JP2022164368A - Antibacterial fiber material and production method thereof - Google Patents

Antibacterial fiber material and production method thereof Download PDF

Info

Publication number
JP2022164368A
JP2022164368A JP2021069809A JP2021069809A JP2022164368A JP 2022164368 A JP2022164368 A JP 2022164368A JP 2021069809 A JP2021069809 A JP 2021069809A JP 2021069809 A JP2021069809 A JP 2021069809A JP 2022164368 A JP2022164368 A JP 2022164368A
Authority
JP
Japan
Prior art keywords
antibacterial
fiber material
fiber
fibers
oil absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021069809A
Other languages
Japanese (ja)
Inventor
圭祐 岡本
Keisuke Okamoto
拓矢 坪井
Takuya Tsuboi
拓未 山本
Takumi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun A Kaken Co Ltd
Original Assignee
Sun A Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun A Kaken Co Ltd filed Critical Sun A Kaken Co Ltd
Priority to JP2021069809A priority Critical patent/JP2022164368A/en
Publication of JP2022164368A publication Critical patent/JP2022164368A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an antibacterial fiber material having antibacterial properties and high oil absorption properties.SOLUTION: An antibacterial fiber material is used that contains a fiber mixture of a fiber A having an average fiber diameter of 5 to 50 μm and a fiber B having an average fiber diameter of 0.3 to 2 μm, and an antibacterial agent.SELECTED DRAWING: None

Description

本発明は、抗菌繊維材料およびその製造方法に関する。より詳しくは、高い吸油性を有する抗菌繊維材料およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to an antimicrobial textile material and a method for manufacturing the same. More particularly, it relates to an antibacterial fiber material having high oil absorption and a method for producing the same.

衣料、電気、自動車、医療、建材等の種々の分野で繊維材料が利用されている。特に、繊維径の小さい繊維材料を用いた製品は、表面積が大きいこと、空間率が高いこと、孔径が小さいこと、通気性が高いこと、且つ流体透過速度が速いことなどの特徴を有する。 Textile materials are used in various fields such as clothing, electronics, automobiles, medicine, and building materials. In particular, a product using a fiber material with a small fiber diameter has characteristics such as a large surface area, a high porosity, a small pore size, high air permeability, and a high fluid permeation rate.

このような特徴を考慮して、繊維部材に、抗菌剤を混入した、抗菌機能を備えたナノファイバー部材を水槽浄化等のフィルタ分野へ利用することが提案されている(例えば、特許文献1参照)。 In consideration of such characteristics, it has been proposed to use a nanofiber member having an antibacterial function, in which an antibacterial agent is mixed in a fiber member, in the field of filters such as water tank purification (see, for example, Patent Document 1). ).

特開2016-17527号公報JP 2016-17527 A

ところで、一般家庭のキッチンシンクや飲食店の油水分離槽などの水回りにおいて使用される吸油材等の製品にも、衛生上の観点から抗菌性が求められる場合があり、抗菌機能を備えた繊維材料は、当該製品への利用が期待される。 By the way, antibacterial properties are sometimes required for products such as oil absorbing materials used around water, such as kitchen sinks in general households and oil-water separation tanks in restaurants, from a sanitary point of view. The material is expected to be used in the product concerned.

吸油材は、油分が下水道に流出することを防止する目的で使用されるため、高い吸油性が求められる。
よって、高い吸油性を有する抗菌繊維材料の開発の要請がある。
Since the oil absorbing material is used for the purpose of preventing oil from flowing into the sewage system, high oil absorption is required.
Therefore, there is a demand for the development of antibacterial fiber materials with high oil absorbency.

本発明者らは鋭意検討の結果、5~50μmの平均繊維径を有する繊維Aと、0.3~2μmの平均繊維径を有する繊維Bが混在された繊維は、繊維同士の隙間がより密となって、毛細管力が向上し、その結果、高い吸油性を発現しうることを見出し、本発明を完成するに至った。即ち、本発明の要旨は、以下のとおりである。 As a result of intensive studies by the present inventors, it was found that fibers in which fiber A having an average fiber diameter of 5 to 50 μm and fiber B having an average fiber diameter of 0.3 to 2 μm are mixed have denser gaps between the fibers. As a result, the capillary force is improved, and as a result, it was found that high oil absorption can be expressed, and the present invention was completed. That is, the gist of the present invention is as follows.

[1]5~50μmの平均繊維径を有する繊維Aと、0.3~2μmの平均繊維径を有する繊維Bと、が混在されてなる繊維と、抗菌剤と、を含有する、抗菌繊維材料。
[2]菌が、細菌およびカビの少なくともいずれかである[1]に記載の抗菌繊維材料。
[3]前記抗菌剤が、無機系抗菌剤である、[1]または[2]に記載の抗菌繊維材料。
[4]前記無機系抗菌剤が、銀、銅、亜鉛、およびそれらの金属イオンからなる群から選択される少なくとも1種を含む、[3]に記載の抗菌繊維材料。
[5]前記抗菌剤の含有量が、前記繊維100質量%に対して、0.1~20質量%である、[1]~[4]のいずれかに記載の抗菌繊維材料。
[6]綿状、シート状、または不織布状である、[1]~[5]のいずれかに記載の抗菌繊維材料。
[7]吸油性物品である、[1]~[6]のいずれかに記載の抗菌繊維材料。
[8]吸油度が20以上である、[7]に記載の抗菌繊維材料。
[9][1]~[8]のいずれかに記載の抗菌繊維材料の製造方法であって、メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上である熱可塑性樹脂と抗菌剤の混合物を、メルトブロー法によって紡糸する工程を含む、抗菌繊維材料の製造方法。
[10]前記熱可塑性樹脂が、オレフィン系熱可塑性樹脂である、[9]に記載の抗菌繊維材料の製造方法。
[1] An antibacterial fiber material containing fibers obtained by mixing fibers A having an average fiber diameter of 5 to 50 μm and fibers B having an average fiber diameter of 0.3 to 2 μm, and an antibacterial agent. .
[2] The antibacterial fiber material according to [1], wherein the fungus is at least one of bacteria and fungi.
[3] The antibacterial fiber material according to [1] or [2], wherein the antibacterial agent is an inorganic antibacterial agent.
[4] The antibacterial fiber material according to [3], wherein the inorganic antibacterial agent contains at least one selected from the group consisting of silver, copper, zinc, and metal ions thereof.
[5] The antibacterial fiber material according to any one of [1] to [4], wherein the content of the antibacterial agent is 0.1 to 20% by mass with respect to 100% by mass of the fiber.
[6] The antibacterial fiber material according to any one of [1] to [5], which is cotton-like, sheet-like, or nonwoven fabric-like.
[7] The antibacterial fiber material according to any one of [1] to [6], which is an oil-absorbing article.
[8] The antibacterial fiber material according to [7], which has an oil absorbency of 20 or more.
[9] The method for producing an antibacterial fiber material according to any one of [1] to [8], comprising a thermoplastic resin having a melt flow rate (temperature of 230°C, load of 2.16 kg) of 200 g/10 min or more A method for producing an antibacterial fiber material, comprising a step of spinning a mixture of antibacterial agents by a meltblowing method.
[10] The method for producing an antibacterial fiber material according to [9], wherein the thermoplastic resin is an olefinic thermoplastic resin.

本発明の抗菌繊維材料は、抗菌性を有しつつ、高い吸油性を発揮する。 The antibacterial fiber material of the present invention exhibits high oil absorption while having antibacterial properties.

図1は、参考例1で製造した繊維材料の電子顕微鏡写真である。1 is an electron micrograph of the fiber material produced in Reference Example 1. FIG.

以下、本発明を実施する好ましい形態の一例について説明する。ただし、下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。 An example of a preferred mode for carrying out the present invention will be described below. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.

[抗菌繊維材料]
本発明の抗菌繊維材料は、5~50μmの平均繊維径を有する繊維Aと、0.3~2μmの平均繊維径を有する繊維Bと、が混在されてなる繊維と、抗菌剤と、を含有する。
5~50μmの平均繊維径を有する繊維Aと、0.3~2μmの平均繊維径を有する繊維Bと、が混在された繊維は、繊維同士の隙間がより密となる。したがって、毛細管力が向上し、その結果、高い吸油性を発揮する。本明細書中において、「混在」とは、図1に示すように、繊維が複雑に絡み合った状態をいう。
また、抗菌繊維材料は、抗菌剤を含有するので、抗菌性を有する。
[Antibacterial fiber material]
The antibacterial fiber material of the present invention contains fibers in which fibers A having an average fiber diameter of 5 to 50 μm and fibers B having an average fiber diameter of 0.3 to 2 μm are mixed, and an antibacterial agent. do.
Fibers in which fibers A having an average fiber diameter of 5 to 50 μm and fibers B having an average fiber diameter of 0.3 to 2 μm are mixed have denser gaps between the fibers. Therefore, the capillary force is improved, resulting in high oil absorption. As used herein, the term "mixed" refers to a state in which fibers are intricately entangled as shown in FIG.
In addition, since the antibacterial fiber material contains an antibacterial agent, it has antibacterial properties.

繊維Aと繊維Bは、同一の繊維ではあるが、平均繊維径によって区別される繊維である。
平均繊維径は、次のように測定する。走査型電子顕微鏡(SEM)を用いて繊維の画像を測定する。繊維が30~150本程度観測できる1枚の画像から、太い繊維または細い繊維を10本選出して各繊維径を測定する。各繊維径の測定を3枚の画像に対して行い、合計30本の繊維径から、平均繊維径を算出する。太い繊維の平均繊維径は繊維Aの平均繊維径に該当し、細い繊維の平均繊維径は繊維Bの平均繊維径に該当する。
なお、太い繊維の繊維径を測定する画像の倍率は300倍とし、細い繊維の繊維径を測定する画像の倍率は、1500倍とする。
The fibers A and B are the same fibers, but are distinguished by the average fiber diameter.
The average fiber diameter is measured as follows. A scanning electron microscope (SEM) is used to measure the image of the fiber. 10 thick or thin fibers are selected from one image in which about 30 to 150 fibers can be observed, and the diameter of each fiber is measured. Each fiber diameter is measured for three images, and the average fiber diameter is calculated from a total of 30 fiber diameters. The average fiber diameter of the thick fibers corresponds to the average fiber diameter of the A fibers, and the average fiber diameter of the thin fibers corresponds to the average fiber diameter of the B fibers.
Note that the magnification of the image for measuring the fiber diameter of the thick fiber is 300 times, and the magnification of the image for measuring the fiber diameter of the thin fiber is 1500 times.

繊維Aは、5~50μmの平均繊維径を有する繊維である。繊維Aの平均繊維径は、8~20μmがより好ましい。繊維Aの平均繊維径が5μm未満であると、繊維のコシが少なくなり、吸油した際に自重で油が流出してしまい、吸油量が少なくなる。繊維Aの平均繊維径が50μm超であると、繊維Bが存在したとしても、繊維の隙間が疎になり、毛細管力が劣って、吸油性に劣る。 Fiber A is a fiber having an average fiber diameter of 5-50 μm. The average fiber diameter of the fibers A is more preferably 8-20 μm. If the average fiber diameter of the fibers A is less than 5 μm, the stiffness of the fibers will be reduced, and the oil will flow out due to its own weight when it absorbs oil, resulting in a reduced oil absorption. If the average fiber diameter of the fibers A exceeds 50 μm, even if the fibers B are present, the gaps between the fibers become sparse, the capillary force is poor, and the oil absorbency is poor.

繊維Bは、0.3~2μmの平均繊維径を有する繊維である。繊維Bの平均繊維径は、0.5~1.5μmがより好ましい。繊維Bの平均繊維径が0.3μm未満であると、繊維Aが存在したとしても、繊維の隙間が疎になり、毛細管力が劣って、吸油性に劣る。繊維Bの平均繊維径が2μm超であると、同様に繊維の隙間が疎になり、毛細管力が劣って、吸油量が少なくなる。 Fiber B is a fiber having an average fiber diameter of 0.3-2 μm. The average fiber diameter of the fibers B is more preferably 0.5 to 1.5 μm. If the average fiber diameter of the fibers B is less than 0.3 μm, even if the fibers A are present, the gaps between the fibers are sparse, the capillary force is poor, and the oil absorbency is poor. If the average fiber diameter of the fibers B is more than 2 μm, the gaps between the fibers are similarly sparse, the capillary force is poor, and the oil absorption is reduced.

繊維Aと繊維Bを含む繊維の製造方法については、後述する。 A method for producing a fiber containing fiber A and fiber B will be described later.

抗菌繊維材料の対象とする菌は、細菌およびカビの少なくともいずれかであることが好ましい。細菌としては、例えば、エンテロバクター属菌、大腸菌、黄色ブドウ球菌、緑膿菌、サルモネラ菌、腸球菌、カンピロバクター、ヘリコバクター・シネジ菌、ピロリ菌、コレラ菌、腸炎ビブリオ菌、炭疽菌、トレポネーマ属菌、ボツリヌス菌、肺炎桿菌が挙げられる。カビとしては、例えば、クロカビ、アオカビ、コウジカビ、ススカビ、ツチアオカビ、黒色酵母、アカカビ、白癬菌が挙げられる。 Bacteria targeted by the antibacterial fiber material are preferably at least one of bacteria and fungi. Bacteria include, for example, Enterobacter, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella, Enterococcus, Campylobacter, Helicobacter synedi, Helicobacter pylori, Vibrio cholerae, Vibrio parahaemolyticus, Bacillus anthracis, Treponema, Examples include Clostridium botulinum and Klebsiella pneumoniae. Examples of molds include black mold, blue mold, aspergillus, black mold, black mold, black yeast, red mold, and trichophyton.

抗菌剤は、無機系抗菌剤および有機系抗菌剤のいずれかを用いてもよく、併用してもよいが、少なくとも無機系抗菌剤を用いることが好ましい。
無機系抗菌剤としては、例えば、銀、銅、亜鉛、水銀、錫、鉛、金、白金、コバルト、ニッケル、アルミニウム、ジルコニウム、モリブデン、ビスマス、クロム、タリウムなどの金属元素、および該金属元素のイオンが挙げられる。これらの中でも、銀、銅、亜鉛およびそれらの金属イオンからなる群から選択される少なくとも1種が好ましい。
As the antibacterial agent, either an inorganic antibacterial agent or an organic antibacterial agent may be used, or both of them may be used, but it is preferable to use at least an inorganic antibacterial agent.
Examples of inorganic antibacterial agents include metal elements such as silver, copper, zinc, mercury, tin, lead, gold, platinum, cobalt, nickel, aluminum, zirconium, molybdenum, bismuth, chromium, and thallium, and the metal elements. ions. Among these, at least one selected from the group consisting of silver, copper, zinc and metal ions thereof is preferred.

無機系抗菌剤の平均粒子径は、繊維を製造する際の断糸、無機系抗菌剤の脱落、ショット(樹脂の固まり)の発生を防止する観点から、0.1~5μmが好ましく、0.4~1μmがさらに好ましい。
無機系抗菌剤の平均粒子径は、島津製作所製のレーザー回折粒度測定装置で測定した体積平均メディアン径の値である。
The average particle size of the inorganic antibacterial agent is preferably 0.1 to 5 μm from the viewpoint of preventing fiber breakage, falling off of the inorganic antibacterial agent, and occurrence of shots (resin lumps) during fiber production. 4 to 1 μm is more preferred.
The average particle size of the inorganic antibacterial agent is the value of the volume average median size measured with a laser diffraction particle size analyzer manufactured by Shimadzu Corporation.

無機系抗菌剤は、上記の金属または金属イオンを担持体に担持させてもよい。担持体としては、例えば、珪酸塩(ゼオライト、珪酸カルシウム、メタ珪酸マグネシウム等)、シリカゲル、ガラス、リン酸塩(リン酸カルシウム、リン酸ジルコニウム等)、金属酸化物(酸化チタン、酸化亜鉛等)、チタン酸塩(チタン酸カリウム塩)、セラミック等が挙げられる。 The inorganic antibacterial agent may have the above-mentioned metals or metal ions supported on a carrier. Examples of supports include silicates (zeolite, calcium silicate, magnesium metasilicate, etc.), silica gel, glass, phosphates (calcium phosphate, zirconium phosphate, etc.), metal oxides (titanium oxide, zinc oxide, etc.), titanium acid salts (potassium titanates), ceramics, and the like.

有機系抗菌剤としては、例えば、1,2-ベンズイソチアゾリン-3-オン、N-フルロジクロロメチルチオフタルイミド、2,3,5,6-テトラクロロイソフタロニトリル、2-(4-チアゾイル)ベンゾイミダゾール、ベンズイミダゾールカルバミン酸メチル、10,10’-オキシビスフェノキサンアシル、2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、2-ピリジンチオール-1-オキシド亜鉛、N,N-ジメチル-N’-(フルオロジクロロメチルチオ)-N’-フェニルスルファミド、2-オクチル-4-イソチアゾリン-3-オンなどのチアゾリン系化合物、アルキルジメチルベンジルアンモニウム塩(アルキル基の炭素数が8から18)などの第四級アンモニウム塩などが挙げられる。 Examples of organic antibacterial agents include 1,2-benzisothiazolin-3-one, N-flurodichloromethylthiophthalimide, 2,3,5,6-tetrachloroisophthalonitrile, 2-(4-thiazolyl)benzo imidazole, benzimidazole methyl carbamate, 10,10′-oxybisphenoxane acyl, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, 2-pyridinethiol-1-oxide zinc, N, N-dimethyl-N'-(fluorodichloromethylthio)-N'-phenylsulfamide, thiazoline compounds such as 2-octyl-4-isothiazolin-3-one, alkyldimethylbenzylammonium salts (where the number of carbon atoms in the alkyl group is 8 to 18) and other quaternary ammonium salts.

抗菌剤の含有量は、繊維100質量%に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。抗菌剤の含有量が、0.1質量%未満であると、抗菌性に劣る場合がある。抗菌剤の含有量が、20質量%超であると、抗菌繊維材料を製造する際に、繊維にショット(樹脂の固まり)が発生して、吸油性が劣る場合がある。 The content of the antibacterial agent is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the fiber. If the content of the antibacterial agent is less than 0.1% by mass, the antibacterial properties may be poor. If the content of the antibacterial agent exceeds 20% by mass, shots (resin lumps) may occur in the fibers during the production of the antibacterial fiber material, resulting in poor oil absorbency.

抗菌繊維材料の形状は、特に限定されるものではなく、製品に応じて適宜設計することができる。抗菌繊維材料の形状としては、例えば、綿状、シート状、または不織布状が挙げられる。 The shape of the antibacterial fiber material is not particularly limited, and can be appropriately designed according to the product. Examples of the shape of the antibacterial fiber material include cotton-like, sheet-like, and non-woven fabric.

抗菌繊維材料は、高い吸油性を発揮することから、吸油性物品として好適に利用することができる。中でも、抗菌繊維材料は、抗菌性を奏することから、一般家庭のキッチンシンクや飲食店の油水分離槽などの水回りにおいて使用される製品として好適に利用し得る。 Since the antibacterial fiber material exhibits high oil absorption, it can be suitably used as an oil-absorbing article. Among them, the antibacterial fiber material exhibits antibacterial properties, and thus can be suitably used as products used around water such as kitchen sinks in general households and oil-water separation tanks in restaurants.

抗菌繊維材料は、下記式により算出される吸油度の値が20以上であることが好ましく、25以上であることがより好ましい。
吸油度=[(吸油後の抗菌繊維材料の重量)-(初期の抗菌繊維材料の重量)]÷(初期の抗菌繊維材料の重量)
ここで、吸油は、綿状の抗菌繊維材料をサラダ油中に5分間浸漬して行う。
The antibacterial fiber material preferably has an oil absorption value of 20 or more, more preferably 25 or more, calculated by the following formula.
Oil absorption = [(Weight of antibacterial fiber material after oil absorption) - (Initial weight of antibacterial fiber material)] / (Initial weight of antibacterial fiber material)
Here, the oil absorption is performed by immersing the cotton-like antibacterial fiber material in salad oil for 5 minutes.

[抗菌繊維材料の製造方法]
本発明の抗菌繊維材料の製造方法は、上記の抗菌繊維材料の製造方法であり、メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上である熱可塑性樹脂と抗菌剤の混合物を、メルトブロー法によって紡糸する工程を含む。
メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上である熱可塑性樹脂と抗菌剤の混合物をメルトブロー法によって紡糸することで、5~50μmの平均繊維径を有する繊維Aと、0.3~2μmの平均繊維径を有する細繊維Bと、を含む繊維が得られる。熱可塑性樹脂のメルトフローレート(温度230℃、荷重2.16kg)が200g/10min未満であると、繊維の平均繊維径が過度に太くなる。その結果、繊維材料は、吸油量が少なくなり、吸油性に劣るものとなる。
[Method for producing antibacterial fiber material]
The method for producing an antibacterial fiber material of the present invention is the above method for producing an antibacterial fiber material, and is a mixture of a thermoplastic resin and an antibacterial agent having a melt flow rate (temperature of 230°C, load of 2.16 kg) of 200 g/10 min or more. is spun by the meltblowing method.
A fiber A having an average fiber diameter of 5 to 50 μm by spinning a mixture of a thermoplastic resin and an antibacterial agent having a melt flow rate (temperature of 230 ° C., load of 2.16 kg) of 200 g / 10 min or more by a melt blow method, A fiber comprising fine fibers B having an average fiber diameter of 0.3 to 2 μm is obtained. If the melt flow rate of the thermoplastic resin (temperature 230° C., load 2.16 kg) is less than 200 g/10 min, the average fiber diameter of the fibers becomes excessively large. As a result, the fiber material has less oil absorption and is inferior in oil absorption.

メルトブロー法の条件としては、例えば、次の条件を挙げることができる。ノズル孔径が0.1~2.0mmであり、ピッチが1~10mmで配置されたノズルダイを、温度180~400℃に加熱し、1つのノズル孔あたり0.1~5g/分の割合で繊維を吐出する。この吐出した繊維に対して、温度が室温~400℃の空気を作用させる条件が挙げられる。 The conditions for the melt blowing method include, for example, the following conditions. A nozzle die having a nozzle hole diameter of 0.1 to 2.0 mm and a pitch of 1 to 10 mm is heated to a temperature of 180 to 400° C., and fibers are added at a rate of 0.1 to 5 g/min per nozzle hole. to dispense. Conditions for applying air having a temperature of room temperature to 400° C. to the extruded fibers can be mentioned.

熱可塑性樹脂は、メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上であればよく、例えば、ポリエステルやポリアミド、ポリオレフィン、ポリウレタン(PU)などが挙げられる。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。また、ポリアミドとしてはナイロン6(N6)、ナイロン66(N66)、ナイロン11(N11)などが挙げられる。ポリオレフィンとしてはポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)などが挙げられる。
熱可塑性樹脂は、オレフィン系熱可塑性樹脂であるポリオレフィンが好ましい。
The thermoplastic resin may have a melt flow rate (temperature of 230° C., load of 2.16 kg) of 200 g/10 min or more, and examples thereof include polyester, polyamide, polyolefin, and polyurethane (PU). Polyesters include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polylactic acid (PLA), and the like. Polyamides include nylon 6 (N6), nylon 66 (N66), nylon 11 (N11) and the like. Polyolefins include polyethylene (PE), polypropylene (PP), polystyrene (PS) and the like.
The thermoplastic resin is preferably polyolefin, which is an olefinic thermoplastic resin.

熱可塑性樹脂のメルトフローレート(温度230℃、荷重2.16kg)は、200g/10min以上であり、500g/10min以上が好ましく、1000g/10min以上がより好ましい。また、熱可塑性樹脂のメルトフローレート(温度230℃、荷重2.16kg)の上限は、2000g/10min以下が好ましい。熱可塑性樹脂のメルトフローレート(温度230℃、荷重2.16kg)の値は、メルトブロー法で紡糸して得られる繊維(繊維Aおよび繊維B)の平均繊維径の値に影響する因子の1つである。
ここで、メルトフローレート(温度230℃、荷重2.16kg)は、ASTM D1238に準拠して測定した値である。
The melt flow rate of the thermoplastic resin (temperature 230° C., load 2.16 kg) is 200 g/10 min or more, preferably 500 g/10 min or more, more preferably 1000 g/10 min or more. Moreover, the upper limit of the melt flow rate (temperature of 230° C., load of 2.16 kg) of the thermoplastic resin is preferably 2000 g/10 min or less. The value of the melt flow rate of the thermoplastic resin (temperature 230°C, load 2.16 kg) is one of the factors that affect the average fiber diameter of the fibers (fibers A and B) obtained by spinning by the meltblowing method. is.
Here, the melt flow rate (temperature 230° C., load 2.16 kg) is a value measured according to ASTM D1238.

本発明の抗菌繊維材料の製造方法は、熱可塑性樹脂と抗菌剤の混合物をメルトブロー法によって紡糸する工程を含む。抗菌剤は、メルトブローで高温にさらされることから、無機系抗菌剤が好ましく、銀、銅、亜鉛、水銀、錫、鉛、金、白金、コバルト、ニッケル、アルミニウム、ジルコニウム、モリブデン、ビスマス、クロム、タリウムなどの金属元素、およびそれらの金属イオンからなる群から選択される少なくとも1種がより好ましい。 The method for producing the antibacterial fiber material of the present invention includes a step of spinning a mixture of a thermoplastic resin and an antibacterial agent by a meltblowing method. The antibacterial agent is preferably an inorganic antibacterial agent because it is exposed to high temperatures in melt blowing, and includes silver, copper, zinc, mercury, tin, lead, gold, platinum, cobalt, nickel, aluminum, zirconium, molybdenum, bismuth, chromium, At least one selected from the group consisting of metal elements such as thallium and metal ions thereof is more preferred.

混合物における抗菌剤の配合量は、熱可塑性樹脂100質量%に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。抗菌剤の配合量が0.1質量%未満であると、抗菌性に劣る場合がある。抗菌剤の配合量が20質量%超であると、ショット(ポリマーの固まり)が生じて、得られる抗菌繊維材料の吸油量が少なくなり、吸油性に劣る場合がある。
抗菌剤の配合量は、メルトブロー法で紡糸して得られる繊維(繊維Aおよび繊維B)の平均繊維径の値に影響する因子の1つである。
The amount of the antibacterial agent in the mixture is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the thermoplastic resin. If the amount of the antibacterial agent is less than 0.1% by mass, the antibacterial properties may be poor. If the amount of the antibacterial agent is more than 20% by mass, shots (polymer lumps) may occur, and the resulting antibacterial fiber material may have low oil absorption and poor oil absorption.
The amount of the antibacterial agent is one of the factors that affect the average fiber diameter of the fibers (fibers A and B) obtained by spinning by the meltblowing method.

抗菌剤は、メルトブロー法により紡糸して得られた抗菌繊維材料に対してさらに添加してもよい。抗菌繊維材料に対してさらに添加する場合、抗菌剤は高温にさらされることがないので、有機系抗菌剤を使用することができる。また、抗菌繊維材料に対してさらに添加する場合、繊維(繊維Aおよび繊維B)の平均繊維径に影響を及ぼさないと考えられるため、目的とする抗菌性を発揮できるよう、添加量を調整しやすいという利点がある。 The antibacterial agent may be further added to the antibacterial fiber material obtained by spinning by the meltblowing method. When added to the antimicrobial fiber material, an organic antimicrobial agent can be used because the antimicrobial agent is not exposed to high temperatures. In addition, when further added to the antibacterial fiber material, it is thought that the average fiber diameter of the fibers (fiber A and fiber B) will not be affected, so the amount of addition should be adjusted so that the desired antibacterial properties can be exhibited. It has the advantage of being easy.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、各種物性値の測定方法は、別途記載がない限り、上記した方法による。また、測定方法の箇所の「繊維材料」とは、抗菌繊維材料と繊維材料の両方を示すものとする。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The methods for measuring various physical properties are the methods described above unless otherwise specified. In addition, the "fiber material" in the measurement method section indicates both antibacterial fiber material and fiber material.

[繊維Aの平均繊維径]:走査型電子顕微鏡(SEM)にて、繊維材料の任意の箇所について 加速電圧:15.0kV、倍率:300倍の条件で繊維の表面を観察した。画像上の太い繊維10本を選出し、繊維径を測定した。測定は、3つの画像について行い、合計30本の繊維径を測定して、繊維Aの平均繊維径を算出した。 [Average fiber diameter of fiber A]: The fiber surface was observed at an arbitrary point of the fiber material with a scanning electron microscope (SEM) under the conditions of an acceleration voltage of 15.0 kV and a magnification of 300 times. Ten thick fibers on the image were selected and the fiber diameter was measured. Three images were measured, and a total of 30 fiber diameters were measured, and the average fiber diameter of the fibers A was calculated.

[繊維Bの平均繊維径]:走査型電子顕微鏡(SEM)にて、繊維材料の任意の箇所について 加速電圧:15.0kV、倍率:1500倍の条件で繊維の表面を観察した。画像上の細い繊維10本を選出し、繊維径を測定した。測定は、3つの画像について行い、合計30本の繊維径を測定して、繊維Bの平均繊維径を算出した。 [Average fiber diameter of fiber B]: The fiber surface was observed at an arbitrary point of the fiber material with a scanning electron microscope (SEM) under the conditions of an acceleration voltage of 15.0 kV and a magnification of 1500 times. Ten thin fibers on the image were selected and the fiber diameter was measured. Three images were measured, and a total of 30 fiber diameters were measured, and the average fiber diameter of the fibers B was calculated.

[吸油量(g)]:綿状の繊維材料3.0g(ただし、比較例1は油吸着材3.5g)をサラダ油中に5分間浸漬した後、サラダ油中から取り出して金網上に5分間静置した。その後、吸油後の抗菌繊維材料または油吸着材の重量を測定した。そして、吸油量は下記式により算出した。
吸油量(g)=(吸油後の繊維材料または油吸着材の重量)-(初期の繊維材料または油吸着材の重量)
[Oil absorption (g)]: After immersing 3.0 g of cotton-like fiber material (3.5 g of oil adsorbent in Comparative Example 1) in salad oil for 5 minutes, it was removed from the salad oil and placed on a wire mesh for 5 minutes. left undisturbed. After that, the weight of the antibacterial textile material or oil sorbent after absorbing the oil was measured. Then, the oil absorption was calculated by the following formula.
Oil absorption (g) = (Weight of fiber material or oil adsorbent after oil absorption) - (Initial weight of fiber material or oil adsorbent)

[吸油度]:吸油量と初期の繊維材料または油吸着材の重量から、下記式により算出した。
吸油度=吸油量(g)÷(初期の繊維材料の重量)
[Oil absorption]: Calculated by the following formula from the oil absorption and the initial weight of the fiber material or oil adsorbent.
Oil absorption = oil absorption (g) ÷ (initial weight of fiber material)

(参考例1)
メルトフローレート(温度230℃、荷重2.16kg)が、1000~1500g/10minであるポリプロピレン樹脂(密度:0.9cm/cm)を、180~400℃の温度で溶融してノズルから押出し、300~400℃の高温のエアーを吹き付けて繊維状に成形するメルトブロー法により、綿状の繊維材料を製造した。製造した繊維材料の繊維Aの平均繊維径、繊維Bの平均繊維径、吸油量および吸油度を表1に記す。また、参考例1で製造した繊維材料の電子顕微鏡写真を図1に示す。
(Reference example 1)
A polypropylene resin (density: 0.9 cm/cm 3 ) having a melt flow rate (temperature of 230° C., load of 2.16 kg) of 1000 to 1500 g/10 min is melted at a temperature of 180 to 400° C. and extruded from a nozzle, A cotton-like fiber material was produced by a melt-blowing method in which high-temperature air of 300 to 400° C. is blown to form a fiber. Table 1 shows the average fiber diameter of the fibers A, the average fiber diameter of the fibers B, the oil absorption and the oil absorption of the manufactured fiber material. An electron micrograph of the fiber material produced in Reference Example 1 is shown in FIG.

(参考例2)
メルトフローレート(温度230℃、荷重2.16kg)が、1500~2000g/10minであるポリプロピレン樹脂(密度:0.9cm/cm)を用いたこと以外は参考例1と同様にして、綿状の繊維材料を製造した。製造した繊維材料の繊維Aの平均繊維径、繊維Bの平均繊維径、吸油量、および吸油度を表1に記す。
(Reference example 2)
A flocculate was prepared in the same manner as in Reference Example 1 except that a polypropylene resin (density: 0.9 cm/cm 3 ) having a melt flow rate (temperature of 230°C, load of 2.16 kg) of 1500 to 2000 g/10 min was used. of fibrous materials were produced. Table 1 shows the average fiber diameter of the fibers A, the average fiber diameter of the fibers B, the oil absorption, and the oil absorption of the manufactured fiber material.

(参考例3)
メルトフローレート(温度230℃、荷重2.16kg)が、100g/10minであるポリプロピレン樹脂(密度:0.9cm/cm)用いたこと以外は参考例1と同様にして、綿状の繊維材料を製造した。製造した繊維材料の繊維A’の平均繊維径、繊維B’の平均繊維径、吸油量および吸油度を表1に記す。
(Reference example 3)
A cotton-like fiber material was prepared in the same manner as in Reference Example 1 except that a polypropylene resin (density: 0.9 cm/cm 3 ) having a melt flow rate (temperature of 230°C, load of 2.16 kg) of 100 g/10 min was used. manufactured. Table 1 shows the average fiber diameter of the fibers A', the average fiber diameter of the fibers B', the oil absorption and the oil absorption of the manufactured fiber material.

Figure 2022164368000001
Figure 2022164368000001

表1から、メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上のポリプロピレンを用いて繊維材料を製造すると、平均繊維径が5~50の繊維Aと平均繊維径が0.3~2の繊維Bが混在された繊維材料が製造できることがわかる。また、図1から、平均繊維径が8.5μmの繊維Aと平均繊維径が0.6μmの繊維Bが混在した繊維材料は、繊維同士の隙間が密となっている。したがって、表1に示すとおり、当該繊維材料の吸油量および吸油度の値は高く、高い吸油性を発揮した(参考例1、2)。
一方で、メルトフローレート(温度230℃、荷重2.16kg)が200g/10min未満のポリプロピレンを用いて繊維材料を製造すると、平均繊維径が93.2μmの繊維A’と平均繊維径が2.2μmの繊維B’が混在された繊維材料であった。当該繊維材料の吸油量および吸油度の値は低く、吸油性に劣っていた(参考例3)。
From Table 1, when a fiber material is produced using polypropylene with a melt flow rate (temperature of 230° C., load of 2.16 kg) of 200 g/10 min or more, fiber A with an average fiber diameter of 5 to 50 and fiber A with an average fiber diameter of 0.50 are produced. It can be seen that a fiber material in which 3 to 2 fibers B are mixed can be produced. Further, from FIG. 1, in the fiber material in which the fibers A having an average fiber diameter of 8.5 μm and the fibers B having an average fiber diameter of 0.6 μm are mixed, the gaps between the fibers are dense. Therefore, as shown in Table 1, the fiber material had high oil absorption and oil absorption, and exhibited high oil absorption (Reference Examples 1 and 2).
On the other hand, when a fiber material is produced using polypropylene having a melt flow rate (temperature of 230° C., load of 2.16 kg) of less than 200 g/10 min, fibers A′ with an average fiber diameter of 93.2 μm and fibers with an average fiber diameter of 2.0 μm are produced. It was a fiber material in which 2 μm fibers B′ were mixed. The value of oil absorption and oil absorption of the fiber material was low, and the oil absorption was poor (Reference Example 3).

(実施例1)
原料としてポリプロピレン樹脂(密度:0.9cm/cm)と銀系抗菌剤(メディアン径:0.48μm)の混合物を用いたこと以外は、参考例1と同様にして綿状の抗菌繊維材料を製造した。製造した抗菌繊維材料の繊維Aの平均繊維径、繊維Bの平均繊維径、吸油量および吸油度を表2に記す。
なお、銀系抗菌剤の配合量は、繊維100質量%に対して、0.5質量%であった。
(Example 1)
A cotton-like antibacterial fiber material was prepared in the same manner as in Reference Example 1, except that a mixture of polypropylene resin (density: 0.9 cm/cm 3 ) and silver-based antibacterial agent (median diameter: 0.48 μm) was used as the raw material. manufactured. Table 2 shows the average fiber diameter of fiber A, the average fiber diameter of fiber B, the oil absorption and the oil absorption of the manufactured antibacterial fiber material.
The amount of the silver-based antibacterial agent was 0.5% by mass with respect to 100% by mass of the fiber.

(実施例2~3)
銀系抗菌剤の配合量を表2に記載した量に変更したこと以外は、実施例1と同様にして綿状の抗菌繊維材料を製造した。製造した抗菌繊維材料の繊維Aの平均繊維径、繊維Bの平均繊維径、吸油量および吸油度を表2に記す。
(Examples 2-3)
A cotton-like antibacterial fiber material was produced in the same manner as in Example 1, except that the amount of the silver-based antibacterial agent was changed to the amount shown in Table 2. Table 2 shows the average fiber diameter of fiber A, the average fiber diameter of fiber B, the oil absorption and the oil absorption of the manufactured antibacterial fiber material.

(比較例)
市販の油吸着材(商品名「吸いとるんです」、栄和産業製)を用いて、吸油量および吸油度を測定した。測定結果を表2に示す。
(Comparative example)
Oil absorption and oil absorption were measured using a commercially available oil adsorbent (trade name “Sutorindesu”, manufactured by Eiwa Sangyo). Table 2 shows the measurement results.

Figure 2022164368000002
Figure 2022164368000002

表2から、銀系抗菌剤の配合量によらず、平均繊維径が5~50μmの繊維Aと平均繊維径が0.3~2μmの繊維Bが混在された抗菌繊維材料が製造できた。製造した抗菌繊維材料は、市販の油吸着剤と比較して、吸油量および吸油度の値は高く、高い吸油性を発揮するものであった(実施例1~3)。 From Table 2, regardless of the amount of the silver-based antibacterial agent, an antibacterial fiber material was produced in which fibers A with an average fiber diameter of 5 to 50 μm and fibers B with an average fiber diameter of 0.3 to 2 μm were mixed. The produced antibacterial fiber materials had higher oil absorption and oil absorption values than commercially available oil adsorbents, and exhibited high oil absorption (Examples 1 to 3).

参考例1で製造した繊維材料および実施例1~3で製造した抗菌繊維材料を用いて抗菌試験1を行った。抗菌試験1は、下記のようにして行った。
綿状の繊維材料または抗菌繊維材料を0.5gはかり取った。エンテロバクター属菌、大腸菌、黄色ブドウ球菌、緑膿菌の4種類を混合した、49.5mLの菌液に入れて、30℃環境下で24時間攪拌した後の細菌数を測定した。結果を下記表3に示す。
Antibacterial Test 1 was conducted using the fiber material produced in Reference Example 1 and the antibacterial fiber materials produced in Examples 1-3. Antibacterial test 1 was performed as follows.
0.5 g of cotton-like textile material or antibacterial textile material was weighed out. Enterobacter, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were added to 49.5 mL of a mixed bacterial solution, and after stirring for 24 hours at 30°C, the number of bacteria was measured. The results are shown in Table 3 below.

Figure 2022164368000003
Figure 2022164368000003

表3から、抗菌剤を含有する抗菌繊維材料は抗菌性を有することが確認できる。 From Table 3, it can be confirmed that the antibacterial fiber material containing the antibacterial agent has antibacterial properties.

実施例3で製造した抗菌繊維材料を用いて、JIS L 1902:2015(菌液吸収法)に準拠した抗菌試験を行った。試験条件を以下に示す。
試験菌種:黄色ブドウ球菌(Staphylococcus aureus)NBRC 12732
生菌数の測定方法:混釈平板培養法
試験菌液は、界面活性剤(Tween80)0.05%を添加した試験菌液を使用
標準綿布の増殖値:2.9(試験成立条件は、増殖値≧1.0であること)
Using the antibacterial fiber material produced in Example 3, an antibacterial test was conducted in accordance with JIS L 1902:2015 (bacterial liquid absorption method). Test conditions are shown below.
Test strain: Staphylococcus aureus NBRC 12732
Viable cell count measurement method: Pour plate culture method The test bacterial solution uses a test bacterial solution to which 0.05% of a surfactant (Tween 80) has been added. Proliferation value ≥ 1.0)

実施例3で製造した抗菌繊維材料のJIS L 1902:2015(菌液吸収法)に準拠した活性値は5.9であった。JIS L 1902:2015では、活性値が2.0以上で「抗菌効果あり」と規定されていることから、実施例3で製造した抗菌繊維材料は抗菌効果が認められる。 The activity value according to JIS L 1902:2015 (bacterial liquid absorption method) of the antibacterial fiber material produced in Example 3 was 5.9. According to JIS L 1902:2015, an activity value of 2.0 or more is defined as "having an antibacterial effect", so the antibacterial fiber material produced in Example 3 is recognized to have an antibacterial effect.

実施例3で製造した抗菌繊維材料を用いて、JIS L 1921:2015(吸収法)に準拠した抗カビ試験を行った。試験条件を以下に示す。
試験カビ種:クロカビ(Cladosporium sphaerospermum)NBRC 6348
アオカビ(Penicillium citrinum)NBRC 6352
試験胞子懸濁液濃度:クロカビ=2.2×10個/ml
アオカビ=2.2×10個/ml
標準綿布の発育値:クロカビ=2.2(試験成立条件は、発育値≧1.5であること)
アオカビ=2.6(試験成立条件は、発育値≧1.5であること)
Using the antibacterial fiber material produced in Example 3, an antifungal test was conducted in accordance with JIS L 1921:2015 (absorption method). Test conditions are shown below.
Test mold species: Cladosporium sphaerospermum NBRC 6348
Penicillium citrinum NBRC 6352
Test spore suspension concentration: black mold = 2.2 × 10 5 /ml
Blue mold = 2.2 × 10 5 /ml
Growth value of standard cotton cloth: black mold = 2.2 (test establishment condition is growth value ≥ 1.5)
Blue mold = 2.6 (test success condition is growth value ≥ 1.5)

実施例3で製造した抗菌繊維材料のJIS L 1921:2015(吸収法)に準拠した活性値は、クロカビで3.4、アオカビで2.5であった。JIS L 1921:2015では、活性値が2.0以上で「抗カビ効果あり」と規定されていることから、実施例3で製造した抗菌繊維材料は抗カビ効果が認められる。 The activity value according to JIS L 1921:2015 (absorption method) of the antibacterial fiber material produced in Example 3 was 3.4 for black mold and 2.5 for blue mold. According to JIS L 1921:2015, an activity value of 2.0 or more is defined as having an antifungal effect.

Claims (10)

5~50μmの平均繊維径を有する繊維Aと、
0.3~2μmの平均繊維径を有する繊維Bと、が混在されてなる繊維と、
抗菌剤と、を含有する、抗菌繊維材料。
A fiber A having an average fiber diameter of 5 to 50 μm;
A fiber obtained by mixing a fiber B having an average fiber diameter of 0.3 to 2 μm,
An antibacterial fiber material containing an antibacterial agent.
菌が、細菌およびカビの少なくともいずれかである請求項1に記載の抗菌繊維材料。 2. The antibacterial fiber material according to claim 1, wherein the fungus is at least one of bacteria and fungi. 前記抗菌剤が、無機系抗菌剤である、請求項1または2に記載の抗菌繊維材料。 The antibacterial fiber material according to claim 1 or 2, wherein the antibacterial agent is an inorganic antibacterial agent. 前記無機系抗菌剤が、銀、銅、亜鉛、およびそれらの金属イオンからなる群から選択される少なくとも1種を含む、請求項3に記載の抗菌繊維材料。 The antibacterial fiber material according to claim 3, wherein the inorganic antibacterial agent contains at least one selected from the group consisting of silver, copper, zinc, and metal ions thereof. 前記抗菌剤の含有量が、前記繊維100質量%に対して、0.1~20質量%である、請求項1~4のいずれか1項に記載の抗菌繊維材料。 The antibacterial fiber material according to any one of claims 1 to 4, wherein the content of the antibacterial agent is 0.1 to 20% by mass with respect to 100% by mass of the fiber. 綿状、シート状、または不織布状である、請求項1~5のいずれか1項に記載の抗菌繊維材料。 The antibacterial fiber material according to any one of claims 1 to 5, which is cotton-like, sheet-like or non-woven fabric-like. 吸油性物品である、請求項1~6のいずれか1項に記載の抗菌繊維材料。 The antibacterial fiber material according to any one of claims 1 to 6, which is an oil-absorbing article. 吸油度が20以上である、請求項7に記載の抗菌繊維材料。 8. The antibacterial fiber material according to claim 7, which has an oil absorption of 20 or more. 請求項1~8のいずれか1項に記載の抗菌繊維材料の製造方法であって、
メルトフローレート(温度230℃、荷重2.16kg)が200g/10min以上である熱可塑性樹脂と抗菌剤の混合物を、メルトブロー法によって紡糸する工程を含む、抗菌繊維材料の製造方法。
A method for producing the antibacterial fiber material according to any one of claims 1 to 8,
A method for producing an antibacterial fiber material, comprising a step of spinning a mixture of a thermoplastic resin having a melt flow rate (temperature of 230°C, load of 2.16 kg) of 200 g/10 min or more and an antibacterial agent by a meltblowing method.
前記熱可塑性樹脂が、オレフィン系熱可塑性樹脂である、請求項9に記載の抗菌繊維材料の製造方法。 10. The method for producing an antibacterial fiber material according to claim 9, wherein the thermoplastic resin is an olefinic thermoplastic resin.
JP2021069809A 2021-04-16 2021-04-16 Antibacterial fiber material and production method thereof Pending JP2022164368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069809A JP2022164368A (en) 2021-04-16 2021-04-16 Antibacterial fiber material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069809A JP2022164368A (en) 2021-04-16 2021-04-16 Antibacterial fiber material and production method thereof

Publications (1)

Publication Number Publication Date
JP2022164368A true JP2022164368A (en) 2022-10-27

Family

ID=83743289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069809A Pending JP2022164368A (en) 2021-04-16 2021-04-16 Antibacterial fiber material and production method thereof

Country Status (1)

Country Link
JP (1) JP2022164368A (en)

Similar Documents

Publication Publication Date Title
JP5916468B2 (en) Antibacterial nanofiber sheet, manufacturing method thereof and filter
KR100811205B1 (en) Antibacterial nano-fibers containing silver nano-particles and preparation method thereof
JPH0246620B2 (en)
EP3959367B1 (en) Nonwoven water dispersible article for unit dose packaging
JP4932408B2 (en) Nonwoven fabric and filter medium for air filter using the same
JPWO2004035173A1 (en) Air purification filter medium and method for producing the same
JP4972241B2 (en) Antibacterial fiber sheet
JP6161285B2 (en) Antibacterial nanofiber sheet, manufacturing method thereof and filter
KR20200076241A (en) Method for producing a membrane with metal nano-particles and product using the membrane
Chen et al. Electrospun nanofibrous membranes with asymmetric wettability for unidirectional moisture transport, efficient PM capture and bacteria inhibition
JP3071594B2 (en) Core-sheath type deodorant antibacterial composite fiber
JP2022164368A (en) Antibacterial fiber material and production method thereof
US20160271598A1 (en) Functional air filter
JP5204149B2 (en) Polyester fiber having antibacterial and antifungal properties and method for producing the same
Rezanova et al. Polypropylene fine-fiber filter materials modified with nano-additives
CN112501786A (en) Fiber material with antibacterial and antiviral functions and preparation method and application thereof
KR20110060526A (en) Filter for formaldehyde and manufacturing method thereof
JP4178997B2 (en) Functional fiber assembly and molded body using the same
JP2013204199A (en) Ethylene-vinyl alcohol-based fiber having antimicrobial property and fiber assembly
JP5033384B2 (en) Nonwoven fabric and filter medium for air filter using the same
JP5437472B2 (en) Polyester fiber having antibacterial and antifungal properties and method for producing the same
CN116323896A (en) Water-soluble fiber with post-processing modification and articles containing the same
Huang et al. Hierarchically Porous, Superhydrophobic PLLA/Copper Composite Fibrous Membranes for Air Filtration
JP2010222732A (en) Conjugate monofilament and method for producing the same
JPH03287508A (en) Anti-bacterial composition using alumina as matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231110