187792A/ja
Priority to PCT/JP2022/018617 priority patent/WO2022259777A1/ja
Priority to AU2022291291A priority patent/AU2022291291A1/en
Publication of JP2022187792A publication Critical patent/JP2022187792A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Abstract

【課題】所望の平滑化性能と電池劣化抑制を実現する制御パラメータを算出する制御パラメータ算出装置を提供する。【解決手段】制御パラメータ算出装置は、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、目標値を達成するように充放電させたときの充放電電力を算出する統括部と、評価期間にわたって算出された充放電電力に基づいて合成電力の平滑化性能評価指標を算出する平滑化性能算出部と、算出された充放電電力に基づいて、評価期間における電池の寿命評価指標を算出する寿命算出部と、制御パラメータの値を変動させつつ繰り返し算出された平滑化性能評価指標と寿命評価指標に基づいて、制御パラメータの値を評価する評価部と、を備える。【選択図】図1

Description

本開示は、制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラムに関する。
太陽光発電や風力発電などの再生可能エネルギー発電の出力変動を二次電池からの充放電によって抑制する技術が提供されている(例えば、特許文献1)。特許文献2には、電力の安定的な供給だけではなく二次電池の寿命を延ばすことが可能な給電システムが開示されている。特許文献2に記載の給電システムでは、二次電池の劣化が進んだ状態にある場合には、充放電動作を抑制して(ゆっくり充放電する。)、電池寿命を延ばす制御を行うことが記載されている。また、特許文献3には、二次電池の劣化量を推定する方法が開示されている。
特許第6768571号公報 国際公開第2020/161765号 特許第6110771号公報
例えば、特許文献2に開示があるように、電池寿命を延ばす制御は提供されているが、二次電池の充放電による平滑化性能を多少犠牲にしても、電池寿命を延ばしたいといったユーザの要望に対し、具体的に制御パラメータの値をどのように設定して充放電制御を行えばよいかを決定する技術は提供されていない。
本開示は、上記課題を解決することができる制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラムを提供する。
本開示の制御パラメータ算出装置は、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出する統括部と、前記統括部が所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出する平滑化性能算出部と、前記統括部が所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出する寿命算出部と、前記制御パラメータの値を変動させつつ前記統括部が繰り返し算出した前記充放電電力を用いて算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて、前記制御パラメータの値を評価する評価部と、を備える。
本開示の電力供給システムは、再生可能エネルギー発電システムと、1つ又は複数の電池を備える電池システムと、上記の制御パラメータ算出装置と、前記制御パラメータ算出装置が評価した前記制御パラメータの値に基づいて、前記目標値を算出し、算出した目標値と前記再生可能エネルギー発電システムが発電した電力の差に基づいて、前記電池システムの充放電制御を行う電力制御装置と、を備える。
本開示の制御パラメータ算出方法は、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、を有する。
本開示のプログラムは、コンピュータに、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、を実行させる。
上述の制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラムによれば、制御パラメータの具体的な値を算出することができる。
第一実施形態に係る電力供給システムの一例を示す図である。 第一実施形態に係る制御パラメータ算出処理の一例を示すフローチャートである。 第一実施形態に関し電池寿命と平滑化性能の関係を示す図である。 第二実施形態に係る電力供給システムの一例を示す図である。 第二実施形態に係るペナルティコストの算出について説明する図である。 第二実施形態に係る制御パラメータ算出処理の一例を示すフローチャートである。 各実施形態に係る制御パラメータ算出装置のハードウェア構成の一例を示す図である。
以下、本開示の制御パラメータ算出方法について、図1~図7を参照して説明する。以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。
(システム構成)
図1は、実施形態に係る電力供給システムの一例を示す図である。
電力供給システム100は、太陽光発電、風力発電、水力発電、地熱発電およびバイオマス発電などの再生可能エネルギー発電システム1と、平滑化システム2とを含む。平滑化システム2は、再生可能エネルギー発電システム1の出力(発電電力)の変動を平滑化する。電力供給システム100は、再生可能エネルギー発電システム1によって発電され、平滑化システム2によって平滑化された電力を、工場等の設備や商用電力系統などの負荷へ供給する。以下、再生可能エネルギー発電システム1が発電する電力をPV電力(PVはPhotovoltaicの略、ただし、本開示の適用範囲は太陽光発電に限定されない。)と省略して記載する。平滑化システム2は、電力制御装置3と、BESS4と、制御パラメータ算出装置10とを含む。
BESS(Battery Energy Storage System:二次電池電力貯蔵システム)4は、一つ又は複数のリチウム電池や鉛電池などの二次電池41と、二次電池41の充放電制御を行う制御部42とを備え、再生可能エネルギー発電システム1の出力変動を吸収し、安定化させる役割を担う。電力制御装置3は、再生可能エネルギー発電システム1から実際のPV電力の値を取得し、直前の所定期間に取得したPV電力の値を平滑化して、電力供給システム100が負荷へ供給する電力の目標値を算出する。この目標値を平滑化目標値と呼ぶ。例えば、電力制御装置3は、現在より少し未来の時点t1における平滑化目標値を、現在から少し過去の所定期間において実際に発電されたPV電力の移動平均を算出する(平滑化)ことにより算出する。そして、実際にt1が到来すると、先に設定した時点t1における平滑化目標値から実際に時点t1に発電されたPV電力の値を減算して、その差を補償する電力を充放電するようにBESS4に充放電指令する。BESS4の制御部42は、この充放電指令に基づいて二次電池41の充放電を行い、その結果、平滑化目標値に沿った電力が負荷へ供給される。BESS4は、充放電電力やSOC(State Of Charge、充電率)等の情報を電力制御装置3へ通知する。電力制御装置3は、PV電力の平滑化に加え、通知されたSOC等の情報に基づいて、二次電池41のSOCが健全な範囲に維持されること等を考慮して平滑化目標値を算出し、上記の充放電指令を行ってもよい。このように平滑化目標値は、二次電池41の充放電電力を決定する重要な指令値であり、二次電池41の状態(SOCなど)も考慮して決定されるものではあるが、主には過去のPV電力を平滑化する際に用いられる制御パラメータの値が大きく影響する。
平滑化とは、例えば、移動平均値を算出する処理のことであり、この場合の制御パラメータとは、移動平均時間である。移動平均値の算出は、過去の所定時間におけるPV電力の平均値を時々刻々と計算する処理であり、“過去の所定時間”が、移動平均時間(制御パラメータ)である。一般的に移動平均時間を短くして移動平均値を算出し、その値を平滑化目標値とすると、平滑化目標値は、実際のPV電力と近い値となり、充放電量が少なく済む。反対に移動平均時間を長く設定すると、充放電量が多くなることが知られている。発電出力の変動抑制の観点からみると、移動平均時間を長く設定すると変動抑制効果が向上し、移動平均時間を短く設定すると短期間での平滑化が実現されるものの、長期間での変動抑制効果は得られにくくなる。また、ある基準を満たす平滑化が達成されない場合、発電事業者にはペナルティが課せられる。つまり、移動平均時間を短く設定すると、充放電が抑制され、二次電池41の劣化を防ぎ寿命を延ばすことができるが、発電電力の平滑化未達成のペナルティが課せられるリスクが増大する。反対に、移動平均時間を長く設定すると、充放電が増加し、二次電池41の劣化が早まり電池の交換頻度が増加するが、発電電力の平滑化未達成によるペナルティのリスクを低下させることができる。制御パラメータ算出装置10は、発電電力の平滑化未達成によるペナルティのリスクと電池劣化による電池交換等のリスクを適切にバランスする移動平均時間の長さ(制御パラメータの値)を算出し、その値を電力供給システム100のユーザへ提示する。
制御パラメータ算出装置10は、データ取得部11と、寿命予測部12と、平滑化性能予測部13と、予測計算統括部14と、を備える。
データ取得部11は、過去のPV電力の実績値、負荷からの需要電力、制御パラメータ(移動平均時間)の初期値、制御パラメータの変動範囲、二次電池41の劣化量の計算に必要なパラメータ(二次電池41の初期SOC、絶対温度、充放電に関する電圧や電流など)、平滑化性能および電池劣化の許容範囲などの情報を取得し、これらの情報を記憶する。
予測計算統括部14は、データ取得部11が取得した過去のPV電力の実績値を用いて、移動平均時間にある値を設定したときの所定の評価期間における時々刻々の平滑化目標値の算出と、その平滑化目標値を達成するための二次電池41の充放電動作を模擬し、時々刻々の充放電電力を算出する。予測計算統括部14は、所定の評価期間における時々刻々の平滑化目標値、二次電池41の充放電電力、電力供給システム100が出力した合成電力(PV電力+充放電電力)などの情報を記憶する。また、予測計算統括部14は、移動平均時間に別の値を設定して同様の計算を行い、移動平均時間の値を変化させたときの平滑化システム2の動作を模擬し、その過程で算出された平滑化目標値、充放電電力などを記憶する。予測計算統括部14は、このようにして、移動平均時間を様々に変化させながら、電力供給システム100の平滑化性能の評価や二次電池41の劣化評価に必要な情報を計算し、記憶してゆく。そして、予測計算統括部14は、それぞれの移動平均時間に基づいて種々の計算を行った結果として得られる平滑化性能や二次電池41の劣化状態(これらの評価指標は、それぞれ平滑化性能予測部13、寿命予測部12が算出する。)を評価し、試行した移動平均時間の中から評価が良好なものを選択する。
寿命予測部12は、予測計算統括部14が模擬した充放電動作の結果に基づいて、二次電池41の劣化量を予測する。劣化量の計算方法は、特許文献3に開示されている方法を用いることができる。また、寿命予測部12は、計算された劣化量に基づいて、1日あたりの寿命劣化率(%/日)を評価指標として計算する。
平滑化性能予測部13は、予測計算統括部14が模擬した充放電動作の結果に基づいて、評価期間における電力の平滑化性能評価指標を算出する。平滑化性能予測部13は、予測計算統括部14によって計算された時々刻々の充放電量とPV電力の同時刻の実績値とを加算して、時々刻々の合成電力を算出し、合成電力の変動から平滑化性能評価指標を算出する。例えば、平滑化性能予測部13は、単位時間あたりの合成電力の変動率(W/分)を平滑化性能評価指標として算出する。また、例えば、平滑化性能予測部13は、単位時間あたりの(需要電力-合成電力)の変動率(W/分)を平滑化性能評価指標として算出する。(需要電力-合成電力)は、例えば、電力系統に繋がる他のGTCC発電プラントが、電力供給システム100の出力変動に対して対応した電力に相当する。
(動作)
次に制御パラメータの具体的な値を算出する処理について説明する。
図2は、第一実施形態に係る制御パラメータ算出処理の一例を示すフローチャートである。
まず、ユーザが、制御パラメータの初期値、制御パラメータの変動範囲、制御パラメータの1回あたりの変動幅、評価期間、平滑化性能の許容範囲、電池劣化の許容範囲などを設定する(ステップS1)。例えば、ユーザは、移動平均時間の初期値として10分、変動範囲として10分~60分、1回当たりの変動幅として10分、評価期間として1年を設定する。この設定により、予測計算統括部14は、移動平均時間を10分、20分、30分、40分、50分、60分としたときの1年間にわたっての時々刻々の平滑化目標値、充放電電力などの計算を行う。なお、このような計算を行う場合、データ取得部11は、過去1年間のPV電力の実績値を取得している。また、平滑化性能の許容範囲として合成電力の変動率が所定の閾値を超過する回数や合計時間、電池劣化の許容範囲として1日あたりの寿命劣化率が所定値未満であること、あるいは、二次電池41の1年後のSOH(State of Health)がX%以上であること等を設定する。また、ユーザは、許容範囲の他に、許容範囲を満たす移動平均時間のうち、最も電池劣化が少ないもの、あるいは、最も平滑化性能が高いものを選定するといった選定条件を設定することができる。
ユーザが計算開始を指示すると、予測計算統括部14は、移動平均時間に初期値を設定して、予測計算を実行する(ステップS2)。ここで、予測計算とは、設定された移動平均時間に基づいて平滑化目標値を算出したときの評価期間(例えば、1年)にわたる時々刻々の二次電池41の充放電量や合成電力などを計算する処理(上述の平滑化システム2の動作を模擬に相当)である。具体的には、予測計算統括部14は、PV電力の実績値と設定した移動平均時間に基づいて、所定時間ごとの平滑化目標値を算出し、算出した平滑化目標値とPV電力の実績値の差から二次電池の充放電電力を算出して、合成電力を算出する、といった計算を時間の経過に沿って繰り返し行う。予測計算統括部14が時系列の充放電電力や合成電力を計算すると、寿命予測部12は、所定時間ごとの二次電池41の劣化量を算出する(ステップS3)。二次電池41の劣化量の算出には、公知の任意の方法(例えば、特許文献3に開示の方法)を用いることができる。また、寿命予測部12は、評価期間終了時の二次電池41のSOHを公知の任意の方法によって予測してもよい。寿命予測部12は、算出した劣化量をその劣化に要した日数で除算して、1日あたりの寿命劣化率(%/日)を算出する。寿命予測部12は、算出した寿命劣化率やSOHなどを予測計算統括部14へ出力する。予測計算統括部14は、寿命予測部12から取得した寿命劣化率やSOHなどを記憶する。
これと並行して、平滑化性能予測部13は、電力供給システム100の平滑化性能を算出する(ステップS4)。例えば、平滑化性能予測部13は、予測計算統括部14が計算した合成電力の最大値と最小値の差を所定時間(例えば10分)ごとに計算して、単位時間あたりの合成電力の変動率(W/分)を算出する。あるいは、平滑化性能予測部13は、予測計算統括部14が計算した合成電力とデータ取得部11が取得した需要電力の差の最大値と最小値の差を所定時間(例えば10分)ごとに計算して、単位時間あたりの(需要電力-合成電力)の変動率(W/分)を算出する。平滑化性能予測部13は、算出した変動率などを予測計算統括部14へ出力する。予測計算統括部14は、平滑化性能予測部13から取得した変動率などを記憶する。
移動平均時間に初期値を設定した場合の評価期間にわたる予測計算、二次電池41の劣化量の算出(ステップS3)、平滑化性能の算出(ステップS4)が終わると、予測計算統括部14は、制御パラメータの全候補についての予測計算が終了したかどうかを判定する(ステップS5)。上記例の場合、予測計算統括部14は、移動平均時間を10分、20分、30分、40分、50分、60分としたときの予測計算が終了しているかどうかを判定する。未計算の制御パラメータが残っている場合(ステップS5;No)、予測計算統括部14は、制御パラメータの値を変更して(ステップS6)、ステップS2からの処理を繰り返し実行する。例えば、予測計算統括部14は、次に移動平均時間に20分を設定して、ステップS2以降の処理を実行する。
全ての制御パラメータの候補について、ステップS2~S4の計算を実行すると(ステップS5;Yes)、予測計算統括部14は、最適な制御パラメータの値を選定する(ステップS7)。例えば、予測計算統括部14は、寿命予測部12が、それぞれの移動平均時間について算出した寿命評価指標(寿命劣化率、SOHなど)をユーザが設定した電池劣化の許容範囲と比較する。所定時間毎に寿命劣化率を計算した場合、予測計算統括部14は、寿命劣化率の平均値や最も大きな値を選択して、その値と電池劣化の許容範囲とを比較する。また、予測計算統括部14は、SOHをユーザが設定した閾値と比較する。
同様に、予測計算統括部14は、平滑化性能予測部13が、それぞれの移動平均時間について算出した平滑化性能評価指標を閾値と比較して、閾値を超過した回数や超過時間の合計を算出し、算出した回数や超過時間の合計をユーザが設定した許容できる回数や超過時間の閾値と比較する。予測計算統括部14は、二次電池41の寿命劣化率やSOHなどが許容範囲を満たし、且つ、平滑化性能が許容範囲を満たすときの移動平均時間を選定する。
このとき、予測計算統括部14は、先の条件を満たす移動平均時間を全て選定してもよいし、ユーザが設定した選定条件に基づいて、許容範囲の条件を満たすものの中から最も電池の劣化量が少ないもの(寿命劣化率が少ないものやSOHが良好なもの)、または、平滑化性能が最も高いものを選定してもよい。
ここで、図3を参照する。図3の縦軸は電池寿命の長さを示し、横軸は平滑化性能を示す。P1~P8は異なる移動平均時間の予測計算で得られた電池劣化および平滑化性能に関する評価値を示す。実線枠C1と破線枠C2はユーザが設定した許容範囲外の領域を示す。例えば、ユーザが、最低限達成されるべき平滑化性能を設定し、その中で最も電池劣化が少ない制御パラメータを所望した場合、実線枠C1は、ユーザの許容範囲外となる。そして、予測計算統括部14は、最も電池寿命が長い点P4に係る移動平均時間T4を選定する。例えば、ユーザが、最低限達成されるべき電池寿命を設定し、その中で最も平滑化性能が高い制御パラメータを所望した場合、破線枠C2は、ユーザの許容範囲外となる。予測計算統括部14は、最も平滑化性能が高い点P6に係る移動平均時間T6を選定する。
また、選定した移動平均時間が複数存在する場合、予測計算統括部14は、選定した移動平均時間とそのときの電池寿命と平滑化性能の特性を例えば図3に例示したような内容で、図示しない表示装置や電子ファイルに出力し、その中から所望の移動平均時間を選択するようにユーザへ促してもよい。ユーザは、提示された移動平均時間の候補の中から、所望する移動平均時間を選択し、制御パラメータ算出装置10へ入力する。予測計算統括部14は、ユーザが入力した移動平均時間を、データ取得部11を介して取得する。
予測計算統括部14は、1つの制御パラメータの値が選定されると、選定された制御パラメータの値を電力制御装置3に送信する。電力制御装置3は、最新の制御パラメータ(例えば、移動平均時間=30分など)を用いて、平滑化目標値を算出し、出力変動緩和制御を実施する(ステップS8)。
以降必要に応じて、ステップS1~S8の処理を繰り返すことにより、ユーザのニーズに合わせて移動平均時間を最適化する。2回目以降の実施では、ステップS1にて、現在の移動平均時間(最後に算出した制御パラメータの値)を初期値として設定して、ステップS2以降の処理を実行してもよい。
本実施形態によれば、電力供給システム100において、二次電池41の寿命と合成電力の出力変動に寄与する制御パラメータについて、二次電池41の寿命および出力変動に対する所望の条件を満たす前記制御パラメータの具体的な値を決定することができる。例えば、二次電池41の充放電による平滑化性能を多少犠牲にしても、電池寿命を延ばしたいといったユーザの要望に対し、具体的な移動平均時間の長さを算出することができる。
<第二実施形態>
次に図4~図6を参照して、第二実施形態に係る制御パラメータの算出方法について説明する。
第一実施形態では、二次電池41の劣化量や寿命と合成電力に対する平滑化性能に関して評価値を算出し、これらの評価値に基づいて、移動平均時間の適切な値を算出した。これに対し、第二実施形態では、これら2つの指標値に関するコストを計算し、コストに基づいて移動平均時間の値を選定する。
図4は、第二実施形態に係る電力供給システムの一例を示す図である。
第二実施形態に係る電力供給システム100´は、再生可能エネルギー発電システム1と、電力制御装置3と、BESS4と、制御パラメータ算出装置10´とを含む。制御パラメータ算出装置10´は、データ取得部11と、寿命予測部12と、平滑化性能予測部13と、予測計算統括部14´と、経済性算出部15と、を備える。
経済性算出部15は、平滑化性能予測部13が算出した平滑化性能評価指標に基づいて合成電力の変動に対するペナルティコストを算出する。図5にペナルティコストの算出方法を示す。経済性算出部15は、単位時間あたりの合成電力の変動率(W/分)が閾値を超える時間の合計を算出する。そして、予め定められたペナルティ単価に超過時間の合計を乗じて、ペナルティコストを算出する。
また、経済性算出部15は、寿命予測部12が算出した寿命評価指標に基づいて、二次電池41の交換に関するコストを算出する。例えば、経済性算出部15は、二次電池41の寿命劣化率(%/日)と二次電池41が使用できなくなるときの寿命劣化率についての閾値に基づいて、二次電池41が所定の初期状態から寿命予測部12が算出した寿命劣化率で劣化したと仮定した場合にどれぐらいの期間で二次電池41が使用できなくなる状態に至るかを計算する。簡単な例として、経済性算出部15は、二次電池41の初期状態を100%としたときに、寿命劣化率(%/日)に二次電池41の使用日数を掛けた値を100%から減算した値X%を計算し、このX%が上記の閾値に達するまでの使用日数を算出して、その使用日数を迎えると二次電池41が寿命を迎えたとしてもよい。そして、例えば、算出した使用日数が365日の場合、評価期間が1年とすると、経済性算出部15は、評価期間中に電池交換が1回発生すると算出する。また、閾値に達するまでの使用日数が730日(2年)の場合、経済性算出部15は、評価期間中に電池交換が0.5回発生すると算出する。経済性算出部15は、算出した評価期間中の電池交換回数に電池交換1回当たりのコストを乗じて、二次電池41の交換に関するコストを算出する。電池交換1回当たりのコストとは、例えば、古い二次電池41の処分に要するコスト、新しい二次電池41の購入に要するコスト、二次電池41の搬送に伴うコスト、二次電池41の交換中に発電機会をロスする場合にはその逸失利益などを含む。経済性算出部15は、算出したペナルティコストと二次電池41の交換に関するコストを予測計算統括部14´へ出力する。
予測計算統括部14´は、ペナルティコストと二次電池41の交換に関するコストの合計が最小となるときの制御パラメータの値を選定する。
他の構成の機能については、第一実施形態と同様であるため、説明を省略する。
(動作)
次に第二実施形態における制御パラメータの算出処理について説明する。
図6は、第二実施形態に係る制御パラメータ算出処理の一例を示すフローチャートである。第一実施形態と同様の処理については説明を省略する。
まず、ユーザが、制御パラメータの初期値などを設定する(ステップS1)。第二実施形態の場合、予測計算統括部14´は、コストが最小となるときの制御パラメータの値を選定するので、許容範囲などを設定する必要は無い。しかし、ユーザは、ペナルティコストと二次電池41の交換に関するコストの合計についてのコスト条件(例えば、X円以下となる場合の制御パラメータの値を全て選定する。)を設定してもよい。例えば、コスト条件を満たす移動平均時間が複数算出されれば、予測計算統括部14´は、それらすべてを選定してもよい。こうすることで、コストを参考にしつつ、平滑化性能や電池劣化を考慮した移動平均時間を選定することができる。
次に予測計算統括部14´は、移動平均時間に初期値を設定して、予測計算を実行する(ステップS2)。次に寿命予測部12は、二次電池41の寿命劣化率やSOHなどを算出する(ステップS3)。一方、平滑化性能予測部13は、合成電力の平滑化性能を算出する(ステップS4)。
次に経済性算出部15が、ペナルティコストと電池交換に関するコストを算出する(ステップS45)。例えば、経済性算出部15は、上記した方法によって、ペナルティコストと二次電池41の交換に関するコストを算出する。次に予測計算統括部14´は、制御パラメータの全候補についての予測計算が終了したかどうかを判定する(ステップS5)。未計算の制御パラメータが残っている場合(ステップS5;No)、予測計算統括部14は、制御パラメータの値を変更して(ステップS6)、ステップS2からの処理を繰り返し実行する。全ての制御パラメータの候補について、ステップS2~S45の計算を実行すると(ステップS5;Yes)、予測計算統括部14´は、コストが最小となる制御パラメータの値を選定する(ステップS7A)。例えば、予測計算統括部14´は、それぞれの移動平均時間について算出したペナルティコストと二次電池41の交換に関するコストの合計が最小となるときの移動平均時間を選定する。ユーザがコスト条件を設定した場合には、予測計算統括部14´は、コスト条件を満たす全ての移動平均時間について、電池寿命と平滑化性能の特性(図3)を表示し、ユーザに選択させてもよい。予測計算統括部14´は、1つの制御パラメータの値が選定されると、選定された制御パラメータの値を電力制御装置3に送信する。電力制御装置3は、選定された値を移動平均時間に設定して、平滑化目標値を算出し、出力変動緩和制御を実施する(ステップS8)。
平滑化性能を向上させるとペナルティの発生機会を低減できる一方、BESS4にて多くの充放電が必要となり、二次電池41の劣化が促進され、電池交換頻度が増えてコストが増大する。平滑化性能を犠牲にすることで、二次電池41の劣化は抑制されるが、ペナルティの発生が増加する。経済性の観点から最適な制御パラメータ(移動平均時間等)が分からなければ、コストを最小化して電力供給システム100を運用することができない。これに対し、本実施形態によれば、二次電池41の寿命予測結果および平滑化性能予測結果に基づいて、経済性の観点から最適な(コストを最小にする)制御パラメータを選定することができる。
なお、第一実施形態と第二実施形態を組み合わせることが可能である。例えば、ステップS1にてユーザが電池劣化に関する許容範囲を設定する。そして、ステップS7では、予測計算統括部14´が、電池劣化に関する許容範囲をみたすものの中でコストが最小となるときの制御パラメータの値を選定する。
(効果)
以上説明したように、本実施形態によれば、再生可能エネルギー発電システム1が発電する電力を平滑化システム2によって平滑化する電力供給システム100において、所望の条件を満たす具体的な制御パラメータの値を算出することができる。
図7は、各実施形態に係る制御パラメータ算出装置のハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
制御パラメータ算出装置10,10´は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
なお、制御パラメータ算出装置10,10´の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
各実施形態に記載の制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラムは、例えば以下のように把握される。
(1)第1の態様に係る制御パラメータ算出装置10は、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータに基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出する統括部(予測計算統括部14、14´)と、前記統括部が所定の評価期間にわたって算出した前記充放電電力の結果に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出する平滑化性能算出部(平滑化性能予測部13)と、前記評価期間における前記電池の寿命評価指標を算出する寿命算出部(寿命予測部12)と、前記制御パラメータの値を変動させつつ前記統括部が繰り返し算出した前記充放電電力を用いて算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて、前記制御パラメータの値を評価する評価部(予測計算統括部14、14´)と、を備える。
これにより、平滑化性能と電池寿命の観点から最適な制御パラメータの値を具体的に算出することができる。
(2)第2の態様に係る制御パラメータ算出装置は、(1)の制御パラメータ算出装置であって、前記平滑化性能評価指標は、前記合成電力の単位時間あたりの変動率である。
これにより、平滑化性能評価指標を算出することができる。
(3)第3の態様に係る制御パラメータ算出装置は、(1)~(2)の制御パラメータ算出装置であって、前記平滑化性能評価指標は、需要電力から前記合成電力を減算した値の単位時間あたりの変動率である。
これにより、平滑化性能評価指標を算出することができる。
(4)第4の態様に係る制御パラメータ算出装置は、(1)~(3)の制御パラメータ算出装置であって、前記寿命評価指標は、単位時間あたりの前記電池の劣化率である。
これにより、寿命評価指標を算出することができる。
(5)第5の態様に係る制御パラメータ算出装置は、(1)~(4)の制御パラメータ算出装置であって、前記平滑化性能評価指標に基づいて、前記評価期間における電力変動に対するペナルティコストを算出し、前記寿命評価指標に基づいて、前記電池の交換に関するコストを算出する経済性算出部、をさらに備え、前記評価部は、前記ペナルティコストと前記電池劣化コストに基づいて前記制御パラメータの値を評価する。
これにより、経済性の観点からコストが最適となる制御パラメータの値を具体的に算出することができる。
(6)第6の態様に係る電力供給システム100、100´は、再生可能エネルギー発電システム1と、1つ又は複数の電池を備える電池システム(BESS4)と、(1)~(5)の1つに記載の制御パラメータ算出装置10、10´と、前記制御パラメータ算出装置が評価した前記制御パラメータの値に基づいて、前記目標値を算出し、算出した目標値と前記再生可能エネルギー発電システムが発電した電力の差に基づいて、前記電池システムの充放電制御を行う電力制御装置3とを備える。
これにより、最適化された制御パラメータを使用して電力供給システムを運用することができる。
(7)第7の態様に係る制御パラメータ算出方法は、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータに基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、を有する。
(8)第8の態様に係るプログラムは、コンピュータに、再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータに基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、を実行させる。
100,100´・・・電力供給システム、1・・・再生可能エネルギー発電システム、2・・・平滑化システム、3・・・電力制御装置、4・・・BESS、41・・・二次電池、42・・・制御部、10,10´・・・制御パラメータ算出装置、11・・・データ取得部、12・・・寿命予測部、13・・・平滑化性能予測部、14,14´・・・予測計算統括部、15・・・経済性算出部、900・・・コンピュータ、901・・・CPU、902・・・主記憶装置、903・・・補助記憶装置、904・・・入出力インタフェース、905・・・通信インタフェース

Claims (8)

  1. 再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出する統括部と、
    前記統括部が所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出する平滑化性能算出部と、
    前記統括部が所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出する寿命算出部と、
    前記制御パラメータの値を変動させつつ前記統括部が繰り返し算出した前記充放電電力を用いて算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて、前記制御パラメータの値を評価する評価部と、
    を備える制御パラメータ算出装置。
  2. 前記平滑化性能評価指標は、前記合成電力の単位時間あたりの変動率である、
    請求項1に記載の制御パラメータ算出装置。
  3. 前記平滑化性能評価指標は、需要電力から前記合成電力を減算した値の単位時間あたりの変動率である、
    請求項1または請求項2に記載の制御パラメータ算出装置。
  4. 前記寿命評価指標は、単位時間あたりの前記電池の劣化率である、
    請求項1から請求項3の何れか1項に記載の制御パラメータ算出装置。
  5. 前記平滑化性能評価指標に基づいて、前記評価期間における電力変動に対するペナルティコストを算出し、前記寿命評価指標に基づいて、前記電池の交換に関するコストを算出する経済性算出部、をさらに備え、
    前記評価部は、前記ペナルティコストと前記電池の交換に関するコストに基づいて前記制御パラメータの値を評価する、
    請求項1から請求項4の何れか1項に記載の制御パラメータ算出装置。
  6. 再生可能エネルギー発電システムと、
    1つ又は複数の電池を備える電池システムと、
    請求項1から請求項5の何れか1項に記載の制御パラメータ算出装置と、
    前記制御パラメータ算出装置が評価した前記制御パラメータの値に基づいて、前記目標値を算出し、算出した目標値と前記再生可能エネルギー発電システムが発電した電力の差に基づいて、前記電池システムの充放電制御を行う電力制御装置と、
    を備える電力供給システム。
  7. 再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、
    前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、
    前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、
    前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、
    を有する制御パラメータ算出方法。
  8. コンピュータに、
    再生可能エネルギー発電システムが発電する第1電力と電池が充放電する第2電力とを合計した合成電力の目標値を、前記第1電力を所定の制御パラメータの値に基づいて平滑化することによって算出し、算出した前記目標値を達成するように前記電池を充放電させたときの充放電電力を算出するステップと、
    前記充放電電力を算出するステップにて所定の評価期間にわたって算出した前記充放電電力に基づいて、前記評価期間における前記合成電力の平滑化性能評価指標を算出するステップと、
    前記充放電電力を算出するステップにて算出した前記充放電電力に基づいて、前記評価期間における前記電池の寿命評価指標を算出するステップと、
    前記制御パラメータの値を変動させつつ、前記充放電電力を算出するステップ、前記平滑化性能評価指標を算出するステップ、前記寿命評価指標を算出するステップを繰り返し行って算出された前記平滑化性能評価指標と前記寿命評価指標に基づいて前記制御パラメータの値を評価するステップと、
    を実行させるプログラム。
JP2021095972A 2021-06-08 2021-06-08 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム Pending JP2022187792A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021095972A JP2022187792A (ja) 2021-06-08 2021-06-08 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム
PCT/JP2022/018617 WO2022259777A1 (ja) 2021-06-08 2022-04-22 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム
AU2022291291A AU2022291291A1 (en) 2021-06-08 2022-04-22 Control parameter calculation device, power supply system, control parameter calculation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021095972A JP2022187792A (ja) 2021-06-08 2021-06-08 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2022187792A true JP2022187792A (ja) 2022-12-20

Family

ID=84425930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021095972A Pending JP2022187792A (ja) 2021-06-08 2021-06-08 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム

Country Status (3)

Country Link
JP (1) JP2022187792A (ja)
AU (1) AU2022291291A1 (ja)
WO (1) WO2022259777A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032776A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 電力制御装置、電力制御方法、及び電力供給システム
JP6110771B2 (ja) * 2013-10-22 2017-04-05 三菱重工業株式会社 劣化量算出装置、劣化量算出方法及びプログラム
JP6768571B2 (ja) * 2017-03-23 2020-10-14 株式会社日立製作所 電力制御装置、方法及び発電システム
WO2020161765A1 (ja) * 2019-02-04 2020-08-13 Tdk株式会社 直流給電システム

Also Published As

Publication number Publication date
WO2022259777A1 (ja) 2022-12-15
AU2022291291A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP7059583B2 (ja) エネルギーマネジメントシステム、電力需給計画最適化方法、および電力需給計画最適化プログラム
JP6059328B2 (ja) 需給制御装置、蓄電装置、充放電制御装置、需給制御システムおよび需給制御方法
JP7179500B2 (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP5672371B2 (ja) 運転計画作成方法、運転計画作成装置及び運転計画作成プログラム
KR102574580B1 (ko) 전력 그리드에서의 배터리 충전 및 방전 전력 제어
JP6520517B2 (ja) 需給計画作成装置、プログラム
Xu et al. Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation
JP2013198360A (ja) エネルギー管理装置とその管理方法及びエネルギー管理プログラム
JP2016063629A (ja) 蓄電池制御装置、蓄電池制御方法及びプログラム
JP2019134522A (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
Liu et al. A two-layer model for microgrid real-time scheduling using approximate future cost function
Kühne Drivers of energy storage demand in the German power system: an analysis of the influence of methodology and parameters on modelling results
JP2022050126A (ja) 分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラム
JP2013150473A (ja) 電力系統の需給制御システム、需給制御装置及び需給制御プログラム
WO2022259777A1 (ja) 制御パラメータ算出装置、電力供給システム、制御パラメータ算出方法及びプログラム
JP7443161B2 (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP2013198192A (ja) 蓄電池の運用方針決定方法および運用方針決定システム
JP2016167913A (ja) 電力供給システム及び電力供給方法
Cruise et al. Optimal scheduling of energy storage resources
CN115864611A (zh) 储能电池安全储能管理方法、系统、设备及存储介质
JP2018023188A (ja) 充放電計画設定プログラム、充放電計画設定方法、及び充放電計画設定装置
Masaud et al. Optimal Battery Planning for Microgrid Applications Considering Battery Swapping and Evolution of the SOH During Lifecycle Aging
Wikander Dispatch Optimization of the TES. POD Cluster using Mixed-Integer Linear Programming Models
Liang et al. Considering battery degradation in energy storage system design for multi-services scenarios
CN115800275B (zh) 电力平衡调控配电方法、系统、设备及存储介质

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240419