JP2010222732A - Conjugate monofilament and method for producing the same - Google Patents

Conjugate monofilament and method for producing the same Download PDF

Info

Publication number
JP2010222732A
JP2010222732A JP2009070973A JP2009070973A JP2010222732A JP 2010222732 A JP2010222732 A JP 2010222732A JP 2009070973 A JP2009070973 A JP 2009070973A JP 2009070973 A JP2009070973 A JP 2009070973A JP 2010222732 A JP2010222732 A JP 2010222732A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
particles
sheath
sheath material
composite monofilament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009070973A
Other languages
Japanese (ja)
Other versions
JP5317276B2 (en
Inventor
Masataka Sano
昌隆 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramics Craft Inc
Original Assignee
Ceramics Craft Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramics Craft Inc filed Critical Ceramics Craft Inc
Priority to JP2009070973A priority Critical patent/JP5317276B2/en
Publication of JP2010222732A publication Critical patent/JP2010222732A/en
Application granted granted Critical
Publication of JP5317276B2 publication Critical patent/JP5317276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conjugate monofilament including a sheath material in which a functional component is compounded with a resin forming the sheath material, and exposed to the surface of the sheath material so that the activities such as degermination, deodorization, and antioxidation may be exhibited maximally, and to provide a method for producing the monofilament. <P>SOLUTION: The conjugate monofilament is produced by forming an undrawn core-sheath-type conjugate monofilament by co-extruding a first thermoplastic resin forming a core material X, and a second thermoplastic resin forming a sheath material Y, containing additive particles P and having the melting point lower than that of the first thermoplastic resin, and drawing the undrawn conjugate monofilament to expose the additive particles P compounded in the second thermoplastic resin to the surface of the sheath material Y. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、空調機や空気清浄機のフィルタをはじめとする種々の用途に有用な機能性(消臭性、有機物分解性など)、紡糸性、延伸性、経済性に優れた芯鞘接合型の複合モノフィラメント及びその製造法に関するものである。   The present invention is a core-sheath joint type having excellent functionality (deodorizing property, organic matter decomposability, etc.), spinnability, stretchability, and economical efficiency useful for various applications including filters for air conditioners and air purifiers. The present invention relates to a composite monofilament and a method for producing the same.

従来から、空調機や空気清浄機に組み込むフィルタとして、コスト的に有利でかつ成形性、機械的強度、耐水性、耐薬品性などの特性がすぐれている複合モノフィラメントを用いたフィルタが広く用いられている。
例えば特許文献1には、ポリオレフィン系の第1樹脂と、カテキン類等の機能性成分とセラミックス成分とが配合されたポリオレフィン系の第2樹脂とを、前者が芯成分、後者が鞘成分となるように共押出成形して、芯成分と鞘成分とで構成された芯鞘接合型の複合フィラメントが記載されている。
Conventionally, filters using composite monofilaments that are cost-effective and have excellent properties such as moldability, mechanical strength, water resistance, and chemical resistance have been widely used as filters incorporated in air conditioners and air purifiers. ing.
For example, Patent Document 1 discloses a polyolefin-based first resin, a polyolefin-based second resin in which a functional component such as catechins and a ceramic component are blended, the former being a core component and the latter being a sheath component. Thus, a core-sheath joint type composite filament composed of a core component and a sheath component is described.

特開2001−159029号公報Japanese Patent Laid-Open No. 2001-159029

しかし、特許文献1の複合フィラメントは、カテキン類等の機能性成分やセラミックス成分は、鞘成分となる第2樹脂の内部に練り込まれてしまっており、鞘材表面に露出させることができず、カテキン類等の機能性成分の効果向上が求められていた。
そこで、本発明は、鞘材に配合した粗粒物を鞘材の表面に露出させた複合モノフィラメントを提供することを目的とする。
また、本発明の他の目的は、鞘材となる樹脂に機能性成分を配合し、その機能性である除菌、消臭、抗酸化などの作用を最大限に発現させるように、鞘材表面に露出させた複合モノフィラメント及びその製造方法を提供することである。
However, in the composite filament of Patent Document 1, a functional component such as catechins and a ceramic component are kneaded inside the second resin serving as the sheath component, and cannot be exposed to the surface of the sheath material. There has been a demand for improvement in the effect of functional components such as catechins.
Then, an object of this invention is to provide the composite monofilament which exposed the coarse grain mix | blended with the sheath material on the surface of the sheath material.
Another object of the present invention is to add a functional component to a resin to be a sheath material so that the functions such as sterilization, deodorization, and antioxidant can be maximized. It is to provide a composite monofilament exposed on the surface and a method for producing the same.

(1)本発明の複合モノフィラメントは、芯材Xを形成する第1熱可塑性樹脂(R1)と、鞘材Yを形成する添加粒子(P)を含みかつ前記第1熱可塑性樹脂(R1)よりも低融点の第2熱可塑性樹脂(R2)とを、共押出成形して未延伸の芯鞘接合型の複合モノフィラメントを形成し、該未延伸の複合モノフィラメントを延伸して、第2熱可塑性樹脂(R2)中に配合した添加粒子(P)を、前記鞘材Yの表面に露出させてなることを特徴とする。
(2)本発明の複合モノフィラメントは、前記(1)において、前記添加粒子(P)が、金属粒子(M)及び/又はセラミックス粒子(C)であることを特徴とする。
(3)本発明の複合モノフィラメントは、前記(1)又は(2)において、前記添加粒子(P)が、さらにその表面に微細粒子(P1)が固着していることを特徴とする。
(4)本発明の複合モノフィラメントは、前記(3)において、前記微細粒子(P1)が、白金ナノ粒子であることを特徴とする。
(5)本発明の複合モノフィラメントの製造方法は、芯材Xを形成する第1熱可塑性樹脂(R1)と、鞘材Yを形成する添加粒子(P)を含みかつ前記第1熱可塑性樹脂(R1)よりも低融点の第2熱可塑性樹脂(R2)とを、共押出成形して未延伸の芯鞘接合型の複合モノフィラメントを形成し、該未延伸の複合モノフィラメントを延伸して、第2熱可塑性樹脂(R2)中に配合した添加粒子(P)を、前記鞘材Yの表面に露出させることを特徴とする。
(1) The composite monofilament of the present invention includes a first thermoplastic resin (R1) that forms the core material X and additive particles (P) that form the sheath material Y, and includes the first thermoplastic resin (R1). The second thermoplastic resin (R2) having a low melting point is co-extruded to form an unstretched core-sheath bonded composite monofilament, and the unstretched composite monofilament is stretched to obtain the second thermoplastic resin. The additive particles (P) blended in (R2) are exposed on the surface of the sheath material Y.
(2) The composite monofilament of the present invention is characterized in that, in (1), the additive particles (P) are metal particles (M) and / or ceramic particles (C).
(3) The composite monofilament of the present invention is characterized in that, in the above (1) or (2), the additive particles (P) are further fixed with fine particles (P1) on the surface thereof.
(4) The composite monofilament of the present invention is characterized in that, in (3), the fine particles (P1) are platinum nanoparticles.
(5) The method for producing a composite monofilament of the present invention includes the first thermoplastic resin (R1) that forms the core material X and the additive particles (P) that form the sheath material Y, and the first thermoplastic resin ( A second thermoplastic resin (R2) having a melting point lower than that of R1) is coextruded to form an unstretched core-sheath bonded composite monofilament, and the unstretched composite monofilament is stretched to obtain a second The additive particles (P) blended in the thermoplastic resin (R2) are exposed on the surface of the sheath material Y.

本発明の複合モノフィラメントにあっては、芯材Xにより必要な強度が得られ、鞘材Yにより、消臭性、抗微生物性、抗酸化性などの機能性が得られる。
また、鞘材Yの表面から粗粒物が露出しているので、粗粒物が有する機能性の効果が直接発揮される。
そして、鞘材Yに存在する微細な金属粒子(M)も添加粒子(P)のセラミックス粒子(C)の表面に固着されているので、金属粒子が本来有する消臭性、抗微生物性、抗酸化性などの優れた機能性が最大限に発揮される。
しかも、水と接触したり水洗するような使い方をしても、金属粒子(M)やセラミックス粒子(C)が鞘材Yから容易には脱離しないので、その機能性が長期にわたり持続する。
さらに、セラミックス粒子(C)の存在は、温湿度変化などの環境変化に対する複合モノフィラメントの寸法安定性や耐熱性の向上にも貢献する。
さらにまた、機能性を有する添加粒子は、鞘材Yにのみ配合するだけでよいので、添加粒子の添加量を大きく減ずることができ、経済的にも有利となる。
In the composite monofilament of the present invention, the core material X provides the necessary strength, and the sheath material Y provides functionalities such as deodorant properties, antimicrobial properties, and antioxidant properties.
In addition, since the coarse particles are exposed from the surface of the sheath material Y, the functional effect of the coarse particles is directly exhibited.
And since the fine metal particle (M) which exists in the sheath material Y is also adhering to the surface of the ceramic particle (C) of the additive particle (P), the deodorizing property, antimicrobial property, Excellent functionality such as oxidization is exhibited to the maximum.
In addition, even if it is used in contact with water or washed with water, the metal particles (M) and the ceramic particles (C) are not easily detached from the sheath material Y, so that their functionality lasts for a long time.
Further, the presence of the ceramic particles (C) contributes to improvement of the dimensional stability and heat resistance of the composite monofilament with respect to environmental changes such as temperature and humidity changes.
Furthermore, since the additive particles having functionality need only be blended in the sheath material Y, the addition amount of the additive particles can be greatly reduced, which is economically advantageous.

本実施の形態の複合モノフィラメントの断面図である。It is sectional drawing of the composite monofilament of this Embodiment. 添加粒子(P)の表面に微細粒子(P1)を固着させた状態を示す説明図である。It is explanatory drawing which shows the state which made the fine particle (P1) adhere to the surface of an addition particle (P). 鞘材と芯材とを共押出成形して未延伸の複合モノフィラメントを製造する方法を示す概略説明図である。It is a schematic explanatory drawing which shows the method of coextruding a sheath material and a core material and manufacturing an unstretched composite monofilament. 未延伸の複合モノフィラメントを延伸して、添加粒子を鞘材の表面上に露出させた状態を示す説明図である。It is explanatory drawing which shows the state which extended | stretched the unstretched composite monofilament and exposed the addition particle | grain on the surface of a sheath material.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。図1は、本実施の形態の複合モノフィラメントの断面図である。図2は、添加粒子(P)の表面に微細粒子(P1)を固着させた状態を示す説明図である。図3は、鞘材と芯材とを共押出成形して未延伸の複合モノフィラメントを製造する方法を示す概略説明図である。図4は、未延伸の複合モノフィラメントを延伸して、添加粒子を鞘材の表面上に露出させた状態を示す説明図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the composite monofilament of the present embodiment. FIG. 2 is an explanatory view showing a state in which fine particles (P1) are fixed to the surface of the additive particles (P). FIG. 3 is a schematic explanatory view showing a method for producing an unstretched composite monofilament by coextrusion molding of a sheath material and a core material. FIG. 4 is an explanatory view showing a state in which the unstretched composite monofilament is stretched to expose the additive particles on the surface of the sheath material.

〈複合モノフィラメント〉
図1に示すように、本実施形態の複合モノフィラメントは、芯材Xと鞘材Yとで構成された芯鞘接合型の複合フィラメントであり、第2熱可塑性樹脂(R2)中に含まれた添加粒子(P)が、鞘材Yの表面に露出している。芯鞘接合型の複合モノフィラメントは、従来公知の芯鞘型であればよく、同心円芯鞘型、偏心芯鞘型、多心芯鞘型のいずれであってもよい。
<Composite monofilament>
As shown in FIG. 1, the composite monofilament of the present embodiment is a core-sheath joint type composite filament composed of a core material X and a sheath material Y, and was included in the second thermoplastic resin (R2). The additive particles (P) are exposed on the surface of the sheath material Y. The core-sheath bonded type monofilament may be a conventionally known core-sheath type, and may be any of a concentric circular core-sheath type, an eccentric core-sheath type, and a multi-core core-sheath type.

〈芯材X〉
本発明において、芯材Xは第1熱可塑性樹脂(R1)で形成されており、ガラス転移温度または融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂である。この熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン(登録商標)、ABS樹脂、AS樹脂、アクリル樹脂、などが挙げられるが、本発明においてはいずれも使用できる。
<Core X>
In the present invention, the core material X is formed of the first thermoplastic resin (R1), and is a resin that becomes soft when heated to the glass transition temperature or the melting point and can be molded into a desired shape. Examples of the thermoplastic resin include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon (registered trademark), ABS resin, AS resin, acrylic resin, and the like in the present invention. Either can be used.

〈鞘材Y〉
鞘材Yは、添加粒子(P)を配合した第2熱可塑性樹脂(R2)で形成されており、第2熱可塑性樹脂(R2)の例としても、上記芯材Xを構成する第1熱可塑性樹脂(R1)と同様のものを用いることができる。
<Sheath material Y>
The sheath material Y is formed of the second thermoplastic resin (R2) blended with the additive particles (P), and the first heat constituting the core material X is an example of the second thermoplastic resin (R2). The same thing as a plastic resin (R1) can be used.

芯材Xや鞘材Yを構成するポリエチレンは、エチレンが重合した最も単純な構造をもつ高分子であり、高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、があるが、いずれも使用可能である。ポリエチレンは、エチレンのホモポリマーのみならず、エチレンを主体とするプロピレンやブテン−1などのα−オレフィンとの共重合体であってもよい。
ポリエチレンのメルトインデックス(MI)は、0.1〜100、好ましくは0.2〜80とすることが多い。なお、MIとあるのは、温度190℃、荷重2160g、オリフィス孔径2.092mmの条件で10分間押し出した試料の質量をg数で表わしたものである。
The polyethylene constituting the core material X and the sheath material Y is a polymer having the simplest structure in which ethylene is polymerized. High density polyethylene, low density polyethylene, ultra low density polyethylene, linear low density polyethylene, ultra high There are molecular weight polyethylenes, but any of them can be used. The polyethylene may be not only a homopolymer of ethylene but also a copolymer with an α-olefin such as propylene or butene-1 mainly composed of ethylene.
Polyethylene has a melt index (MI) of 0.1 to 100, preferably 0.2 to 80 in many cases. MI represents the mass of a sample extruded for 10 minutes under the conditions of a temperature of 190 ° C., a load of 2160 g, and an orifice hole diameter of 2.092 mm in g.

芯材Xや鞘材Yを構成するポリプロピレンは、プロピレンを重合させたポリマーであり、プロピレンのホモポリマーのみならず、プロピレンを主体とするエチレン、ブテン−1などのα−オレフィンとの共重合体であってもよい。
ポリプロピレンのメルトフローレート(MFR)は0.3〜400、好ましくは0.5〜200とする。
The polypropylene constituting the core material X and the sheath material Y is a polymer obtained by polymerizing propylene, and is not only a homopolymer of propylene but also a copolymer with an α-olefin such as ethylene and butene-1 mainly composed of propylene. It may be.
The melt flow rate (MFR) of polypropylene is 0.3 to 400, preferably 0.5 to 200.

ポリプロピレンの代表例は、融点がたとえば150℃以上のプロピレン単独重合体であり、そのような高融点のポリプロピレンを芯材Xとする複合フィラメントは、紡糸性、延伸性、物性(強度、寸法安定性)などの点において特に好ましい。
なお、メルトフローレート(MFR)とは、温度230℃、荷重2160g、オリフィス孔径2.092mmの条件で10分間押し出した試料の質量をg数で表わしたものである。
A typical example of polypropylene is a propylene homopolymer having a melting point of, for example, 150 ° C. or more, and a composite filament having such a high melting point polypropylene as a core material X has spinnability, stretchability, physical properties (strength, dimensional stability). ) And the like.
In addition, melt flow rate (MFR) represents the mass of the sample extruded for 10 minutes on the conditions of temperature 230 degreeC, load 2160g, and orifice hole diameter 2.092mm in g number.

上記の構成の複合モノフィラメントにおいて、鞘材Yとなる第2熱可塑性樹脂(R2)は、芯材Xとなる第1熱可塑性樹脂(R1)よりも低融点の熱可塑性樹脂を用いることが好ましい。例えば5℃以上、より好ましくは30℃以上低い融点の樹脂を用いる。
なお、同じ樹脂で、芯材X及び鞘材Yとする場合は、樹脂の平均分子量を大きくすることで高い融点の芯材Xとすることができる。
In the composite monofilament having the above-described configuration, it is preferable that the second thermoplastic resin (R2) serving as the sheath material Y is a thermoplastic resin having a lower melting point than the first thermoplastic resin (R1) serving as the core material X. For example, a resin having a melting point of 5 ° C. or higher, more preferably 30 ° C. or lower is used.
In addition, when it is set as the core material X and the sheath material Y by the same resin, it can be set as the core material X of high melting | fusing point by enlarging the average molecular weight of resin.

鞘材Yに配合する添加粒子(P)の種類は、特に限定するものではないが、延伸時の加熱で溶融しないものであればよく、樹脂、金属、ガラス、セラミックス、などの粒子が挙げられる。機能性を有する添加粒子を添加することにより、鞘材Yにその機能を持たせることができる。   The kind of the additive particles (P) to be blended in the sheath material Y is not particularly limited, and any particles that do not melt by heating during stretching may be used, and examples thereof include particles of resin, metal, glass, ceramics, and the like. . By adding the additive particles having the functionality, the sheath material Y can have the function.

鞘材Yに配合する金属粒子(M)としては、その素材を特に限定するものではないが、白金、金、銀、銅、ニッケル、ステンレス、などが挙げられ、その金属粒子(M)の有する機能を鞘材Yに持たせることができる。   The metal particles (M) to be blended in the sheath material Y are not particularly limited, but platinum, gold, silver, copper, nickel, stainless steel, and the like are included, and the metal particles (M) have. The function can be imparted to the sheath material Y.

例えば、白金,金、銀などの金属粒子(M)は、光触媒の機能を有するとされるが、高価であるので、その平均粒径が1〜5nm程度の微細粒子(P1)を、セラミックス粒子(C)の表面に固着させて用いることができる。
また、セラミックス粒子(C)の表面に固着させることにより、鞘材Yに配合した白金,金、銀などの金属粒子(M)を消耗または消失させることなく、長期に渡る除菌作用、消臭作用、抗酸化作用などの触媒効果をもたらすことが可能となる。
For example, although metal particles (M) such as platinum, gold, and silver have a photocatalytic function, they are expensive, so fine particles (P1) having an average particle diameter of about 1 to 5 nm are converted into ceramic particles. It can be used by adhering to the surface of (C).
In addition, by adhering to the surface of the ceramic particles (C), the sterilization action and deodorization over a long period of time without depleting or disappearing the metal particles (M) such as platinum, gold, and silver blended in the sheath material Y It is possible to bring about catalytic effects such as action and antioxidant action.

鞘材Yに配合するセラミックス粒子(C)としては、種々のセラミックスが用いることができ、また上記セラミックス粒子(C)に、シリカゲルなどの無機質材料を添加したものも用いることもできる。   As the ceramic particles (C) to be blended with the sheath material Y, various ceramics can be used, and those obtained by adding an inorganic material such as silica gel to the ceramic particles (C) can also be used.

シリカゲルとしては、含水ケイ酸ゲルを経て得られるシリカゲルが好適に用いられる。このときには、ケイ酸塩の水溶液を酸と混合することによりpHを調整して含水ゲルとなし、さらにこの含水ゲルを水洗してイオンを除去してから乾燥することによりシリカゲルを得る。   As silica gel, silica gel obtained through hydrous silicate gel is preferably used. At this time, an aqueous solution of silicate is mixed with an acid to adjust the pH to form a hydrous gel, and the hydrous gel is washed with water to remove ions and then dried to obtain silica gel.

その他、鞘材Yに配合するセラミックス粒子(C)として無機質材料があるが、無機質材料としては、リン酸、硫酸、硝酸、炭酸などの無機酸の多価金属塩、アルカリ金属やアルカリ土(類)金属のフッ化物やケイフッ化物、コロイダルシリカ、アルコール等の有機溶媒を媒体とするオルガノシリカゾルを用いることができる。
また、各種の粘土鉱物、酸化物、水酸化物、複合酸化物、窒化物、炭化物、ケイ化物、ホウ化物、ゼオライト、クリストバライト、ケイ藻土、ケイ酸の多価金属塩なども用いることができる。
粘土鉱物としては、カオリン、ろう石、セリサイト、ベントナイトなどが挙げられる。
酸化物としては、アルミナ、チタニア、シリカ、ジルコニア、マグネシアなどが挙げられる。
水酸化物としては、アルミニウム、亜鉛、マグネシウム、カルシウム、マンガンの水酸化物などが挙げられる。
複合酸化物としてはミョウバンが挙げられ、窒化物としては窒化ケイ素、窒化ホウ素などが挙げられ、炭化物としては炭化ケイ素、炭化ホウ素などが挙げられる。
ケイ酸の多価金属塩としては、アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、マンガン塩などが挙げられる。
In addition, there are inorganic materials as ceramic particles (C) to be blended with the sheath material Y. Examples of inorganic materials include polyvalent metal salts of inorganic acids such as phosphoric acid, sulfuric acid, nitric acid, and carbonic acid, alkali metals and alkaline earths ) Organosilica sols using an organic solvent such as a metal fluoride, silicofluoride, colloidal silica, or alcohol as a medium can be used.
Various clay minerals, oxides, hydroxides, composite oxides, nitrides, carbides, silicides, borides, zeolites, cristobalite, diatomaceous earth, polyvalent metal salts of silicic acid, and the like can also be used. .
Examples of clay minerals include kaolin, wax, sericite, and bentonite.
Examples of the oxide include alumina, titania, silica, zirconia, and magnesia.
Examples of the hydroxide include aluminum, zinc, magnesium, calcium, manganese hydroxide, and the like.
Examples of the composite oxide include alum, examples of the nitride include silicon nitride and boron nitride, and examples of the carbide include silicon carbide and boron carbide.
Examples of the polyvalent metal salt of silicic acid include aluminum salts, zinc salts, magnesium salts, calcium salts, and manganese salts.

先にも述べたように、鞘材Yは、添加粒子(P)が配合された第2熱可塑性樹脂(R2)で形成される。添加粒子(P)を複数種類配合する場合、第2熱可塑性樹脂(R2)にそれぞれ配合することもできるが、予め複数種類の添加粒子(P)を混合した複合体粒子を製造し、その複合体粒子を第2熱可塑性樹脂(R2)に配合することが、複数添加粒子の均一分散の観点から好ましい。   As described above, the sheath material Y is formed of the second thermoplastic resin (R2) in which the additive particles (P) are blended. When a plurality of types of additive particles (P) are blended, they can be blended in the second thermoplastic resin (R2), respectively, but composite particles in which a plurality of types of additive particles (P) are mixed in advance are manufactured, and the composite It is preferable to blend the body particles with the second thermoplastic resin (R2) from the viewpoint of uniform dispersion of the plural additive particles.

鞘材Yにおける、第2熱可塑性樹脂(R2)と添加粒子(P)の割合は、第2熱可塑性樹脂(R2)100質量部に対して、添加粒子(P)の割合が1〜50質量部とすることが望ましい。好ましくは2〜30質量部である。
添加粒子(P)が、金属粒子(M)とセラミックス粒子(C)及びその他の添加粒子とからなる場合の割合は、それらの合計量を上記範囲とすることが望ましい。
添加粒子の配合量が余りに少ないときは、所望の消臭性、抗微生物性、生理活性、抗酸化性などの機能性が充分には発揮されず、一方、後者の配合量を余りに多くしても、機能性は一定以上に上がらないばかりでなく、複合モノフィラメントの生産性が低下したり、強度や風合が低下したりするというマイナス面が目立つようになる。
The ratio of the second thermoplastic resin (R2) and the additive particles (P) in the sheath material Y is 1 to 50 masses of the additive particles (P) with respect to 100 parts by mass of the second thermoplastic resin (R2). It is desirable to be a part. Preferably it is 2-30 mass parts.
As for the ratio in the case where the additive particles (P) are composed of the metal particles (M), the ceramic particles (C) and other additive particles, it is desirable that the total amount thereof is within the above range.
When the amount of the additive particles is too small, the desired deodorant properties, antimicrobial properties, physiological activity, antioxidant properties, etc. are not fully exhibited, while the latter amount is too large. However, not only does the functionality not exceed a certain level, but also the negative aspects of the reduction of the productivity of the composite monofilament and the reduction of the strength and texture become conspicuous.

添加粒子(P)が金属粒子(M)とセラミックス粒子(C)とで構成される場合は、金属粒子(M)とセラミックス粒子(C)との間の関係において、セラミックス粒子(C)100質量部に対し金属粒子(M)を0.1〜10質量部とすることが望ましい。好ましくは0.1〜5質量部、さらに好ましくは0.2〜1質量部である。
金属粒子(M)の割合が余りに少ないときには所望の消臭性、抗微生物性、生理活性、抗酸化性などの機能性が不足し、金属粒子(M)の割合が余りに多いときには、セラミックス粒子(C)に対するバランスを崩し、コスト的にも不利となる。
なお、図2に示すように、金属粒子(M)として、微細粒子を用いるときは、微細粒子である金属粒子と大きな粒子であるセラミックス粒子とを混合し、例えば加熱焼結して、セラミックス粒子の表面に微細粒子を固着させたものを予め製造しておくことで、微細粒子の金属粒子(M)を鞘材Yである第2熱可塑性樹脂(R2)の中に埋もれさせずに、鞘材Yの表面上に露出させることができる。
When the additive particle (P) is composed of the metal particle (M) and the ceramic particle (C), the ceramic particle (C) 100 mass in the relationship between the metal particle (M) and the ceramic particle (C). It is desirable that the metal particles (M) be 0.1 to 10 parts by mass with respect to parts. Preferably it is 0.1-5 mass parts, More preferably, it is 0.2-1 mass part.
When the proportion of the metal particles (M) is too small, the desired deodorizing properties, antimicrobial properties, physiological activity, antioxidant properties and the like are insufficient, and when the proportion of the metal particles (M) is too large, the ceramic particles ( The balance with respect to C) is lost, which is disadvantageous in terms of cost.
As shown in FIG. 2, when fine particles are used as the metal particles (M), the metal particles that are fine particles and the ceramic particles that are large particles are mixed, for example, heated and sintered to obtain ceramic particles. In this case, the metal particles (M) of the fine particles are not buried in the second thermoplastic resin (R2), which is the sheath material Y, by pre-manufacturing the fine particles fixed on the surface of the sheath. It can be exposed on the surface of the material Y.

〈芯材Xと鞘材Yとの割合〉
複合モノフィラメントにおける芯材Xと鞘材Yとの割合は、質量比で、芯材X:鞘材Y=30:70〜80:20、好ましくは、35:65〜75:25である。鞘材Yの割合が少ないと、添加粒子(P)の割合が過小となるので所期の機能性が充分には奏されず、添加粒子(P)の保持ができなくなるからである。一方、鞘材Yの割合が多いと、延伸後において添加粒子(P)が鞘材Yの中に埋もれて鞘材Yの表面に露出されなくなるからである。
<Ratio of core material X and sheath material Y>
The ratio of the core material X and the sheath material Y in the composite monofilament is, by mass ratio, the core material X: the sheath material Y = 30: 70 to 80:20, preferably 35:65 to 75:25. When the ratio of the sheath material Y is small, the ratio of the added particles (P) becomes too small, so that the expected functionality is not sufficiently achieved, and the added particles (P) cannot be retained. On the other hand, when the ratio of the sheath material Y is large, the additive particles (P) are buried in the sheath material Y after being stretched and are not exposed on the surface of the sheath material Y.

〈複合モノフィラメントの製造法〉
図3に示すように、本実施形態の複合モノフィラメントは、第1熱可塑性樹脂(R1)と、添加粒子(P)が配合された第2熱可塑性樹脂(R2)とを、第1熱可塑性樹脂(R1)が芯材X、添加粒子(P)が配合された第2熱可塑性樹脂(R2)が鞘材Yとなるように、それぞれの溶融温度以上の温度で共押出成形することにより製造することができる。共押出成形は、2台の押出機を用い、複合ダイFから同心円の線状に下方へ吐出することにより達成できる。
なお第2熱可塑性樹脂(R2)側は、予め内添する材料の濃度の濃いマスターバッチを作製しておいて、そのマスターバッチを第2熱可塑性樹脂(R2)と混合して成形に供することもできる。
<Production method of composite monofilament>
As shown in FIG. 3, the composite monofilament of the present embodiment includes a first thermoplastic resin (R1) and a second thermoplastic resin (R2) containing additive particles (P). Manufactured by coextrusion molding at a temperature equal to or higher than each melting temperature so that (R1) is the core material X and the second thermoplastic resin (R2) containing the additive particles (P) is the sheath material Y. be able to. Co-extrusion can be achieved by using two extruders and discharging downward from the composite die F in a concentric line.
On the second thermoplastic resin (R2) side, a master batch having a high concentration of the internally added material is prepared in advance, and the master batch is mixed with the second thermoplastic resin (R2) for molding. You can also.

第1熱可塑性樹脂(R1)や第2熱可塑性樹脂(R2)には、必要により、酸化防止剤、紫外線吸収剤、着色剤、滑剤、帯電防止剤、艶消し剤、流動性改善剤、可塑剤、難燃剤などの助剤を添加しておくこともできる。特に、複数種類の添加粒子(P)を配合した第2熱可塑性樹脂(R2)には、酸化防止剤等の安定剤と共に、金属石鹸をはじめとする凝集防止性ないし分散性の向上に有効な成形助剤を併用配合して、添加粒子(P)の均一分散を確保することが好ましい。
また、金属粒子(M)を配合する場合には、その担持性を向上させるため、銅塩、鉄塩、カルシウム塩、チタン塩、アルミニウム塩、銀塩、スズ塩、亜鉛塩、クロム塩、コバルト塩などの金属イオン源を適当量共存させておくこともできる。
For the first thermoplastic resin (R1) and the second thermoplastic resin (R2), an antioxidant, an ultraviolet absorber, a colorant, a lubricant, an antistatic agent, a matting agent, a fluidity improver, a plastic, if necessary. Auxiliaries, flame retardants and other auxiliaries can also be added. In particular, the second thermoplastic resin (R2) containing a plurality of types of additive particles (P) is effective in improving anti-aggregation properties and dispersibility, including metal soap, together with a stabilizer such as an antioxidant. It is preferable to blend a molding aid together to ensure uniform dispersion of the additive particles (P).
In addition, when the metal particles (M) are blended, in order to improve the supportability, copper salt, iron salt, calcium salt, titanium salt, aluminum salt, silver salt, tin salt, zinc salt, chromium salt, cobalt An appropriate amount of a metal ion source such as a salt can be allowed to coexist.

図4に示すように、共押出成形により製造された未延伸の複合モノフィラメントを、その後の延伸処理により引き延ばし鞘Yの肉厚を薄くすることにより、鞘Y中に配合された添加粒子(P)を、鞘Yの表面上に露出させる。このとき、鞘Yを構成する第2熱可塑性樹脂(R2)の融点を、芯材Xを構成する第1熱可塑性樹脂(R1)の融点よりも低くすると、鞘Yがより引き延ばされて鞘Yの肉厚が薄くなり、鞘Y中に配合されている添加粒子(P)が鞘Yの表面上に露出されるのである。なお、延伸後の鞘Yの肉厚は特に規定するものではないが、添加粒子(P)の平均粒径よりも小さくすることが望ましい。   As shown in FIG. 4, the unstretched composite monofilament produced by coextrusion is stretched by a subsequent stretching process to reduce the thickness of the sheath Y, thereby adding particles (P) blended in the sheath Y. Is exposed on the surface of sheath Y. At this time, when the melting point of the second thermoplastic resin (R2) constituting the sheath Y is lower than the melting point of the first thermoplastic resin (R1) constituting the core material X, the sheath Y is further stretched. The thickness of the sheath Y becomes thin, and the additive particles (P) blended in the sheath Y are exposed on the surface of the sheath Y. In addition, the thickness of the sheath Y after stretching is not particularly specified, but it is desirable to make it smaller than the average particle diameter of the additive particles (P).

なお、延伸倍率に特に限定はないものの、倍率が余りに小さいときは、第2熱可塑性樹脂(R2)に配合した添加粒子(P)を鞘材Yの表面に露出させる割合が不足するので、延伸倍率は5倍以上とすることが望ましい。一方、延伸倍率を余りに大きくすると、芯鞘接合界面において層間剥離を起こしやすくなるなどのトラブルを生ずることがあるので、延伸倍率の上限は一般には10倍程度までとすることが好ましい。また、延伸温度は、鞘Yを構成する第2熱可塑性樹脂(R2)の軟化温度以上で行うことが望ましい。   Although there is no particular limitation on the stretching ratio, when the ratio is too small, the ratio of exposing the additive particles (P) blended in the second thermoplastic resin (R2) to the surface of the sheath material Y is insufficient. The magnification is desirably 5 times or more. On the other hand, if the stretch ratio is too large, troubles such as easy delamination at the core-sheath joint interface may occur. Therefore, the upper limit of the stretch ratio is generally preferably about 10 times. The stretching temperature is desirably higher than the softening temperature of the second thermoplastic resin (R2) constituting the sheath Y.

〈応用、用途〉
本実施形態の複合モノフィラメントは、極細デニールから極太デニールまで任意の太さとすることができる。また、複合モノフィラメントを用いて、ネット、ロープ、ベルト、糸、パイル、綿(ワタ)状物、織布、不織布、編布などの二次製品を得ることもできる。
さらに、この複合モノフィラメントやその二次製品を、天然繊維(木綿、麻、絹、羊毛等)、合成樹脂(ポリエステル、アクリル、ポリプロピレン、ポリエチレン、ナイロン、ビニロン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリウレタン等)系の繊維やモノフィラメント、半合成繊維(アセテート等)、再生繊維(レーヨン等)、無機繊維(金属繊維、ガラス繊維、炭素繊維等)や、モノフィラメントあるいはそれらの二次製品と組み合わせて用いることもできる。
<Application, application>
The composite monofilament of the present embodiment can have any thickness from very fine denier to very thick denier. Moreover, secondary products, such as a net | network, a rope, a belt, a thread | yarn, a pile, cotton (cotton) shape, a woven fabric, a nonwoven fabric, a knitted fabric, can also be obtained using a composite monofilament.
Furthermore, this composite monofilament and its secondary products are made from natural fibers (cotton, hemp, silk, wool, etc.), synthetic resins (polyester, acrylic, polypropylene, polyethylene, nylon, vinylon, polyvinylidene chloride, polyvinyl chloride, polyurethane, etc.) ) Fiber, monofilament, semi-synthetic fiber (acetate, etc.), recycled fiber (rayon, etc.), inorganic fiber (metal fiber, glass fiber, carbon fiber, etc.), monofilament or their secondary products it can.

本実施形態の複合モノフィラメントまたはその二次製品の用途の例として、フィルタ(空調機、空気清浄機、真空掃除機等のフィルタ)、内装材(壁用シート、床材等)、敷物材(マット、カーペット等)、自動車内装材(シートクロス、天井材、床材)、履物材料、産業資材、衣料材料、寝具、衛生材料、医療用品、日用品、台所用品、トイレタリー用品、包装材料などが挙げられる。   Examples of uses of the composite monofilament or its secondary product of the present embodiment include filters (filters for air conditioners, air cleaners, vacuum cleaners, etc.), interior materials (wall sheets, floor materials, etc.), rug materials (mats) , Carpets, etc.), automotive interior materials (seat cloth, ceiling materials, flooring materials), footwear materials, industrial materials, clothing materials, bedding, hygiene materials, medical supplies, daily necessities, kitchenware, toiletries, packaging materials, etc. .

また、本実施形態の複合モノフィラメントに、光触媒として有効な酸化チタンや金属粒子を配合し、それらを鞘材Yの表面に露出させることにより、極めて効率のよい光触媒機能を有する素材とすることができる。   Moreover, the composite monofilament of this embodiment can be made into a material having an extremely efficient photocatalytic function by blending titanium oxide or metal particles effective as a photocatalyst and exposing them to the surface of the sheath material Y. .

次に、実施例をあげて本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

<実施例1>
芯材Xとなる第1熱可塑性樹脂(R1)として、融点が163℃でMFRが3.1のポリプロピレン(PP)を用意した。鞘材Yとなる第2熱可塑性樹脂(R2)として、融点が128℃でMFRが17.3のポリプロピレン(PP)を用意した。
第2熱可塑性樹脂(R2)に、金属粒子(M)として、平均粒径1μmの銅粉末130部と、セラミックス粒子(C)として、平均粒径325メッシュアンダーのシリカ粒子400部と、乾式混合した後配合した。
複合ダイを備えた2台の押出機により、鞘材Yについては205℃で、芯材Xについては230℃で共押出成形し、ついで延伸温度230℃で約6倍に延伸することにより、300デニールの複合モノフィラメントを得た。このときの芯材は200デニールであった。
<Example 1>
As the first thermoplastic resin (R1) to be the core material X, polypropylene (PP) having a melting point of 163 ° C. and an MFR of 3.1 was prepared. As the second thermoplastic resin (R2) to be the sheath material Y, polypropylene (PP) having a melting point of 128 ° C. and an MFR of 17.3 was prepared.
Dry mixing of the second thermoplastic resin (R2) with 130 parts of copper powder with an average particle diameter of 1 μm as metal particles (M) and 400 parts of silica particles with an average particle diameter of 325 mesh under as ceramic particles (C) And then blended.
By two extruders equipped with a composite die, coextruded at 205 ° C. for the sheath material Y and 230 ° C. for the core material X, and then stretched about 6 times at a stretching temperature of 230 ° C. A denier composite monofilament was obtained. The core material at this time was 200 denier.

<実施例2>
芯材Xとなる第1熱可塑性樹脂(R1)として、融点が163℃でMFRが5.9のポリプロピレン(PP)を用意した。鞘材Yとなる第2熱可塑性樹脂(R2)として、MIが16.1の高密度ポリエチレン(HDPE)を用意した。第2熱可塑性樹脂(R2)に、添加粒子(P)を10質量部配合した。添加粒子は、以下のようにして製造した。すなわち、コロイダルシリカを白金粒子コロイド(平均粒子径5nm程度)と混合したものに、平均粒子径1μm程度のシリカ粒子を加えて混練し、厚み1〜2mm程度の厚みのシートとしたものを約900〜1000℃で焼結し、シリカ粒子の表面に白金粒子を固着させた。
複合モノフィラメントの製造方法については、実施例1と同様にした。
<Example 2>
As the first thermoplastic resin (R1) to be the core material X, polypropylene (PP) having a melting point of 163 ° C. and an MFR of 5.9 was prepared. As the second thermoplastic resin (R2) to be the sheath material Y, high density polyethylene (HDPE) having an MI of 16.1 was prepared. 10 parts by mass of additive particles (P) were blended with the second thermoplastic resin (R2). The additive particles were produced as follows. That is, about 900 sheets having a thickness of about 1 to 2 mm are obtained by adding silica particles having an average particle diameter of about 1 μm to a mixture of colloidal silica and platinum particle colloid (average particle diameter of about 5 nm). Sintering was performed at ˜1000 ° C., and the platinum particles were fixed to the surface of the silica particles.
The method for producing the composite monofilament was the same as in Example 1.

本発明の複合モノフィラメントは、芯材Xにより必要な強度が得られ、鞘材Yにより、消臭性、抗微生物性、抗酸化性などの機能性が得られ、また、鞘材Yの表面から粗粒物が露出しているので、粗粒物が有する機能性の効果が直接発揮され、フィルター、マスク、壁材などに適用でき、産業上の利用可能性が極めて高い。   In the composite monofilament of the present invention, necessary strength is obtained by the core material X, and functionalities such as deodorizing property, antimicrobial property, and antioxidant property are obtained by the sheath material Y, and from the surface of the sheath material Y Since the coarse particles are exposed, the functional effects of the coarse particles are directly exhibited, and can be applied to filters, masks, wall materials, etc., and the industrial applicability is extremely high.

C セラミックス粒子
F 複合ダイ
M 金属粒子
P 添加粒子
X 芯材
Y 鞘材
C Ceramic particle F Composite die M Metal particle P Additive particle X Core material Y Sheath material

Claims (5)

芯材Xを形成する第1熱可塑性樹脂(R1)と、
鞘材Yを形成する添加粒子(P)を含みかつ前記第1熱可塑性樹脂(R1)よりも低融点の第2熱可塑性樹脂(R2)とを、
共押出成形して未延伸の芯鞘接合型の複合モノフィラメントを形成し、
該未延伸の複合モノフィラメントを延伸して、
第2熱可塑性樹脂(R2)中に配合した添加粒子(P)を、
前記鞘材Yの表面に露出させてなることを特徴とする複合モノフィラメント。
A first thermoplastic resin (R1) that forms the core material X;
A second thermoplastic resin (R2) containing additive particles (P) forming the sheath material Y and having a lower melting point than the first thermoplastic resin (R1),
Co-extrusion to form an unstretched core-sheath-bonded composite monofilament,
Stretching the unstretched composite monofilament,
The additive particles (P) blended in the second thermoplastic resin (R2)
A composite monofilament which is exposed on the surface of the sheath material Y.
前記添加粒子(P)が、
金属粒子及び/又はセラミックス粒子であることを特徴とする請求項1に記載の複合モノフィラメント。
The additive particles (P) are
The composite monofilament according to claim 1, wherein the composite monofilament is metal particles and / or ceramic particles.
前記添加粒子(P)が、
さらにその表面に微細粒子(P1)が固着していることを特徴とする請求項1又は2に記載の複合モノフィラメント。
The additive particles (P) are
Furthermore, the fine particle (P1) has adhered to the surface, The composite monofilament of Claim 1 or 2 characterized by the above-mentioned.
前記微細粒子(P1)が、白金ナノ粒子であることを特徴とする請求項3に記載の複合モノフィラメント。 The composite monofilament according to claim 3, wherein the fine particles (P1) are platinum nanoparticles. 芯材Xを形成する第1熱可塑性樹脂(R1)と、
鞘材Yを形成する添加粒子(P)を含みかつ前記第1熱可塑性樹脂(R1)よりも低融点の第2熱可塑性樹脂(R2)とを、
共押出成形して未延伸の芯鞘接合型の複合モノフィラメントを形成し、
該未延伸の複合モノフィラメントを延伸して、
第2熱可塑性樹脂(R2)中に配合した添加粒子(P)を、
前記鞘材Yの表面に露出させることを特徴とする複合モノフィラメントの製造方法。
A first thermoplastic resin (R1) that forms the core material X;
A second thermoplastic resin (R2) containing additive particles (P) forming the sheath material Y and having a lower melting point than the first thermoplastic resin (R1),
Co-extrusion to form an unstretched core-sheath-bonded composite monofilament,
Stretching the unstretched composite monofilament,
The additive particles (P) blended in the second thermoplastic resin (R2)
A method for producing a composite monofilament, wherein the surface of the sheath material Y is exposed.
JP2009070973A 2009-03-23 2009-03-23 Composite monofilament and method for producing the same Active JP5317276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070973A JP5317276B2 (en) 2009-03-23 2009-03-23 Composite monofilament and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070973A JP5317276B2 (en) 2009-03-23 2009-03-23 Composite monofilament and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010222732A true JP2010222732A (en) 2010-10-07
JP5317276B2 JP5317276B2 (en) 2013-10-16

Family

ID=43040222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070973A Active JP5317276B2 (en) 2009-03-23 2009-03-23 Composite monofilament and method for producing the same

Country Status (1)

Country Link
JP (1) JP5317276B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204206A (en) * 2012-03-29 2013-10-07 Daiwabo Holdings Co Ltd Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them
CN107322922A (en) * 2017-08-14 2017-11-07 青岛科技大学 A kind of 3D printing method and apparatus of double-layer coextrusion expanded material
JP2020084345A (en) * 2018-11-19 2020-06-04 株式会社セラフト Nano platinum particle-containing resin fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134805A1 (en) * 2005-06-14 2006-12-21 Kuraray Co., Ltd. Polishing fiber and polishing material
JP2009518547A (en) * 2005-11-30 2009-05-07 ダウ グローバル テクノロジーズ インコーポレイティド Surface-modified bicomponent polymer fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134805A1 (en) * 2005-06-14 2006-12-21 Kuraray Co., Ltd. Polishing fiber and polishing material
JP2009518547A (en) * 2005-11-30 2009-05-07 ダウ グローバル テクノロジーズ インコーポレイティド Surface-modified bicomponent polymer fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204206A (en) * 2012-03-29 2013-10-07 Daiwabo Holdings Co Ltd Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them
CN107322922A (en) * 2017-08-14 2017-11-07 青岛科技大学 A kind of 3D printing method and apparatus of double-layer coextrusion expanded material
JP2020084345A (en) * 2018-11-19 2020-06-04 株式会社セラフト Nano platinum particle-containing resin fiber
JP2022113918A (en) * 2018-11-19 2022-08-04 株式会社セラフト Nano platinum particle-containing resin fiber
JP7121949B2 (en) 2018-11-19 2022-08-19 株式会社セラフト Resin fibers containing nano-platinum particles
JP7424591B2 (en) 2018-11-19 2024-01-30 株式会社セラフト Resin fiber containing nanoplatinum particles

Also Published As

Publication number Publication date
JP5317276B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5400330B2 (en) Photocatalyst-containing ultrafine fiber and method for producing the same
CN1111476C (en) Ventilative film/nonwoven layer compound and method for making thereof and the goods that comprise described material
KR100665980B1 (en) Composite molding and process for the production of the same
CN105882075B (en) One kind melt-blown composite nano anti-biotic surpasses soft nonwoven and preparation method
US20140170922A1 (en) Low Density Fibers and Methods for Forming Same
JP6755067B1 (en) Biodegradable non-woven mask
JP5317276B2 (en) Composite monofilament and method for producing the same
EP1825047A1 (en) Antimicrobial fabric and method for manufacture of antimicrobial fabric
WO2015111172A1 (en) Functional air filter
JP6745555B1 (en) Spunbond nonwoven fabric containing inorganic powder
CN111424368A (en) Method for producing nonwoven fabric, and protective product
CN106087253A (en) A kind of nanofiber multicomponent composite soft silk non-weaving cloth and manufacture method thereof
KR20010050515A (en) Composite filament, process for the production of the same, and heat fused article
KR100643515B1 (en) Polypropylene spunbond non-woven fabrics having excellent antibacterial and deodorizible effects
JP2010119970A (en) Deodorizing fiber and manufacturing method therefor
CN106188741A (en) Mat prepared by a kind of wear-resistant antibacterial composite and this composite
CN204149630U (en) Functional ventilated membrane compound nonwoven cloth
JP2013204199A (en) Ethylene-vinyl alcohol-based fiber having antimicrobial property and fiber assembly
CN205685886U (en) A kind of melt-blown composite nano anti-biotic surpasses soft nonwoven
KR20160079297A (en) Fiber for clean material, clean materials containing the same and manufacturing method thereof
JPS63190018A (en) Deodorant fiber structure
CN206011903U (en) A kind of modified special soft non-weaving cloth of nanofiber
JP2001226827A (en) Composite formed product and its production method
CN205999586U (en) A kind of nanofiber multicomponent composite soft silk non-weaving cloth
JP2016017245A (en) Ethylene-vinyl alcohol-based fiber and yarn having deodorizing properties, and fiber product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5317276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250