JP2022152151A - Method for winding carbon paper and method for producing carbon paper wound body using the same - Google Patents
Method for winding carbon paper and method for producing carbon paper wound body using the same Download PDFInfo
- Publication number
- JP2022152151A JP2022152151A JP2021054817A JP2021054817A JP2022152151A JP 2022152151 A JP2022152151 A JP 2022152151A JP 2021054817 A JP2021054817 A JP 2021054817A JP 2021054817 A JP2021054817 A JP 2021054817A JP 2022152151 A JP2022152151 A JP 2022152151A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- carbon paper
- tension
- turning point
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004804 winding Methods 0.000 title claims abstract description 237
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000001514 detection method Methods 0.000 claims description 21
- 230000003068 static effect Effects 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 17
- 239000004917 carbon fiber Substances 0.000 description 17
- 230000007704 transition Effects 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 229920001568 phenolic resin Polymers 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Winding Of Webs (AREA)
- Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
Abstract
Description
本発明は、カーボンペーパーの巻き取り方法に関する。カーボンペーパーは、固体高分子型燃料電池やメタノール型燃料電池などの燃料電池のガス拡散電極基材や、酸素や水素などの気体を活物質として使用する電池の電極基材として主に用いられる。 The present invention relates to a method for winding carbon paper. Carbon paper is mainly used as a gas diffusion electrode base material for fuel cells such as polymer electrolyte fuel cells and methanol fuel cells, and as an electrode base material for batteries using gases such as oxygen and hydrogen as active materials.
燃料電池において発電反応が起こる、膜-電極接合体を構成するガス拡散電極基材の材料としては、炭素短繊維を樹脂炭化物で結着した多孔質のカーボンペーパーが一般的に用いられる。長尺状のカーボンペーパーを搬送する際には、カーボンペーパーを巻き取って巻回体として取り扱う必要がある。しかしながら、表面の摩擦係数が小さく、脆性の高いカーボンペーパーを巻き取る際には、巻き取り張力が低いと巻きズレが発生し、巻き取り張力が高いと巻きズレは発生しないかわりにカーボンペーパーの端部の微小な傷から破断しやすいという問題があり、巻き取り条件の制御に特有の困難性がある。 Porous carbon paper, in which short carbon fibers are bonded with resin carbide, is generally used as a material for the gas diffusion electrode base material constituting the membrane-electrode assembly in which the power generation reaction occurs in the fuel cell. When conveying long carbon paper, it is necessary to wind the carbon paper and handle it as a roll. However, when winding carbon paper that has a small friction coefficient on the surface and is highly brittle, winding misalignment occurs if the winding tension is low, and winding misalignment does not occur if the winding tension is high. There is a problem that it is easy to break due to minute scratches on the part, and there is a unique difficulty in controlling the winding conditions.
カーボンペーパーの巻き取り方法として、特許文献1では、初期巻き取り張力を30N/m以上、最終巻き取り張力を20N/m以上とし、かつ巻き始めから巻き終わりにかけて巻き取り張力を漸減させる方法が提案されている。しかし、カーボンペーパーは多孔質で厚さ変形しやすいため、巻き取り張力を漸減させながら巻き取っても、カーボンペーパー間の圧力緩和により張力漸減の効果が低下し、特に大径にしようとした場合には依然として巻きズレが発生する問題があった。
As a method for winding carbon paper,
また、特許文献2では、最終巻き取り張力T2を初期巻き取り張力T1以上とし、さらにT2は巻き取り直径を用いて算出した値以下とすることが提案されている。しかしながら、外周のカーボンペーパーからの締め付け力の累積が内周のカーボンペーパーにかかるため、特に低密度のカーボンペーパーで内周での巻き締まりや、カーボンペーパー厚さの減少によるずれが起こりやすい問題があった。
Further,
本発明の目的は、カーボンペーパーを大径の巻回体とした場合(典型的には巻き取り終了時の巻回径が500mm以上である場合)においても巻きズレを十分に低減可能な巻き取り方法を提供することにある。 An object of the present invention is to provide a winding that can sufficiently reduce winding misalignment even when carbon paper is used as a large-diameter winding body (typically, when the winding diameter is 500 mm or more at the end of winding). It is to provide a method.
上記課題を解決するための本発明は、以下の通りである。
(1)連続的に搬送される長尺状のカーボンペーパーをコアボビンに巻き取るカーボンペーパーの巻き取り方法であって、巻回径が巻き取り開始時に比べ40mm以上増加する所定の張力転換点まで40N/m以上の一定張力で巻き取り、前記張力転換点経過後は張力を減少させながら巻き取り、かつ巻き取り終了時の張力を20N/m以上とするカーボンペーパーの巻き取り方法。
(2)巻き取り開始から前記張力転換点までの前記カーボンペーパーの巻回径の変化率が20~160%である、(1)に記載のカーボンペーパーの巻き取り方法。
(3)前記張力転換点経過後の前記カーボンペーパーの巻回径の変化率が10~250%である、(1)または(2)に記載のカーボンペーパーの巻き取り方法。
(4)前記張力転換点経過後の巻き取りトルクの変化率が-100~+160%である、(1)~(3)のいずれかに記載のカーボンペーパーの巻き取り方法。
(5)巻き取り終了時の巻回径が500mm以上である、(1)~(4)のいずれかに記載のカーボンペーパーの巻き取り方法。
(6)前記コアボビンの外径が76mm以上である、(1)~(5)のいずれかに記載のカーボンペーパーの巻き取り方法。
(7)曲げ弾性率が2~50GPa、静摩擦係数が0.1~0.7、引張強度が1~10kN/mであるカーボンペーパーの巻き取りに用いられる、(1)~(6)のいずれかに記載のカーボンペーパーの巻き取り方法。
(8)巻き取りの前にカーボンペーパーの端部位置を検出する端部位置検出手段を設け、該端部位置検出手段の検出信号により巻きズレを防止するよう制御する、(1)~(7)のいずれかに記載のカーボンペーパーの巻き取り方法。
(9)(1)~(8)のいずれかに記載のカーボンペーパーの巻き取り方法を含むカーボンペーパー巻回体の製造方法。
The present invention for solving the above problems is as follows.
(1) A carbon paper winding method for winding a continuously conveyed long carbon paper around a core bobbin, wherein the tension is 40 N until a predetermined tension turning point at which the winding diameter increases by 40 mm or more compared to the start of winding. A method of winding carbon paper by winding with a constant tension of 1/m or more, winding while reducing the tension after passing the tension turning point, and setting the tension at the end of winding to 20 N/m or more.
(2) The carbon paper winding method according to (1), wherein the change rate of the winding diameter of the carbon paper from the start of winding to the tension turning point is 20 to 160%.
(3) The carbon paper winding method according to (1) or (2), wherein the change rate of the winding diameter of the carbon paper after the tension turning point has passed is 10 to 250%.
(4) The carbon paper winding method according to any one of (1) to (3), wherein the change rate of the winding torque after the tension turning point has passed is -100 to +160%.
(5) The carbon paper winding method according to any one of (1) to (4), wherein the winding diameter at the end of winding is 500 mm or more.
(6) The carbon paper winding method according to any one of (1) to (5), wherein the outer diameter of the core bobbin is 76 mm or more.
(7) Any one of (1) to (6) used for winding carbon paper having a flexural modulus of 2 to 50 GPa, a static friction coefficient of 0.1 to 0.7, and a tensile strength of 1 to 10 kN/m. The method for winding the carbon paper described above.
(8) An end position detection means is provided to detect the end position of the carbon paper before winding, and the detection signal of the end position detection means is controlled to prevent winding misalignment. (1) to (7) ).
(9) A method for producing a carbon paper roll, including the carbon paper winding method according to any one of (1) to (8).
本発明によれば、カーボンペーパーを連続的に巻き取る際に、大径であっても巻きズレが小さい巻回体とすることができ、梱包、輸送等における巻き崩れを防止し、カーボンペーパー巻回体のハンドリング性を向上させることができる。 According to the present invention, when the carbon paper is continuously wound, it is possible to form a wound body with small winding deviation even if it has a large diameter, prevent winding collapse during packing, transportation, etc., and the carbon paper can be wound. The handleability of the rotating body can be improved.
以下、本明細書において「~」はその両端の数値を含む範囲を示す記号として用いる。 Hereinafter, in this specification, "-" is used as a symbol indicating a range including numerical values at both ends thereof.
カーボンペーパーとは、炭素短繊維を含む抄造体をフェノール樹脂等の有機物の炭化物で結着してなる構造物である。カーボンペーパーは、曲げ弾性率が高く、静摩擦係数が低く、圧力で厚さが減少しやすく、脆い性質を有するので、本発明の巻き取り方法を好ましく適用することができる。カーボンペーパーは、固体高分子型燃料電池やメタノール型燃料電池などの燃料電池のガス拡散電極基材や、酸素や水素などの気体を活物質として使用する電池の電極基材として好ましく用いられる。 Carbon paper is a structure formed by binding a paper product containing short carbon fibers with a carbonized organic substance such as phenol resin. Carbon paper has a high flexural modulus, a low coefficient of static friction, is easily reduced in thickness by pressure, and is brittle, so the winding method of the present invention can be preferably applied to the carbon paper. Carbon paper is preferably used as a gas diffusion electrode base material for fuel cells such as polymer electrolyte fuel cells and methanol fuel cells, and as an electrode base material for batteries using gases such as oxygen and hydrogen as active materials.
カーボンペーパーを構成する炭素繊維は、PAN系、ピッチ系、レーヨン系など、いずれも使用可能であるが、製造時や使用時に折損しにくいPAN系の炭素繊維が好ましい。炭素繊維を結着する炭化物の前駆体となる有機物としては、フェノール樹脂、フラン樹脂、ピッチ、タール等が挙げられ、含浸、成形等の加工が容易である熱硬化性樹脂が好ましく、残炭率の高いフェノール樹脂がさらに好ましい。 Any of PAN-based, pitch-based, rayon-based carbon fibers, and the like can be used as carbon fibers constituting the carbon paper, but PAN-based carbon fibers are preferable because they are less likely to break during manufacture and use. Phenolic resin, furan resin, pitch, tar, and the like are examples of the organic matter that serves as a precursor of the carbide that binds the carbon fibers. Phenolic resins with high . are more preferred.
カーボンペーパーを構成する炭素短繊維の繊維長は3~20mmが好ましく、さらに好ましくは5~15mmである。炭素短繊維の繊維長を上記範囲とすることにより、炭素短繊維を抄造する際の分散性を向上させ、目付ばらつきを抑制することができる。 The fiber length of short carbon fibers constituting carbon paper is preferably 3 to 20 mm, more preferably 5 to 15 mm. By setting the fiber length of the short carbon fibers within the above range, it is possible to improve the dispersibility of the short carbon fibers during papermaking, and to suppress variations in basis weight.
なお、カーボンペーパーは、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂で撥水処理されたものであってもよい。また、カーボンブラック、黒鉛粉末などの炭素粒子とPTFEなどの撥水性樹脂の混合物層(ガス拡散電極基材のマイクロポーラス層)を表面に設けたガス拡散電極基材としてのカーボンペーパーの巻き取りにも、本発明の巻き取り方法は有効である。すなわち、本明細書において、「カーボンペーパー」には、このような付加要素を備えたものも含む用語として用いる。 The carbon paper may be water-repellent treated with a fluororesin such as polytetrafluoroethylene (PTFE). In addition, for winding carbon paper as a gas diffusion electrode base material provided on the surface with a mixture layer of carbon particles such as carbon black or graphite powder and a water-repellent resin such as PTFE (microporous layer of gas diffusion electrode base material) Also, the winding method of the present invention is effective. That is, in the present specification, the term "carbon paper" is used as a term including those provided with such additional elements.
カーボンペーパーの曲げ弾性率は、2~50GPaであることが好ましく、2~30GPaがより好ましく、さらに好ましくは2~20GPaである。カーボンペーパーの曲げ弾性率が2GPaより小さいと、例えば、燃料電池のガス拡散電極基材用途で使用する場合にハンドリング性が悪く、またセパレータの溝への落ち込みが生じることがある。カーボンペーパーの曲げ弾性率が50GPaよりも大きいと、カーボンペーパーをコアボビンにロール状に巻き取る際、剛性によりコアボビンにカーボンペーパーが沿いにくく、巻き取りやすさが低下し、巻きズレの原因となることがある。カーボンペーパーの曲げ弾性率は、JIS K 6911(1995)に規定される方法に準拠して求めることができる。このとき、試験片の幅は15mm、長さは40mm、支点間距離は15mmとする。また、支点と圧子の曲率半径は3mm、荷重速度は2mm/minとする。曲げ弾性率は、ロール状への巻き取りやすさや、ハンドリング性の良否を示す指標となる。 The flexural modulus of carbon paper is preferably 2 to 50 GPa, more preferably 2 to 30 GPa, still more preferably 2 to 20 GPa. If the flexural modulus of the carbon paper is less than 2 GPa, for example, when it is used as a gas diffusion electrode base material for a fuel cell, the handling property is poor and it may fall into the grooves of the separator. If the flexural modulus of the carbon paper is greater than 50 GPa, when the carbon paper is wound around the core bobbin in a roll shape, the stiffness makes it difficult for the carbon paper to follow the core bobbin, reducing the ease of winding and causing winding misalignment. There is The flexural modulus of carbon paper can be determined according to the method specified in JIS K 6911 (1995). At this time, the width of the test piece is 15 mm, the length is 40 mm, and the distance between fulcrums is 15 mm. Also, the radius of curvature of the fulcrum and the indenter is 3 mm, and the loading speed is 2 mm/min. The flexural modulus is an index indicating the ease of winding into a roll and the quality of handling.
また、カーボンペーパーの静摩擦係数は、0.1~0.7であることが好ましく、0.2~0.6がより好ましく、さらに好ましくは0.2~0.5である。カーボンペーパーの静摩擦係数が0.1よりも小さいと、巻回体におけるカーボンペーパーの層間の摩擦力が小さいため、巻き取り後に端部ズレが発生しやすくなる。カーボンペーパーの静摩擦係数が0.7よりも大きいと、従来の技術で巻き端面が揃っているカーボンペーパーの巻回体を得ることができる。カーボンペーパーの静摩擦係数は、新東科学株式会社製静摩擦係数測定機「ポータブル摩擦計ミューズ Type:94i」等を用いて測定することができる。直径25mmに切り取った一方のサンプルを、測定器下面にある重りに貼り付け、測定器を他方のサンプル上に置き、測定開始すると、自動で重りを水平方向に移動させる荷重が加えられていく。滑り始める瞬間の荷重を最大静止摩擦力F(N)、重りの重さを垂直力G(N)とし、静摩擦係数μを測定する。静摩擦係数μは下記式より求めることができる。測定回数は10回とし、10個の平均値から静摩擦係数を算出する。 The static friction coefficient of the carbon paper is preferably 0.1 to 0.7, more preferably 0.2 to 0.6, still more preferably 0.2 to 0.5. If the static friction coefficient of the carbon paper is less than 0.1, the frictional force between the layers of the carbon paper in the wound body is small, so that the edges are likely to shift after winding. When the coefficient of static friction of the carbon paper is greater than 0.7, it is possible to obtain a roll of carbon paper with uniform winding end faces by conventional techniques. The static friction coefficient of carbon paper can be measured using a static friction coefficient measuring machine "Portable Friction Meter Muse Type: 94i" manufactured by Sintokagaku Co., Ltd., or the like. One sample cut to a diameter of 25 mm is attached to the weight on the bottom surface of the measuring device, the measuring device is placed on the other sample, and when measurement starts, a load is automatically applied to move the weight horizontally. The static friction coefficient μ is measured with the maximum static friction force F (N) as the load at the moment when the slide starts, and the vertical force G (N) as the weight of the weight. The coefficient of static friction μ can be obtained from the following formula. The number of measurements is 10, and the static friction coefficient is calculated from the 10 average values.
μ=F/G
カーボンペーパーの引張強度は1~10kN/mであることが好ましく、2~10kN/mであることがより好ましい。1kN/m未満であるとハンドリング性が低下する傾向にある。カーボンペーパーの引張強度は、サイズ15mm×100mmの試験片を引張速度2mm/minにて引っ張り、破断した際の張力から測定する。このとき長尺カーボンペーパーの長手方向が100mmとなるようにサンプリングする。測定回数は5回とし、5個の平均値から引張強度を算出する。
μ=F/G
The carbon paper preferably has a tensile strength of 1 to 10 kN/m, more preferably 2 to 10 kN/m. If it is less than 1 kN/m, the handleability tends to deteriorate. The tensile strength of the carbon paper is measured from the tension when a test piece of 15 mm×100 mm in size is pulled at a tensile speed of 2 mm/min and broken. At this time, sampling is performed so that the longitudinal direction of the long carbon paper is 100 mm. The number of measurements is 5, and the tensile strength is calculated from the average value of the 5 measurements.
連続的に搬送される長尺状のカーボンペーパーは、コアボビンに巻き取られ、巻回体となる。巻き取ったカーボンペーパーの割れを防止するためには、コアボビンの外径は76mm以上が好ましく、152mm以上がより好ましい。一方、コアボビンの外径が大きすぎると、長尺のカーボンペーパーを巻き取っても、巻回径の変化率が小さいため、巻ズレを抑制する効果が得られにくくなる傾向がある。また、巻回体全体が大きくなり、ハンドリング性が低下する問題も生じる。そのため、コアボビンの外径は400mm以下が好ましく、250mm以下がより好ましい。 A long carbon paper that is continuously conveyed is wound around a core bobbin to form a wound body. In order to prevent cracking of the wound carbon paper, the outer diameter of the core bobbin is preferably 76 mm or more, more preferably 152 mm or more. On the other hand, if the outer diameter of the core bobbin is too large, even if the long carbon paper is wound, the change rate of the winding diameter is small, so there is a tendency that it is difficult to obtain the effect of suppressing winding misalignment. Moreover, the whole wound body becomes large, and the problem that handling property falls also arises. Therefore, the outer diameter of the core bobbin is preferably 400 mm or less, more preferably 250 mm or less.
本発明の巻き取り方法においては、巻回径が巻き取り開始時に比べ一定以上増加する所定の点まで一定張力でカーボンペーパーを巻き取るが、当該所定の点を本明細書においては「張力転換点」と呼び、巻き取り開始時に比べた巻回径の増加量(mm)で定義するものとする。本発明においては、巻回径が巻き取り開始時に比べ40mm以上増加する点まで一定張力でカーボンペーパーを巻き取るが、この場合、張力転換点は40mm以上である、と表現する。本発明においては、張力転換点は40mm以上であり、より好ましくは60mm以上である。一定張力で巻き取られる部分が小さいと、張力転換点付近での巻きズレが起こりやすい。一定張力の範囲が大きくなると内周での巻きズレが悪化するため、450mm以下が好ましい。 In the winding method of the present invention, the carbon paper is wound with a constant tension up to a predetermined point where the winding diameter increases by a certain amount or more compared to the time when winding is started. ”, and is defined by the amount of increase (mm) in the winding diameter compared to the start of winding. In the present invention, the carbon paper is wound with a constant tension until the winding diameter increases by 40 mm or more compared to the start of winding. In this case, the tension turning point is expressed as 40 mm or more. In the present invention, the tension turning point is 40 mm or more, more preferably 60 mm or more. If the portion to be wound with a constant tension is small, it is likely that winding deviation will occur near the tension turning point. If the range of the constant tension becomes large, the winding misalignment on the inner circumference becomes worse, so the length is preferably 450 mm or less.
本発明において、張力転換点までの一定とする巻き取り張力は、巻きズレ抑制のため40N/m以上とし、200N/m以上とすることがより好ましい。また、脆性の高いカーボンペーパーの破断を抑制するため、この張力は10kN/m以下とすることが好ましい。 In the present invention, the constant winding tension up to the tension turning point is set to 40 N/m or more, more preferably 200 N/m or more, in order to suppress winding deviation. In order to suppress breakage of highly brittle carbon paper, the tension is preferably 10 kN/m or less.
巻き取り開始から前記張力転換点までの巻回径の変化率(A)は、20~160%が好ましく、20%~100%がより好ましい。20%未満では張力一定による巻きズレ防止効果が不十分であり、160%を超えると、後述する比較例の張力一定巻き同様の巻きズレが大きくなる可能性がある。巻き取り開始から前記張力転換点までの巻回径の変化率(A)は以下の式で計算される。 The change rate (A) of the winding diameter from the start of winding to the tension turning point is preferably 20% to 160%, more preferably 20% to 100%. If the tension is less than 20%, the effect of preventing winding slippage due to constant tension is insufficient, and if it exceeds 160%, winding slippage may increase as in the case of constant tension winding in a comparative example described later. The change rate (A) of the winding diameter from the start of winding to the tension turning point is calculated by the following formula.
A=(D2-D1)/D1×100
A:巻き取り開始から前記張力転換点までの巻回径の変化率
D1:巻き取り開始時の巻回径
D2:張力転換点での巻回径
巻き取り開始時の巻回径D1は巻き付けるコアボビンの外径とし、ノギスや定規で測定する。巻き取り開始後の巻回径は赤外線センサにより巻き取ったカーボンペーパーの最外周表面位置を検出し計算する。もしくは予め測定した巻き取られるカーボンペーパーの厚みと巻き取り軸の回転数とD1から計算する。
A=(D2-D1)/D1×100
A: Change rate of winding diameter from the start of winding to the tension turning point
D1: Winding diameter at the start of winding
D2: Winding diameter at tension change point The winding diameter D1 at the start of winding is the outer diameter of the core bobbin to be wound, and is measured with a vernier caliper or ruler. The winding diameter after the start of winding is calculated by detecting the outermost peripheral surface position of the wound carbon paper with an infrared sensor. Alternatively, it is calculated from the previously measured thickness of the carbon paper to be wound, the number of rotations of the winding shaft, and D1.
巻き取り張力はフリーロールに設定した張力計により測定する。 Winding tension is measured with a tension meter set to a free roll.
本発明においては、張力転換点経過後は張力を減少させながら巻き取り、巻き取り終了時の張力を20N/m以上とする。巻き取り終了時の張力は、50N/m以上とすることがより好ましい。最終の巻き取り張力が20N/m未満だと、梱包や輸送、巻き出しの際に巻崩れが発生しやすくなる。 In the present invention, after passing the tension turning point, the tension is reduced while winding, and the tension at the end of winding is 20 N/m or more. More preferably, the tension at the end of winding is 50 N/m or more. If the final winding tension is less than 20 N/m, the winding tends to collapse during packaging, transportation, and unwinding.
張力転換点経過後の巻回径の変化率(B)は、10~250%であることが好ましく、100%~220%がより好ましい。変化率が10%未満だと、張力を小さくして巻きズレを抑制する効果が十分得られない傾向があり、250%を超過すると巻き始めから張力漸減した場合と同様、巻きズレが発生しやすくなる傾向がある。張力転換点経過後の巻回径の変化率(B)は以下の式で計算される。 The change rate (B) of the winding diameter after the tension turning point has passed is preferably 10 to 250%, more preferably 100% to 220%. If the rate of change is less than 10%, there is a tendency that the effect of reducing the tension to suppress winding deviation cannot be sufficiently obtained, and if it exceeds 250%, winding deviation is likely to occur, as in the case where the tension is gradually reduced from the start of winding. tend to become The change rate (B) of the winding diameter after the tension turning point is calculated by the following formula.
B=(D3-D2)/D2×100
B:張力転換点経過後の巻回径の変化率
D2:張力転換点での巻回径
D3:巻き取り終了時の巻回径
また、張力転換点経過後の巻き取りトルクの変化率(C)は、-100%~+160%が好ましく、-90%~50%がより好ましい。変化率が-100%未満だと、梱包、輸送時や巻き出す際に巻崩れが発生しやすくなり、巻回体のハンドリング性が低下する傾向がある。また、変化率が+160%を超過すると、巻きズレが悪化する傾向がある。張力転換点経過後の巻き取りトルクの変化率(C)は以下の式で計算される。
B=(D3-D2)/D2×100
B: Rate of change in winding diameter after passing the tension turning point
D2: Winding diameter at tension turning point
D3: Winding diameter at the end of winding The change rate (C) of the winding torque after the tension turning point is preferably -100% to +160%, more preferably -90% to 50%. If the rate of change is less than -100%, the winding tends to collapse during packing, transportation, or unwinding, and the handling of the wound body tends to deteriorate. Moreover, when the rate of change exceeds +160%, the winding misalignment tends to worsen. The change rate (C) of the winding torque after the tension turning point is calculated by the following formula.
C=(T3×D3-T2×D2)/(T2×D2)×100
C:張力転換点経過後の巻き取りトルクの変化率
T2:張力転換点での張力
T3:巻き取り終了時の張力
D2:張力転換点での巻回径
D3:巻き取り終了時の巻回径
巻きズレ量tは図1に示すとおり、巻回体の巻きズレを含む全幅Wとカーボンペーパーの幅WSをスケールやノギスを用いて測定し、下記式より求めることができる。
C=(T3×D3−T2×D2)/(T2×D2)×100
C: Rate of change in winding torque after passing the tension turning point
T2: Tension at tension turning point
T3: Tension at end of winding
D2: Winding diameter at tension turning point
D3: Winding diameter at the end of winding As shown in Fig. 1, the amount of winding misalignment t is obtained by measuring the total width W including the winding misalignment of the wound body and the width WS of the carbon paper using a scale or vernier caliper, and calculating the following formula: can ask for more.
t=W-WS
t:巻きズレ量(mm)
W:巻き取り体の巻きズレを含む全幅(mm)
WS:カーボンペーパーの幅(mm)
カーボンペーパーの蛇行等により巻き取り位置が巻き取り軸の中心軸方向と平行な方向にずれることによる巻ズレを防ぐため、本発明の方法でカーボンペーパーの巻き取りを行うにあたっては、図2に示すように、巻き取りの前にカーボンペーパーの端部位置を検出する端部位置検出手段6を設け、当該端部位置検出手段の検出信号により巻きズレを防止するよう制御することが好ましい。具体的には、端部位置検出手段6の検出信号に基づき、端部位置検出手段の下流側に配された巻き取り軸3、ニップロール5、フリーロール7などを、巻き取り軸の中心軸と平行な方向、すなわちカーボンペーパーの進行方向と直交する左右方向に移動させることによって、巻き取り装置をカーボンペーパーの蛇行に追従させ、巻きズレを低減することが好ましい。
t= WWS
t: winding misalignment amount (mm)
W: Full width including winding misalignment of the winding body (mm)
W S : Width of carbon paper (mm)
In order to prevent winding misalignment due to deviation of the winding position in a direction parallel to the central axis direction of the winding shaft due to meandering of the carbon paper or the like, when winding the carbon paper by the method of the present invention, the following steps are taken. Thus, it is preferable to provide an edge position detection means 6 for detecting the edge position of the carbon paper before winding, and to control the winding misalignment according to the detection signal of the edge position detection means. Specifically, based on the detection signal of the end position detection means 6, the winding
図3はカーボンペーパーの端部位置検出手段の一実施態様を示す正面図である。図3に示されるように、端部位置検出手段6は、カーボンペーパー1の進行方向の左右いずれかの一端、または両端の位置を検出できるよう設置されることが好ましい。カーボンペーパー端部の位置検出手段には、EPC(登録商標:株式会社ニレコ)等の非接触式のカーボンペーパー端部位置検出手段を用いることが好ましい。前記カーボンペーパー端部の位置検出手段のセンサ部は光源に赤外線発光ダイオードを用いた光電式センサや超音波センサ、空気圧による検出方法などがあるが特段の制約はない。
FIG. 3 is a front view showing one embodiment of the carbon paper edge position detecting means. As shown in FIG. 3, it is preferable that the edge position detection means 6 be installed so as to detect the position of one or both ends of the
なお、上述の巻き取り方法を含むカーボンペーパーの製造方法もまた、本発明の一側面として理解されることは言うまでもない。 Needless to say, the carbon paper manufacturing method including the winding method described above is also understood as one aspect of the present invention.
以下、実施例により、本発明をさらに具体的に説明する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples.
[実施例1]
東レ株式会社製ポリアクリロニトリル系炭素繊維“トレカ”(登録商標)T300-6K(平均単繊維径:7μm、単繊維数:6000本)を12mmの長さにカットし、水を抄造媒体として連続的に抄造し、さらにポリビニルアルコールの10重量%水溶液に浸漬し、乾燥して、炭素繊維の目付が約37g/m2の長尺の炭素繊維抄造体を得てロール状に巻き取った。ポリビニルアルコールの付着量は、炭素繊維紙100重量部に対して20重量部に相当する。
[Example 1]
Polyacrylonitrile-based carbon fiber “Torayca” (registered trademark) T300-6K (average single fiber diameter: 7 μm, number of single fibers: 6000) manufactured by Toray Industries, Inc. was cut into lengths of 12 mm, and water was continuously used as a papermaking medium. , further immersed in a 10% by weight aqueous solution of polyvinyl alcohol and dried to obtain a long carbon fiber paper product having a carbon fiber basis weight of about 37 g/m 2 and wound into a roll. The adhered amount of polyvinyl alcohol is equivalent to 20 parts by weight with respect to 100 parts by weight of the carbon fiber paper.
鱗片状黒鉛(平均粒径5μm)、フェノール樹脂、メタノールを混合した分散液を用意した。上記炭素繊維抄造体に、炭素繊維紙100重量部に対してフェノール樹脂が110重量部になるように、上記分散液を連続的に含浸し、乾燥を経てロール状に巻き取った。フェノール樹脂としては、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを固形分重量で1:1に混合した樹脂を用いた。 A dispersion was prepared by mixing flake graphite (average particle size: 5 μm), phenolic resin, and methanol. The above carbon fiber paper product was continuously impregnated with the dispersion so that 110 parts by weight of the phenolic resin was added to 100 parts by weight of the carbon fiber paper, dried, and wound into a roll. As the phenolic resin, a resin obtained by mixing a resol-type phenolic resin and a novolac-type phenolic resin in a solid weight ratio of 1:1 was used.
続いて、樹脂を含浸した炭素繊維抄造体を、プレス成形機に上面盤および下面盤が互いに平行となるようセットし、面盤温度200℃で、プレスの開閉を繰り返しながら間欠的に搬送しつつ加熱加圧処理に供し、得られた焼成前のカーボンペーパーをロール状に巻き取った。 Subsequently, the resin-impregnated carbon fiber papermaking body is set in a press molding machine so that the upper and lower plates are parallel to each other, and is intermittently transported at a platen temperature of 200 ° C. while repeating opening and closing of the press. The carbon paper before baking was subjected to heat and pressure treatment and wound into a roll.
得られたカーボンペーパーを、窒素ガス雰囲気に保たれた、最高温度が2000℃の加熱炉に導入して焼成を行い、得られたカーボンペーパーをロール状に巻き取った。得られたカーボンペーパーは厚さ0.18mm、気孔率80%、曲げ弾性率10GPa、静摩擦係数0.3、引張強度2.5kN/mであった。 The obtained carbon paper was baked by introducing it into a heating furnace maintained in a nitrogen gas atmosphere and having a maximum temperature of 2000° C., and the obtained carbon paper was wound into a roll. The obtained carbon paper had a thickness of 0.18 mm, a porosity of 80%, a flexural modulus of 10 GPa, a static friction coefficient of 0.3 and a tensile strength of 2.5 kN/m.
カーボンペーパーを巻き取る様子を図2に示す。ロール状に巻き取る巻き取り軸3と該巻き取り軸3の前にカーボンペーパー1をニップするニップロール5と該ニップロール5の上流側に設けられたカーボンペーパーの端部位置検出手段6と、該位置検出からの検出信号により、前記巻き取り軸を巻き取り軸中心軸と平行な方向に移動させる移動手段と該移動手段を制御する制御部とを有してなるカーボンペーパーの巻き取り装置を用いて、外径が170mmのコアボビン4に前記カーボンペーパーを巻き取っており、幅300mm、長さ1600mのカーボンペーパーを、巻き出し開始時の巻き取り張力T1=800N/mで巻回径D2=240mmになるまで巻き取り(張力転換点=70mm)、その後、張力を長さあたり低下量一定で漸減させながら、巻き終わりの張力がT3=100N/mになるように巻き取った。大きな巻きズレ、破断や欠けなどの問題を生じることなく安定して巻き取りが可能であった。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
FIG. 2 shows how the carbon paper is wound. A winding
[実施例2]
T1=850N/mで巻回径D2=400mmになるまで巻き取り(張力転換点=230mm)、巻き終わりの張力T3=600N/mとした以外は実施例1と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 2]
Winding was carried out in the same manner as in Example 1 except that T1 = 850 N/m and winding diameter D2 = 400 mm (tension turning point = 230 mm), and tension T3 at the end of winding was set to 600 N/m. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例3]
長さ1100mのカーボンペーパーを、T1=780N/mで巻回径D2=220mmになるまで巻き取り(張力転換点=50mm)、巻き取り終了時の張力T3=250N/mとした以外は実施例1と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 3]
A carbon paper with a length of 1100 m is wound at T1 = 780 N / m until the winding diameter D2 = 220 mm (tension turning point = 50 mm), and the tension T3 at the end of winding is set to 250 N / m. Winded in the same way as 1. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例4]
T1=751N/mで巻回径D2=244mmになるまで巻き取り(張力転換点=74mm)、巻き取り終了時の張力T3=578N/mとした以外は実施例1と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 4]
Winding was carried out in the same manner as in Example 1 except that T1 = 751 N/m and winding diameter D2 = 244 mm (tension turning point = 74 mm), and tension T3 at the end of winding was set to 578 N/m. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[比較例1]
長さ1000mのカーボンペーパーを、T1=430N/mで、巻き取り終了まで張力一定とした以外は実施例1と同様に巻き取った。1000m巻き取ったところ巻きズレが大きくなった。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Comparative Example 1]
A carbon paper having a length of 1000 m was wound up in the same manner as in Example 1 except that T1 was 430 N/m and the tension was kept constant until the end of winding. When winding 1000m, the winding deviation became large. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[比較例2]
長さ1000mのカーボンペーパーを、T1=30N/mで巻回径D2=200mmになるまで巻き取り(張力転換点=30mm)、巻き取り終了時の張力T3=20N/mとした以外は実施例1と同様に巻き取った。600m巻き取ったところ巻きズレが大きくなった。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Comparative Example 2]
A carbon paper with a length of 1000 m is wound up until the winding diameter D2 = 200 mm at T1 = 30 N / m (tension turning point = 30 mm), and the tension at the end of winding T3 = 20 N / m Example except that Winded in the same way as 1. When winding 600m, winding deviation became large. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例5]
炭素繊維の目付を30.5g/m2とした以外は実施例1と同様にして、厚さ0.15mm、気孔率80%、曲げ弾性率7GPa、静摩擦係数0.3、引張強度2kN/mのカーボンペーパーを得た。長さ1800mの前記カーボンペーパーを、T1=499N/mで巻回径D2=222mmになるまで巻き取り(張力転換点=52mm)、巻き取り終了時の張力T3=333N/mとした以外は実施例1と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 5]
In the same manner as in Example 1 except that the basis weight of the carbon fiber was 30.5 g / m Got carbon paper. The carbon paper with a length of 1800 m was wound up until the winding diameter D2 = 222 mm at T1 = 499 N / m (tension turning point = 52 mm), and the tension T3 at the end of winding was set to 333 N / m. It was wound up as in Example 1. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例6]
T1=521N/mで巻回径D2=232mmになるまで巻き取り(張力転換点=62mm)、巻き取り終了時の張力T3=155N/mとした以外は実施例5と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 6]
Winding was carried out in the same manner as in Example 5 except that T1 = 521 N/m and winding diameter D2 = 232 mm (tension turning point = 62 mm), and tension T3 at the end of winding was set to 155 N/m. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[比較例3]
T1=400N/mで、巻き取り終了まで張力一定とした以外は実施例5と同様に巻き取った。巻き取り長さ1300mで巻きズレが大きくなり巻き取りを中止した。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Comparative Example 3]
Winding was performed in the same manner as in Example 5, except that T1 was 400 N/m and the tension was kept constant until the end of winding. At a winding length of 1,300 m, winding deviation became large and winding was stopped. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例7]
実施例5記載のカーボンペーパーで2000℃熱処理後ロール状に巻き取られたカーボンペーパーを巻き出し、PTFE水性ディスパージョンに浸漬した後引き上げ、110℃に設定したトンネル型乾燥機で乾燥した。カーボンペーパーのPTFE付着率は2wt%となるよう設定した。続けてダイコーターを用いてPTFEとカーボンブラックを含むマイクロポーラス層塗液を塗布した後、110℃の乾燥機を通過させ水分を乾燥、さらに温度を350℃に設定した焼結炉を通過、焼結を実施、両端部スリット後、微多孔層のカーボンペーパーへの転写を防ぐため長尺の厚み0.05mmの紙を重ね、巻き取り機にて巻き取った。得られたマイクロポーラス層を片面に設けたカーボンペーパーは厚さ0.18mm,曲げ弾性率5GPa、静摩擦係数0.5、引張強度5kN/mであった。上記の微多孔層を片面に設けた、幅280mm,長さ1600mのカーボンペーパーは、T1=350N/mで巻回径D2=350mmになるまで巻き取り(張力転換点=180mm)、その後張力を小さくしながら巻き取り、巻き取り終了時の張力をT3=130N/mとして巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 7]
After the carbon paper described in Example 5 was heat-treated at 2000°C, the carbon paper wound into a roll was unwound, immersed in a PTFE aqueous dispersion, pulled out, and dried in a tunnel dryer set at 110°C. The PTFE adhesion rate of the carbon paper was set to 2 wt%. Subsequently, after applying a microporous layer coating liquid containing PTFE and carbon black using a die coater, it is passed through a dryer at 110 ° C to dry the moisture, and further passed through a sintering furnace set at 350 ° C and baked. After knotting and slitting at both ends, a long sheet of paper with a thickness of 0.05 mm was piled up to prevent transfer of the microporous layer to the carbon paper, and was wound up with a winder. The resulting carbon paper having a microporous layer on one side had a thickness of 0.18 mm, a flexural modulus of 5 GPa, a static friction coefficient of 0.5 and a tensile strength of 5 kN/m. The carbon paper with a width of 280 mm and a length of 1600 m, which is provided with the above microporous layer on one side, is wound at T1 = 350 N / m until the winding diameter D2 = 350 mm (tension turning point = 180 mm), and then tension is applied. The film was wound while reducing the tension, and the tension at the end of winding was set to T3=130 N/m. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[実施例8]
長さ1100mの前記カーボンペーパーをT1=514N/mで巻回径D2=429mmになるまで巻き取り(張力転換点=259mm)、巻き取り終了時の張力T3=201N/mとした以外は実施例7と同様に巻き取った。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Example 8]
The carbon paper with a length of 1,100 m was wound up at T1 = 514 N / m until the winding diameter D2 = 429 mm (tension turning point = 259 mm), and the tension at the end of winding was T3 = 201 N / m. It was wound up in the same manner as 7. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
[比較例4]
T1=514N/mで、巻き取り終了まで張力一定とした以外は実施例8と同様に巻き取った。巻き取り長さ1100m巻き取りを中止した。諸元、巻き取り結果を表1に示す。また、巻き取り張力の推移を図4に示す。
[Comparative Example 4]
Winding was performed in the same manner as in Example 8, except that T1 was 514 N/m and the tension was kept constant until the end of winding. Winding length 1100m Winding was stopped. Table 1 shows the specifications and winding results. Also, FIG. 4 shows the transition of the winding tension.
1:カーボンペーパー
2:カーボンペーパー巻回体
3:巻き取り軸
4:コアボビン
5:ニップロール
6:カーボンペーパーの端部位置検出手段
7:フリーロール
W:カーボンペーパー巻回体の巻きズレを含む全幅
WS:カーボンペーパーの幅
1: Carbon paper 2: Carbon paper roll 3: Winding shaft 4: Core bobbin 5: Nip roll 6: Carbon paper end position detection means 7: Free roll
W: Full width including winding misalignment of the carbon paper roll
W S : Width of carbon paper
Claims (9)
巻回径が巻き取り開始時に比べ40mm以上増加する所定の張力転換点まで40N/m以上の一定張力で巻き取り、前記張力転換点経過後は張力を減少させながら巻き取り、かつ巻き取り終了時の張力を20N/m以上とするカーボンペーパーの巻き取り方法。 A carbon paper winding method for winding a continuously conveyed long carbon paper around a core bobbin, comprising:
Winding with a constant tension of 40 N/m or more until a predetermined tension turning point where the winding diameter increases by 40 mm or more compared to the start of winding, winding while decreasing the tension after the tension turning point, and at the end of winding A method of winding carbon paper with a tension of 20 N/m or more.
A method for producing a carbon paper roll, comprising the carbon paper winding method according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021054817A JP2022152151A (en) | 2021-03-29 | 2021-03-29 | Method for winding carbon paper and method for producing carbon paper wound body using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021054817A JP2022152151A (en) | 2021-03-29 | 2021-03-29 | Method for winding carbon paper and method for producing carbon paper wound body using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022152151A true JP2022152151A (en) | 2022-10-12 |
Family
ID=83556553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021054817A Pending JP2022152151A (en) | 2021-03-29 | 2021-03-29 | Method for winding carbon paper and method for producing carbon paper wound body using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022152151A (en) |
-
2021
- 2021-03-29 JP JP2021054817A patent/JP2022152151A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5545338B2 (en) | Method for winding sheet-like material and method for manufacturing wound body | |
JP6813056B2 (en) | How to wind up the porous carbon fiber sheet | |
TWI658637B (en) | Gas diffusion electrode and manufacturing method thereof | |
WO2017110902A1 (en) | High pressure container and method for manufacturing high pressure container | |
KR102687872B1 (en) | gas diffusion electrode | |
KR102597863B1 (en) | Gas diffusion electrode | |
CN111316487B (en) | Porous electrode base material and method for producing same | |
WO2004085728A1 (en) | Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell | |
EP3389123B1 (en) | Carbon sheet, gas diffusion electrode substrate, and fuel cell | |
TW201302895A (en) | Manufacturing method of microporous plastic film roll | |
US4459342A (en) | Ribbed substrate for fuel cell electrode | |
JP5544960B2 (en) | Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same | |
KR20190058453A (en) | Gas diffusion electrode and fuel cell | |
JP2011151009A (en) | Method of manufacturing porous electrode substrate | |
JP2011181459A (en) | Method of manufacturing of coating type separator | |
WO2004029353A1 (en) | Carbonaceous fiber fabric, roll of carbonaceous fiber fabric, gas diffusion layer material for solid polymer fuel cell, method for production of carbonaceous fiber fabric, and method for production of solid polymer fuel cell | |
JP2022152151A (en) | Method for winding carbon paper and method for producing carbon paper wound body using the same | |
JP6701698B2 (en) | Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode | |
JP5315884B2 (en) | Sheet-like material conveying method and conveying apparatus, and sheet-like material winding body manufacturing method | |
JP4345538B2 (en) | Method for producing carbon fiber sheet | |
JP2007091413A (en) | Winding method and wound body of sheet-like material | |
JP5448608B2 (en) | Continuous production method of porous carbon electrode substrate with less undulation and warpage | |
JP7114858B2 (en) | Gas diffusion electrode and fuel cell | |
JP2006264329A (en) | Fiber-reinforced plastic long sheet and its manufacturing method | |
JP2020158595A (en) | Manufacturing method of thermoplastic matrix resin fused carbon fiber tape, manufacturing method of composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241001 |