JP2022180826A - 制御装置、制御装置の制御方法及びプログラム - Google Patents

制御装置、制御装置の制御方法及びプログラム Download PDF

Info

Publication number
JP2022180826A
JP2022180826A JP2021087538A JP2021087538A JP2022180826A JP 2022180826 A JP2022180826 A JP 2022180826A JP 2021087538 A JP2021087538 A JP 2021087538A JP 2021087538 A JP2021087538 A JP 2021087538A JP 2022180826 A JP2022180826 A JP 2022180826A
Authority
JP
Japan
Prior art keywords
temperature
solid state
state drive
control device
ssd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021087538A
Other languages
English (en)
Inventor
綱人 中下
Tsunahito Nakashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021087538A priority Critical patent/JP2022180826A/ja
Priority to US17/738,924 priority patent/US20220382482A1/en
Publication of JP2022180826A publication Critical patent/JP2022180826A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3225Monitoring of peripheral devices of memory devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3275Power saving in memory, e.g. RAM, cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Debugging And Monitoring (AREA)
  • Memory System (AREA)

Abstract

【課題】ソリッドステートドライブのサーマルスロットリング機能の発動温度を適切に制御できるようにする。【解決手段】制御装置は、サーマルスロットリング機能を有するソリッドステートドライブを制御する制御装置であって、制御装置の起動から起動完了までは、ソリッドステートドライブのサーマルスロットリング機能を第1の温度で発動させ、制御装置の起動完了後は、ソリッドステートドライブのサーマルスロットリング機能を第1の温度より低い第2の温度で発動させるように制御する制御手段を有する。【選択図】図4

Description

本開示は、制御装置、制御装置の制御方法及びプログラムに関する。
画像形成装置内には、ハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)の様な大容量ストレージデバイスが搭載されている。大容量ストレージデバイスは、動作プログラムを格納すると共に、画像データの保存又は編集などを実現するストレージ機能を実現している。
SSDは、HDDに比べて、高速なランダムアクセスが可能であり、低消費電力、高い耐衝撃性、軽量、及び省スペースといった点に特長がある。特に、SSDは、システム起動時において、HDDで必要なスピンアップ等の初期動作が必要ないため、高速なデータ転送と相まって、起動時間や復帰時間の短縮化には非常に効果がある。そのため、SSDは、画像形成装置のストレージデバイスとして、HDDからのリプレースが進んでいる。
近年、パーソナルコンピュータに搭載されるSSDの接続インターフェースの主流は、SATAインターフェースから、PCIe接続によるNon-Volatile Memory Express(以下、NVMeという)インターフェースに変わりつつある。NVMeインターフェースは、SSDの様な不揮発性メモリを使用したフラッシュストレージに最適化され、理論値においては、SATAインターフェースの転送速度の約7倍となる40Gbpsの転送速度まで対応可能である。
現在、市場に流通しているNVMe仕様のSSDの実際のデータ転送速度は、SATA仕様のSSDに対して、実質倍以上の速度を持ち、1秒間に1ギガバイト以上の転送速度を持ち、1秒間に3ギガバイトの転送速度のモデルも出てきている。
また、NVMe仕様のSSDは、SATA仕様のSSDの様な筐体を持ち、ケーブルを介して接続するのではなく、M.2コネクタと呼ばれるDRAMモジュールの様なカードエッジコネクタ経由でマザーボードに直接に接続されるため、非常にコンパクトである。
しかしながら、NVMe仕様のSSDは、転送速度が劇的に速くなった半面、自己の発熱量が非常に高い事が短所として挙げられる。自己発熱した温度が90℃を超えるものも珍しくない。従って、NVMe仕様のSSDは、発熱による自己破損を防ぐために、自己の温度を監視して、その温度が所定の閾値を超えた時に、処理能力を低下させて、発熱を抑制するサーマルスロットリング機能を有している。
NVMe仕様のSSDは、データ転送速度が非常に高いため、サーマルスロットリング機能によってパフォーマンスがダウンしても、1秒間に100~400メガバイト以上の転送速度を維持する事ができる。特許文献1には、サーマルスロットリング機能を実現するための構成が開示されている。
特開2009-157829号公報
画像形成装置において、NVMe仕様のSSDが搭載される制御基板上には、CPUや画像処理ASIC等の自己発熱量が高い部品と共に、コンデンサ等の熱に弱い部品も搭載される。また、制御基板が設置されるシステムボックスにおいては、近年求められる静音化及びコストダウンのため、ファンレス仕様となっているため、システムボックス内に熱が滞留し易い環境となっている。
従来、画像形成装置に搭載されるストレージは、SATAインターフェースのSSDだったため、ストレージによる発熱は殆どなく、システムボックス内の熱源は、CPUや画像処理ASICだったため、これらをベースにシステムボックスの熱設計を行っていた。
ここで、CPUと同等以上に発熱量が高いNVMe仕様のSSDを搭載する場合、SSDの発熱分が追加される事によって、システムボックス内の温度が許容値以上に上昇し、制御基板上の熱に弱い部品を痛めてしまうという課題がある。また、NVMe仕様のSSDの発熱対策のためには、その発熱量に見合った大型のヒートシンク又はファンの追加が必要となり、コストがアップするという課題がある。
画像形成装置においては、NVMe仕様のSSDの高速な転送速度は、オーバースペックのために必要としていない。しかし、SSD市場のメインは、NVMe仕様であり、SATA仕様のSSDは縮小化しているため、NVMe仕様のSSDの使いこなしが必要となってきている。
本開示の目的は、ソリッドステートドライブのサーマルスロットリング機能の発動温度を適切に制御できるようにすることである。
制御装置は、サーマルスロットリング機能を有するソリッドステートドライブを制御する制御装置であって、前記制御装置の起動から起動完了までは、前記ソリッドステートドライブのサーマルスロットリング機能を第1の温度で発動させ、前記制御装置の起動完了後は、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度より低い第2の温度で発動させるように制御する制御手段を有する。
ソリッドステートドライブのサーマルスロットリング機能の発動温度を適切に制御することができる。
コントローラ部の構成例を示すブロック図である。 NVMe仕様のSSDの構成例を示すブロック図である。 SSDの温度状態を説明する図である。 コントローラ部の制御方法を説明するフローチャートである。 コントローラ部の制御方法を説明するフローチャートである。 コントローラ部の制御方法を説明するフローチャートである。
(第1の実施形態)
以下、第1の実施形態による制御装置の一例について図面を参照して説明する。なお、この実施形態に記載されている構成要素は、あくまで例示であり、それらのみに限定するものではない。
図1は、画像形成装置のコントローラ部400の構成例を示すブロック図である。コントローラ部400は、制御装置の一例である。コントローラ部400は、操作部や外部パーソナルコンピュータからの指示に基づいて、原稿搬送装置を制御する原稿搬送装置制御部、及びイメージリーダを制御するイメージリーダ制御部と通信し、入力される原稿の画像データを取得する。また、コントローラ部400は、プリンタ部を制御するプリンタ制御部と通信を行い、画像データをシートに印刷する。また、コントローラ部400は、折り装置を制御する折り装置制御部、及びフィニッシャを制御するフィニッシャ制御部と通信を行い、印刷されたシートにステイプルやパンチ穴といった所望の出力を実現する。
コントローラ部400は、CPU401と、不揮発性RAM402と、RAM403と、バスブリッジ404と、外部I/F制御部405と、操作制御部406と、デバイス制御部411と、ソリッドステートドライブ412と、外部I/F451を有する。以下、ソリッドステートドライブ412をSSD412という。
外部I/F451は、外部のパーソナルコンピュータに接続するインターフェースである。例えば、外部I/F451は、ネットワークやUSBなどの外部バスで接続され、外部のパーソナルコンピュータからのプリントデータを受信し、後述するSSD412内の画像データを外部コンピュータに送信することを行う。デバイス制御部411は、外部I/F451が受信したプリントデータを画像に展開し、プリンタ部に対して、画像を印刷するように制御することができる。
CPU401は、バスブリッジ404に接続され、バスブリッジ404を介して、CPU401の初期起動プログラムを格納している不揮発性RAM402から、初期起動プログラムを読み出す。CPU401は、オペレーティングシステム(以下、OSという)を基に制御する。
また、CPU401は、制御に伴う演算の作業領域として用いられるRAM403とSSD412に直接接続されている。RAM403は、CPU401に内蔵されるメモリコントローラに接続される。SSD412は、M.2コネクタを介して、CPU401に対してPCIe接続される。
SSD412は、CPU401のOSを含むメインプログラムを格納し、イメージリーダや外部I/F451より取得した画像データや操作部で編集した画像データを保存し、アプリケーションプログラムを格納する。また、SSD412は、アプリケーションプログラムやユーザープリファレンスデータを格納する。
外部I/F制御部405と操作制御部406とデバイス制御部411は、バスブリッジ404に接続される。外部I/F制御部405は、外部I/F451を制御する。外部I/F451は、ネットワークインターフェースやUSBインターフェースである。操作制御部406は、操作部を制御する。デバイス制御部411は、原稿搬送装置制御部、イメージリーダ制御部、プリンタ制御部、折り装置制御部、及びフィニッシャ制御部に接続され、これらの制御を司る。
図2は、図1のSSD412の構成例を示すブロック図である。SSD412は、NVMe仕様のSSDである。SSD412は、SSD制御部1000と、複数のフラッシュメモリ1003と、温度センサ1004を有する。SSD制御部1000は、PCIe I/F1001と、メモリ制御部1002を有する。フラッシュメモリ1003は、不揮発性メモリであり、プログラム及び画像データ等を記憶することができる。温度センサ1004は、SSD412の温度を検出する。PCIe I/F1001は、メモリ制御部1002とCPU401とを接続するインターフェースである。メモリ制御部1002は、フラッシュメモリ1003に対して、書き込み及び読み出しを制御し、CPU401に対して、書き込みデータ及び読み出しデータを入出力する。また、メモリ制御部1002は、温度センサ1004により検出された温度をCPU401に出力する。
PCIe I/F1001は、PCIe接続によるNon-Volatile Memory Express(NVMe)インターフェースであり、フラッシュメモリ1003のために最適化され、40Gbpsの転送速度まで対応可能である。
NVMe仕様のSSD412は、M.2コネクタと呼ばれるカードエッジコネクタ経由でCPU401に接続されるため、非常にコンパクトである。NVMe仕様のSSD412は、転送速度が速い半面、自己の発熱量が非常高い。NVMe仕様のSSD412は、発熱による自己破損を防ぐために、自己の温度を監視して、その温度が所定の閾値を超えた時に、処理能力を低下させて、発熱を抑制するサーマルスロットリング機能を有している。
ここで、NVMe仕様のSSD412が備えるサーマルスロットリング機能についての説明を行う。SSD412は、自身の温度管理を行うため温度センサ1004を備える。図2では、温度センサ1004が1個である例を示しているが、複数の温度センサを備えてもよい。CPU401は、温度センサ1004が検出した温度情報を、SMART情報によって確認する事ができる。
サーマルスロットリング機能は、FeatureコマンドのHCTM(Host Thermal Management)設定によって制御される。HCTMで扱われる温度の単位は、摂氏(℃)ではなく、ケルビン(K)となっている。
SSD412は、温度センサ1004から得た自身の温度情報とHCTM設定内のTMT1とTMT2にセットされた温度に基づいてスロットリングを発動する。HCTMのFeature IDは、0x10である。TMT1は、Thermal Management Temperature 1である。TMT2は、Thermal Management Temperature 2である。
TMT1とTMT2にセット可能な値の限度値は、Identify Data StructuresのMNTMT(下限)とMXTMT(上限)で規定される。MNTMTとMXTMTは、SSD412のデバイス固有の値である。
TMT1にセットされた温度で発動するスロットリングは、弱いスロットリングであり、パフォーマンスへの影響を最小限に抑えながら発熱を抑制する。また、TMT2にセットされた温度で発動するスロットリングは、強いスロットリングであり、パフォーマンスの影響を考慮せずに、発熱の抑制を優先するものである。各パラメータの大小関係は、次のようになっている。
MNTMT≦TMT1<TMT2≦MXTMT
ただし、TMT1とTMT2が共に0(ゼロ)である場合には、スロットリングが無効(OFF状態)となる。SSD412は、SSD412のデバイスにより、TMT1とTMT2の両方に対応するものと、TMT2のみに対応するものがそれぞれ存在する。
次に、第1の実施形態によるコントローラ部400に搭載されるNVMe仕様のSSD412のサーマルスロットリング機能を利用した温度抑制モードの制御方法について説明を行う。サーマルスロットリングの発動温度は、通常、75~85℃となっている。
本実施形態では、TMT1の初期設定が0(無効)であり、TMT2の初期設定が85℃であり、MNTMTが50℃であるNVMe仕様のSSD412を例として説明を行う。前述の通り、HCTMで扱われる温度の単位はケルビンのため、上記の値は以下の通りである。TMT1は273Kであり、TMT2は358Kであり、MNTMTは323Kである。
NVMe仕様のSSD412を工場出荷時の状態でそのまま使用すると、図3のグラフの実線の様に、SSD412は、約2分前後でスロットリングの発動温度に達し、以降はスロットリングによって初期設定温度(85℃)近傍を上下しながら維持する。ここで、画像形成装置のコントローラ部400は、プリントや画像スキャン等のジョブ実行時に必要なSSD412に対するデータ転送速度が100~200メガバイト/秒である。これに対して、コントローラ部400のシステムの起動やシャットダウンは、データ転送速度に依存して短縮化が見込めるため、可能な限りデータ転送速度は速い事が好ましい。
コントローラ部400は、サーマルスロットリング機能を有するSSD412を制御する制御装置である。コントローラ部400は、起動時に通常モードでSSD412を動作させ、起動確認後に、スロットリングの発動温度設定を初期設定値より低い値に変更して常時スロットリング発動状態にしてSSD412を温度抑制モードで動作させる。これにより、コントローラ部400は、SSD412の温度抑制と性能維持を両立できる。ここでは、サーマルスロットリングの発動温度設定を最もスロットリングが発動しやすいSSD412の設定可能な最小値(MNTMT)に設定した場合を例にして説明を行う。
図3は、SSD412のMNTMTが323K(50℃)の場合を例示したグラフである。図3の実線は、通常モードのSSD412の温度状態を表し、TMT2が初期設定温度(85℃)に設定されている。図3の破線は、温度抑制モードのSSD412の温度状態を表し、TMT2がMNTMT(50℃)に変更されている。CPU401は、起動期間では、通常モードでSSD412を動作させ、TMT2を初期設定温度(85℃)に設定する。起動期間後、CPU401は、温度抑制モードでSSD412を動作させ、TMT2をMNTMT(50℃)に設定する。SSD412の温度は、スロットリングによってTMT2(50℃)近傍を上下しながら維持する。SSD412は、起動期間中では、通常モードにより性能を維持させ、起動期間後では、温度抑制モードにより温度を抑制する。また、CPU401は、システムのシャットダウンを検知した場合、サーマルスロットリングの発動温度設定を通常モードに戻してシャットダウン時のデータの書き戻し、パフォーマンスを向上させる共に、次回の起動時の準備を完了させる。
図4は、第1の実施形態によるコントローラ部400の制御方法を示すフローチャートである。システム起動時にコントローラ部400が通電されると、CPU401は、イニシャライズを行うため、各デバイスの接続状況を確認する。CPU401は、各デバイスの接続状況の確認時において、SSD412の接続の確認を起点として、図4のフローを開始する。
ステップS101では、CPU401は、SSD412にアクセスし、FeatureコマンドのHCTMのTMT1とTMT2の初期設定値を読み出す。TMT1の初期設定値は0(無効)であり、TMT2の初期設定値は358K(85℃)である。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(85℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS102では、CPU401は、ステップS101で読み出したTMT1とTMT2の初期設定値を、不揮発性RAM402又はSSD412に保存する。
ステップS103では、CPU401は、SSD412にアクセスし、Identify Data StructuresのMNTMTの値を読み出す。MNTMTは、例えば、323K(50℃)である。
ステップS104では、CPU401は、システムの起動が完了したか否かを判定する。CPU401は、システムの起動の完了を判定する方法として、起動完了を示す起動完了フラグを備えたオペレーションシステム(OS)である場合、起動完了フラグを監視し、起動完了フラグが立った場合に、システムの起動が完了したと判定する。また、CPU401は、コントローラ部400の通電開始からカウントを行うタイマを備えている場合、カウント値が予め設定された所定値に達した場合に、システムの起動が完了したと判定する。CPU401は、システムの起動が完了するまで待機し、システムの起動が完了した場合に、ステップS105に進む。
ステップS105では、CPU401は、SSD412に対して、「Set Feature」により、TMT1に0(ゼロ)を設定し、TMT2にMNTMTの値(例えば、323K(50℃))を設定する。MNTMT(50℃)は、TMT2の初期設定値(85℃)より低い。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(50℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS106では、CPU401は、システムのシャットダウンコマンドの発行を検知したか否かを判定する。CPU401は、システムのシャットダウンコマンドの発行を検知するまで待機し、システムのシャットダウンコマンドの発行を検知した場合に、ステップS107に進む。
ステップS107では、CPU401は、ステップS102で保存したHCTMのTMT1とTMT2の初期設定値を保存先の不揮発性RAM402又はSSD412から読み出す。
ステップS108では、CPU401は、SSD412に対して、「Set Feature」により、読み出したHCTMのTMT1とTMT2の初期設定値を設定する。例えば、TMT1の初期設定値は0であり、TMT2の初期設定値は358K(85℃)である。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(85℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
以上のように、CPU401は、コントローラ部400の起動から起動完了までは、SSD412のサーマルスロットリング機能をTMT2の初期設定値(85℃)の温度で発動させるように制御する。また、CPU401は、コントローラ部400の起動完了後は、SSD412のサーマルスロットリング機能をMNTMTの温度で発動させるように制御する。MNTMTは、設定可能な最小値である。
SSD412は、コントローラ部400の起動から起動完了までは、SSD412の温度が上昇してTMT2の初期設定値(85℃)の温度に達した場合には、性能を抑制し、発熱を抑制する。また、SSD412は、コントローラ部400の起動完了後は、SSD412の温度が上昇してMNTMTの温度に達した場合には、性能を抑制し、発熱を抑制する。
CPU401は、シャットダウンコマンドの発行を検知した場合には、SSD412のサーマルスロットリング機能をTMT2の初期設定値(85℃)の温度で発動させるように設定する。
本実施形態によれば、CPU401は、システムの起動完了前では、SSD412に対して、TMT1とTMT2の初期設定値を維持し、通常モードで動作させることにより、SSD412の高性能機能を維持する。また、CPU401は、システム起動完了後では、SSD412に対して、TMT2にMNTMTを設定し、温度抑制モードで動作させることにより、SSD412の温度を抑制する。システム起動後では、常時サーマルスロットリングを発動させて、温度を抑制する事で、ヒートシンクやファンの構成を最小限にできるためコストダウンができる。
以上のように、CPU401は、画像形成装置のコントローラ部400の動作の中で最もSSD412の最大パフォーマンスが必要な起動完了前とシャットダウンコマンドの発行後では、SSD412を通常モードで動作させる。また、CPU401は、起動完了後からシャットダウンコマンドの発行前では、SSD412を温度抑制モードで動作させる。これによって、コントローラ部400は、SSD412のパフォーマンスと温度抑制を両立させる事ができる。
(第2の実施形態)
第2の実施形態では、温度抑制モード中に、アプリケーションの起動やインストールの様な高速度が求められる短時間の処理が存在する場合において、温度が閾値未満の場合には、一時的に通常モードに戻してパフォーマンスを向上させる。
図5は、第2の実施形態によるコントローラ部400の制御方法を示すフローチャートである。まず、ステップS201~S205では、CPU401は、図4のステップS101~S105の処理と同様の処理を行う。
次に、ステップS206では、CPU401は、ユーザーの操作部の操作により、アプリケーションの起動の要求又はアプリケーションのインストールの要求を検知したか否かを判定する。CPU401は、アプリケーションの起動の要求又はアプリケーションのインストールの要求を検知した場合には、ステップS207に進む。また、CPU401は、アプリケーションの起動の要求又はアプリケーションのインストールの要求を検知していない場合には、ステップS215に進む。
ステップS207では、CPU401は、SSD412にアクセスし、温度センサ1004により検出されたSSD412の温度を取得する。NVMe仕様のSSD412の現在の温度の情報は、SMART情報に含まれている。CPU401は、「Get Log Page」コマンドを発行することにより、SSD412の温度を取得する。SMART情報のLog Page IDは、02hである。ここで、取得するSSD412の温度の単位は、ケルビン(K)である。
ステップS208では、CPU401は、ステップS207で取得したSSD412の温度が閾値α未満であるか否かを判定する。閾値αは、画像形成装置のシステムボックスによって異なるが、システムボックスに搭載される制御基板に実装される部品の温度特性に合わせて設定される。CPU401は、SSD412の温度が閾値α未満である場合には、ステップS209に進み、SSD412の温度が閾値α未満でない場合には、ステップS215に進む。
ステップS209では、CPU401は、ステップS202で保存したHCTMのTMT1とTMT2の初期設定値を保存先の不揮発性RAM402又はSSD412から読み出す。
ステップS210では、CPU401は、SSD412に対して、「Set Feature」により、読み出したHCTMのTMT1とTMT2の初期設定値を設定する。例えば、TMT1の初期設定値は0であり、TMT2の初期設定値は358K(85℃)である。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(85℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS211では、CPU401は、アプリケーションの起動の完了又はアプリケーションのインストールの完了を検知したか否かを判定する。CPU401は、アプリケーションの起動の完了又はアプリケーションのインストールの完了を検知した場合には、ステップS214に進む。また、CPU401は、アプリケーションの起動の完了又はアプリケーションのインストールの完了を検知していない場合には、ステップS212に進む。
ステップS212では、CPU401は、SSD412にアクセスし、温度センサ1004により検出されたSSD412の温度を取得する。
ステップS213では、CPU401は、ステップS212で取得したSSD412の温度が閾値α以上であるか否かを判定する。CPU401は、SSD412の温度が閾値α以上である場合には、ステップS214に進み、SSD412の温度が閾値α以上でない場合には、ステップS211に戻る。
ステップS214では、CPU401は、SSD412に対して、「Set Feature」により、TMT1に0(ゼロ)を設定し、TMT2にMNTMTの値(例えば、323K(50℃))を設定する。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(50℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS215では、CPU401は、システムのシャットダウンコマンドの発行を検知したか否かを判定する。CPU401は、システムのシャットダウンコマンドの発行を検知していない場合には、ステップS206に戻り、システムのシャットダウンコマンドの発行を検知した場合には、ステップS216に進む。
ステップS216では、CPU401は、ステップS202で保存したHCTMのTMT1とTMT2の初期設定値を保存先の不揮発性RAM402又はSSD412から読み出す。
ステップS217では、CPU401は、SSD412に対して、「Set Feature」により、読み出したHCTMのTMT1とTMT2の初期設定値を設定する。例えば、TMT1の初期設定値は0であり、TMT2の初期設定値は358K(85℃)である。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(85℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
以上のように、ステップS206では、CPU401は、アプリケーションの起動の要求又はアプリケーションのインストールの要求を検知した場合には、ステップS207に進む。ステップS208では、CPU401は、SSD412の温度が閾値未満である場合には、ステップS209に進む。ステップS210では、CPU401は、SSD412のサーマルスロットリング機能をTMT2の初期設定値(85℃)で発動させるように制御する。
ステップS211では、CPU401は、アプリケーションの起動の完了又はアプリケーションのインストールの完了を検知した場合には、ステップS214に進む。ステップS213では、CPU401は、SSD412の温度が閾値以上になった場合には、ステップS214に進む。ステップS214では、CPU401は、SSD412のサーマルスロットリング機能をMNTMT(50℃)の温度で発動させるように制御する。
以上のように、本実施形態によれば、コントローラ部400は、温度抑制モード中において、ステップS206及びS208の条件が満たされていた場合に、SSD412の本来のスループットが必要であるので、一時的に通常モードに戻す。これにより、コントローラ部400は、SSD412のパフォーマンスと温度抑制を両立させる事ができる。
(第3の実施形態)
第3の実施形態では、CPU401は、SSD412が強いスロットリングと弱いスロットリングの両方をサポートしていた場合において、動作モードと温度に応じて、スロットリングの強弱を動的に切り替える。SSD412は、スロットリングの強弱をサポートしており、システムの起動時とシャントダウン時には、通常モードで動作し、起動後からシャットダウンコマンドの発行までは、強いスロットリングが常時発動する第1の温度抑制モードで動作する。
ここで、SSD412のパフォーマンスアップが必要な条件を満たし、かつSSD412の温度が閾値α未満の場合には、SSD412は、第2の温度抑制モードで動作する。パフォーマンスアップが必要な条件は、以下の条件のいずれかを満たすことである。
・アプリケーションの起動の要求時
・アプリケーションのインストールの要求時
・複数のジョブの競合時(例えば、印刷と画像スキャンの同時動作等)
本実施形態では、TMT1の初期設定値が75℃であり、TMT2の初期設定値が85℃であり、MNTMTが50℃であるNVMe仕様のSSD412を例として説明を行う。また、閾値αは、60℃である。前述の通り、HCTMで扱われる温度の単位は、ケルビン(K)であるため、上記の値は、以下の通りである。TMT1は348Kであり、TMT2は358Kであり、MNTMTは323Kであり、閾値αは333Kである。
図6は、第3の実施形態によるコントローラ部400の制御方法を示すフローチャートである。まず、ステップS301~S305では、CPU401は、図4のステップS101~S105の処理と同様の処理を行う。
次に、ステップS306では、CPU401は、SSD412のパフォーマンスアップが必要な条件が満たされているか否かを判定する。SSD412のパフォーマンスアップが必要な条件は、アプリケーションの起動の要求、アプリケーションのインストールの要求、又は、複数のジョブの競合(例えば、印刷と画像スキャンの同時動作等)である。CPU401は、SSD412のパフォーマンスアップが必要な条件が満たされている場合には、ステップS307に進み、SSD412のパフォーマンスアップが必要な条件が満たされていない場合には、ステップS312に進む。
ステップS307では、CPU401は、「Get Log Page」コマンドを発行することにより、SSD412にアクセスし、温度センサ1004により検出されたSSD412の温度を取得する。
ステップS308では、CPU401は、ステップS307で取得したSSD412の温度が閾値α未満であるか否かを判定する。CPU401は、SSD412の温度が閾値α未満である場合には、ステップS309に進み、SSD412の温度が閾値α未満でない場合には、ステップS312に進む。
ステップS309では、CPU401は、SSD412に対して、「Set Feature」により、ステップS303で読み出したMNTMTの値をTMT1に設定し、閾値αをTMT2に設定する。MNTMTの温度は、323K(50℃)である。閾値αは、333K(60℃)であり、MNTMTより高い温度である。
この状態では、SSD412は、SSD412の温度が上昇してTMT1(50℃)に達した場合には、弱いサーマルスロットリングを発動し、性能を弱く抑制し、発熱を抑制する。それでも、SSD412の温度が下がらず、TMT2(60℃)に達した場合には、SSD412は、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS310では、CPU401は、上記のSSD412のパフォーマンスアップが必要な条件が満たされなくなるまで待機し、SSD412のパフォーマンスアップが必要な条件が満たされなくなった場合には、ステップS311に進む。例えば、CPU401は、アプリケーションの起動の完了、アプリケーションのインストールの完了、又は、複数のジョブの競合の終了を検知した場合には、ステップS311に進む。
ステップS311では、CPU401は、SSD412に対して、「Set Feature」により、TMT1に0(ゼロ)を設定し、TMT2にMNTMTの値(例えば、323K(50℃))を設定する。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(50℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
ステップS312では、CPU401は、システムのシャットダウンコマンドの発行を検知したか否かを判定する。CPU401は、システムのシャットダウンコマンドの発行を検知していない場合には、ステップS306に戻り、システムのシャットダウンコマンドの発行を検知した場合には、ステップS313に進む。
ステップS313では、CPU401は、ステップS102で保存したHCTMのTMT1とTMT2の初期設定値を保存先の不揮発性RAM402又はSSD412から読み出す。
ステップS314では、CPU401は、SSD412に対して、「Set Feature」により、読み出したHCTMのTMT1とTMT2の初期設定値を設定する。例えば、TMT1の初期設定値は0であり、TMT2の初期設定値は358K(85℃)である。
この状態では、SSD412は、SSD412の温度が上昇してTMT2(85℃)に達した場合には、強いサーマルスロットリングを発動し、性能を強く抑制し、発熱を抑制する。
以上のように、ステップS306では、CPU401は、アプリケーションの起動の要求、アプリケーションのインストールの要求、又は複数のジョブの競合を検知した場合には、ステップS307に進む。ステップS308では、CPU401は、SSD412の温度が閾値αの温度未満である場合には、ステップS309に進む。ステップS309では、CPU401は、SSD412の弱いサーマルスロットリング機能をMNTMT(50℃)の温度で発動させ、SSD412の強いサーマルスロットリング機能を閾値αの温度で発動させるように制御する。この場合、SSD412は、SSD412の温度が上昇してMNTMT(50℃)の温度に達した場合には、性能を抑制し、発熱を抑制し、SSD412の温度がさらに上昇して閾値αの温度に達した場合には、性能をさらに抑制し、発熱を抑制する。
ステップS310では、CPU401は、アプリケーションの起動の完了、アプリケーションのインストールの完了、又は複数のジョブの競合の終了を検知した場合には、ステップS311に進む。ステップS311では、CPU401は、SSD412のサーマルスロットリング機能をMNTMT(50℃)の温度で発動させるように制御する。
以上のように、本実施形態によれば、CPU401は、ステップS305及びS311の第1の温度抑制モードと、ステップS309の第2の温度抑制モードを動的に切り替える。これにより、SSD412は、より効率的なパフォーマンスと温度抑制の両立を実現する事ができる。
第1~第3の実施形態によれば、CPU401は、コントローラ部400の起動後に、常時、サーマルスロットリング機能を発動させ、温度を抑制するように制御することで、ヒートシンクやファンの構成を最小限にできるため、コストダウンができる。
また、CPU401は、コントローラ部400の動作の中で、最もSSD412の最大パフォーマンスが必要なコントローラ部400の起動処理時にのみ通常モードで動作させる。そして、CPU401は、SSD412の最大パフォーマンスが不要なそれ以外の動作では、温度抑制モードで動作させる。これによって、コントローラ部400は、SSD412のパフォーマンスと温度抑制を両立させることができる。
(その他の実施形態)
本開示は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読み出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上の実施形態に基づいて説明したが、本開示は、これらの実施形態に限定されるものではなく、この開示の要旨を逸脱しない範囲の様々な形態も含まれる。
401 CPU、412 SSD、1004 温度センサ

Claims (16)

  1. サーマルスロットリング機能を有するソリッドステートドライブを制御する制御装置であって、
    前記制御装置の起動から起動完了までは、前記ソリッドステートドライブのサーマルスロットリング機能を第1の温度で発動させ、前記制御装置の起動完了後は、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度より低い第2の温度で発動させるように制御する制御手段を有することを特徴とする制御装置。
  2. 前記ソリッドステートドライブは、
    前記制御装置の起動から起動完了までは、前記ソリッドステートドライブの温度が上昇して前記第1の温度に達した場合には、性能を抑制し、発熱を抑制し、
    前記制御装置の起動完了後は、前記ソリッドステートドライブの温度が上昇して前記第2の温度に達した場合には、性能を抑制し、発熱を抑制することを特徴とする請求項1に記載の制御装置。
  3. 前記第1の温度は、初期設定値であることを特徴とする請求項1又は2に記載の制御装置。
  4. 前記第2の温度は、設定可能な最小値であることを特徴とする請求項1~3のいずれか1項に記載の制御装置。
  5. 前記制御手段は、シャットダウンコマンドの発行を検知した場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度で発動させるように設定することを特徴とする請求項1~4のいずれか1項に記載の制御装置。
  6. 前記制御手段は、アプリケーションの起動の要求又はアプリケーションのインストールの要求を検知した場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度で発動させるように制御することを特徴とする請求項1~5のいずれか1項に記載の制御装置。
  7. 前記制御手段は、前記アプリケーションの起動の要求又は前記アプリケーションのインストールの要求を検知し、かつ、前記ソリッドステートドライブの温度が閾値未満である場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度で発動させるように制御することを特徴とする請求項6に記載の制御装置。
  8. 前記制御手段は、前記アプリケーションの起動の要求又は前記アプリケーションのインストールの要求を検知した後、前記ソリッドステートドライブの温度が前記閾値以上になった場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第2の温度で発動させるように制御することを特徴とする請求項7に記載の制御装置。
  9. 前記制御手段は、前記アプリケーションの起動の完了又は前記アプリケーションのインストールの完了を検知した場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第2の温度で発動させるように制御することを特徴とする請求項6~8のいずれか1項に記載の制御装置。
  10. 前記制御手段は、アプリケーションの起動の要求、アプリケーションのインストールの要求、又は複数のジョブの競合を検知した場合には、前記ソリッドステートドライブの第1のサーマルスロットリング機能を前記第2の温度で発動させ、前記ソリッドステートドライブの第2のサーマルスロットリング機能を前記第2の温度より高い第3の温度で発動させるように制御することを特徴とする請求項1~5のいずれか1項に記載の制御装置。
  11. 前記ソリッドステートドライブは、前記制御手段がアプリケーションの起動の要求、アプリケーションのインストールの要求、又は複数のジョブの競合を検知した場合において、前記ソリッドステートドライブの温度が上昇して前記第2の温度に達した場合には、性能を抑制し、発熱を抑制し、前記ソリッドステートドライブの温度がさらに上昇して前記第3の温度に達した場合には、性能をさらに抑制し、発熱を抑制することを特徴とする請求項10に記載の制御装置。
  12. 前記制御手段は、前記アプリケーションの起動の要求、前記アプリケーションのインストールの要求、又は複数のジョブの競合を検知し、かつ、前記ソリッドステートドライブの温度が前記第3の温度未満である場合には、前記ソリッドステートドライブの温度が上昇して前記第2の温度に達した場合には、性能を抑制し、発熱を抑制し、前記ソリッドステートドライブの温度がさらに上昇して前記第3の温度に達した場合には、性能をさらに抑制し、発熱を抑制することを特徴とする請求項11に記載の制御装置。
  13. 前記制御手段は、前記アプリケーションの起動の完了、前記アプリケーションのインストールの完了、又は前記複数のジョブの競合の終了を検知した場合には、前記ソリッドステートドライブのサーマルスロットリング機能を前記第2の温度で発動させるように制御することを特徴とする請求項10~12のいずれか1項に記載の制御装置。
  14. 前記制御装置は、画像形成装置の制御装置であることを特徴とする請求項1~13のいずれか1項に記載の制御装置。
  15. サーマルスロットリング機能を有するソリッドステートドライブを制御する制御装置の制御方法であって、
    前記制御装置の起動から起動完了までは、前記ソリッドステートドライブのサーマルスロットリング機能を第1の温度で発動させ、前記制御装置の起動完了後は、前記ソリッドステートドライブのサーマルスロットリング機能を前記第1の温度より低い第2の温度で発動させるように制御する制御ステップを有することを特徴とする制御装置の制御方法。
  16. コンピュータを、請求項1~14のいずれか1項に記載された制御装置の各手段として機能させるためのプログラム。
JP2021087538A 2021-05-25 2021-05-25 制御装置、制御装置の制御方法及びプログラム Pending JP2022180826A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021087538A JP2022180826A (ja) 2021-05-25 2021-05-25 制御装置、制御装置の制御方法及びプログラム
US17/738,924 US20220382482A1 (en) 2021-05-25 2022-05-06 Control apparatus, control method for control apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021087538A JP2022180826A (ja) 2021-05-25 2021-05-25 制御装置、制御装置の制御方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2022180826A true JP2022180826A (ja) 2022-12-07

Family

ID=84195165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087538A Pending JP2022180826A (ja) 2021-05-25 2021-05-25 制御装置、制御装置の制御方法及びプログラム

Country Status (2)

Country Link
US (1) US20220382482A1 (ja)
JP (1) JP2022180826A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115904262B (zh) * 2023-03-10 2023-05-05 绿晶半导体科技(北京)有限公司 一种高写入性能的固态硬盘写入方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059448A (ja) * 2004-08-20 2006-03-02 Hitachi Ltd ディスクアレイ装置
US20060161375A1 (en) * 2004-12-30 2006-07-20 Allen Duberstein Optimizing processing speed based on measured temperatures
US7765825B2 (en) * 2005-12-16 2010-08-03 Intel Corporation Apparatus and method for thermal management of a memory device
US8086358B2 (en) * 2007-07-11 2011-12-27 International Business Machines Corporation Method for pre-heating high power devices to enable low temperature start-up and operation
DE102008054598A1 (de) * 2008-12-14 2010-08-05 Getac Technology Corp. Computersystem und automatisches Verfahren zum thermischen Schutz des Computersystems
US9191437B2 (en) * 2009-12-09 2015-11-17 International Business Machines Corporation Optimizing data storage among a plurality of data storage repositories
US9274805B2 (en) * 2012-02-24 2016-03-01 Qualcomm Incorporated System and method for thermally aware device booting
WO2016018249A1 (en) * 2014-07-29 2016-02-04 Hewlett-Packard Development Company, L.P. Processor monitoring of thermal degradation
US10136558B2 (en) * 2014-07-30 2018-11-20 Dell Products L.P. Information handling system thermal management enhanced by estimated energy states
US10275001B2 (en) * 2015-06-26 2019-04-30 Intel Corporation Thermal throttling of electronic devices
US10095288B2 (en) * 2016-03-18 2018-10-09 Dell Products L.P. Systems and methods for thermal management of an information handling system including determination of optimum slot location for information handling resource
US10289177B2 (en) * 2016-03-18 2019-05-14 Dell Products L.P. Systems and methods for thermal management of an information handling system including cooling for third-party information handling resource
US9968011B2 (en) * 2016-04-29 2018-05-08 Dell Products L.P. Systems and methods for dynamically updated thermal options based on thermal state
US10534412B2 (en) * 2017-02-16 2020-01-14 Astronics Advanced Electronic Systems Corp. Control of temperature in a USB type C source through re-negotiation of power delivery object
US11132037B2 (en) * 2018-09-06 2021-09-28 Micron Technology, Inc. Operating temperature management of a memory sub-system
JP7292873B2 (ja) * 2018-12-26 2023-06-19 キヤノン株式会社 画像形成装置
CN110096233B (zh) * 2019-04-28 2023-02-10 深圳忆联信息系统有限公司 基于固态硬盘的后端参数动态适配方法和装置
US11017823B1 (en) * 2020-03-20 2021-05-25 Dell Products L.P. System and method for dynamic adjustment of SSD critical temperature threshold based on memory size
JP7149394B1 (ja) * 2021-08-26 2022-10-06 レノボ・シンガポール・プライベート・リミテッド 情報処理装置、及び制御方法
US20220012150A1 (en) * 2021-09-24 2022-01-13 Intel Corporation Methods and apparatus to manage endpoint performance

Also Published As

Publication number Publication date
US20220382482A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5790007B2 (ja) 情報処理装置および情報処理装置の制御方法、ならびに、プログラム
JP2015064860A (ja) 画像形成装置およびその制御方法、並びにプログラム
US10642545B2 (en) Information processing apparatus that controls shifting between power states in accordance with remaining storage capacity and control method thereof
US9065941B2 (en) Image processing apparatus and method for controlling the same
EP2667256B1 (en) Image forming apparatus, control method for image forming apparatus, and storage medium
JP2022180826A (ja) 制御装置、制御装置の制御方法及びプログラム
US11144109B2 (en) Apparatus, method, and storage medium for controlling a power saving state in a SATA storage system
KR101596095B1 (ko) 인쇄 장치 및 기록 매체
JP2018120376A (ja) 不揮発性記憶装置を有する情報処理装置、制御方法
US11321001B2 (en) Information processing apparatus equipped with storage using flash memory, control method therefor, and storage medium
US10852970B2 (en) Storage control apparatus, control method thereof, storage medium, and information processing apparatus
CN110351449B (zh) 包括存储设备的图像形成装置及其控制方法
US11797292B2 (en) Information processing apparatus using swap file, control method therefor, and storage medium
CN111541825B (zh) 电子装置及其控制方法
JP2014057134A (ja) 画像形成装置、画像形成装置の制御方法及びプログラム
JP5414305B2 (ja) 情報処理装置、仮想記憶管理方法及びプログラム
JP6590890B2 (ja) 画像形成装置及びその制御方法、並びにプログラム
JP5051881B2 (ja) 通信制御装置、画像形成装置、通信制御方法及び通信制御プログラム
JP2006260092A (ja) 情報処理装置またはデータ転送制御装置
JP7506125B2 (ja) ストレージデバイス、及び情報処理システム
JP2017211808A (ja) 電子機器及びその制御方法、並びにプログラム
US11539851B2 (en) Apparatus for switching a power state among a plurality of power states and method thereof
JP2021117740A (ja) 情報処理装置、その制御方法、及びプログラム
JP2006261996A (ja) 情報処理装置
JP2008234073A (ja) 画像処理装置、画像処理方法、画像処理プログラム及びコンピュータ読み取り可能な記録媒体