JP6701698B2 - Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode - Google Patents

Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode Download PDF

Info

Publication number
JP6701698B2
JP6701698B2 JP2015237144A JP2015237144A JP6701698B2 JP 6701698 B2 JP6701698 B2 JP 6701698B2 JP 2015237144 A JP2015237144 A JP 2015237144A JP 2015237144 A JP2015237144 A JP 2015237144A JP 6701698 B2 JP6701698 B2 JP 6701698B2
Authority
JP
Japan
Prior art keywords
base material
electrode base
electrode
polyimide film
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015237144A
Other languages
Japanese (ja)
Other versions
JP2017103169A (en
Inventor
純一 浦井
純一 浦井
保高 岡野
保高 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015237144A priority Critical patent/JP6701698B2/en
Publication of JP2017103169A publication Critical patent/JP2017103169A/en
Application granted granted Critical
Publication of JP6701698B2 publication Critical patent/JP6701698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Replacement Of Web Rolls (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、電極基材の搬送方法、電極基材の製造方法及びガス拡散電極の製造方法に関する。   The present invention relates to a method for transporting an electrode base material, a method for manufacturing an electrode base material, and a method for manufacturing a gas diffusion electrode.

炭素繊維は耐熱性に優れ、繊維状であることから、織物状、不織布状、ペーパー状等の炭素繊維シートに加工され、断熱材、耐熱保護材、更に電気伝導性を有することにより、燃料電池等の電極基材としての応用開発が進められている。   Since carbon fibers have excellent heat resistance and are fibrous, they are processed into woven, non-woven, paper-shaped, etc. carbon fiber sheets, and have heat insulating materials, heat-resistant protective materials, and electrical conductivity. The application development as an electrode base material is being promoted.

これらの炭素繊維シートである電極基材は、炭素繊維シート前駆体を炭素化することで製造されるが、この炭素繊維シートを上記のような電極基材として利用するにあたり、炭化処理のあと、再度一定の高温度下での熱処理を施す場合がある。その再度の熱処理を連続して行う際、電極基材の生産ロスを低減することはコスト競争力向上のため重要な要素である。   Electrode base materials that are these carbon fiber sheets are produced by carbonizing a carbon fiber sheet precursor, and in using this carbon fiber sheet as an electrode base material as described above, after carbonization treatment, The heat treatment may be performed again at a constant high temperature. Reducing the production loss of the electrode base material is an important factor for improving cost competitiveness when the second heat treatment is continuously performed.

しかし、炭素繊維シートはエンドレスではないため、炭素繊維シートごとに高温炉の温度を一旦下げ、新たな炭素繊維シート前駆体を走行ラインに配置して、再度高温炉の温度を上げる工程が必要となり、高温の高温炉の温度を昇降させる工程には長時間を費やさざるを得ず、結果として高温炉の稼働効率を大きく低下させることになる。また、炭素繊維シートを一定の高温度下で熱処理を施す際、高温炉の温度が所定の温度にまで昇温する間、生産は止める必要がある。また、製品部分を高温炉に通して巻き取り部分まで搬送した後に高温炉の昇温を開始しなければならず、高温炉の入口以降は熱履歴が異なるので製品として使えずロスとなる場合がある。   However, since carbon fiber sheets are not endless, it is necessary to temporarily lower the temperature of the high temperature furnace for each carbon fiber sheet, place a new carbon fiber sheet precursor on the running line, and raise the temperature of the high temperature furnace again. The process of raising and lowering the temperature of the high-temperature furnace has to spend a long time, and as a result, the operating efficiency of the high-temperature furnace is greatly reduced. Further, when heat-treating a carbon fiber sheet at a constant high temperature, it is necessary to stop the production while the temperature of the high temperature furnace rises to a predetermined temperature. In addition, the product part must be passed through the high-temperature furnace to the take-up part, and then the temperature rise of the high-temperature furnace must be started. is there.

特許文献1(特開2004−176233号公報)には、「複数の炭素繊維シート端部側を互いに重ね合せてポリアクリロニトリル系酸化繊維よりなる特定の太さの紡績糸またはフィラメント束を用いて繋ぎ合せる構成」が記載され、これにより「後工程の高温熱処理時において、繋ぎ部の切断、すき間詰り、ガイドへの引掛りが生ぜず、且つ繋ぎ合せ部の皺やねじれのない長尺の炭素繊維シートが得られる」効果が開示されている。   Japanese Patent Laid-Open No. 2004-176233 discloses that "ends of a plurality of carbon fiber sheets are overlapped with each other and spun yarns or filament bundles of a specific thickness made of polyacrylonitrile-based oxidized fibers are used for connection. "Structure that can be joined" is described, whereby "long-term carbon fiber that does not cause severing of joints, clogging of gaps, catching on guides, and wrinkles or twists of joints during high-temperature heat treatment in the subsequent process A sheet is obtained" effect is disclosed.

また、特許文献2(特開平5−301781号公報)には、「炭素繊維シート化物などの炭素質又は炭素化可能な基材にフェノール樹脂などの炭素化可能な熱硬化樹脂を含浸させた炭素材用シート状接着材等を用いて、炭素質材同士を接着した後、焼成して全体を炭素化させる炭素材の接着方法」が記載され、これにより「炭素材の接着に際して、塗布量にむらのない、接着力の信頼性が高く、被接着面が充分接着させることができる」効果が開示されている。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 5-301781), "carbon obtained by impregnating a carbonaceous material such as a carbon fiber sheet material or a carbonizable base material with a carbonizable thermosetting resin such as a phenol resin is disclosed. A method for adhering carbonaceous materials, in which carbonaceous materials are adhered to each other using a sheet-like adhesive for materials, and then baked to carbonize the whole, is described. The effect that there is no unevenness, the adhesive strength is high, and the surfaces to be adhered can be sufficiently adhered is disclosed.

また、特許文献3(特開2011−80161号公報)では、「繋ぎ合わせようとする第一の炭素繊維シート前駆体の終端部又は第二の炭素繊維シート前駆体の始端部にフェノール樹脂と炭素材からなる接着剤層を炭素繊維シート前駆体の長手方向に不連続に塗布した後、それらの終端部と始端部とを重ね合わせ、その重なり部を熱プレス装置で接合し、第一及び第二の炭素繊維シート前駆体の端部同士を繋ぎ合わせる長尺炭素繊維シートの製造方法」が記載され、これにより「不織布状やペーパー状の薄手のシートであっても、高品質な長尺の炭素繊維シートを低コストに得られる」効果が開示されている。   Moreover, in patent document 3 (Unexamined-Japanese-Patent No. 2011-80161), "phenol resin and charcoal are added to the terminal part of the 1st carbon fiber sheet precursor which is going to connect, or the starting part of the 2nd carbon fiber sheet precursor. After the adhesive layer made of the material is applied discontinuously in the longitudinal direction of the carbon fiber sheet precursor, the end portion and the start end portion thereof are overlapped with each other, and the overlapping portion is joined by a hot press machine, The method for producing a long carbon fiber sheet in which the end portions of the second carbon fiber sheet precursor are connected to each other is described. The effect of obtaining a carbon fiber sheet at low cost is disclosed.

また、特許文献4(特開2011−080160号公報)では、「繋ぎ合わせようとする第一の炭素繊維シート前駆体の終端部又は第二の炭素繊維シート前駆体の始端部に、フェノール樹脂を含浸してなる炭素繊維前駆体からなるシート状接着材をシート長手方向に対して不連続に順次仮留めし、次いで、それらの終端部と始端部とを重ね合わせ、その重なり部を熱プレス装置で接着し、繋ぎ合わせる長尺炭素繊維シートの製造方法」が開示され、これにより「不織布状やペーパー状の長尺の炭素繊維シート前駆体又は炭素繊維シートと、それらの炭素繊維シート前駆体又は炭素繊維シートを低コストで効率的に製造できる」効果が開示されている。   Moreover, in patent document 4 (Unexamined-Japanese-Patent No. 2011-080160), "the phenol resin is attached to the terminal part of the first carbon fiber sheet precursor or the starting part of the second carbon fiber sheet precursor to be joined. Sheet-like adhesives made of impregnated carbon fiber precursors are temporarily tacked discontinuously in the longitudinal direction of the sheet, and then their end and start ends are overlapped with each other, and the overlapping portion is hot-pressed. A method for producing a long carbon fiber sheet which is bonded and joined together is disclosed, whereby a "nonwoven fabric-like or paper-like long carbon fiber sheet precursor or carbon fiber sheet and those carbon fiber sheet precursors or The effect that "a carbon fiber sheet can be efficiently manufactured at low cost" is disclosed.

特開2004−176233号公報JP, 2004-176233, A 特開平5−301781号公報Japanese Patent Laid-Open No. 5-301781 特開2011−080161号公報JP, 2011-080161, A 特開2011−080160号公報JP, 2011-080160, A

しかし、特許文献1の構成では、炭素繊維シート前駆体の端部同士を、針を用いて縫い繋いだ場合、針を刺した箇所に亀裂が入ってしまい、その亀裂が進行して繋ぎ合わせ部が分断するという課題が生じる場合がある。   However, in the configuration of Patent Document 1, when the ends of the carbon fiber sheet precursor are sewn together by using a needle, a crack is formed at a portion where the needle is stabbed, and the crack progresses to join the joined portion. There may be a problem of division.

また特許文献2の構成では、シート状接着材を所定の形状を有する炭素質成形材料等の被接着材全面の間に挟んで加圧接着するものであり、炭素質成形材料等の被接着材とその間に挟んで加圧接着される同形・同寸法のシート状接着材を積層するバッチ式での成形材の接合に関する開示であり、炭素繊維シートの端部を繋ぎ合わせて製品部分を焼結炉に通して巻き取り部分まで搬送した後に焼結炉の昇温を開始する場合における製品ロスの低減に関する示唆はなされていない。   In the configuration of Patent Document 2, a sheet-shaped adhesive is sandwiched between the entire surfaces of an adherend such as a carbonaceous molding material having a predetermined shape and pressure-bonded. This is a disclosure relating to the joining of molding materials in a batch system in which sheet-shaped adhesive materials of the same shape and size that are sandwiched and pressure-bonded are laminated, and the product parts are sintered by connecting the ends of carbon fiber sheets. No suggestion has been made regarding reduction of product loss when starting to raise the temperature in the sintering furnace after the material has been conveyed through the furnace to the winding portion.

しかし、特許文献3や特許文献4の構成では、炭素繊維シート同士を終端部と始端部とを重ね合わせて繋ぎ合わせることにより長尺の炭素繊維シートを得ることができるが、生産開始時での製品部分を焼結炉に通して巻き取り部分まで搬送した後に焼結炉の昇温を開始する場合における製品ロスの低減に関する示唆はなされていない。   However, in the configurations of Patent Document 3 and Patent Document 4, although a long carbon fiber sheet can be obtained by overlapping and connecting the end portions and the start end portions of the carbon fiber sheets to each other, at the start of production. No suggestion has been made regarding reduction of product loss in the case where the temperature rise in the sintering furnace is started after the product portion is conveyed to the winding portion through the sintering furnace.

本発明は、かかる従来技術の問題点に鑑み、炭素繊維シートを電極基材として利用するにあたり、炭化処理の後、再度一定の高温度下での熱処理を施す場合でも、生産ロスを低減することができるとともに、熱処理時の昇温と他の生産の準備作業や製造条件設定を同時に進行でき生産時間を短縮できる電極基材の搬送方法、電極基材の製造方法及びガス拡散電極の製造方法を提供することを目的とする。   In view of the problems of the prior art, the present invention reduces the production loss when using a carbon fiber sheet as an electrode base material, even after performing a heat treatment at a constant high temperature again after the carbonization treatment. In addition to the above, a method of transporting an electrode base material, a method of manufacturing an electrode base material and a method of manufacturing a gas diffusion electrode, which can simultaneously increase temperature during heat treatment and preparatory work for other production and manufacturing condition setting and shorten the production time can be provided. The purpose is to provide.

かかる課題を解決するために、本発明の電極基材の搬送方法は次の構成からなる。   In order to solve such a problem, the method of transporting the electrode base material of the present invention has the following configuration.

ロール状の電極基材を巻き出して、高温炉を通して、再度ロール状に巻き取る際の、電極基材の搬送方法であって、
前記電極基材の搬送方向における少なくとも一方の端部を、接着材料を用いて耐熱材料と接続して搬送することを特徴とする、電極基材の搬送方法。
A method of transporting an electrode base material when unrolling the electrode base material in a roll shape, passing through a high temperature furnace, and rewinding into a roll shape,
A method of transporting an electrode base material, characterized in that at least one end of the electrode base material in the transport direction is connected to a heat resistant material by using an adhesive material and transported.

本発明の電極基材の搬送方法によれば、炭素繊維シートなどを電極基材として使用するにあたり、炭化処理の後、再度一定の高温度下での熱処理を施す場合でも、生産ロスを低減することができるとともに、熱処理時の昇温と他の生産の準備作業や製造条件設定を同時に進行できるために生産時間を短縮できる。   According to the method of transporting an electrode base material of the present invention, in using a carbon fiber sheet or the like as an electrode base material, even after performing a heat treatment at a constant high temperature again after the carbonization treatment, the production loss is reduced. In addition, it is possible to shorten the production time because the temperature rise during the heat treatment and the preparation work for the other production and the setting of the production conditions can be performed at the same time.

本発明に係る電極基材の製造フロー図Flowchart of manufacturing the electrode base material according to the present invention 含浸・乾燥工程Eの製造工程図Manufacturing process diagram of impregnation/drying process E 本発明にかかる電極基材2の一方の端部に接着材料11を用いて耐熱材料12を接続させた状態の断面図Sectional drawing of a state in which a heat-resistant material 12 is connected to one end of an electrode base material 2 according to the present invention using an adhesive material 11. 接着材料11により耐熱材料12と接続した電極基材2が搬送される状態の断面図Sectional drawing of the state where the electrode base material 2 connected with the heat resistant material 12 by the adhesive material 11 is conveyed. 巻き出しロール3から巻き出された電極基材2が含浸・乾燥工程Eを経て巻取りロール10に巻き取られる製造工程図Manufacturing process diagram in which the electrode base material 2 unwound from the unwinding roll 3 is wound up by the winding roll 10 through the impregnation/drying step E 巻き出しロール3から巻き出された電極基材2が表面塗工・乾燥工程F及び焼結工程Gを経て巻取りロール10に巻き取られる製造工程図A manufacturing process diagram in which the electrode base material 2 unwound from the unwinding roll 3 is taken up by the take-up roll 10 through the surface coating/drying step F and the sintering step G. 接着材料11を用いて電極基材2の端部と耐熱材料12とを接続した状態の平面図The top view of the state which connected the edge part of the electrode base material 2 and the heat resistant material 12 using the adhesive material 11. 接着材料11を用いて電極基材2の端部と耐熱材料12とを接続した状態の側面図Side view of a state in which an end portion of the electrode base material 2 and the heat-resistant material 12 are connected using an adhesive material 11. 接着材料として両面接着テープ11aを用いて、電極基材2の端部と耐熱材料12とを接続した状態の平面図The top view of the state which connected the edge part of the electrode base material 2 and the heat resistant material 12 using the double-sided adhesive tape 11a as an adhesive material. 接着材料として両面接着テープ11aを用いて、電極基材2の端部と耐熱材料12とを接続した状態の側面図Side view of a state in which the end portion of the electrode base material 2 and the heat-resistant material 12 are connected using the double-sided adhesive tape 11a as an adhesive material.

本発明に係る電極基材の搬送方法は、ロール状の電極基材を巻き出して、高温炉を通して、再度ロール状に巻き取る際の電極基材の搬送方法であって、電極基材の搬送方向における少なくとも一方の端部を、接着材料を用いて耐熱材料と接続して搬送する構成とするものである。   A method of transporting an electrode base material according to the present invention is a method of transporting an electrode base material when unwinding a roll-shaped electrode base material and rewinding it in a roll shape through a high temperature furnace. At least one end portion in the direction is connected to the heat-resistant material by using an adhesive material and is conveyed.

以下、本発明の実施の形態について図面を用いながら説明する。なお、本実施形態は本発明の一例であって、本発明は本実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment is an example of the present invention, and the present invention is not limited to this embodiment.

図1に本発明に係る電極基材の製造フローの一例を示す。なお、ここでは電極基材として炭素繊維シート(いわゆるカーボンペーパー)を用いた場合について説明するが、本発明において適用することができる電極基材は、炭素繊維シートに限定されるものではなく、導電性を有するシート状物、例えば不織布(いわゆるフェルト基材)などを用いることができる。   FIG. 1 shows an example of the manufacturing flow of the electrode base material according to the present invention. In addition, although the case where a carbon fiber sheet (so-called carbon paper) is used as the electrode base material is described here, the electrode base material applicable in the present invention is not limited to the carbon fiber sheet, and conductive It is possible to use a sheet-like material having properties such as a nonwoven fabric (so-called felt base material).

抄紙工程Aでは、炭素短繊維を含む短繊維をよく解繊した後、一定量の炭素繊維になるように水中に分散させ、樹脂および/または有機物を抄造用のバインダとして用いて、連続的に抄紙して一定厚さの炭素繊維紙である中間基材が得られる。抄紙体の形態保持性、ハンドリング性を向上する目的で、バインダとして有機高分子を含むことができる。有機高分子としては、ポリビニルアルコール、ポリ酢酸ビニル、ポリアクリロニトリル、セルロース等を用いることができる。   In the papermaking process A, short fibers including short carbon fibers are defibrated well, and then dispersed in water so as to obtain a constant amount of carbon fibers, and a resin and/or an organic substance is continuously used as a binder for papermaking. An intermediate base material which is a carbon fiber paper having a constant thickness is obtained by paper making. An organic polymer can be contained as a binder for the purpose of improving the shape retention and handling of the papermaking body. As the organic polymer, polyvinyl alcohol, polyvinyl acetate, polyacrylonitrile, cellulose or the like can be used.

特に、分散している炭素短繊維が樹脂および/または有機物の炭化物で結着されてなる炭素繊維紙のようなシート状物は、曲げ弾性率が高く、静摩擦係数が低く、脆い性質を有する。また、分散した状態とは、炭素短繊維がシート面内において顕著な配向を持たず概ねランダムに、例えば、無作為な方向に存在している状態である。   In particular, a sheet-like material such as carbon fiber paper in which dispersed short carbon fibers are bound by a resin and/or an organic carbide has a high flexural modulus, a low coefficient of static friction, and brittle properties. In addition, the dispersed state is a state in which the short carbon fibers do not have a remarkable orientation in the sheet surface and are present substantially randomly, for example, in a random direction.

本発明における炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維が挙げられる。なかでも、機械強度に優れることから、PAN系炭素繊維が好ましく用いられる。   Examples of the carbon fibers in the present invention include polyacrylonitrile (PAN)-based, pitch-based, rayon-based carbon fibers and the like. Among them, PAN-based carbon fiber is preferably used because it has excellent mechanical strength.

また、本発明における炭素繊維は、単糸の平均直径が3〜20μmの範囲内であることが好ましく、5〜10μmの範囲内であることがより好ましい。平均直径が3μm以上であると、電極基材が柔軟性に富んだものとなり好ましい。一方、平均直径が20μm以下であると、電極基材が機械強度の優れたものとなり好ましい。また、異なる平均直径を有する2種類以上の炭素繊維を用いると、電極基材の表面平滑性を向上できるために好ましい。   Further, in the carbon fiber of the present invention, the average diameter of the single yarn is preferably in the range of 3 to 20 μm, and more preferably in the range of 5 to 10 μm. When the average diameter is 3 μm or more, the electrode base material is highly flexible, which is preferable. On the other hand, when the average diameter is 20 μm or less, the electrode base material has excellent mechanical strength, which is preferable. Further, it is preferable to use two or more kinds of carbon fibers having different average diameters because the surface smoothness of the electrode base material can be improved.

また、分散させる炭素短繊維の繊維長の平均長さは、3〜20mmが好ましく、さらに好ましくは5〜15mmである。炭素短繊維の繊維長を3〜20mmとすることにより、炭素短繊維を分散させ抄紙して炭素繊維シートを得る際に、炭素短繊維の分散性を向上させ、目付のばらつきを抑制することができる。平均長さが3mm以上であると、電極基材が機械強度の優れたものとなり好ましい。一方、繊維長の平均長さが20mm以下であると、抄紙の際の炭素繊維の分散性が優れ、均質な電極基材が得られるために好ましい。かかる繊維長の平均長さを有する炭素繊維は、連続した炭素繊維を所望の長さにカットする方法等により得られる。   The average length of the carbon short fibers to be dispersed is preferably 3 to 20 mm, more preferably 5 to 15 mm. By setting the fiber length of the short carbon fibers to 3 to 20 mm, it is possible to improve the dispersibility of the short carbon fibers and suppress the variation in basis weight when obtaining the carbon fiber sheet by dispersing the short carbon fibers into paper. it can. When the average length is 3 mm or more, the electrode base material has excellent mechanical strength, which is preferable. On the other hand, when the average fiber length is 20 mm or less, the dispersibility of carbon fibers during papermaking is excellent and a homogeneous electrode substrate is obtained, which is preferable. Carbon fibers having such an average fiber length can be obtained by a method of cutting continuous carbon fibers into a desired length.

次に、樹脂含浸、乾燥・脱溶媒工程Bでは、抄紙した炭素繊維紙に樹脂および/または有機物を含浸し、樹脂成分および/または有機物付着させた後、乾燥して溶媒を除去することでプリプレグを得ることができる。   Next, in the resin impregnation, drying and desolvation step B, the paper-made carbon fiber paper is impregnated with a resin and/or an organic substance, and a resin component and/or an organic substance is attached to the carbon fiber paper, followed by drying to remove the solvent. Can be obtained.

樹脂成分を構成する樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂等の熱硬化性樹脂等が好ましく用いられる。なかでも、炭化収率が高いことから、フェノール樹脂が好ましく用いられる。また、樹脂成分に必要に応じて添加する添加物としては、電極基材の機械特性、導電性、熱伝導性を向上する目的で、炭素系フィラーを含むことができる。ここで、炭素系フィラーとしては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のミルドファイバー、黒鉛等を用いることができる。   As the resin constituting the resin component, a thermosetting resin such as phenol resin, epoxy resin, melamine resin or furan resin is preferably used. Of these, a phenol resin is preferably used because it has a high carbonization yield. In addition, as an additive that is added to the resin component as needed, a carbon-based filler can be included for the purpose of improving mechanical properties, electrical conductivity, and thermal conductivity of the electrode base material. Here, as the carbon-based filler, carbon black, carbon nanotube, carbon nanofiber, milled fiber of carbon fiber, graphite and the like can be used.

また、抄紙体への含浸性を高める目的で、各種溶媒を含むことができる。ここで、溶媒としては、メタノール、エタノール、イソプロピルアルコール等を用いることができる。   Further, various solvents may be included for the purpose of enhancing the impregnation property into the paper body. Here, as the solvent, methanol, ethanol, isopropyl alcohol or the like can be used.

次に、樹脂硬化工程Cでは、含浸・乾燥したプリプレグを間欠的に搬送しながら、連続加熱加圧して樹脂を硬化して炭素繊維シート前駆体を成型することができる。   Next, in the resin curing step C, the carbon fiber sheet precursor can be molded by intermittently conveying the impregnated and dried prepreg to cure the resin by heating and pressing.

次に、炭化工程Dでは、硬化させた炭素繊維シート前駆体を連続的に搬送しながら連続炭化炉で不活性雰囲気中、一定の高温度で加熱することにより熱硬化性樹脂が炭化した炭素繊維シートを得ることができる。なお、炭素繊維シート前駆体中の熱硬化性樹脂が炭化したものを、単に炭素繊維シートという。   Next, in the carbonization step D, the carbon fiber in which the thermosetting resin is carbonized by heating the cured carbon fiber sheet precursor at a constant high temperature in an inert atmosphere in a continuous carbonization furnace while continuously conveying the carbon fiber. You can get a sheet. A carbon fiber sheet precursor obtained by carbonizing a thermosetting resin is simply referred to as a carbon fiber sheet.

焼成の最高温度は1500〜3000℃の範囲内であることが好ましく、1700〜2800℃の範囲内であることがより好ましく、さらには、1900〜2600℃の範囲内であることが好ましい。最高温度が1500℃以上であると、樹脂成分の炭素化が進み、電極基材が導電性、熱伝導性の優れたものとなり好ましい。一方、最高温度が3000℃以下であると、加熱炉の運転コストが低くなるために好ましい。また、焼成にあたっては、昇温速度が80〜5000℃/分の範囲内であることが好ましい。昇温速度が80℃以上であると、生産性が優れるために好ましい。一方、5000℃以下であると、樹脂成分の炭素化が緩やかに進み緻密な構造が形成されるため、電極基材が導電性、熱伝導性の優れたものとなり好ましい。   The maximum firing temperature is preferably in the range of 1500 to 3000° C., more preferably in the range of 1700 to 2800° C., and further preferably in the range of 1900 to 2600° C. When the maximum temperature is 1500° C. or higher, carbonization of the resin component proceeds, and the electrode base material has excellent electrical conductivity and thermal conductivity, which is preferable. On the other hand, when the maximum temperature is 3000° C. or lower, the operating cost of the heating furnace is reduced, which is preferable. Further, upon firing, it is preferable that the temperature rising rate is within the range of 80 to 5000° C./min. The rate of temperature increase of 80° C. or higher is preferable because the productivity is excellent. On the other hand, when the temperature is 5000° C. or less, the carbonization of the resin component gradually progresses and a dense structure is formed, so that the electrode base material has excellent electrical conductivity and thermal conductivity, which is preferable.

次に、含浸・乾燥工程Eでは、排水性を向上する目的で、炭素繊維シートに撥水加工を施すことが好ましい。撥水加工は、炭素繊維シートに疎水性樹脂を含んだ分散液を浸漬し、その後一定温度の下で乾燥する。かかる疎水性樹脂としては、ポリクロロトリフルオロエチレン樹脂(PCTFE)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリフッ化ビニリデン樹脂(PVDF)、テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体(FEP)、テトラフルオロエチレンとパーフルオロプロピルビニルエーテルの共重合体(PFA)、テトラフルオロエチレンとエチレンの共重合体(ETFE)等のフッ素樹脂が挙げられる。   Next, in the impregnation/drying step E, the carbon fiber sheet is preferably subjected to a water repellent treatment for the purpose of improving drainage. In the water repellent treatment, a dispersion liquid containing a hydrophobic resin is dipped in a carbon fiber sheet and then dried at a constant temperature. Examples of such hydrophobic resin include polychlorotrifluoroethylene resin (PCTFE), polytetrafluoroethylene resin (PTFE), polyvinylidene fluoride resin (PVDF), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetra Examples thereof include fluororesins such as a copolymer of fluoroethylene and perfluoropropyl vinyl ether (PFA) and a copolymer of tetrafluoroethylene and ethylene (ETFE).

次に、表面塗布・乾燥工程Fでは、電極基材の少なくとも片面に、導電性を有する微多孔質層MPL(Micro Porous Layer)を形成することが好ましい。微多孔質層を設けると、電極基材の表面凹凸が覆われ平滑となるため、膜−電極接合体を構成し、燃料電池を構成した際に、触媒層との間の電気抵抗を低減することができる。微多孔質層は、電極基材の表面に、前述した撥水加工で用いた疎水性樹脂と、後述する炭素フィラーとの混合物を塗布することによって形成することができる。つまり微多孔質層形成用塗液は、疎水性樹脂と炭素フィラーとの混合物であることが好ましい。炭素フィラーとしては、黒鉛、カーボンブラック、グラフェンの他、単層カーボンナノチューブ、多層カーボンナノチューブ、気相成長炭素繊維などのカーボンナノファイバー、炭素繊維ミルドファイバーなどが挙げられ、なかでもカーボンブラックであることが好ましい。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。なかでも導電性が高く、不純物の含有が少ないアセチレンブラックを用いることが好ましい。   Next, in the surface coating/drying step F, it is preferable to form a conductive microporous layer MPL (Micro Porous Layer) on at least one surface of the electrode base material. When the microporous layer is provided, the surface irregularities of the electrode base material are covered and become smooth, so that when the membrane-electrode assembly is constructed and the fuel cell is constructed, the electrical resistance with the catalyst layer is reduced. be able to. The microporous layer can be formed by applying a mixture of the hydrophobic resin used in the water repellent treatment described above and a carbon filler described later on the surface of the electrode base material. That is, the coating liquid for forming the microporous layer is preferably a mixture of a hydrophobic resin and a carbon filler. Examples of the carbon filler include graphite, carbon black, and graphene, as well as single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers such as vapor-grown carbon fibers, and carbon fiber milled fibers. Among them, carbon black is preferable. Is preferred. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and the like. Among them, it is preferable to use acetylene black which has high conductivity and contains few impurities.

次に、焼結工程Gでは、分散液に含まれる界面活性剤を熱分解するとともに、上述した疎水性樹脂を溶融させて融着させるため、一定の温度で加熱する。巻出と巻取の設備を用いてロールで処理して巻き取られる。   Next, in the sintering step G, the surfactant contained in the dispersion liquid is thermally decomposed, and the hydrophobic resin described above is heated at a constant temperature in order to be melted and fused. It is processed and rolled up using the unwinding and winding equipment.

図2に、含浸・乾燥工程E、表面塗布・乾燥工程F、及び焼結工程Gの製造工程図を示す。炭化工程Dで熱硬化性樹脂を炭化して得られた炭素繊維シート(電極基材2)が巻き取られたロールをこの工程で巻き出しロール3として使用し、このロール3から電極基材2が巻き出されて、炭素フィラーと疎水性樹脂の分散液が貯められた含浸槽4に電極基材2を浸漬し、その後、乾燥機5で一定温度の下で乾燥され、この乾燥された電極基材2は表面塗布・乾燥工程Fに進む。表面塗布・乾燥工程Fでは、炭素フィラーと疎水性樹脂との分散液を表面塗工機6であるスリットダイコータ等を用いて電極基材2の片面に炭素フィラーと疎水性樹脂7を塗布した後乾燥され、乾燥された電極基材2は焼結工程Gに進む。焼結工程では、150〜400℃の温度の高温炉9で加熱し、PTFE粒子を溶融させて融着させた後、巻き取りロール10にて巻き取られる。なお、表面塗布・乾燥工程Fにおいて、表面塗工機6であるスリットダイコータ等を用いて電極基材2の片面に炭素フィラーと疎水性樹脂7を塗工することを、微多孔質層形成用塗液を塗布する工程といい、この微多孔質層形成用塗液を塗布する工程は、本発明の搬送方法において高温炉の前に有することが好ましい。   FIG. 2 shows a manufacturing process diagram of the impregnation/drying process E, the surface coating/drying process F, and the sintering process G. The roll around which the carbon fiber sheet (electrode base material 2) obtained by carbonizing the thermosetting resin in the carbonization step D is wound up is used as the unwinding roll 3 in this step. Is unwound and the electrode base material 2 is dipped in an impregnation tank 4 in which a dispersion liquid of a carbon filler and a hydrophobic resin is stored, and then dried at a constant temperature in a drier 5 to obtain the dried electrode. The substrate 2 proceeds to the surface coating/drying step F. In the surface coating/drying step F, after the dispersion liquid of the carbon filler and the hydrophobic resin is coated on one surface of the electrode substrate 2 with the carbon filler and the hydrophobic resin 7 using a slit die coater which is the surface coating machine 6 or the like. The dried electrode base material 2 proceeds to the sintering step G. In the sintering step, the PTFE particles are heated in a high temperature furnace 9 at a temperature of 150 to 400° C. to melt and fuse the PTFE particles, and then the particles are wound by a winding roll 10. In the surface coating/drying step F, applying the carbon filler and the hydrophobic resin 7 to one surface of the electrode base material 2 using a slit die coater which is the surface coating machine 6 is for forming the microporous layer. The step of applying the coating liquid, and the step of applying the coating liquid for forming the microporous layer is preferably provided before the high temperature furnace in the transport method of the present invention.

図3に本発明にかかる電極基材2の一方の端部2aである先端部に、接着剤である接着材料11を配して、耐熱材料12と接着させて接続させた状態の断面図を示す。   FIG. 3 is a cross-sectional view showing a state in which an adhesive material 11 which is an adhesive is arranged at a tip portion which is one end portion 2a of the electrode base material 2 according to the present invention, and the heat resistant material 12 is adhered and connected. Show.

本発明においては、図3に示すように、ロール状の電極基材2を巻き出しロール3から巻き出し、高温炉9を通して、再度、巻取りロール10にロール状に電極基材2を巻き取る際、電極基材2の搬送方向における一方の端部2aである先端部に接着材料11を配し、それによって電極基材2と耐熱材料12とを接続することを特徴とするものである。   In the present invention, as shown in FIG. 3, the roll-shaped electrode base material 2 is unwound from the unwinding roll 3, passed through the high temperature furnace 9, and rewound in the roll shape on the winding roll 10. At this time, the adhesive material 11 is arranged at the tip end which is the one end 2a in the transport direction of the electrode base material 2, and the electrode base material 2 and the heat resistant material 12 are connected by this.

図4に耐熱材料12を接続した電極基材2が搬送される状態の断面図を示す。巻き出しロール3から耐熱材料12を先頭にして電極基材2が巻き出される。   FIG. 4 shows a sectional view of a state in which the electrode base material 2 to which the heat resistant material 12 is connected is conveyed. The electrode base material 2 is unwound from the unwinding roll 3 with the heat-resistant material 12 at the front.

焼結工程Gは高温炉9にて高温で処理を行うため、電極基材2を巻き取りロール10まで搬送しセットした後、高温炉9の昇温を開始し、所定の温度に達した後、電極基材2の送り出しを行う手順だと、高温炉9から巻き取りロール10までの間の電極基材は、昇温の履歴が残り、熱履歴が不正規となるため、製品として使うことができず、廃棄ロスが生じ、無駄なコストとなってしまう。そのため、本発明では電極基材2を巻き取りロール10まで搬送しセットする代わりに、高温炉9から巻き取りロール10までの間に耐熱材料12を用いることで、電極基材2の廃棄ロスをなくすことができる。さらには、高温炉9の昇温とその他の生産の準備作業や製造条件設定を同時進行でき生産効率向上にもなる。耐熱材料12の長さは上記した熱履歴が電極基材2に残らないように乾燥工程8や焼結工程9等の高温度で処理する工程を跨ぐように長さを設定することが好ましい。本実施の形態では耐熱材料の長さは乾燥工程8から巻き取りロール10までの工程長に相当する長さとしている。   In the sintering step G, since the treatment is carried out at a high temperature in the high temperature furnace 9, after the electrode base material 2 is conveyed to the winding roll 10 and set, the temperature rise of the high temperature furnace 9 is started and after reaching a predetermined temperature. In the procedure for feeding out the electrode base material 2, the electrode base material between the high temperature furnace 9 and the winding roll 10 has a history of temperature rise, and the thermal history becomes irregular, so it should be used as a product. Cannot be performed, and waste loss occurs, resulting in a wasteful cost. Therefore, in the present invention, the heat-resistant material 12 is used between the high temperature furnace 9 and the winding roll 10 instead of transporting the electrode substrate 2 to the winding roll 10 and setting it. It can be lost. Furthermore, the temperature rise of the high-temperature furnace 9 and other preparation work for production and setting of manufacturing conditions can be simultaneously progressed, and the production efficiency can be improved. The length of the heat-resistant material 12 is preferably set so as to straddle the steps of high temperature treatment such as the drying step 8 and the sintering step 9 so that the above-mentioned heat history does not remain in the electrode base material 2. In the present embodiment, the length of the heat resistant material is set to a length corresponding to the process length from the drying process 8 to the winding roll 10.

図3と図4は電極基材の一方の端部である先端部に耐熱材料を配した構成を示したが、電極基材2の他の一方の端部である後端部に耐熱材料を配する構成も、同様に尾の部分の廃棄ロスの削減を図ることができる。つまり本発明においては、前記電極基材の搬送方向における少なくとも一方の端部を、接着材料を用いて耐熱材料と接続して搬送することが重要であり、電極基材の搬送方向における両方の端部を、接着材料を用いて耐熱材料と接続して搬送する方法はより好ましい。   3 and 4 show the structure in which the heat-resistant material is arranged at the front end which is one end of the electrode base material, the heat-resistant material is arranged at the rear end which is the other end of the electrode base material 2. Similarly, the arrangement can reduce the waste loss of the tail portion. That is, in the present invention, it is important that at least one end of the electrode base material in the transfer direction is connected to a heat-resistant material by using an adhesive material and transferred, and both ends of the electrode base material in the transfer direction are transferred. It is more preferable to connect the parts to the heat-resistant material by using an adhesive material and convey the parts.

図5、図6に、ロール状の電極基材2を巻き出して、高温炉9を通して、再度ロール状に前記電極基材2を巻き取る別の電極基材の搬送方法の態様を示す。   5 and 6 show another embodiment of a method of transporting another electrode base material in which the electrode base material 2 in a roll shape is unwound, and the high-temperature furnace 9 is used to wind the electrode base material 2 in a roll shape again.

図4では含浸・乾燥工程E、表面塗布・乾燥工程F及び焼結工程Gを1パスになっている態様を示した。一方で、図5および図6では含浸・乾燥工程Eを終えると一旦電極基材2を巻き取り、その巻き取ったロール状の電極基材を再度巻き出して、表面塗布・乾燥工程F及び焼結工程Gを流す態様を示したものである。本フローは含浸・乾燥工程Eと、表面塗布・乾燥工程F及び焼結工程Gとを異なる製造場所で行うことを想定したものである。   In FIG. 4, the impregnation/drying step E, the surface coating/drying step F, and the sintering step G are shown as one pass. On the other hand, in FIG. 5 and FIG. 6, after the impregnation/drying step E is finished, the electrode base material 2 is once taken up, and the rolled-up electrode base material is unwound again, and the surface coating/drying step F and baking are performed. It shows a mode of flowing the binding step G. This flow assumes that the impregnation/drying step E, the surface coating/drying step F, and the sintering step G are performed at different manufacturing locations.

図5に、巻き出しロール3から巻き出された電極基材2が含浸・乾燥工程Eを経て巻取りロール13に巻き取られる工程図を示す。   FIG. 5 shows a process diagram in which the electrode base material 2 unwound from the unwinding roll 3 is taken up by the winding roll 13 through the impregnation/drying step E.

図6に、巻き出しロール13から巻き出された電極基材2が表面塗布・乾燥工程F(微多孔質層形成用塗液を塗布する工程)及び焼結工程Gを経て巻取りロール14に巻き取られる工程図を示す。図5に示した含浸・乾燥工程Eを経て電極基材2が巻き取られた巻取りロール13を、この工程で巻き出しロール13として使用する。図5での巻取りロール13巻き取られた電極基材2の一方の端部である後端部は、図6の巻き出しロール13では先端部となる。   In FIG. 6, the electrode base material 2 unwound from the unwinding roll 13 passes through the surface coating/drying step F (step of applying the coating liquid for forming a microporous layer) and the sintering step G, and then is wound on the winding roll 14. The process drawing which is wound up is shown. The winding roll 13 on which the electrode substrate 2 is wound through the impregnation/drying process E shown in FIG. 5 is used as the unwinding roll 13 in this process. The winding roller 13 in FIG. 5 has a rear end, which is one end of the electrode base material 2 wound up, and serves as a tip in the unwinding roll 13 in FIG.

巻き出しロール3での電極基材2の先端部2aに接着材料11を配して電極基材2と耐熱材料12とを接続し、耐熱材料12を先頭として巻き出しロール3から電極基材2が巻き出され、耐熱材料12が巻取りロール10にセットされる。耐熱材料12の長さは少なくとも表面塗布される表面塗工機6から巻取りロール10に至るまでの長さとしている。これにより、製品となる電極基材2が乾燥工程や焼結工程の不正規な熱履歴を受けることを避けることができ、表面塗布以降の電極基材2の廃棄ロスをなくすことができる。   The adhesive material 11 is arranged on the tip portion 2a of the electrode base material 2 on the unwinding roll 3 to connect the electrode base material 2 and the heat resistant material 12, and the heat resistant material 12 is used as a head to move the electrode material 2 from the unwinding roll 3 to the electrode material 2 Is unwound, and the heat resistant material 12 is set on the winding roll 10. The length of the heat-resistant material 12 is at least the length from the surface coater 6 for surface coating to the winding roll 10. As a result, it is possible to avoid that the electrode base material 2 as a product is subjected to an irregular heat history in the drying process or the sintering process, and it is possible to eliminate the waste loss of the electrode base material 2 after the surface application.

また、微多孔質層形成用塗液について、例えば、炭素フィラーとしてアセチレンブラック、疎水性樹脂としてPTFE粒子を用いるのが好ましい。アセチレンブラックとPTFE粒子の分散液を、スリットダイコータ等の表面塗工装置を用いて、焼結後の微多孔質層の目付が一定量になるように表面塗布した後に乾燥することによって、微多孔質層が得られる。なお前述のように、高温炉の前に、微多孔質層形成用塗液を塗布する工程を設けることにより、電極基材上に微多孔質層を形成することが好ましい。以下、電極基材上に微多孔質層を有する態様をガス拡散電極ということがある。   Further, for the coating liquid for forming the microporous layer, for example, it is preferable to use acetylene black as the carbon filler and PTFE particles as the hydrophobic resin. The dispersion liquid of acetylene black and PTFE particles was applied to the surface of the microporous layer after sintering using a surface coating device such as a slit die coater so that the weight per unit area of the microporous layer was constant, and then dried to obtain a microporous layer. A quality layer is obtained. As described above, it is preferable to form the microporous layer on the electrode base material by providing the step of applying the coating liquid for forming the microporous layer before the high temperature furnace. Hereinafter, the embodiment having the microporous layer on the electrode base material may be referred to as a gas diffusion electrode.

また、本発明において、電極基材の端部を、接着材料を用いて、耐熱材料と接続した領域を接続部とすると、接続部において、電極基材と耐熱材料は、一部が重なっており、接着材料として、複数のテープを用いており、接続部の両面において、電極基材の幅方向の両端がテープにより耐熱材料と接着されている構成が好ましい。ここで接続部とは、電極基材と耐熱材料とが接着材料を用いてつながった部分を意味する。また、この態様で用いるテープは特に限定されないが、両面接着テープを用いることも可能である。「幅方向の両端がテープにより耐熱材料と接着」とは、テープが電極基材の幅方向の両端にあることを意味しているわけではなく、複数あるテープの中で、幅方向の両端にあるテープに着目していることを意味する。つまり、幅方向の両端にある接着材料としてテープを用いていることを意味している。   Further, in the present invention, when an end portion of the electrode base material is connected to a region where the adhesive material is used and the heat-resistant material is connected, the electrode base material and the heat-resistant material partially overlap each other in the connection portion. It is preferable that a plurality of tapes be used as the adhesive material, and that both ends in the width direction of the electrode base material be adhered to the heat resistant material by the tapes on both surfaces of the connection portion. Here, the connection portion means a portion where the electrode base material and the heat resistant material are connected by using an adhesive material. Further, the tape used in this aspect is not particularly limited, but a double-sided adhesive tape can also be used. "Both ends of the width direction are adhered to the heat-resistant material with tape" does not mean that the tape is at both ends of the electrode base material in the width direction, but it is not limited to both ends of the electrode tape in the width direction. It means focusing on a certain tape. That is, it means that the tape is used as the adhesive material at both ends in the width direction.

なお、接着材料として用いるテープは、種々の形状を用いることが可能であるが、多角形であることが好ましく、より好ましくは四角形である。さらにこの場合、幅方向の両端のテープの四角形の長辺が、電極基材の搬送方向に平行となるように、前記電極基材と前記耐熱材料とが接着している構成が好ましい。   The tape used as the adhesive material may have various shapes, but preferably has a polygonal shape, and more preferably has a quadrangular shape. Further, in this case, it is preferable that the electrode base material and the heat-resistant material are bonded so that the long sides of the quadrangle of the tape at both ends in the width direction are parallel to the transport direction of the electrode base material.

図7に、接着材料11を用いて、電極基材2の端部と耐熱材料12とを接続した状態の平面図を、図8にその側面図を示す。図7と図8により、電極基材上2の幅方向の両端と中央部に、長辺が電極基材2の搬送方向に平行となるように四角形の接着テープ11を3箇所に貼り付けた態様を示す。これにより、電極基材2の端部と耐熱材料12との接続が強固なものとなり、高温炉内を通過する際にも確実な接着性を確保することができる。    FIG. 7 is a plan view showing a state in which the end portion of the electrode base material 2 and the heat resistant material 12 are connected by using the adhesive material 11, and FIG. 8 is a side view thereof. As shown in FIGS. 7 and 8, rectangular adhesive tapes 11 were attached at three positions on both ends and the center of the electrode base 2 in the width direction so that the long sides are parallel to the transport direction of the electrode base 2. An aspect is shown. This strengthens the connection between the end of the electrode base material 2 and the heat-resistant material 12, and ensures reliable adhesion even when passing through the high temperature furnace.

ここで幅方向の両端のテープの四角形の長辺が、電極基材の搬送方向に平行となるように、前記電極基材と前記耐熱材料とが接着している構成について説明する。この、「幅方向の両端のテープの四角形の長辺が、電極基材の搬送方向に平行となる」とは、複数あるテープの中で、幅方向の両端にあるテープに着目すると、両端の2枚のテープの四角形の長辺が、電極基材の搬送方向と平行になっていることを意味しており、前述のとおり、接続部の両面において、電極基材の幅方向の両端がテープによって耐熱材料と接着されていることからすると、合計4枚のテープの四角形の長辺が、電極基材の搬送方向と平行となっていることを意味している。さらに「平行」とは、テープの長辺と搬送方向とが−5°から+5°の角度を有している状態を意味し、好ましくはテープの長辺と搬送方向とが0°の状態である。   Here, a configuration will be described in which the electrode base material and the heat-resistant material are adhered so that the long sides of the quadrangle of the tape at both ends in the width direction are parallel to the transport direction of the electrode base material. This "the long sides of the quadrangle of the tape at both ends in the width direction are parallel to the transport direction of the electrode base material" means that among the plurality of tapes, focusing on the tape at both ends in the width direction, This means that the long sides of the quadrangle of the two tapes are parallel to the transport direction of the electrode base material, and as described above, both ends of the electrode base material in the width direction are taped on both surfaces of the connecting portion. The fact that they are bonded to the heat-resistant material means that the long sides of the four tapes in total are parallel to the transport direction of the electrode base material. Further, “parallel” means a state in which the long side of the tape and the transport direction form an angle of −5° to +5°, and preferably, the long side of the tape and the transport direction are 0°. is there.

また、本発明において、電極基材2と耐熱材料12との接続部15において、テープ11の接着面積が耐熱材料側よりも電極基材2側の方が大きい態様が好ましい。なお、接続部15において、テープ11の接着面積が耐熱材料側よりも電極基材2側の方が大きい場合には、テープ11は電極基材2と耐熱材料12の片面のみに接着している構成とすることもできるし、電極基材2と耐熱材料12の両面に接着している構成とすることも可能である。   Further, in the present invention, in the connection portion 15 between the electrode base material 2 and the heat resistant material 12, it is preferable that the adhesive area of the tape 11 is larger on the electrode base material 2 side than on the heat resistant material side. When the adhesive area of the tape 11 in the connecting portion 15 is larger on the electrode base material 2 side than on the heat resistant material side, the tape 11 is bonded to only one surface of the electrode base material 2 and the heat resistant material 12. It is also possible to adopt a configuration, or it is possible to employ a configuration in which both sides of the electrode base material 2 and the heat resistant material 12 are adhered.

図7には、片面接着テープ11により電極基材2と耐熱材料12の両面に接着している構成を示し、テープ11の接着面積が耐熱材料側よりも電極基材2側の方が大きい構成である。これにより、電極基材2の端部の接着をより強固なものとすることができる。   FIG. 7 shows a structure in which both sides of the electrode base material 2 and the heat resistant material 12 are bonded by the single-sided adhesive tape 11, and the bonding area of the tape 11 is larger on the electrode base material 2 side than on the heat resistant material side. Is. Thereby, the adhesion of the end portion of the electrode base material 2 can be made stronger.

また、本発明において、接続部において、電極基材2と耐熱材料12は、一部が重なっており、接着材料11として少なくとも両面接着テープを用いることが好ましい。   Further, in the present invention, the electrode base material 2 and the heat-resistant material 12 partially overlap each other at the connection portion, and it is preferable to use at least a double-sided adhesive tape as the adhesive material 11.

図9に、接着材料として両面接着テープ11aを用いて、電極基材2の端部と耐熱材料12とを接続した状態の平面図を、図10にその側面図を示す。電極基材上2の幅方向の両端と中央部に、長辺が電極基材2の搬送方向に平行となるように四角形の両面接着テープ11aを3箇所に貼り付けた態様を示す。これにより、電極基材と耐熱材料との貼り合わせ時の位置合わせが容易にできるとともに、十分な接着強度を確保することができる。   FIG. 9 is a plan view showing a state where the end portions of the electrode base material 2 and the heat-resistant material 12 are connected by using the double-sided adhesive tape 11a as an adhesive material, and FIG. 10 is a side view thereof. A mode in which a quadrangular double-sided adhesive tape 11a is attached at three positions on both ends and the center of the electrode base material 2 in the width direction so that the long sides are parallel to the transport direction of the electrode base material 2 is shown. As a result, the electrode base material and the heat-resistant material can be easily aligned when they are attached to each other, and sufficient adhesive strength can be secured.

また、本発明において、接続部において、電極基材2と耐熱材料12は、一部が重なっているとともに、電極基材2の微多孔質層7が形成されてない面と耐熱材料12の間に接着材料があり、接着材料11として、少なくとも両面接着テープ11bを用いる構成が好ましい。   Further, in the present invention, in the connection portion, the electrode base material 2 and the heat-resistant material 12 are partially overlapped with each other, and between the surface of the electrode base material 2 on which the microporous layer 7 is not formed and the heat-resistant material 12. It is preferable that at least the double-sided adhesive tape 11b be used as the adhesive material 11.

図3に示すように、電極基材2の一方の端部2aである先端部において、上面が微多孔質層7が形成される面であり、下面が微多孔質層が形成されない面2bであり、この下面2bに接着材料11を配し、耐熱材料12と接着される。これにより電極基材の一方の端部と耐熱材料との接続が強固なものとなり、高温炉内を通過する際にも確実な接着性を確保したガス拡散電極とすることができる。   As shown in FIG. 3, at the tip, which is one end 2a of the electrode base material 2, the upper surface is the surface on which the microporous layer 7 is formed, and the lower surface is the surface 2b on which the microporous layer is not formed. Then, the adhesive material 11 is arranged on the lower surface 2b and is bonded to the heat resistant material 12. This strengthens the connection between the one end of the electrode base material and the heat-resistant material, so that a gas diffusion electrode can be obtained that ensures reliable adhesion even when passing through a high temperature furnace.

また、本発明において、耐熱材料が、ポリイミドフィルムであることが好ましい。   Further, in the present invention, the heat resistant material is preferably a polyimide film.

耐熱性が高く、また接着性の良好なポリイミドフィルムの使用により、電極基材2との接着が強固になるとともに、高温炉内を通過する際にも確実な接着性を確保することができる。   By using a polyimide film having high heat resistance and good adhesiveness, the adhesion to the electrode base material 2 becomes strong, and the reliable adhesiveness can be secured even when passing through the high temperature furnace.

また、本発明において、接着材料が、シリコンを含む層を有するポリイミドテープであることが好ましい。   Further, in the present invention, the adhesive material is preferably a polyimide tape having a layer containing silicon.

接着材料としてシリコンを含む層を有するポリイミドテープを使用することにより、特に、耐熱性に対し接着性がより強固になるため、接着材料はシリコンを含む層を有するポリイミドテープが好ましい。   By using a polyimide tape having a layer containing silicon as the adhesive material, the adhesive property is particularly stronger with respect to heat resistance, so that the adhesive material is preferably a polyimide tape having a layer containing silicon.

また、本発明において、高温炉における炉内の温度が150℃以上400℃以下であることが好ましい。高温炉における炉内の温度を150℃以上400℃以下とすることにより、分散液(微多孔質層形成用塗液)に含まれる界面活性剤を熱分解するとともに、PTFE粒子を溶融させて融着させることができる。高温炉における炉内の温度が150℃未満であると、PTFE粒子の溶融融着が十分に行えず、400℃を越えると、PTFE粒子の熱分解が生じる場合がある。高温炉における炉内の温度は、好ましくは200℃以上390℃以下、より好ましくは250℃以上380℃以下である。   Further, in the present invention, it is preferable that the temperature in the high temperature furnace is 150° C. or higher and 400° C. or lower. By setting the temperature in the furnace in the high temperature furnace to 150° C. or higher and 400° C. or lower, the surfactant contained in the dispersion liquid (coating liquid for forming the microporous layer) is thermally decomposed, and the PTFE particles are melted and melted. Can be dressed. If the temperature in the furnace in the high temperature furnace is lower than 150°C, the PTFE particles cannot be melted and fused sufficiently, and if the temperature exceeds 400°C, the PTFE particles may be thermally decomposed. The temperature in the furnace of the high temperature furnace is preferably 200° C. or higher and 390° C. or lower, more preferably 250° C. or higher and 380° C. or lower.

また、本発明において、搬送時の張力は0.1〜0.5N/mmであることが好ましい。搬送時の張力が0.1N/mm未満であると、電極基材2を巻き取った際に巻き端面が揃わないことがある。また、電極基材27の搬送状態が不安定になり、蛇行の原因となることがある。搬送時の張力が0.5N/mmを越えると、電極基材2を巻き取る際に変形や破断が起こることがある。   Further, in the present invention, the tension during transportation is preferably 0.1 to 0.5 N/mm. If the tension during transportation is less than 0.1 N/mm, the winding end faces may not be aligned when the electrode base material 2 is wound up. Further, the transportation state of the electrode base material 27 may become unstable, which may cause meandering. If the tension during transport exceeds 0.5 N/mm, deformation or breakage may occur when the electrode substrate 2 is wound.

また、本発明において、搬送時の速度は0.1〜20.0m/minであることが好ましい。搬送時の速度が0.1m/min未満であると、高温炉内で接続部の接着力が低下し、搬送中に破断の危険性が生じる可能性がある。搬送時の速度が20.0m/minを超えると、PTFE粒子の溶融結着が不十分になりやすい。搬送時の速度は、好ましくは0.5〜15.0m/min、より好ましくは1.0〜12.0m/min、さらに好ましくは1.5〜10.0m/minである。   Further, in the present invention, it is preferable that the speed during transportation is 0.1 to 20.0 m/min. If the speed at the time of transportation is less than 0.1 m/min, the adhesive strength of the connection portion may be reduced in the high temperature furnace, and there is a risk of breakage during transportation. If the transportation speed exceeds 20.0 m/min, the melt binding of the PTFE particles tends to be insufficient. The speed during transportation is preferably 0.5 to 15.0 m/min, more preferably 1.0 to 12.0 m/min, and even more preferably 1.5 to 10.0 m/min.

また、本発明は、上記した搬送方法を行う工程を有する、電極基材の製造方法である。   Further, the present invention is a method for manufacturing an electrode base material, which has a step of performing the above-described transportation method.

また、本発明は、上記した搬送方法を行う工程を有する、電極基材上に微多孔質層を有するガス拡散電極の製造方法であって、高温炉の前に、微多孔質層形成用塗液を塗布する工程を有し、高温炉を通した後、再度ロール状に、微多孔質層を有するガス拡散電極を巻き取る製造方法である。   Further, the present invention is a method for producing a gas diffusion electrode having a microporous layer on an electrode base material, which comprises a step of carrying out the above-described transport method, and comprises a microporous layer forming coating before a high temperature furnace. It is a manufacturing method that includes a step of applying a liquid, and after passing through a high-temperature furnace, winds the gas diffusion electrode having the microporous layer again in a roll shape.

さらに本発明のガス拡散電極基材の製造方法は、前述のように、接続部において、電極基材と耐熱材料は一部が重なっており、前記電極基材の微多孔質層が形成されてない面と前記耐熱材料の間に前記接着材料があり、前記接着材料として少なくとも両面接着テープを用いる製造方法である。   Further, the method for producing a gas diffusion electrode base material of the present invention, as described above, in the connection portion, the electrode base material and the heat-resistant material are partially overlapped, the microporous layer of the electrode base material is formed. There is the adhesive material between the non-coated surface and the heat-resistant material, and at least a double-sided adhesive tape is used as the adhesive material.

アセチレンブラックとPTFE粒子の分散液(微多孔質層形成用塗液)を、スリットダイコータ7を用いて電極基材の表面に塗布した後、高温炉にて焼結処理を施すことにより、分散液(微多孔質層形成用塗液)に含まれる界面活性剤を熱分解するとともに、PTFE粒子を溶融させて融着させ、良好な微多孔質層を形成することができる。   A dispersion liquid of acetylene black and PTFE particles (coating liquid for forming a microporous layer) is applied to the surface of an electrode substrate using a slit die coater 7, and then a sintering treatment is performed in a high temperature furnace to obtain a dispersion liquid. A good microporous layer can be formed by thermally decomposing the surfactant contained in the (microporous layer-forming coating liquid) and fusing and fusing the PTFE particles.

微多孔質層を備えた電極基材であるガス拡散電極を、微多孔質層が触媒層と接するように、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することで膜−電極接合体を構成することができる。かかる膜−電極接合体の両側にガスケットを介してセパレータで挟んだものを複数個積層することによって固体高分子型燃料電池を構成することができる。触媒層は、固体高分子電解質と触媒担持炭素を含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いるのが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性、耐熱性の高い、パーフルオロスルホン酸系の高分子材料を用いるのが好ましい。   A gas diffusion electrode, which is an electrode substrate provided with a microporous layer, is bonded to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both sides so that the microporous layer contacts the catalyst layer, thereby forming a membrane- An electrode assembly can be constructed. A polymer electrolyte fuel cell can be constructed by stacking a plurality of such membrane-electrode assemblies sandwiched by separators on both sides with a gasket interposed therebetween. The catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. Platinum is usually used as the catalyst. In a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side, it is preferable to use platinum and ruthenium as the catalyst on the anode side. As the solid polymer electrolyte, it is preferable to use a perfluorosulfonic acid-based polymer material having high proton conductivity, oxidation resistance, and heat resistance.

以下、実施例によって、本発明について具体的に説明するが、下記の実施例は本発明を何ら制限するものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the following examples do not limit the present invention.

実施例では、図1及び図4に図示した製造工程を用いて電極基材を作成した。   In the example, the electrode base material was created using the manufacturing process illustrated in FIGS. 1 and 4.

<抄紙工程A>
炭素繊維(PAN系炭素繊維 “トレカ(登録商標)”T300−3K(東レ(株)製、単糸の平均直径:7μm、単繊維数:3000本)をよく解繊した後、水中に分散させ、ポリビニルアルコールを抄造用のバインダとして用いて、連続的に抄紙して中間基材を得た。
<Papermaking process A>
Carbon fiber (PAN-based carbon fiber “Torayca (registered trademark)” T300-3K (manufactured by Toray Industries, Inc., average diameter of single yarn: 7 μm, number of single fiber: 3000) was thoroughly defibrated and then dispersed in water. Using polyvinyl alcohol as a binder for papermaking, papermaking was continuously carried out to obtain an intermediate base material.

<樹脂含浸、乾燥・脱溶媒工程B>
抄紙工程Aによって得た中間基材(抄紙した炭素繊維紙)を、ノボラック型フェノール樹脂とレゾール型フェノール樹脂のメタノール溶液に鱗片状黒鉛粒子(平均粒径:5μm)を分散した液に連続的に含浸し、引き上げて炭素繊維に対してフェノール樹脂と黒鉛粒子を付着させた後、さらに約100℃で約1分間連続的に乾燥してメタノールを除去したプリプレグを得た。
<Resin impregnation, drying and desolvation process B>
The intermediate base material (papermaking carbon fiber paper) obtained in the papermaking process A is continuously added to a liquid in which scaly graphite particles (average particle diameter: 5 μm) are dispersed in a methanol solution of a novolac type phenolic resin and a resol type phenolic resin. After impregnating and pulling up, the phenol resin and the graphite particles were attached to the carbon fiber, and further dried continuously at about 100° C. for about 1 minute to obtain a prepreg from which methanol was removed.

<樹脂硬化工程C>
樹脂含浸、乾燥・脱溶媒工程Bによって得たプリプレグを、間欠的に搬送しながら、平行な熱板で連続加熱加圧してフェノール樹脂を硬化、シートを成型した。
<Resin curing step C>
The prepreg obtained in the resin impregnation, drying/solvent removal step B was intermittently conveyed, and was continuously heated and pressed by parallel hot plates to cure the phenol resin to form a sheet.

<炭化工程D>
樹脂硬化工程Cによって得たシートを連続的に搬送しながら連続炭化炉で窒素雰囲気中、最高温度が2400℃で加熱することにより熱硬化性樹脂を炭化して炭素繊維シート(電極基材)とした。
<Carbonization process D>
While continuously transporting the sheet obtained by the resin curing step C, the thermosetting resin is carbonized by heating at a maximum temperature of 2400° C. in a nitrogen atmosphere in a continuous carbonization furnace to form a carbon fiber sheet (electrode base material). did.

<含浸・乾燥工程E、表面塗布・乾燥工程F、焼結工程G>
炭化工程Dによって得た電極基材2を、図3に示すように電極基材の一方の端部2aである先端部の微多孔質層が形成されない面2bに、接着材料11として両面接着テープを配し、耐熱材料12としてシリコンを含む層を有するポリイミドフィルム12を接着させた。
<Impregnation/drying process E, surface coating/drying process F, sintering process G>
As shown in FIG. 3, the electrode base material 2 obtained by the carbonization step D is a double-sided adhesive tape as an adhesive material 11 on the surface 2b at one end 2a of the electrode base material where the microporous layer is not formed. And a polyimide film 12 having a layer containing silicon as the heat resistant material 12 was adhered.

図9又は図10に示すように、両面接着テープ11aは電極基材2上の幅方向の両端に、長辺が電極基材の搬送方向に平行となるように四角形の両面接着テープ(長辺60mm、短辺25mm)を3箇所に貼り付けた。ポリイミドフィルム12の、横幅は360mmとした。また電極基材2の横幅は450mmとした。   As shown in FIG. 9 or FIG. 10, the double-sided adhesive tape 11a has a rectangular double-sided adhesive tape (long side) on both ends in the width direction on the electrode base material 2 so that the long sides are parallel to the transport direction of the electrode base material. (60 mm, short side 25 mm) was attached to three places. The width of the polyimide film 12 was 360 mm. The lateral width of the electrode base material 2 was 450 mm.

ポリイミドフィルム12を先頭に接続した電極基材2を巻取りロール10にセットし、搬送時の張力0.5N/mm、搬送時の速度15.0m/minで搬送し、含浸槽4にてPTFE粒子の分散液に浸漬し、150℃で乾燥させた。その後、アセチレンブラックとPTFE粒子の分散液(微多孔質層形成用塗液)を、スリットダイコータ7を用いて、電極基材の表面に塗布し、150℃で乾燥した。その後、400℃に加熱した高温炉9を通過させた。電極基材2の先端部2aが乾燥機及び高温炉を通過するときにはすでにそれぞれ所定の温度に昇温されており、正規の温度条件で焼結処理が行え、製品の廃棄ロスをなくすことができた。   The electrode base material 2 having the polyimide film 12 connected to the top is set on the winding roll 10 and conveyed at a tension of 0.5 N/mm during conveyance and a speed of 15.0 m/min during conveyance, and the impregnation tank 4 uses PTFE. The particles were immersed in a dispersion liquid and dried at 150°C. Then, a dispersion liquid of acetylene black and PTFE particles (coating liquid for forming a microporous layer) was applied to the surface of the electrode base material using the slit die coater 7, and dried at 150°C. Then, it was passed through a high temperature furnace 9 heated to 400°C. When the tip portion 2a of the electrode base material 2 passes through the dryer and the high temperature furnace, the temperature is already raised to the predetermined temperature, and the sintering process can be performed under the normal temperature condition, so that the waste loss of the product can be eliminated. It was

2 電極基材
2a 電極基材の一方の端部
2b 電極基材の微多孔質層が形成されていない面
3 巻き出しロール
4 含浸槽
5 乾燥機
6 表面塗工機
7 微多孔質層
8 乾燥機
9 高温炉
10 巻取りロール
11 接着材料(片面テープ)
11a 接着材料(両面テープ)
12 耐熱材料
15 接続部
2 electrode base material 2a one end of the electrode base material 2b surface of the electrode base material on which the microporous layer is not formed 3 unwinding roll 4 impregnation tank 5 dryer 6 surface coating machine 7 microporous layer 8 drying Machine 9 High-temperature furnace 10 Winding roll 11 Adhesive material (single-sided tape)
11a Adhesive material (double-sided tape)
12 Heat resistant material 15 Connection part

Claims (11)

ロール状の炭化処理後の電極基材を巻き出して、熱処理を施すための高温炉を通して、再度ロール状に巻き取る際の、電極基材の搬送方法であって、
前記電極基材の搬送方向における少なくとも一方の端部を、接着材料を用いてポリイミドフィルムと接続して搬送することを特徴とする、電極基材の搬送方法。
Rolling out the electrode base material after the carbonization treatment in a roll shape, through a high temperature furnace for applying a heat treatment, when rewinding in a roll shape, a method of transporting the electrode base material,
A method of transporting an electrode base material, comprising connecting at least one end of the electrode base material in a transport direction to a polyimide film using an adhesive material and transporting the polyimide film .
電極基材の端部を、接着材料を用いて、ポリイミドフィルムと接続した領域を接続部とすると、
前記接続部において、前記電極基材と前記ポリイミドフィルムは、一部が重なっており、
前記接着材料として、複数のテープを用いており、
前記接続部の両面において、前記電極基材の幅方向の両端が前記テープにより前記ポリイミドフィルムと接着している請求項1に記載の電極基材の搬送方法。
The end portion of the electrode base material, using an adhesive material, and the region connected to the polyimide film as the connection portion,
In the connection portion, the electrode base material and the polyimide film are partially overlapped,
As the adhesive material, a plurality of tapes are used,
The method for transporting an electrode base material according to claim 1, wherein both ends in the width direction of the electrode base material are adhered to the polyimide film by the tape on both surfaces of the connection portion.
電極基材の端部を、接着材料を用いて、ポリイミドフィルムと接続した領域を接続部とすると、
前記接着材料として、テープを用いており、
前記接続部において、前記テープの接着面積が前記ポリイミドフィルム側よりも前記電極基材側の方が大きい、請求項1または2に記載の電極基材の搬送方法。
The end portion of the electrode base material, using an adhesive material, and the region connected to the polyimide film as the connection portion,
As the adhesive material, a tape is used,
The method of transporting an electrode base material according to claim 1, wherein, in the connection portion, the adhesive area of the tape is larger on the electrode base material side than on the polyimide film side.
電極基材の端部を、接着材料を用いて、ポリイミドフィルムと接続した領域を接続部とすると、
前記接続部において、電極基材とポリイミドフィルムは、一部が重なっており、
前記接着材料として、少なくとも両面接着テープを用いる、請求項1〜3のいずれかに記載の電極基材の搬送方法。
The end portion of the electrode base material, using an adhesive material, and the region connected to the polyimide film as the connection portion,
In the connection portion, the electrode base material and the polyimide film are partially overlapped,
The method of transporting an electrode base material according to claim 1, wherein at least a double-sided adhesive tape is used as the adhesive material.
前記接着材料が、シリコンを含む層を有するポリイミドテープである請求項1〜のいずれかに記載の電極基材の搬送方法。 Wherein the adhesive material is transported method of an electrode substrate according to any one of claims 1 to 4, which is a polyimide tape having a layer containing silicon. 高温炉における炉内の温度が150℃以上400℃以下である請求項1〜のいずれかに記載の電極基材の搬送方法。 Any transfer method of an electrode substrate according to claim 1 to 5 temperature in the furnace is 0.99 ° C. or higher 400 ° C. or less in the high temperature furnace. 搬送時の張力が0.1〜0.5N/mmである請求項1〜のいずれかに記載の電極基材の搬送方法。 Transporting method of an electrode substrate according to any one of claims 1-6 tension during conveyance is 0.1~0.5N / mm. 搬送時の速度が、0.1〜20.0m/minである請求項1〜のいずれかに記載の電極基材の搬送方法。 Speed during conveyance, 0.1~20.0m / min in a claim 1-7 transfer method of an electrode substrate according to any one of. 請求項1〜のいずれかに記載の搬送方法を行う工程を有する、電極基材の製造方法。 A step for conveying method according to any one of claims 1-8, a manufacturing method of the electrode substrate. 電極基材上に微多孔質層を有するガス拡散電極の製造方法であって、
前記高温炉の前に、微多孔質層形成用塗液を塗布する工程を有し、請求項1〜のいずれかに記載の搬送方法を行う工程を有する、ガス拡散電極の製造方法。
A method for producing a gas diffusion electrode having a microporous layer on an electrode substrate,
Before the high-temperature furnace, comprising a step of applying a microporous layer forming coating solution, a step for conveying method according to any one of claims 1 to 9 the gas diffusion electrode production process.
電極基材の端部を、接着材料を用いて、ポリイミドフィルムと接続した領域を接続部とすると、
前記接続部において、電極基材とポリイミドフィルムは、一部が重なっており、
前記電極基材の微多孔質層が形成されてない面と前記ポリイミドフィルムの間に、前記接着材料があり、
前記接着材料として、少なくとも両面接着テープを用いる、請求項1に記載のガス拡散電極の製造方法。
The end portion of the electrode base material, using an adhesive material, and the region connected to the polyimide film as the connection portion,
In the connection portion, the electrode base material and the polyimide film are partially overlapped,
Between the surface of the electrode base material on which the microporous layer is not formed and the polyimide film , the adhesive material is present,
As the adhesive material, using at least a double-sided adhesive tape, manufacturing method for a gas diffusion electrode according to claim 1 0.
JP2015237144A 2015-12-04 2015-12-04 Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode Active JP6701698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237144A JP6701698B2 (en) 2015-12-04 2015-12-04 Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237144A JP6701698B2 (en) 2015-12-04 2015-12-04 Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode

Publications (2)

Publication Number Publication Date
JP2017103169A JP2017103169A (en) 2017-06-08
JP6701698B2 true JP6701698B2 (en) 2020-05-27

Family

ID=59016873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237144A Active JP6701698B2 (en) 2015-12-04 2015-12-04 Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP6701698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070312B2 (en) 2018-10-11 2022-05-18 トヨタ自動車株式会社 Manufacturing method of sheet for gas diffusion layer
JP6778241B2 (en) * 2018-10-26 2020-10-28 本田技研工業株式会社 Gas diffusion layer sheet processing equipment
KR102374538B1 (en) * 2020-06-22 2022-03-16 주식회사 하이센도 Manufacturing method of functional gdl for fuel cell and functional gdl manufactured using them
CN112038567A (en) * 2020-08-12 2020-12-04 北京化工大学 Continuous production device and production process of electrode

Also Published As

Publication number Publication date
JP2017103169A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6701698B2 (en) Method for transporting electrode base material, method for manufacturing electrode base material, and method for manufacturing gas diffusion electrode
TWI708423B (en) Gas diffusion electrode and manufacturing method thereof
KR101533205B1 (en) Gas diffusion electrode substrate for fuel cell, membrane electrode assembly, and fuel cell
KR20040111523A (en) Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom
US20180219228A1 (en) Gas diffusion electrode
JP6575281B2 (en) Winding method of porous carbon fiber sheet for polymer electrolyte fuel cell
CN115341405A (en) Porous substrate, porous electrode, carbon fiber paper, method for producing carbon fiber paper, and method for producing porous substrate
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP7017042B2 (en) Manufacturing method of carbon fiber sheet
JPWO2016121569A1 (en) Porous carbon sheet and precursor fiber sheet thereof
JP2010070433A (en) Porous carbon sheet and method for producing the same
WO2004029353A1 (en) Carbonaceous fiber fabric, roll of carbonaceous fiber fabric, gas diffusion layer material for solid polymer fuel cell, method for production of carbonaceous fiber fabric, and method for production of solid polymer fuel cell
JP6750192B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP2018142450A (en) Gas diffusion layer for solid polymer fuel cell, gas diffusion electrode, and manufacturing method thereof
JP6497179B2 (en) Gas diffusion layer and gas diffusion layer roll
JP4559767B2 (en) Carbon electrode substrate manufacturing method
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP6291818B2 (en) Porous carbon electrode and manufacturing method thereof
JP6265028B2 (en) Porous carbon electrode
JP5424802B2 (en) Manufacturing method of long carbon fiber sheet, long carbon fiber sheet precursor and long carbon fiber sheet
JP2018133267A (en) Porous carbon electrode
JP5568965B2 (en) MANUFACTURING METHOD FOR ROLLED LONG CARBON FIBER SHEET, LONG CARBON FIBER SHEET PRECURSOR AND LONG CARBON FIBER SHEET WOOLED IN ROLL
JP2009280437A (en) Method for producing porous carbon sheet
JP5250328B2 (en) Method for producing carbonaceous electrode substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6701698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151