JP2022157622A - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
JP2022157622A
JP2022157622A JP2021061948A JP2021061948A JP2022157622A JP 2022157622 A JP2022157622 A JP 2022157622A JP 2021061948 A JP2021061948 A JP 2021061948A JP 2021061948 A JP2021061948 A JP 2021061948A JP 2022157622 A JP2022157622 A JP 2022157622A
Authority
JP
Japan
Prior art keywords
chamber
discharge
pressure
passage
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021061948A
Other languages
English (en)
Inventor
健太 齋藤
Kenta Saito
祐司 松井
Yuji Matsui
昭治 中嶋
Akiharu Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2021061948A priority Critical patent/JP2022157622A/ja
Publication of JP2022157622A publication Critical patent/JP2022157622A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】圧縮機構における摺動部等に潤滑油を供給する圧縮機において、圧縮機構の再起動時における液圧縮による起動トルクの増大を抑える。【解決手段】ハウジングは、吸入室と、圧縮室と、吐出弁が収容された、第1の吐出圧が作用する吐出弁室3eと、吐出弁室3eの下流に設けられるとともに油分離器が収容された、第2の吐出圧が作用する吐出室17とを有する。圧縮機構と吐出室17とが、潤滑油を圧縮機構内に供給する油供給通路で連通されている。ハウジングには、吸入室と吐出室17との間に、吐出室17の冷媒を吸入室に導入させる均圧通路31が設けられ、均圧通路31には第1の吐出圧及び第2の吐出圧の差圧によって均圧通路31の開閉を行う弁機構32が設けられている。弁機構32は、圧縮機構の動作時に差圧が増大することで均圧通路31を遮断し、圧縮機構の停止時に差圧が減少することで均圧通路31を開放する構成とされている。【選択図】図4

Description

本発明は圧縮機に関する。
特許文献1に従来の圧縮機が開示されている。この圧縮機は、ハウジングと、駆動軸と、圧縮機構と、油分離器とを備えている。駆動軸は、ハウジング内で回転可能に支承されている。圧縮機構は、ハウジング内に設けられており、駆動軸の回転により作動して冷媒を圧縮する。油分離器は、ハウジング内で圧縮機構に隣接して設けられており、圧縮機構で圧縮された冷媒から潤滑油を分離する。
ハウジングは、吸入室と、圧縮室と、吐出室とを有している。圧縮機構は、吸入室から吸入した冷媒を圧縮室で圧縮して、吐出室に吐出する。油分離器は吐出室内に収容されており、吐出室に吐出された冷媒から潤滑油を分離する。油分離器で分離された潤滑油は、吐出室の底部の貯油室に貯留される。
貯油室と圧縮室とはオイル通路で連通されている。オイル通路は、圧縮機構内における軸受等の摺動部を経由しつつ、貯油室と圧縮室とを接続している。これにより、貯油室の潤滑油は、圧縮機構における軸受等の摺動部を経由してから圧縮室内に供給される。貯油室から圧縮室への潤滑油の供給は、貯油室に作用している吐出室の圧力と圧縮室の圧力との差圧により行われる。この場合、圧縮機構が停止しても、差圧が残っている間はオイル通路を介して貯油室から圧縮室へ潤滑油が流入するので、圧縮室に潤滑油が溜まってしまう。そうすると、圧縮機構の再起動時に液圧縮が生じ、起動トルクが過大になるという問題がある。
そこで、この従来の圧縮機では、貯油室と圧縮室とを連通するオイル通路の途中に弁機構を設けている。これにより、貯油室と弁機構とが第1オイル通路で連通され、弁機構と圧縮室とが第2オイル通路で連通されている。また、吐出室と圧縮室とを高圧気体供給手段で接続している。高圧気体供給手段は、前記弁機構と、吐出室と前記弁機構とを連通する吐出通路と、前記弁機構と圧縮室とを連通する前記第2オイル通路とで構成されている。
そして、圧縮機構の動作時には、前記弁機構が、第1オイル通路と第2オイル通路とを接続させるとともに、吐出通路と第2オイル通路との接続を遮断する。これにより、圧縮機構の動作時には、第1オイル通路及び第2オイル通路を介して貯油室から圧縮室へ潤滑油が供給される。一方、圧縮機構の停止時には、前記弁機構が、第1オイル通路と第2オイル通路との接続を遮断するとともに、吐出通路と第2オイル通路とを接続させる。これにより、圧縮機構の停止時には、吐出通路及び第2オイル通路を介して吐出室から圧縮室へ高圧冷媒ガスが供給される。
こうして、この従来の圧縮機では、圧縮機構の停止時に、貯油室と圧縮室とを連通するオイル通路を閉状態とすることにより、貯油室から圧縮室へ潤滑油が流入することを抑制している。
なお、この従来の圧縮機で、圧縮機構の停止時に吐出室から圧縮室へ高圧冷媒ガスを供給するのは、以下の理由による。すなわち、この従来の圧縮機は、貯油室の潤滑油が供給される背圧室を圧縮機構内に有している。この場合、貯油室の潤滑油は背圧室を経由してから圧縮室内に供給される。背圧室に潤滑油を供給することで、駆動軸からの動力を得て圧縮室の容積を変化させる可動体に対して背圧を作用させ、これにより圧縮室内の封止性を高める。ところが、圧縮機構の停止時に、前記弁機構により貯油室から圧縮室への潤滑油の流入が阻止されれば、背圧室にも潤滑油が供給されない。そうすると、圧縮機構の再起動時に、背圧不足により可動体がチャタリングを起こし、異常音が発生するという弊害ある。そこで、この従来の圧縮機では、圧縮機構の停止時に、圧縮室、ひいては背圧室に高圧冷媒ガスを供給することで、可動体のチャタリングを防止している。
特開平10-148194号公報
しかし、上記従来の圧縮機では、圧縮機構の動作時に、第1オイル通路及び第2オイル通路を介して、貯油室の潤滑油を圧縮機構における摺動部を経由させてから圧縮室内に供給している。そして、圧縮機構の停止時に、吐出通路及び第2オイル通路を介して、吐出室から圧縮室へ高圧冷媒ガスを供給している。この場合、圧縮機構の停止時に第2オイル通路及び摺動部内に残留している潤滑油が高圧冷媒ガスとともに圧縮室に導入されてしまう。そうすると、圧縮機構の再起動時に液圧縮が生じるという懸念が依然として残る。
なお、上記従来の圧縮機では、圧縮機構の動作時に、潤滑油を摺動部の他に背圧室にも供給してから圧縮室内に供給している。この場合、圧縮機構の停止時に背圧室内に溜まっていた潤滑油も高圧冷媒ガスとともに圧縮室に導入されてしまう。そうすると、圧縮機構の再起動時における液圧縮が生じやすくなるとともに、背圧不足によるチャタリング発生の懸念も生じうる。
本発明は、上記従来の実情に鑑みてなされたものであって、圧縮機構における摺動部等に潤滑油を供給する圧縮機において、圧縮機構の再起動時における液圧縮による起動トルクの増大を抑えることを解決すべき課題としている。
上記課題を解決する本発明の圧縮機は、
冷媒を吸入する吸入口及び冷媒を吐出する吐出口を有するハウジングと、
前記ハウジングに支承され、駆動軸心周りに回転可能な駆動軸と、
前記ハウジング内に設けられ、前記駆動軸の回転により作動する圧縮機構と、
前記ハウジング内で前記圧縮機構に隣接して設けられる油分離器と、を備え、
前記ハウジングは、
前記吸入口から冷媒を吸入し、吸入圧が作用する吸入室と、
前記圧縮機構内に設けられ、前記吸入室から流入した冷媒を圧縮する圧縮室と、
前記圧縮室から吐出された冷媒が逆流するのを抑制する吐出弁が収容された、第1の吐出圧が作用する吐出弁室と、
前記吐出弁室の下流に設けられて冷媒を前記吐出口から吐出させるとともに冷媒から潤滑油を分離して吐出室内に貯油させる前記油分離器が収容された、第2の吐出圧が作用する吐出室と、を有し
前記圧縮機構と前記吐出室とが、前記潤滑油を前記圧縮機構内に供給する油供給通路で連通される圧縮機であって、
前記ハウジングには、前記吸入室と前記吐出室との間に、前記吐出室の冷媒を前記吸入室に導入させる均圧通路が設けられ、
前記均圧通路には前記第1の吐出圧及び前記第2の吐出圧の差圧によって前記均圧通路の開閉を行う弁機構が設けられ、
前記弁機構は、前記圧縮機構の動作時に前記差圧が増大することで前記均圧通路を遮断し、前記圧縮機構の停止時に前記差圧が減少することで前記均圧通路を開放する構成とされていることを特徴とする。
本発明の圧縮機では、吸入室と吐出室との間に均圧通路が設けられており、均圧通路を介して吐出室の冷媒が吸入室に導入されるようになっている。そして、この均圧通路には、均圧通路の開閉を行う弁機構が設けられている。弁機構は、吐出弁室に作用する第1の吐出圧と、吐出室に作用する第2の吐出圧との差圧によって、均圧通路の開閉を行う。
吐出室は、吐出弁室の下流に設けられている。吐出流路における流通抵抗により、吐出圧は上流側よりも下流側の方が低くなる。このため、圧縮機構の動作時における両室の吐出圧は、上流側にある吐出弁室の第1の吐出圧の方が、下流側にある吐出室の第2の吐出圧よりも高い。
本発明の圧縮機における弁機構は、圧縮機構の動作時に第1の吐出圧及び第2の吐出圧の差圧が増大するので、ある閾値を基準に均圧通路を遮断する。これにより、吐出室と吸入室とを連通する均圧通路が遮断されるので、吐出室内の高圧冷媒ガスが均圧通路を介して吸入室へ導入されることを抑制できる。一方、圧縮機構の停止時には上記差圧が減少するので、弁機構はある閾値を基準に均圧通路を開放する。これにより、吐出室と吸入室とが均圧通路により連通されるので、吐出室内の高圧冷媒ガスが均圧通路を介して吸入室へ導入される。
こうして、圧縮機構の停止時には、均圧通路を介して高圧冷媒ガスが速やかに吸入室に導入される。吸入室に導入された高圧冷媒ガスは速やかに圧縮室等の圧縮機構内に導入される。このため、吐出室と圧縮機構とを連通する油供給通路を介しての圧縮機構内への潤滑油の逆流が減少するので、圧縮室内に潤滑油が溜まることを抑えることができる。よって、圧縮機構の再起動時における液圧縮を抑えることができ、起動トルクが過大になることを抑えることが可能になる。
したがって、本発明によれば、圧縮機構における摺動部等に潤滑油を供給する圧縮機において、圧縮機構の再起動時における液圧縮による起動トルクの増大を抑えることができる。
弁機構は、弁体と、弁体を付勢する付勢部材とを備えることが好ましい。弁体としては、第1の吐出圧を受ける第1の受圧面と、第2の吐出圧を受ける第2の受圧面とを有するとともに、均圧通路を閉鎖する閉鎖位置と、均圧通路を開放する開放位置との間を往復動可能なものとすることができる。例えば、付勢部材として圧縮・引張ばね等を採用して、付勢部材が弁体を閉鎖位置から開放位置に向けて付勢する構成とすることができる。
この場合、圧縮機構の動作時には、第1の吐出圧と第2の吐出圧との差圧が増大して、その差圧が付勢部材の付勢力よりも大きくなることで、弁機構が均圧通路を遮断する。圧縮機構の停止時には、第1の吐出圧と第2の吐出圧との差圧が減少して、その差圧が付勢部材の付勢力よりも小さくなることで、弁機構が均圧通路を開放する。こうして、往復動可能な弁体とその弁体を一方向に付勢する付勢部材という簡素な構造の弁機構とすることができ。このため、弁機構、ひいては圧縮機の低コスト化に貢献する。
圧縮機構は、駆動軸の回転に伴って変位することで圧縮室の容積を変化させる可動体と、可動体に背圧を作用して圧縮室の封止性を高める方向に可動体を付勢する背圧室と、を有し、背圧室は、油供給通路によって吐出室に接続されていることが好ましい。
この場合、圧縮機構の動作時には、吐出室と背圧室との圧力差により吐出室に貯油された潤滑油を油供給通路を介して背圧室に供給することで、可動体に背圧を作用して圧縮室の封止性を高めることができる。圧縮機構の停止時には、吐出室内の高圧ガスが均圧通路を介して吸入室に速やかに導入されて吐出室と吸入室との差圧が速やか減少するので、背圧室内の潤滑油が吸入室に導入されることを抑えることができる。
よって、吸入室内に潤滑油が溜まることを抑えることができるので、圧縮機構の再起動時における液圧縮の問題を抑えることが可能になる。また、背圧室内の潤滑油を維持することができるので、チャタリングの問題を抑えることが可能になる。
圧縮機構は、複数のベーン溝が形成され駆動軸の回転によって回転するロータと、各ベーン溝に出没可能に設けられた可動体としての複数のベーンとを有し、ロータは、各ベーン溝と各ベーンとの間に複数の背圧室を有する構成とすることができる。そして、ハウジングは吐出室を区画する区画壁を有し、この区画壁に均圧通路及び弁機構が設けられていることが好ましい。
この場合、ベーン式圧縮機構を有する圧縮機において、圧縮機構の再起動時における液圧縮及びチャタリングの問題を抑えることができる。
圧縮機構は、ハウジングに固定される固定スクロールと、固定スクロールとともに圧縮室を形成するように駆動軸の回転によって回転する前記可動体としての可動スクロールと、を有し、ハウジングは、吐出室を区画する区画壁と、可動スクロールとともに背圧室を形成する固定ブロックと、を有する構成とすることができる。そして、この区画壁に均圧通路及び弁機構が設けられていることが好ましい。
この場合、スクロール式圧縮機構を有する圧縮機において、圧縮機構の再起動時における液圧縮の問題を抑えることができる。
よって、本発明によれば、圧縮機構における摺動部等に潤滑油を供給する圧縮機において、圧縮機構の再起動時における液圧縮による起動トルクの増大を抑えることができる。
図1は、実施例1の圧縮機の断面図である。 図2は、実施例1の圧縮機に係り、図1のII-II矢視断面図である。 図3は、油分離器を外した状態における図1のIII-III矢視断面図である。 図4は、実施例1の圧縮機に係り、均圧通路及び開状態の弁機構を示す要部拡大断面図である。 図5は、実施例1の圧縮機に係り、均圧通路及び閉状態の弁機構を示す要部拡大断面図である。 図6は、実施例2の圧縮機に係り、均圧通路及び開状態の弁機構を示す要部拡大断面図である。 図7は、実施例2の圧縮機に係り、均圧通路及び閉状態の弁機構を示す要部拡大断面図である。 図8は、実施例3の圧縮機に係り、均圧通路及び開状態の弁機構を示す要部拡大断面図である。 図9は、実施例3の圧縮機に係り、均圧通路及び閉状態の弁機構を示す要部拡大断面図である。 図10は、実施例4の圧縮機の断面図である。 図11は、実施例4の圧縮機に係り、均圧通路及び開状態の弁機構を示す要部拡大断面図である。 図12は、実施例4の圧縮機に係り、均圧通路及び閉状態の弁機構を示す要部拡大断面図である。
以下、本発明を具体化した実施例を図面を参照しつつ説明する。
(実施例1)
実施例1の圧縮機は、図1~図5に示すように、ベーン式圧縮機構を有するベーン型圧縮機である。
図1に示すように、フロントハウジング1が位置する側を圧縮機の前方側とし、リヤハウジング2が位置する側を圧縮機の後方側として、圧縮機の前後方向を規定している。また、圧縮機の上下方向を規定している。図4~図9においては、図1に対応して圧縮機の前後方向及び上下方向を規定している。なお、これらの各方向は説明の便宜上のための一例であり、圧縮機は、搭載される車両等に対応して、その姿勢が適宜変更される。
この圧縮機は、図1及び図2に示すように、互いに結合されたフロントハウジング1及びリヤハウジング2内にシリンダブロック3が収容された状態で固定されている。シリンダブロック3には軸直角方向で楕円状のシリンダ室3aが形成されている。フロントハウジング1及びリヤハウジング2内にはフロントサイドプレート4及びリヤサイドプレート5が固定されており、シリンダ室3aの前側はフロントサイドプレート4により閉鎖され、シリンダ室3aの後側はリヤサイドプレート5により閉鎖されている。フロントハウジング1及びリヤハウジング2は本発明におけるハウジングを構成する。リヤサイドプレート5は本発明における区画壁に相当する。
フロントサイドプレート4及びリヤサイドプレート5の軸孔4a、5a中には軸封装置6及び軸受7、8を介して駆動軸9が回転自在に保持されている。軸受7、8は例えばプレーンベアリングである。駆動軸9の先端はフロントハウジング1の軸孔1aを貫通して突出し、その先端には電磁クラッチ10が固定されている。電磁クラッチ10には車両のエンジン又はモータにより駆動力が伝達されるようになっている。
また、駆動軸9には円形断面のロータ11がシリンダ室3a内に配設されるように固定されている。ロータ11の外周面には、図2に示すように、放射方向に5個のベーン溝11aが凹設されており、各ベーン溝11aにはそれぞれベーン12が出没可能に収納されている。各ベーン12の底面と各ベーン溝11aとの間は背圧室11bとされている。隣合う2枚のベーン12、ロータ11の外周面、シリンダブロック3の内周面、フロントサイドプレート4の後端面及びリヤサイドプレート5の前端面によって6~7個の圧縮室13が形成されている。ベーン12は本発明における可動体に相当する。
また、図1に示すように、フロントハウジング1とフロントサイドプレート4との間には環状の吸入室14が形成されている。フロントハウジング1には、吸入室14を外部に接続するための吸入口1bが上方に開口されている。フロントサイドプレート4には吸入室14と連通する2個の吸入孔4bが貫設されており、各吸入孔4bはシリンダブロック3の各吸入通路3bに連通している。各吸入通路3bは、図2にも示すように、吸入ポート3cによって吸入行程にある圧縮室13と連通するようになっている。
また、シリンダブロック3とリヤハウジング2との間には、2個の吐出弁空間3dを有する環状の吐出弁室3eが形成されている。吐出行程にある圧縮室13と各吐出弁空間3dとは吐出ポート3fによって連通している。各吐出弁空間3d内には、吐出ポート3fを閉鎖する吐出弁15と、吐出弁15のリフト量を規制するリテーナ16とが設けられている。
フロントサイドプレート4、シリンダブロック3、駆動軸9、ロータ11、ベーン12、吐出弁15及びリテーナ16等により本発明における圧縮機構35が構成されている。
図3に示すように、リヤサイドプレート5の後端面5sには、後端面5sから一定の厚みを持って後側に膨出する膨出部5pが形成されている。膨出部5pは、駆動軸9及び軸受8周りで後側に膨出したボス部5eと、ボス部5eより厚みが少なく、左右に広がった段部5fと、段部5fと同じ厚みで下方に延びる垂下部5gとからなる。段部5fには上方の中央近くから下方の外側に向かって左右に延びる2本の吐出溝5h、5iが凹設されている。両吐出溝5h、5iの下端には各吐出弁空間3dと連通する吐出孔5j、5kが貫設されている。
図1に示すように、リヤサイドプレート5とリヤハウジング2との間には吐出室17が形成されている。吐出室17内では、リヤサイドプレート5とリヤハウジング2とに挟持されることによって油分離器18が固定されている。油分離器18は、エンドフレーム19と、エンドフレーム19内に固定された上下に延びる円筒状の円筒部20とを有している。円筒部20は、大径に形成された大径部20aと、大径部20aの下方で小径に形成された小径部20bとからなる。
エンドフレーム19には上下に円柱状に延びる油分離室19aが形成されている。油分離室19aの上端に円筒部20の大径部20aが圧入されている。このため、油分離室19aの一部は、円筒部20の小径部20bの外周面周りに冷媒ガスを周回させる案内面19bとなっている。
図1に示すように、エンドフレーム19には、案内面19bと連通する2個の分離口19が形成されている。図1には2個の分離口19cのうちの一方のみを示している。油分離器18がリヤサイドプレート5とリヤハウジング2との間に固定されれば、一方の分離口19cは吐出溝5hと連通し、他方の分離口19cは吐出溝5iと連通する。このため、一方の分離口19cは吐出溝5hを介して吐出孔5jと連通し、他方の分離口19cは吐出溝5iを介して吐出孔5kと連通する。各分離口19c、19cは吐出孔5j、5kから吐出される圧縮室13内の冷媒ガスがともに同一方向で案内面19bを周回するように形成されている。
円筒部20の小径部20bの下端は取込口20cとされており、円筒部20内が取込口20cと連通して上下に延びる流路20dとされている。
こうしてこの圧縮機では、リヤサイドプレート5に形成された吐出孔5j、5k及び吐出溝5h、5i、並びにエンドフレーム19に形成された分離口19c及び円筒部20内を介して、吐出弁室3eと吐出室17とが連通されている。これら吐出孔5j、5k、吐出溝5h、5i、分離口19c及び円筒部20内が、吐出弁室3eから吐出室17に至る吐出流路を構成している。
図1に示すように、エンドフレーム19の下端には油分離室19aの底面を吐出室17に連通させる連通口19eが形成されている。また、エンドフレーム19には、リヤサイドプレート5のボス部5eを駆動軸9及び軸受8とともに収納する凹部19fが凹設されている。
図1に示すように、リヤサイドプレート5には、吐出室17と後述する各排油溝5bとを連通する弁室5cが貫設されており、弁室5c内にはボール状弁体21が収納されている。ボール状弁体21は、弁室5c内に収納されたばね22によって吐出室17側に付勢されている。弁室5c及びボール状弁体21は段部5fの上面5qに位置している。
図2に示すように、リヤサイドプレート5の前端面には、扇形状をなす一対の排油溝5bが凹設されている。各排油溝5bは、ロータ11の回転により、吸入行程等にある背圧室11bと通じるようになっている。リヤサイドプレート5の垂下部5g内には、下端から上方に延びる油通路5mが貫設されている。油通路5mの下端は吐出室17に通じている。ボス部5eの軸受8周りには環状の環状室5nが凹設されており、油通路5mの上端は環状室5nに通じている。また、リヤサイドプレート5には、凹部19fと環状室5nとを連通する通孔23が貫設されている。また、リヤサイドプレート5には、環状室5nからリヤサイドプレート5の前端面まで延びる給油孔24が上下2個形成されている。
油通路5m、環状室5n、通孔23、凹部19f、給油孔24、排油溝5b、背圧室11b及びベーン溝11aを介して、吐出室17から圧縮室13内に潤滑油が供給されるようになっている。これらの油通路5m、環状室5n、通孔23、凹部19f、給油孔24及び排油溝5b等により、吐出室17と圧縮機構35とを連通する本発明における油供給通路33が構成されている。
リヤハウジング2には吐出室17の上端を外部に接続するための吐出口2aが形成されている。図示はしないが、吐出口2aは配管によって凝縮器に接続され、凝縮器は配管によって膨張弁に接続され、膨張弁は配管によって蒸発器に接続され、蒸発器は配管によって吸入口1bに接続されている。凝縮器、膨張弁及び蒸発器が外部の冷凍回路を構成している。圧縮機を含む冷凍回路は車両用空調装置を構成している。
図3~図5に示すように、シリンダブロック3及びリヤサイドプレート5には均圧弁室25が形成されている。均圧弁室25は、シリンダブロック3の後端面に凹設されるとともに、リヤサイドプレート5の前端面に凹設された凹部よりなる。均圧弁室25は、リヤサイドプレート5の前端面からシリンダブロック3の後端面に連続して円柱状に延びる大径室25aと、大径室25aの前端から連続して延び、大径室25aよりも内径の小さい円柱状の小径室25bとから構成されている。
均圧弁室25の大径室25a内には、大径室25a内を前後方向に往復動可能な均圧弁体26と、均圧弁体26を付勢する付勢部材としてのばね27とが収容されている。均圧弁体26は、後端が開口する有底円筒状をなしている。均圧弁体26の外径は大径室25aの内径よりわずかに小さい。ばね27の一端は均圧弁体26の底壁面26aに接続され、ばね27の他端は大径室25aの後壁面25cに接続されている。
ばね27は、圧縮された状態で均圧弁室25内にセットされており、常時均圧弁体26を前方に向かって付勢している。これにより、図4に示すように、圧縮機構35の停止時には、ばね27のばね力により、均圧弁体26は均圧弁室25内の最前方の開放位置に位置しており、後述する均圧通路31を開放している。そして、図5に示すように、圧縮機構35の動作の開始とほぼ同時に、後述する第1の吐出圧P1及び第2の吐出圧P2の差圧ΔPによって、均圧弁体26が均圧弁室25内の最後方の閉鎖位置に移動して後述する均圧通路31を閉鎖するように、ばね27のばね力が設定されている。
シリンダブロック3には、第1連通路28が形成されている。第1連通路28の一端は吐出弁室3eに開口し、第1連通路28の他端は小径室25bの側壁面25dに開口している。リヤサイドプレート5には、第2連通路29及び第3連通路30が形成されている。第2連通路29の一端は吐出室17に開口し、第2連通路29の他端は大径室25aの後壁面25cに開口している。第3連通路30の一端は大径室25aの側壁面25eに開口し、第3連通路30の他端は吸入通路3bに開口している。第3連通路30の一端側の開口は、均圧弁室25内を前方の開放位置に移動した均圧弁体26によって開放されるとともに、均圧弁室25内を後方の閉鎖位置に移動した均圧弁体26によって閉鎖されるようになっている。
フロントサイドプレート4に形成された吸入孔4b、シリンダブロック3に形成された吸入通路3b、並びにリヤサイドプレート5に形成された第3連通路30、均圧弁室25の大径室25a及び第2連通路29によって、吸入室14と吐出室17とが連通されている。これら吸入孔4b、吸入通路3b、第3連通路30、大径室25a及び第2連通路29が、吐出室17の冷媒ガスを吸入室14に導入させる本発明における均圧通路31を構成している。
吐出弁室3eには第1の吐出圧P1が作用し、吐出室17には第2の吐出圧P2が作用する。そして、第1連通路28、均圧弁室25、第2連通路29、均圧弁体26及びばね27は、第1の吐出圧P1及び第2の吐出圧P2の差圧ΔP(ΔP=P1-P2)によって均圧通路31の開閉を行う本発明における弁機構32を構成している。また、均圧弁体26の前端面26bは第1の吐出圧を受ける第1の受圧面に相当し、均圧弁体26の底壁面26aは第2の吐出圧を受ける第2の受圧面に相当する。
以上のように構成された圧縮機では、エンジン等によって駆動軸9が駆動されると、ロータ11が駆動軸9と同期回転し、圧縮室13の容積が変化する。このため、蒸発器を経た冷媒ガスが吸入口1bから吸入室14に吸入される。吸入室14内の冷媒ガスは吸入孔4b、吸入通路3b及び吸入ポート3cを経て圧縮室13に吸入される。また、圧縮室13で圧縮された冷媒ガスが吐出ポート3f、吐出弁室3e及び吐出孔5j、5kに吐出される。このため、冷媒ガスは、吐出溝5h、5iを経て油分離器18の分離口19cから案内面19bに向けて吐出される。このため、冷媒ガスは、油分離器18の案内面19bを周回し、冷媒ガスから潤滑油が遠心分離される。
分離された潤滑油は、油分離室19a内から連通口19eを経て吐出室17内に貯留される。吐出室17内の潤滑油は、油供給通路33を介して圧縮機構35における摺動部の潤滑等に供される。すなわち、吐出室17内の潤滑油は、軸孔5aと軸受8との間に供給されるとともに、通孔23、凹部19fを経て軸受8と駆動軸9との間に供給され、これらの間の潤滑を行う。また、潤滑油は給油孔24、排油溝5bを経て各背圧室11bに供給される。各背圧室11b内の潤滑油はベーン12とベーン溝11aとの間の潤滑を行うとともに、ベーン12に背圧を作用して圧縮室13の封止性を高める。
油分離器18の案内面19bを周回し、潤滑油が分離された冷媒ガスは、取込口20cから流路20dを上昇し、吐出口2aから吐出される。
吸入室14と吐出室17との間に均圧通路31が設けられており、均圧通路31を介して吐出室17の冷媒ガスが吸入室14に導入される。均圧通路31には、均圧通路31の開閉を行う弁機構32が設けられている。弁機構32は、吐出弁室3eに作用する第1の吐出圧P1と、吐出室17に作用する第2の吐出圧P2との差圧ΔPによって、均圧通路31の開閉を行う。
吐出室17は、吐出弁室3eの下流に設けられている。吐出弁室3eから吐出室17に至る吐出流路における流通抵抗により、吐出圧は吐出流路における上流側よりも下流側の方が低くなる。このため、圧縮機構35の動作時における両室の吐出圧は、上流側にある吐出弁室3eの第1の吐出圧P1の方が、下流側にある吐出室17の第2の吐出圧P2よりも高い。
弁機構32は、圧縮機構35の動作の開始とほぼ同時に差圧ΔPが発生して、差圧ΔPが増大する。そして、差圧ΔPによって均圧弁体26を後方に移動させようとする力の方がばね27のばね力よりも大きくなれば、均圧弁体26が後方に移動し、均圧弁体26の外周面26cが第3連通路30を閉鎖する。これにより、吐出室17と吸入室14とを連通する均圧通路31が遮断されるので、吐出室17内の冷媒ガスが均圧通路31を介して吸入室14へ導入されることを抑制できる。
一方、圧縮機構35の停止時には、停止と同時に差圧ΔPが減少する。そして、差圧ΔPによって均圧弁体26を後方に移動させようとする力よりもばね27のばね力の方が大きくなれば、均圧弁体26が前方に移動し、均圧弁体26の外周面26cが第3連通路30を開放する。これにより、吐出室17と吸入室14とが均圧通路31により連通されるので、吐出室17内の高圧の冷媒ガスが均圧通路31を介して吸入室14へ導入される。そして、速やかに差圧ΔPが小さくなる。
圧縮機構35の停止時には、均圧通路31を介して吐出室17内の高圧の冷媒ガスが速やかに吸入室14に導入される。吸入室14に導入された冷媒ガスは速やかに圧縮室13等の圧縮機構35内に導入される。このため、吐出室17と圧縮機構35とを連通する油供給通路33を介しての圧縮機構35内への潤滑油の逆流が減少するので、圧縮室13内に潤滑油が溜まることを抑えることができる。よって、圧縮機構35の再起動時における液圧縮を抑えることができ、起動トルクが過大になることを抑えることが可能になる。
したがって、本実施例によれば、圧縮機構35における摺動部や背圧室11bに潤滑油を供給する圧縮機において、圧縮機構35の再起動時における液圧縮による起動トルクの増大を抑えることができる。
弁機構32は、均圧弁室25内を往復動可能な均圧弁体26と、均圧弁体26を付勢するばね27とを備えている。この簡素な構造の弁機構32の採用により、弁機構32、ひいては圧縮機の低コスト化に貢献する。
圧縮機構35は、駆動軸9の回転に伴って変位することで圧縮室13の容積を変化させる可動体としてのベーン12と、ベーン12に背圧を作用して圧縮室13の封止性を高める方向にベーン12を付勢する背圧室11bとを有しており、背圧室11bは油供給通路33によって吐出室17に接続されている。
この場合、圧縮機構35の動作時には、吐出室17と背圧室11bとの圧力差により吐出室17の潤滑油を油供給通路33を介して背圧室11bに供給することで、ベーン12に背圧を作用して圧縮室13の封止性を高めることができる。圧縮機構35の停止時には、吐出室17内の高圧の冷媒ガスが均圧通路31を介して吸入室14に速やかに導入されて吐出室17と吸入室14との差圧ΔPが速やか減少するので、背圧室11b内の潤滑油が吸入室14に導入されることを抑えることができる。
よって、吸入室14内に潤滑油が溜まることを抑えることができるので、圧縮機構35の再起動時における液圧縮の問題を抑えることが可能になる。また、背圧室11b内の潤滑油を維持することができるので、チャタリングの問題を抑えることが可能になる。
こうして、ベーン式圧縮機構を有する圧縮機において、圧縮機構35の再起動時における液圧縮及びチャタリングの問題を抑えることができる。
(実施例2)
図6及び図7に示すように、実施例2の圧縮機では、均圧弁室25及び均圧弁体26の形状を変更した。
均圧弁室25は、大径室25aと、大径室25aよりも内径の大きい拡径室25fとから構成されている。大径室25aは、実施例1と同様、リヤサイドプレート5の前端面に凹設された円柱状の凹部よりなる。拡径室25fは、シリンダブロック3の後端面に凹設された円柱状の凹部よりなる。均圧弁体26は、前端面26bから円筒状に延びる短筒部26dを有している。拡径室25fの内径は、短筒部26dの外径よりも大きくされている。短筒部26dの側壁には、側壁を厚さ方向に貫通する連通孔26eが形成されている。第1連通路28の一端は吐出弁室3eに開口し、第1連通路28の他端は拡径室25fの側壁面25gに開口している。連通孔26eは、短筒部26の側壁において第1連通路28と対向する部位に形成されている。
第1連通路28、拡径室25f及び連通孔26eを介して、吐出弁室3eと拡径室25fにおける短筒部26dの内部とが連通される。第1連通路28、拡径室25f及び連通孔26eを介して、均圧弁体26の前端面26bが吐出弁室3eの第1の吐出圧P1を受ける第1の受圧面に相当する。この圧縮機における他の構成は、実施例1の圧縮機と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
図6に示すように、圧縮機の停止時には、ばね27のばね力により、均圧弁体26は均圧弁室25内の最前方の開放位置に位置しており、均圧通路31を開放している。そして、図7に示すように、圧縮機構35の動作の開始とほぼ同時に、第1連通路28、拡径室25f及び連通孔26eを介して、均圧弁体26の前端面26bが吐出弁室3eの第1の吐出圧P1を受ける。そして、第1の吐出圧P1及び第2の吐出圧P2の差圧ΔPによって、均圧弁体26が均圧弁室25内の最後方の閉鎖位置に移動して均圧通路31を閉鎖する。
この圧縮機では、シリンダブロック3側に形成する均圧弁室の形状を単純な円柱状の凹部とすることができるので、シリンダブロック3の製造工数及び製造コストの低減に貢献する。この圧縮機における他の作用は、実施例1の圧縮機と同様である。
(実施例3)
図8及び図9に示すように、実施例3の圧縮機では、第3連通路30の形状を変更した。第3連通路30の一端は大径室25aの後壁面25cに開口し、第3連通路30の他端は吸入通路3bに開口している。第3連通路30の一端の開口は、均圧弁室25の最後方の閉鎖位置にある均圧弁体26の後端面26fによって閉鎖される大きさとされている。この圧縮機における他の構成は、実施例1の圧縮機と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
図8に示すように、圧縮機の停止時には、ばね27のばね力により、均圧弁体26は均圧弁室25内の最前方の開放位置に位置しており、均圧通路31を開放している。そして、図9に示すように、圧縮機構35の動作時には、差圧ΔPによって均圧弁体26が均圧弁室25内の最後方の閉鎖位置に移動して、均圧弁体26の後端面26fが第3連通路30の開口を閉鎖し、これにより均圧通路31を閉鎖する。
この圧縮機では、閉鎖位置にある均圧弁体26の後端面26fで第3連通路30の開口を閉鎖することができる。このため、閉鎖位置にある均圧弁体26により、第3連通路30の開口をシール性高く閉鎖することができる。この圧縮機における他の作用は、実施例1の圧縮機と同様である。
(実施例4)
図10~図12に示すように、実施例4の圧縮機は、スクロール式圧縮機構を有するスクロール型圧縮機であり、電動スクロール型圧縮機である。
この圧縮機は、ハウジング41と、固定ブロック42と、駆動軸43と、モータ機構44と、固定スクロール45と、可動スクロール46と、弾性プレート47とを備えている。ハウジング41は、圧縮機ハウジング48と、モータハウジング49とを有している。
この実施例では、図10に示すように、モータハウジング49が位置する側を圧縮機の前方側とし、圧縮機ハウジング48が位置する側を圧縮機の後方側として、圧縮機の前後方向を規定している。また、圧縮機の上下方向を規定している。図11及び図12においては、図10に対応して圧縮機の前後方向及び上下方向を規定している。なお、これらの各方向は説明の便宜上のための一例であり、圧縮機は、搭載される車両等に対応して、その姿勢が適宜変更される。また、軸方向、周方向及び径方向は、それぞれ駆動軸43の軸方向、周方向及び径方向のことをいう。
圧縮機ハウジング48は、後壁48aと第1周壁48bとを有している。後壁48aは、圧縮機ハウジング48の後端、すなわち、ハウジング41の後端に位置しており、圧縮機ハウジング48の径方向に延びている。第1周壁48bは、後壁48aと接続しており、後壁48aから駆動軸心O方向で前方に向かって延びている。これらの後壁48aと第1周壁48bとにより、圧縮機ハウジング48は、有底の筒状をなしている。なお、駆動軸心Oは、圧縮機の前後方向と平行である。
圧縮機ハウジング48には、吐出室48cと、第1凹部48dと、吐出通路48eと、吐出口48fとが形成されている。吐出室48cは、圧縮機ハウジング48内において後方側に位置しており、圧縮機ハウジング48の径方向に延びている。第1凹部48dは、圧縮機ハウジング48内において、吐出室48cよりも前方側に位置しており、吐出室48cに向かって凹む形状をなしている。吐出通路48eは、後述する区画壁70に形成されている。吐出通路48eは、圧縮機ハウジング48内において駆動軸心O方向に延びており、吐出室48cと第1凹部48dとに接続している。吐出口48fは、吐出室48cの上端と連通しており、圧縮機ハウジング48の外部に向かって開口している。吐出口48fは、図示しない凝縮器と接続されている。
吐出室48c内には、油分離器50が固定されている。油分離器50は、円筒状をなす外周面50aを有している。外周面50aは、吐出室48cの内周面51と同軸をなしている。吐出室48c内において、油分離器50より下方側には、フィルタ52が設けられている。
モータハウジング49は、前壁49aと第2周壁49bとを有している。前壁49aは、モータハウジング49の前端、すなわち、ハウジング41の前端に位置しており、モータハウジング49の径方向に延びている。第2周壁49bは、前壁49aと接続しており、前壁49aから駆動軸43の駆動軸心O方向で後方に向かって延びている。これらの前壁49aと第2周壁49bとにより、モータハウジング49は、有底の筒状をなしている。そして、前壁49aと第2周壁49bとにより、モータハウジング49内には、モータ室54が形成されている。
モータハウジング49には、吸入口49cと支持部49dとが形成されている。吸入口49cは、第2周壁49bに形成されており、モータ室54と通じている。吸入口49cは、図示しない蒸発器と接続されており、蒸発器を経た冷媒をモータ室54内に吸入させる。つまり、モータ室54は、吸入室を兼ねている。支持部49dは、前壁49aからモータ室54内に向かって突出している。支持部49dは、円筒状をなしており、内部に第1ラジアル軸受55が設けられている。
固定ブロック42は、モータハウジング49と圧縮機ハウジング48との間に設けられている。圧縮機ハウジング48とモータハウジング49と固定ブロック42とは、圧縮機ハウジング48側から締結部材としての複数のボルト56によって締結されている。こうして、固定ブロック42は、圧縮機ハウジング48とモータハウジング49とに挟持されつつ、圧縮機ハウジング48及びモータハウジング49、すなわちハウジング41に固定されている。固定ブロック42は、ハウジング41内において、モータ機構44と可動スクロール46との間に配置されている。
固定ブロック42には、モータ室54内、ひいてはモータ機構44に向かって突出するボス42aが形成されている。ボス42aの先端には、挿通孔42bが形成されている。ボス42a内には、第2ラジアル軸受57と、シール材58とが設けられている。固定ブロック42の後面側には、複数の自転阻止ピン59が固定されている。各自転阻止ピン59は、固定ブロック42から後方に向かって延びている。なお、図10では、複数の自転阻止ピン59のうちの1つのみを図示している。また、固定ブロック42の外周部には、固定ブロック42を軸方向に貫通する第1吸入通路42cが形成されている。
駆動軸43は、駆動軸心O方向に延びる円柱状をなしている。駆動軸43は、前端側の小径部43aと、後端側の大径部43bとを有している。大径部43bの後端面43cには、後端面43cから後方に向かって延びる偏心ピン60が固定されている。偏心ピン60は、後端面43cにおいて、駆動軸心Oから偏心した位置に配置されている。
駆動軸43は、ハウジング41内に設けられている。そして、駆動軸43は、小径部43aが第1ラジアル軸受55を介して、モータハウジング49の支持部49dに回転可能に支承されている。また、大径部43bの後端側及び偏心ピン60は、固定ブロック42の挿通孔42bに挿通されて、ボス42a内に進入している。そして、ボス42a内において、大径部43bの後端側は、第2ラジアル軸受57に回転可能に支承されている。こうして、駆動軸43は、ハウジング41内で駆動軸心O周りに回転可能となっている。また、シール材58によって、固定ブロック42と駆動軸43との間が封止されている。さらに、偏心ピン60は、ボス42a内でブッシュ60aに嵌合している。
駆動軸43において、大径部43bには、略扇型をなす板状のバランスウェイト61が一体に形成されている。バランスウェイト61は、大径部43bにおいて、駆動軸心Oを挟んで偏心ピン60の反対側となる位置に配置されている。バランスウェイト61は、固定ブロック42とモータ機構44との間において、大径部43bから第2周壁49b側に向かって延びている。
モータ機構44は、モータ室54内に収容されており、バランスウェイト61よりも前方に位置している。モータ機構44は、ステータ44aとロータ44bとを有している。ステータ44aは、モータ室54内において、第2周壁49bの内周面に固定されている。ステータ44aは、モータハウジング49の外部に設けられたインバータ(図示略)と接続されている。
ロータ44bは、ステータ44a内に配置されており、駆動軸43の大径部43bに固定されている。ロータ44bは、ステータ44a内で回転することにより、駆動軸43を駆動軸心O周りで回転させる。
固定スクロール45は、圧縮機ハウジング48に固定されており、第1周壁48bの内周側に配置されている。固定スクロール45は、固定基板45aと、固定渦巻壁45bと、環状の外周壁45cとを有している。固定基板45aは、固定スクロール45の後端に位置しており、円盤状に形成されている。固定基板45aには、第2凹部45dと吐出ポート45eとが形成されている。第2凹部45dは、固定基板45aの後端面から前方に向かって凹む形状をなしている。第2凹部45dは、固定スクロール45が圧縮機ハウジング48に固定されることにより、第1凹部48dと対向する。こうして、第1凹部48dと第2凹部45dとによって、吐出弁室62が形成されている。吐出弁室62は、吐出通路48eを通じて吐出室48cと連通している。吐出ポート45eは、固定基板45a内を駆動軸心O方向に延びており、第2凹部45d、ひいては、吐出弁室62に通じている。
また、固定基板45aには、吐出弁63とリテーナ64とが取り付けられている。吐出弁63及びリテーナ64は、吐出弁室62内に配置されている。吐出弁63は、弾性変形することにより、吐出ポート45eの開閉を行う。リテーナ64は、吐出弁63の弾性変形量を調整する。
固定スクロール45の外周壁45cと圧縮機ハウジング48の第1周壁48bとの間には第2吸入通路48gが形成されている。また、外周壁45cには第2吸入通路48gと後述する圧縮室68とを連通する吸入ポート45fが形成されている。第2吸入通路48gは、第1吸入通路42cと通じている。このため、吸入ポート45fは、第2吸入通路48g及び第1吸入通路42cにより、モータ室54に連通されている。
固定渦巻壁45bは、固定基板45aの前面に立ち上げられており、外周壁45cの径方向内方側に配置されている。固定基板45aと、固定渦巻壁45bと、外周壁45cとは一体をなしている。
また、固定スクロール45には、給油通路65が形成されている。給油通路65は、固定基板45a内及び外周壁45c内を貫通している。これにより、給油通路65の後端は固定基板9aの後端面に開口しており、給油通路65の前端は外周壁45cの前端面に開口している。給油通路65は、フィルタ52を介して吐出室48cと通じている。なお、給油通路65の形状は適宜設計可能である。
可動スクロール46は、圧縮機ハウジング48内に設けられており、固定スクロール45と固定ブロック42との間に位置している。可動スクロール46は、可動基板46aと、可動渦巻壁46bとを有している。可動基板46aは、可動スクロール46の前端に位置しており、円盤状に形成されている。可動基板46aには、第3ラジアル軸受66を介してブッシュ60aが回転可能に支持されている。これにより、可動スクロール46は、ブッシュ60a及び偏心ピン60を通じて、駆動軸心Oから偏心した位置で駆動軸43と接続されている。
可動基板46aには、各自転阻止ピン59の先端部を遊嵌状態で受ける自転阻止孔46cが凹設されている。各自転阻止孔46cには円筒状のリング67が遊嵌されている。
可動渦巻壁46bは、可動基板46aの後面に立ち上げられており、固定基板45aに向かって延びている。可動渦巻壁46bの中心近傍には、可動渦巻壁46bの後端に開口しつつ、可動渦巻壁46b内を前後方向に延びて可動基板46aまで貫通する給気孔46dが貫設されている。
固定スクロール45と可動スクロール46とは互いに噛み合わされている。これにより、固定スクロール45と可動スクロール46との間には、固定基板45a、固定渦巻壁45b、可動基板46a及び可動渦巻壁46bによって、圧縮室68が形成されている。圧縮室68は、吐出ポート45eと通じており、吐出ポート45eを介して吐出弁室62と連通されている。また、圧縮室68は、吸入ポート45fと通じており、吸入ポート45f、第2吸入通路48g及び第1吸入通路42cを介して吸入室として機能するモータ室54に連通されている。
固定スクロール45及び可動スクロール46と、固定ブロック42との間には、弾性プレート47が設けられている。固定スクロール45の外周壁45cの前端面と、固定ブロック42の後端面との間で、弾性プレート47の外周縁部が挟持されている。弾性プレート47は、金属製の薄板によって形成されている。可動スクロール46は、弾性プレート47の弾性変形時の復元力によって、固定スクロール45側に付勢されている。
可動基板46a及び弾性プレート47により、固定ブロック42のボス42a内には、背圧室69が形成されている。背圧室69は、可動スクロール46の給気孔46dと連通している。また、背圧室69は、支持部材42と弾性プレート47との間の隙間等を介して、固定スクロール45の給油通路65にも通じている。
駆動軸43、固定スクロール45、可動スクロール46、吐出室48c、モータ室54、ブッシュ60、吐出弁室62、吐出弁63及び圧縮室68等によって、本発明における圧縮機構80が構成されている。
圧縮機ハウジング48は、吐出室48cを区画する区画壁70を有している。図11及び図12に示すように、区画壁70には均圧弁室71が形成されている。均圧弁室71は、円柱状の大径室71aと、大径室71aの前端から連続して延び、大径室71aよりも内径の小さい円柱状の小径室71bとから構成されている。
均圧弁室71の大径室71a内には、大径室71a内を前後方向に往復動可能な均圧弁体72と、均圧弁体72を付勢する付勢部材としてのばね73とが収容されている。均圧弁体72は、後端が開口する有底円筒状をなしている。均圧弁体72の外径は大径室71aの内径よりわずかに小さい。ばね73の一端は均圧弁体72の底壁面72aに接続され、ばね73の他端は大径室71aの後壁面71cに接続されている。
ばね73は、圧縮された状態で均圧弁室71内にセットされており、常時均圧弁体72を前方に向かって付勢している。図11に示すように、圧縮機構80の停止時には、ばね73のばね力により、均圧弁体72は均圧弁室71内の最前方の開放位置に位置しており、後述する均圧通路77を開放している。図12に示すように、圧縮機構80の動作の開始とほぼ同時に、後述する第1の吐出圧P1及び第2の吐出圧P2の差圧ΔPによって、均圧弁体72が均圧弁室71内の最後方の閉鎖位置に移動して後述する均圧通路77を閉鎖するように、ばね73のばね力が設定されている。
区画壁70には、第1連通路74が形成されている。第1連通路74の一端は吐出弁室62に開口し、第1連通路74の他端は小径室71bの側壁面71dに開口している。区画壁70には第2連通路75が形成されている。第2連通路75の一端は吐出室48cに開口し、第2連通路75の他端は大径室71aの後壁面71cに開口している。区画壁70及び固定基板45aには第3連通路76が形成されている。第3連通路76の一端は大径室71aの後壁面71cに開口し、第3連通路76の他端は圧縮室68に開口している。第3連通路の一端側の開口は、均圧弁室71内を前方の開放位置に移動した均圧弁体72によって開放されるとともに、均圧弁室71内を後方の閉鎖位置に移動した均圧弁体72の後端面72cによって閉鎖されるようになっている。
固定基板45a及び区画壁70に形成された第3連通路76、均圧弁室71の大径室71a、並びに区画壁70に形成された第2連通路75によって、圧縮室68と吐出室48cとが連通されている。圧縮室68は、吸入ポート45f、第2吸入通路48g及び第1吸入通路42cを介して吸入室としてのモータ室54に通じている。これら第2連通路75、大径室71a、第3連通路76、圧縮室68、吸入ポート45f、第2吸入通路48g及び第1吸入通路42cが、吐出室48cの冷媒ガスを圧縮室68、ひいては吸入室としてのモータ室54に導入させる本発明における均圧通路77を構成している。
吐出弁室62には第1の吐出圧P1が作用し、吐出室48cには第2の吐出圧P2が作用する。第1連通路74、均圧弁室71、第2連通路75、均圧弁体72及びばね73は、第1の吐出圧P1及び第2の吐出圧P2の差圧ΔP(ΔP=P1-P2)によって均圧通路77の開閉を行う弁機構78を構成している。また、均圧弁体72の前端面72bは第1の吐出圧P1を受ける第1の受圧面に相当し、均圧弁体72の底壁面72aは第2の吐出圧P2を受ける第2の受圧面に相当する。
インバータによってモータ機構44が駆動されることにより、駆動軸43が駆動軸心O周りで回転する。これにより、可動スクロール46が回転し、可動基板46aが固定渦巻壁45bの先端を摺動するとともに、固定渦巻壁45bと可動渦巻壁46bとが互いに摺動する。この際、各自転阻止ピン59がリング67の内周面を摺動しつつ転動することにより、可動スクロール46は自転が規制されて公転可能となっている。このように、可動スクロール46が回転することにより、吸入口49cからモータ室54内に導入された冷媒が第1吸入通路42c、第2吸入通路48g及び吸入ポート45fを経て圧縮室68内に吸入される。そして、圧縮室68は、可動スクロール46の回転によって、容積を減少させつつ、内部の冷媒を圧縮する。
また、可動スクロール46の回転によって、給気孔46dが圧縮室68に僅かに開く。これにより、圧縮室68内の高圧の冷媒の一部が給気孔46dを経て背圧室69内に流入し、背圧室69が高圧となる。また、固定スクロール45の給油通路65を介して吐出室48c内の潤滑油が背圧室69に供給される。このため、弾性プレート47及び背圧室69の圧力によって、可動スクロール46が固定スクロール45側に付勢され、圧縮室68が好適に封止される。
圧縮室68で圧縮された高圧の冷媒は、吐出ポート45eから吐出弁室62に吐出され、さらに、吐出弁室62から、吐出通路48eを経て吐出室48cに至る。そして、油分離器50の外周面50aと吐出室48cの内周面51との間を周回する過程で潤滑油を分離しつつ、油分離器50の内部を流通して吐出口48fから吐出される。
一方、冷媒から分離された潤滑油は、吐出室48c内に貯留される。そして、この潤滑油は、フィルタ52を経て油供給通路65を流通することにより、固定スクロール45と可動スクロール46との摺動箇所に供給され、固定スクロール45と可動スクロール46との摺動箇所を潤滑する。また、油供給通路65を流通する潤滑油は、第2ラジアル軸受57と駆動軸43との間の他、モータ室54内にも供給される。さらに、油供給通路65を流通する潤滑油は、弾性プレート47と固定ブロック42との間の隙間等を介して、背圧室69内にも供給される。
吸入室としてのモータ室54と吐出室48cとの間に均圧通路77が設けられており、均圧通路77を介して吐出室48cの冷媒ガスがモータ室54に導入されるようになっている。均圧通路77には、均圧通路77の開閉を行う弁機構78が設けられている。弁機構78は、吐出弁室62に作用する第1の吐出圧P1と、吐出室48cに作用する第2の吐出圧P2との差圧ΔPによって、均圧通路77の開閉を行う。
吐出室48cは、吐出弁室62の下流に設けられている。吐出弁室62から吐出室48cに至る吐出流路における流通抵抗により、吐出圧は上流側よりも下流側の方が低くなる。このため、圧縮機構80の動作時における両室の吐出圧は、上流側にある吐出弁室62の第1の吐出圧P1の方が、下流側にある吐出室48cの第2の吐出圧P2よりも高い。
弁機構78は、圧縮機構80の動作の開始とほぼ同時に、差圧ΔPが発生して、差圧ΔPが増大する。そして、差圧ΔPによって均圧弁体72を後方に移動させようとする力の方がばね73のばね力よりも大きくなれば、均圧弁体72が後方に移動し、均圧弁体72の後端面72cが第3連通路76を閉鎖する。これにより、吐出室48cとモータ室54と連通する均圧通路77が遮断されるので、吐出室48c内の冷媒ガスが均圧通路77を介してモータ室54へ導入されることを抑制できる。
一方、圧縮機構80の停止時には、停止と同時に差圧ΔPが減少する。そして、差圧ΔPによって均圧弁体72を後方に移動させようとする力よりもばね73のばね力の方が大きくなれば、均圧弁体72が前方に移動し、均圧弁体72の後端面72cが第3連通路76を開放する。これにより、吐出室48cとモータ室54とが均圧通路77により連通されるので、吐出室48c内の高圧の冷媒ガスが均圧通路77を介してモータ室54へ導入される。そして、速やかに差圧ΔPが小さくなる。
こうして、圧縮機構80の停止時には、均圧通路77を介して吐出室48c内の高圧の冷媒ガスが速やかにモータ室54に導入される。モータ室54に導入された冷媒ガスはその途中で速やかに圧縮室68等の圧縮機構80内に導入される。このため、吐出室48cと圧縮機構80とを連通する油供給通路65等を介しての圧縮機構80内への潤滑油の逆流が減少するので、圧縮室68内に潤滑油が溜まることを抑えることができる。よって、圧縮機構80の再起動時における液圧縮を抑えることができ、起動トルクが過大になることを抑えることが可能になる。
したがって、この実施例によれば、圧縮機構80における摺動部や背圧室69に潤滑油を供給する圧縮機において、圧縮機構80の再起動時における液圧縮による起動トルクの増大を抑えることができる。
弁機構78は、均圧弁室71内を往復動可能な均圧弁体72と、均圧弁体72を付勢するばね73とを備えている。この簡素な構造の弁機構78の採用により、弁機構78、ひいては圧縮機の低コスト化に貢献する。
圧縮機構80は、駆動軸43の回転に伴って変位することで圧縮室68の容積を変化させる可動体としての可動スクロール46と、可動スクロール46に背圧を作用して圧縮室68の封止性を高める方向に可動スクロール46を付勢する背圧室69とを有しており、背圧室69は油供給通路65等によって吐出室48cに接続されている。
この場合、圧縮機構80の動作時には、吐出室48cと背圧室69との圧力差により吐出室48cの潤滑油を油供給通路65等を介して背圧室69に供給することで、可動スクロール46に背圧を作用して圧縮室68の封止性を高めることができる。圧縮機構80の停止時には、吐出室48c内の高圧の冷媒ガスが均圧通路77を介して圧縮室68に速やかに導入されて吐出室48cと圧縮室68との差圧が速やか減少するので、背圧室69内の潤滑油が圧縮室68に導入されることを抑えることができる。
よって、圧縮室68内に潤滑油が溜まることを抑えることができるので、圧縮機構80の再起動時における液圧縮の問題を抑えることが可能になる。
以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できる。
例えば、本発明は、ベーン型圧縮機やスクロール型圧縮機の他、斜板式圧縮機等にも具体化可能である。また、実施例1~4の圧縮機の各構成を適宜組み合わせて圧縮機を構成しても良い。
本発明は車両等の空調装置に利用可能である。
1b、49c…吸入口
2a、48f…吐出口
1…フロントハウジング(ハウジング)
41…ハウジング
9、43…駆動軸
18、50…油分離器
14…吸入室
54…モータ室(吸入室)
13、68…圧縮室
15、63…吐出弁
3e、62…吐出弁室
17、48c…吐出室
31、77…均圧通路
32、78…弁機構
33、65…油供給通路
26b…前端面(第1の受圧面)
26a、72a…底壁面(第2の受圧面)
72b…前端面(第1の受圧面)
26、72…均圧弁体(弁体)
27、73…ばね(付勢部材)
5…リヤサイドプレート(区画壁)
35、80…圧縮機構
70…区画壁
11…ロータ
11a…ベーン溝
12…ベーン(可動体)
11b、69…背圧室
42…固定ブロック
45…固定スクロール
46…可動スクロール(可動体)

Claims (5)

  1. 冷媒を吸入する吸入口及び冷媒を吐出する吐出口を有するハウジングと、
    前記ハウジングに支承され、駆動軸心周りに回転可能な駆動軸と、
    前記ハウジング内に設けられ、前記駆動軸の回転により作動する圧縮機構と、
    前記ハウジング内で前記圧縮機構に隣接して設けられる油分離器と、を備え、
    前記ハウジングは、
    前記吸入口から冷媒を吸入し、吸入圧が作用する吸入室と、
    前記圧縮機構内に設けられ、前記吸入室から流入した冷媒を圧縮する圧縮室と、
    前記圧縮室から吐出された冷媒が逆流するのを抑制する吐出弁が収容された、第1の吐出圧が作用する吐出弁室と、
    前記吐出弁室の下流に設けられて冷媒を前記吐出口から吐出させるとともに冷媒から潤滑油を分離して吐出室内に貯油させる前記油分離器が収容された、第2の吐出圧が作用する吐出室と、を有し
    前記圧縮機構と前記吐出室とが、前記潤滑油を前記圧縮機構内に供給する油供給通路で連通される圧縮機であって、
    前記ハウジングには、前記吸入室と前記吐出室との間に、前記吐出室の冷媒を前記吸入室に導入させる均圧通路が設けられ、
    前記均圧通路には前記第1の吐出圧及び前記第2の吐出圧の差圧によって前記均圧通路の開閉を行う弁機構が設けられ、
    前記弁機構は、前記圧縮機構の動作時に前記差圧が増大することで前記均圧通路を遮断し、前記圧縮機構の停止時に前記差圧が減少することで前記均圧通路を開放する構成とされていることを特徴とする圧縮機。
  2. 前記弁機構は、前記第1の吐出圧を受ける第1の受圧面と、前記第2の吐出圧を受ける第2の受圧面とを有するとともに、前記均圧通路を閉鎖する閉鎖位置と、前記均圧通路を開放する開放位置との間を往復動可能な弁体と、前記弁体を付勢する付勢部材と、を備えている請求項1記載の圧縮機。
  3. 前記圧縮機構は、前記駆動軸の回転に伴って変位することで前記圧縮室の容積を変化させる可動体と、前記可動体に背圧を作用して前記圧縮室の封止性を高める方向に前記可動体を付勢する背圧室と、を有し、
    前記背圧室は、前記油供給通路によって前記吐出室に接続されている請求項1又は2記載の圧縮機。
  4. 前記ハウジングは、前記吐出室を区画する区画壁を有し、
    前記圧縮機構は、複数のベーン溝が形成され前記駆動軸の回転によって回転するロータと、各前記ベーン溝に出没可能に設けられた前記可動体としての複数のベーンと、を有し、
    前記ロータは、各前記ベーン溝と各前記ベーンとの間に複数の前記背圧室を有し、
    前記区画壁に、前記均圧通路及び前記弁機構が設けられている請求項3項記載の圧縮機。
  5. 前記圧縮機構は、前記ハウジングに固定される固定スクロールと、前記固定スクロールとともに前記圧縮室を形成するように前記駆動軸の回転によって回転する前記可動体としての可動スクロールと、を有し、
    前記ハウジングは、前記吐出室を区画する区画壁と、前記可動スクロールとともに前記背圧室を形成する固定ブロックと、を有し、
    前記区画壁に、前記均圧通路及び前記弁機構が設けられている請求項3記載の圧縮機。
JP2021061948A 2021-03-31 2021-03-31 圧縮機 Pending JP2022157622A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061948A JP2022157622A (ja) 2021-03-31 2021-03-31 圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061948A JP2022157622A (ja) 2021-03-31 2021-03-31 圧縮機

Publications (1)

Publication Number Publication Date
JP2022157622A true JP2022157622A (ja) 2022-10-14

Family

ID=83560007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061948A Pending JP2022157622A (ja) 2021-03-31 2021-03-31 圧縮機

Country Status (1)

Country Link
JP (1) JP2022157622A (ja)

Similar Documents

Publication Publication Date Title
EP2131040B1 (en) Motor-driven scroll type compressor
WO2010064537A1 (ja) スクロール型圧縮機
JP5408073B2 (ja) 圧縮機
US7195470B2 (en) Scroll compressor having a supply passage connecting the back pressure chamber to discharge pressure region and passing a clearance at a sliding portion
JP5527349B2 (ja) ベーン型圧縮機
EP1471258B1 (en) Electric compressor
JPH07324690A (ja) スクロール型圧縮機
JP2009036069A (ja) スクロール型流体機械
US4403929A (en) Rotary compressor
JP5708570B2 (ja) ベーン型圧縮機
JP2013204557A (ja) タンデム式ベーン型圧縮機
KR100937919B1 (ko) 오일순환 및 배압조절 기능이 개선된 스크롤 압축기
JP4930022B2 (ja) 流体機械
US6599110B2 (en) Scroll-type compressor with lubricant provision
JPH11210650A (ja) スクロール型圧縮機
CN108779775B (zh) 涡旋型压缩机
JP2022157622A (ja) 圧縮機
JP4117848B2 (ja) 圧縮機
KR102392491B1 (ko) 스크롤형 압축기
JP2013245592A (ja) 気体圧縮機
JP2014118931A (ja) スクリュー圧縮機
EP3726058A1 (en) Motor operated compressor
JP2002213380A (ja) 圧縮機の給油構造
KR101897776B1 (ko) 압축기
EP3553317A1 (en) Motor-operated compressor