JP7114858B2 - Gas diffusion electrode and fuel cell - Google Patents

Gas diffusion electrode and fuel cell Download PDF

Info

Publication number
JP7114858B2
JP7114858B2 JP2017052315A JP2017052315A JP7114858B2 JP 7114858 B2 JP7114858 B2 JP 7114858B2 JP 2017052315 A JP2017052315 A JP 2017052315A JP 2017052315 A JP2017052315 A JP 2017052315A JP 7114858 B2 JP7114858 B2 JP 7114858B2
Authority
JP
Japan
Prior art keywords
microporous layer
gas diffusion
porous substrate
diffusion electrode
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017052315A
Other languages
Japanese (ja)
Other versions
JP2018156818A (en
Inventor
純一 浦井
和代 重田
保高 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017052315A priority Critical patent/JP7114858B2/en
Publication of JP2018156818A publication Critical patent/JP2018156818A/en
Application granted granted Critical
Publication of JP7114858B2 publication Critical patent/JP7114858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

燃料電池は、水素と酸素を反応させてエネルギーを得る方法であり排出物が水しかないことから、次世代のクリーンなエネルギーとして、普及が期待されている分野である。本発明は、燃料電池に用いられるガス拡散電極に関して、特に、微多孔層の微小穴を制御した触媒塗工性に優れたガス拡散電極に関する。 A fuel cell is a method of obtaining energy by reacting hydrogen and oxygen, and since it emits only water, it is expected to spread as a next-generation clean energy. TECHNICAL FIELD The present invention relates to a gas diffusion electrode used in a fuel cell, and more particularly to a gas diffusion electrode having controlled micropores in a microporous layer and excellent catalyst coating properties.

燃料電池に使用されている電極のうち、固体高分子電解質型燃料電池で使用される電極は、2つのセパレータで挟まれた状態で配置されるもので、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、触媒層の外側に形成されるガス拡散電極とからなる構造を有する。このガス拡散電極に求められる性能は、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るために用いられる部材として、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が多くなっている。 Among the electrodes used in fuel cells, the electrodes used in solid polymer electrolyte fuel cells are arranged in a state sandwiched between two separators. It has a structure consisting of a catalyst layer formed on the surface of the electrolyte membrane and a gas diffusion electrode formed outside the catalyst layer. Performances required for the gas diffusion electrode include, for example, gas diffusibility, electrical conductivity for collecting electricity generated in the catalyst layer, and drainage performance for efficiently removing moisture generated on the surface of the catalyst layer. As a member used to obtain such a gas diffusion electrode, a conductive porous substrate having both gas diffusion ability and electrical conductivity is commonly used.

前述した導電性多孔質基材には、具体的には、炭素繊維からなるカーボンペーパーやカーボンフェルト、およびカーボンクロスなどが用いられることが多いが、この中でも機械的強度などの点からカーボンペーパーが最も好ましいとされている。 Specifically, carbon paper, carbon felt, and carbon cloth made of carbon fiber are often used as the conductive porous substrate described above. considered the most preferred.

また、燃料電池は水素と酸素が反応し水が生成する際に生じるエネルギーを電気的に取り出すシステムであるため、電気的な負荷が大きくなると、即ち電池外部へ取り出す電流を大きくすると、多量の水(水蒸気)が発生し、この水蒸気が低温では凝縮して水滴になり、ガス拡散電極の細孔を塞いでしまうと、ガス(酸素あるいは水素)の触媒層への供給量が低下し、最終的に全ての細孔が塞がれてしまうと、発電が停止することになる(この現象をフラッディングという)。 In addition, the fuel cell is a system that electrically extracts the energy generated when hydrogen and oxygen react to produce water. (Water vapor) is generated, and this water vapor condenses into water droplets at low temperatures, and when the pores of the gas diffusion electrode are blocked, the amount of gas (oxygen or hydrogen) supplied to the catalyst layer decreases, and finally If all the pores are blocked, power generation will stop (this phenomenon is called flooding).

このフラッディングを可能な限り発生させないように、ガス拡散電極には排水性が求められる。この排水性を高める手段として、通常、導電性多孔質基材に撥水処理を施したガス拡散電極基材を用いて撥水性を高めている。 The gas diffusion electrode is required to have drainage properties so as to prevent this flooding from occurring as much as possible. As a means for enhancing the water repellency, a gas diffusion electrode substrate obtained by subjecting a conductive porous substrate to a water repellent treatment is usually used to enhance the water repellency.

また、上記のような撥水処理された導電性多孔質基材をそのままガス拡散電極として用いると、その繊維の目が粗いため、水蒸気が凝縮すると大きな水滴が発生し、フラッディングを起こしやすい。このため、撥水処理を施した導電性多孔質基材の上に、カーボンブラックなどの導電性微粒子を分散した塗液を塗布し乾燥焼結することにより、微多孔層と呼ばれる層(マイクロポーラスレイヤーともいう)を設ける場合がある。 In addition, when the conductive porous substrate treated with water repellency as described above is used as it is as a gas diffusion electrode, the fibers are coarse, and when water vapor condenses, large water droplets are generated and flooding is likely to occur. For this reason, a layer called a microporous layer (microporous layer) is formed by applying a coating liquid in which conductive fine particles such as carbon black are dispersed on a conductive porous substrate that has been subjected to a water-repellent treatment, followed by drying and sintering. layer) may be provided.

特許文献1には、微多孔層の表面に貫通する孔が存在することで、排水性が向上し、フラッディングを起きにくくした方法が示されている。 Patent Literature 1 discloses a method in which the presence of penetrating holes on the surface of a microporous layer improves drainage and makes flooding less likely to occur.

また、特許文献2には、導電性多孔質基材を厚く、密にすることで浸み込みを防止することが可能なガス拡散電極が示されている。 Further, Patent Document 2 discloses a gas diffusion electrode capable of preventing permeation by making the conductive porous substrate thick and dense.

さらに、特許文献3では、意図的に微多孔層に貫通する孔を設けることで、排水性を向上させることが可能であることが示されている。 Furthermore, Patent Literature 3 discloses that it is possible to improve drainage performance by intentionally providing holes penetrating through the microporous layer.

特開2015-195111号公報JP 2015-195111 A 特開2011-080160号公報Japanese Unexamined Patent Application Publication No. 2011-080160 特開2013-015226号公報JP 2013-015226 A

しかし、特許文献1に記載のガス拡散電極では、ガス拡散電極の排水性にだけ着目した技術であり、排水性は保たれていても、触媒層を塗布するには不十分な場合がある。 However, the gas diffusion electrode described in Patent Document 1 is a technique focusing only on the drainage of the gas diffusion electrode, and even if the drainage is maintained, it may not be sufficient for coating the catalyst layer.

特許文献2に記載のガス拡散電極では、基材への浸み込みが抑制されている観点から、触媒の塗布性に関しては十分になっている可能性もあるが、排水性への考慮がなされず、性能が不十分であるケースや、ガス拡散電極のひび割れ(以下、これをクラックと記載)過多で、触媒が抜けてしまい、塗工性が不十分となるケースがある。 In the gas diffusion electrode described in Patent Document 2, from the viewpoint of suppressing permeation into the base material, there is a possibility that the coatability of the catalyst is sufficient, but drainage is not considered. However, there are cases in which the performance is insufficient, and there are cases in which excessive cracking (hereinafter referred to as cracks) in the gas diffusion electrode causes the catalyst to come off, resulting in insufficient coatability.

また、特許文献3に記載のガス拡散電極は、意図的に孔を作り、性能を向上させることができるが、触媒層を塗布する際に、安定に塗布できないという問題があり、本発明の趣旨とは逆の関係にある。 In addition, the gas diffusion electrode described in Patent Document 3 can intentionally create holes to improve performance, but there is a problem that the catalyst layer cannot be applied stably. has an inverse relationship with

そこで本発明は、排水性を向上させつつも、触媒の塗工性を阻害する孔を抑制することで、性能および塗工性を両立したガス拡散電極を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gas diffusion electrode that achieves both performance and coatability by suppressing pores that hinder catalyst coatability while improving drainage.

本発明は上記の課題を解決するため、次のような手段を採用するものである。 In order to solve the above problems, the present invention employs the following means.

導電性多孔質基材の少なくとも片面に微多孔層を有するガス拡散電極であって、
前記微多孔層を厚み方向に貫通する領域の合計の面積率が0.05%以上0.7%以下であり、
前記貫通する領域の中で、アスペクト比が0.33以下又は2.0以上の領域を非ホール領域とすると、前記貫通する領域における、非ホール領域の合計の面積率が90%以上99%以下であることを特徴とする、ガス拡散電極。
A gas diffusion electrode having a microporous layer on at least one side of a conductive porous substrate,
The total area ratio of the regions penetrating the microporous layer in the thickness direction is 0.05% or more and 0.7% or less,
If a region having an aspect ratio of 0.33 or less or 2.0 or more in the penetrating region is defined as a non-hole region, the total area ratio of the non-hole region in the penetrating region is 90% or more and 99% or less. A gas diffusion electrode characterized by:

本発明のガス拡散電極によれば、ガス拡散電極の表面に触媒を塗布した場合でも、高い収率および性能を維持することが可能なガス拡散電極を得ることができる。 According to the gas diffusion electrode of the present invention, it is possible to obtain a gas diffusion electrode capable of maintaining high yield and performance even when a catalyst is applied to the surface of the gas diffusion electrode.

本発明のガス拡散電極の模式断面図。1 is a schematic cross-sectional view of a gas diffusion electrode of the present invention; FIG.

本発明は、導電性多孔質基材の少なくとも片面に微多孔層を有するガス拡散電極であって、前記微多孔層を厚み方向に貫通する領域の合計の面積率が0.05%以上0.7%以下であり、前記貫通する領域の中で、アスペクト比が0.33以下又は2.0以上の領域を非ホール領域とすると、前記貫通する領域における、非ホール領域の合計の面積率が90%以上99%以下であることを特徴とする、ガス拡散電極である。 The present invention provides a gas diffusion electrode having a microporous layer on at least one side of an electrically conductive porous substrate, wherein the total area ratio of regions penetrating through the microporous layer in the thickness direction is 0.05% or more. 7% or less, and if a region having an aspect ratio of 0.33 or less or 2.0 or more in the penetrating region is defined as a non-hole region, the total area ratio of the non-hole region in the penetrating region is The gas diffusion electrode is characterized by being 90% or more and 99% or less.

本発明のガス拡散電極において用いられる導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着することで得られる、樹脂炭化物を含む基材、すなわちカーボンペーパーを用いることが最も好ましい。 Specific examples of the conductive porous substrate used in the gas diffusion electrode of the present invention include carbon fibers such as carbon fiber fabric, carbon fiber paper, carbon fiber nonwoven fabric, carbon felt, carbon paper, and carbon cloth. It is preferable to use a metal porous substrate such as a porous substrate containing, foamed sintered metal, metal mesh, expanded metal. Among them, it is preferable to use a porous substrate such as carbon felt containing carbon fiber, carbon paper, carbon cloth, etc., because of its excellent corrosion resistance. In other words, it is most preferable to use a base material containing a resin charcoal, that is, carbon paper, which is obtained by binding carbon fiber paper bodies with a charcoal because of its excellent "springiness".

本発明においては、導電性多孔質基材の少なくとも片面に微多孔層を有する。 ここで微多孔層とは、孔を有する層であって、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、グラフェン、黒鉛などの導電性微粒子を含んだ層である。 In the present invention, a microporous layer is provided on at least one side of the conductive porous substrate. Here, the microporous layer is a layer having pores and containing conductive fine particles such as carbon black, carbon nanotube, carbon nanofiber, chopped carbon fiber, graphene, and graphite.

導電性微粒子としては、コストが低く、安全性や製品の品質の安定性の点から、カーボンブラックが好適に用いられる。不純物が少なく触媒の活性を低下させにくいという点でアセチレンブラックが最も良く用いられる。またカーボンブラックの不純物の含有量の目安として灰分が挙げられるが、灰分が0.1質量%以下のカーボンブラックを用いることがより好ましい。なお、カーボンブラック中の灰分は少ないほど好ましく、灰分が0質量%のカーボンブラック、つまり、灰分を含まないカーボンブラックが最も好ましい。 As the conductive fine particles, carbon black is preferably used from the viewpoint of low cost, safety and stability of product quality. Acetylene black is most often used because it contains few impurities and does not easily reduce the activity of the catalyst. As a measure of the content of impurities in carbon black, the ash content is cited, and it is more preferable to use carbon black with an ash content of 0.1% by mass or less. In addition, the lower the ash content in the carbon black is, the more preferable it is, and carbon black containing 0% by mass of ash, that is, carbon black containing no ash is most preferable.

また、微多孔層には、導電性、ガス拡散性、水の排水性、あるいは保湿性、熱伝導性といった特性、さらには燃料電池内部のアノード側での耐強酸性、カソード側での耐酸化性が求められるため、微多孔層は、導電性微粒子に加えて、フッ素樹脂をはじめとする撥水性樹脂を含むことが好ましい。微多孔層が含むフッ素樹脂としては、導電性多孔質基材を撥水する際に好んで用いられるフッ素樹脂と同様で、PTFE、FEP、PFA、ETFA等が上げられる。撥水性が特に高いという点でPTFE、あるいはFEPが好ましい。 In addition, the microporous layer has properties such as electrical conductivity, gas diffusion, water drainage, moisture retention, and thermal conductivity. Therefore, the microporous layer preferably contains a water-repellent resin such as fluororesin in addition to the conductive fine particles. Examples of the fluororesin contained in the microporous layer include PTFE, FEP, PFA, ETFA, and the like, which are the same as fluororesins that are preferably used for water-repellent conductive porous substrates. PTFE or FEP is preferable in terms of particularly high water repellency.

本発明はその微多孔層中に、微多孔層を厚み方向に貫通する領域が存在する。厚み方向に貫通する領域は、穴状である場合、クラック(ヒビ、割れ目)状である場合、もしくは、穴とクラックが混在する場合等がある。微多孔層を厚み方向に貫通する領域は、ガス拡散電極の導電性多孔質基材側から光を当てると、微多孔層側まで光が透過する。そのため、ガス拡散電極の導電性多孔質基材側から光を当てた際の、微多孔層側から検出される光の有無によって、微多孔層の厚み方向に貫通する領域の有無を判断することができる。 In the present invention, the microporous layer has a region penetrating through the microporous layer in the thickness direction. The region penetrating in the thickness direction may have a hole shape, a crack (crack, split) shape, or a mixture of holes and cracks. In the region penetrating the microporous layer in the thickness direction, when light is applied from the conductive porous substrate side of the gas diffusion electrode, the light penetrates to the microporous layer side. Therefore, the presence or absence of a region penetrating through the microporous layer in the thickness direction can be determined based on the presence or absence of light detected from the microporous layer side when light is applied from the conductive porous substrate side of the gas diffusion electrode. can be done.

本発明において、微多孔層を厚み方向に貫通する領域の合計の面積率は、0.05%以上0.7%以下であり、さらに微多孔層を厚み方向に貫通する領域における非ホール領域の合計の面積率が90%以上99%以下である。 In the present invention, the total area ratio of the regions penetrating the microporous layer in the thickness direction is 0.05% or more and 0.7% or less, and the non-hole region in the region penetrating the microporous layer in the thickness direction is The total area ratio is 90% or more and 99% or less.

ここで非ホール領域とは、微多孔層を厚み方向に貫通する領域の中で、アスペクト比が0.33以下又は2.0以上の領域を意味する。なお、微多孔層を厚み方向に貫通する領域の中で、非ホール領域以外の領域は、ホール領域と呼ぶ。そして、微多孔層を厚み方向に貫通する領域の合計の面積率が0.05%以上0.7%以下とは、微多孔層を厚み方向に貫通する領域が複数存在する場合にそれら各領域の和を求め、微多孔層の全面100%における前記和の割合が0.05%以上0.7%以下であることを意味する。さらに微多孔層を厚み方向に貫通する領域における非ホール領域の合計の面積率が90%以上99%以下とは、非ホール領域が複数存在する場合にそれらの領域の和を求め、また微多孔層を厚み方向に貫通する領域が複数存在する場合にそれらの領域の和を求め、微多孔層を厚み方向に貫通する領域の和を100%とした場合の非ホール領域の和の割合が90%以上99%以下であることを意味する。 Here, the non-hole region means a region having an aspect ratio of 0.33 or less or 2.0 or more in the region penetrating the microporous layer in the thickness direction. Incidentally, among the regions penetrating the microporous layer in the thickness direction, regions other than the non-hole regions are called hole regions. When the total area ratio of the regions penetrating the microporous layer in the thickness direction is 0.05% or more and 0.7% or less, when there are a plurality of regions penetrating the microporous layer in the thickness direction, each region , and the ratio of the sum to 100% of the entire surface of the microporous layer is 0.05% or more and 0.7% or less. Furthermore, the expression that the total area ratio of the non-hole regions in the region penetrating the microporous layer in the thickness direction is 90% or more and 99% or less means that when there are a plurality of non-hole regions, the sum of these regions is obtained, and the microporous layer is When there are a plurality of regions penetrating the layer in the thickness direction, the sum of these regions is calculated, and the sum of the regions penetrating the microporous layer in the thickness direction is taken as 100%, and the ratio of the sum of the non-hole regions is 90%. % or more and 99% or less.

微多孔層を厚み方向に貫通する領域の合計の面積率が0.05%未満であると、非ホール領域が少なく、排水性が不十分である可能性がある。一方、微多孔層を厚み方向に貫通する領域の合計の面積率が0.7%を超え、非ホール領域の合計の面積率が90%未満になると、微多孔層の上から触媒を塗布する際に、触媒液が穴から漏れてしまい、欠陥となる。また、発電を繰り返すうちに、微多孔層の凹凸に沿って電解質膜が変形し、穴や破れが発生して、燃料電池の耐久性が低下する恐れがある。 If the total area ratio of the regions penetrating through the microporous layer in the thickness direction is less than 0.05%, the non-hole region is small and the drainage may be insufficient. On the other hand, when the total area ratio of the regions penetrating the microporous layer in the thickness direction exceeds 0.7% and the total area ratio of the non-hole regions is less than 90%, the catalyst is applied from above the microporous layer. At that time, the catalyst liquid leaks from the hole, resulting in a defect. In addition, as power generation is repeated, the electrolyte membrane may deform along the irregularities of the microporous layer, causing holes or tears, which may reduce the durability of the fuel cell.

本発明のガス拡散電極は、微多孔層を厚み方向に貫通する領域の面積が、0.1μm以上2000μm以下であることが好ましい。微多孔層を厚み方向に貫通する領域の面積を0.1μm以上とすることで、排水性を保つことができる。また、微多孔層を厚み方向に貫通する領域の面積を2000μm以下とすることで微多孔質の上から触媒を塗布する際に、触媒液が穴から漏れるのを防ぐことができる。なお、ここでいう微多孔層を厚み方向に貫通する領域の面積とは、当該貫通する領域が複数存在したとしても、それらの合計の面積を意味するものではなく、各々の当該貫通する領域の面積を意味する。 In the gas diffusion electrode of the present invention, the area of the region penetrating the microporous layer in the thickness direction is preferably 0.1 μm 2 or more and 2000 μm 2 or less. By setting the area of the region penetrating the microporous layer in the thickness direction to 0.1 μm 2 or more, the drainage property can be maintained. In addition, by setting the area of the region penetrating the microporous layer in the thickness direction to 2000 μm 2 or less, it is possible to prevent the catalyst liquid from leaking through the holes when the catalyst is applied onto the microporous layer. The area of the region penetrating the microporous layer in the thickness direction as used herein does not mean the total area of the penetrating regions, even if there are a plurality of the penetrating regions. means area.


本発明において、微多孔層の中でも導電性多孔質基材中へしみ込んだ微多孔層を、以下、しみ込み部分という。そして微多孔層の厚さを100%とした際の、しみ込み部分の厚さの割合を、以下、しみ込み量と呼び、本発明においてはしみ込み量が50%以上90%以下であることが好ましい。しみ込み量を50%以上90%以下とすることで、微多孔層を厚み方向に貫通する領域の合計の面積率を0.05%以上0.7%以下とし、前記貫通する領域における非ホール領域の合計の面積率が90%以上99%以下に制御することができるからである。

In the present invention, of the microporous layer, the microporous layer that has permeated into the conductive porous substrate is hereinafter referred to as a permeated portion. The ratio of the thickness of the soaked portion to the thickness of the microporous layer being 100% is hereinafter referred to as the soaked amount, and in the present invention, the soaked amount is 50% or more and 90% or less. is preferred. By setting the penetration amount to 50% or more and 90% or less, the total area ratio of the regions penetrating the microporous layer in the thickness direction is 0.05% or more and 0.7% or less, and the non-holes in the penetrating region are This is because the total area ratio of the regions can be controlled to 90% or more and 99% or less.

なお、しみ込み量を50%以上90%以下にするには、微多孔層100質量%中の撥水性樹脂の含有量を、5質量%以上15質量%以下にすることで制御することができる。または、微多孔層塗液の塗布位置と導電性多孔質基材の距離を、微多孔層塗液の膜厚の70%以上110%以下にすることで制御することで制御することもできる。撥水性樹脂の含有量が5質量%未満であると、しみ込み量が90%を超えて、ガス拡散電極の排水性が下がり、燃料電池の発電性能が下がる恐れがある。一方、撥水性樹脂の含有量が15質量%を超えると、しみ込み量が50%を下回り、かつ、微多孔層を貫通する領域が0.7%を超え、触媒の塗布性に不具合が生じたり、燃料電池の耐久性が低下したりすることがある。また、微多孔層塗液の塗布位置と導電性多孔質基材の距離が、微多孔層塗液の膜厚の70%未満であると、しみ込み量が90%を超えて、ガス拡散電極の排水性が下がり、燃料電池の発電性能が下がることがある。一方、微多孔層塗液の塗布位置と導電性多孔質基材の距離が、微多孔層塗液膜厚の110%を超えると、触媒の塗布性に不具合が生じることがある。 In addition, in order to make the penetration amount 50% or more and 90% or less, the content of the water-repellent resin in 100% by mass of the microporous layer can be controlled by 5% or more and 15% or less by mass. . Alternatively, it can be controlled by controlling the distance between the application position of the microporous layer coating liquid and the conductive porous substrate to 70% or more and 110% or less of the film thickness of the microporous layer coating liquid. If the content of the water-repellent resin is less than 5% by mass, the permeation amount may exceed 90%, resulting in a decrease in the drainage performance of the gas diffusion electrode and a decrease in the power generation performance of the fuel cell. On the other hand, when the content of the water-repellent resin exceeds 15% by mass, the penetration amount is less than 50%, and the area penetrating the microporous layer exceeds 0.7%, resulting in poor catalyst coating properties. Otherwise, the durability of the fuel cell may be lowered. Further, when the distance between the application position of the microporous layer coating liquid and the conductive porous substrate is less than 70% of the film thickness of the microporous layer coating liquid, the amount of penetration exceeds 90%, and the gas diffusion electrode The drainage performance of the fuel cell may decrease, and the power generation performance of the fuel cell may decrease. On the other hand, if the distance between the application position of the microporous layer coating liquid and the conductive porous substrate exceeds 110% of the thickness of the microporous layer coating liquid, the catalyst may be poorly coated.

しみ込み部分、および、しみ込み量の測定法は後述する。 The permeation part and the method for measuring the permeation amount will be described later.

しみ込み量が50%未満であると、貫通する領域が増加し、触媒の塗工に不具合が生じることがある。また、微多孔層中のガス拡散抵抗が生じ、燃料電池の発電性能が低下することがある。しみ込み量が90%を超えると、ガスや水が導電性多孔質基材内で拡散しにくくなり、燃料電池の発電性能が低下することがある。 If the amount of impregnation is less than 50%, the penetrating area increases, which may cause problems in the coating of the catalyst. In addition, gas diffusion resistance occurs in the microporous layer, which may reduce the power generation performance of the fuel cell. If the penetration amount exceeds 90%, it becomes difficult for gas and water to diffuse in the conductive porous substrate, and the power generation performance of the fuel cell may deteriorate.


本発明では、微多孔層の厚みは、現状の導電性多孔質基材の粗さを考慮すれば、100μm以下であることが好ましい。100μmを超えるとガス拡散電極自体のガスや水の拡散性(透過性や排水性)が低下したり、電気抵抗が高くなったりすることがある。透過性や排水性を高める、あるいは電気抵抗を下げるという観点からは、微多孔層の厚みは、好ましくは80μm以下、より好ましくは40μm以下であり、導電性多孔質基材の粗さを覆うために15μm以上であることが好ましい。

In the present invention, the thickness of the microporous layer is preferably 100 μm or less in consideration of the roughness of current conductive porous substrates. If the thickness exceeds 100 μm, the diffusibility of gas and water (permeability and drainage) of the gas diffusion electrode itself may be lowered, or the electrical resistance may be increased. The thickness of the microporous layer is preferably 80 μm or less, more preferably 40 μm or less, from the viewpoint of increasing permeability and drainage or decreasing electrical resistance. is preferably 15 μm or more.

また、導電性多孔質基材の密度は、0.15g/cm以上0.5g/cm以下であることが好ましい。0.15g/cm未満である場合は、導電性多孔質基材の強度が不足し、耐久性が低下することがある。導電性多孔質基材の密度が0.5g/cmを超える場合は、排水性やガス透過性が低下することがある。 Moreover, the density of the conductive porous substrate is preferably 0.15 g/cm 3 or more and 0.5 g/cm 3 or less. If it is less than 0.15 g/cm 3 , the strength of the conductive porous substrate may be insufficient and the durability may be lowered. If the density of the conductive porous substrate exceeds 0.5 g/cm 3 , the drainage and gas permeability may be lowered.

ガス拡散電極または導電性多孔質基材の厚みについては、(株)日立ハイテクノロジーズ製IM4000などのイオンミリング装置を用いて、ガス拡散電極を厚み方向にカットし、その面直断面(厚み方向の断面)をSEMで観察した像から算出する方法で求める。また、微多孔層の厚みについては、ガス拡散電極の厚みから導電性多孔質基材の厚みを差し引いて求めることができる。 Regarding the thickness of the gas diffusion electrode or the conductive porous substrate, an ion milling device such as IM4000 manufactured by Hitachi High-Technologies Corporation is used to cut the gas diffusion electrode in the thickness direction, and the perpendicular cross section (thickness direction Cross section) is obtained by a method of calculating from an image observed by SEM. The thickness of the microporous layer can be obtained by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion electrode.

導電性多孔質基材の少なくとも片面に微多孔層を形成する方法としては、微多孔層形成用の塗液(以下、微多孔層塗液という)をスクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター印刷、バー塗布、ブレード塗布、ナイフコーター等により、塗布する方法が好ましく、貫通する領域中のホール領域の低減(つまり非ホール領域の面積率の増大)、表面平滑性の観点から、より好ましくは、スクリーン印刷、ダイコーター印刷による塗布方法である。微多孔層塗液中の導電性微粒子の濃度は、生産性の観点から、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは12質量%以上である。粘度、導電性粒子の分散安定性、塗液の塗布性などが公的であれば濃度に上限はないが、実際的には微多孔層塗液中の導電性微粒子の濃度が50質量%を超えると塗液としての適正が損なわれることがある。微多孔層塗液を塗布した後に、250℃以上400℃以下に焼結を行うことが一般的である。 As a method for forming a microporous layer on at least one side of a conductive porous substrate, a coating liquid for forming a microporous layer (hereinafter referred to as a microporous layer coating liquid) may be applied by screen printing, rotary screen printing, spraying, or intaglio. A method of coating such as printing, gravure printing, die coater printing, bar coating, blade coating, knife coater, etc. is preferable, and the hole area in the penetrating area is reduced (that is, the area ratio of the non-hole area is increased), and the surface smoothness is improved. From this point of view, the coating method by screen printing or die coater printing is more preferable. From the viewpoint of productivity, the concentration of the conductive fine particles in the microporous layer coating liquid is preferably 5% by mass or more, more preferably 8% by mass or more, and still more preferably 12% by mass or more. There is no upper limit to the concentration as long as the viscosity, the dispersion stability of the conductive particles, the coating properties of the coating liquid, etc. are official. When it exceeds, the appropriateness as a coating liquid may be impaired. After applying the microporous layer coating liquid, it is common to perform sintering at 250° C. or higher and 400° C. or lower.

本発明においてガス拡散性を高める観点から、カーボンペーパーなどの導電性多孔質基材の厚みを薄くすることが好ましい。つまりカーボンペーパーなどの導電性多孔質基材の厚みは220μm以下が好ましく、150μm以下がさらに好ましく、特に好ましくは120μm以下であるが、余り薄くすると機械的強度が弱くなり、製造工程でのハンドリングが難しくなるので、通常70μmが下限である。 In the present invention, from the viewpoint of enhancing gas diffusion, it is preferable to reduce the thickness of the conductive porous substrate such as carbon paper. That is, the thickness of the conductive porous substrate such as carbon paper is preferably 220 μm or less, more preferably 150 μm or less, and particularly preferably 120 μm or less. Since it becomes difficult, 70 μm is usually the lower limit.

本発明のガス拡散電極に用いられる導電性多孔質基材は、フッ素樹脂を付与することで撥水処理が施されたものが好適に用いられる。フッ素樹脂は撥水性樹脂として作用するので、本発明の導電性多孔質基材は、フッ素樹脂などの撥水性樹脂を含むことが好ましい。導電性多孔質基材が含む撥水性樹脂、つまり導電性多孔質基材が含むフッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)等が挙げられるが、強い撥水性を発現するPTFE、あるいはFEPが好ましい。 As the conductive porous substrate used in the gas diffusion electrode of the present invention, one to which a water-repellent treatment has been applied by applying a fluororesin is preferably used. Since the fluororesin acts as a water-repellent resin, the conductive porous substrate of the present invention preferably contains a water-repellent resin such as a fluororesin. Examples of the water-repellent resin contained in the conductive porous substrate, that is, the fluorine resin contained in the conductive porous substrate include PTFE (polytetrafluoroethylene) (for example, “Teflon” (registered trademark)), FEP (polytetrafluoroethylene), propylene hexafluoride copolymer), PFA (perfluoroalkoxy fluororesin), ETFA (ethylene tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride), PVF (polyvinyl fluoride), etc., but strong PTFE or FEP exhibiting water repellency is preferred.

撥水性樹脂の量は特に限定されないが、導電性多孔質基材の全体100質量%中に0.1質量%以上20質量%以下程度が適切である。0.1質量%より少ないと撥水性が十分に発揮されないことがあり、20質量%を超えるとガスの拡散経路あるいは排水経路となる細孔を塞いでしまったり、電気抵抗が上がったりする可能性がある。 Although the amount of the water-repellent resin is not particularly limited, it is suitably about 0.1% by mass or more and 20% by mass or less based on 100% by mass of the entire conductive porous substrate. If it is less than 0.1% by mass, sufficient water repellency may not be exhibited, and if it exceeds 20% by mass, the pores that serve as gas diffusion paths or drainage paths may be blocked, or electrical resistance may increase. be.

導電性多孔質基材を撥水処理する方法は、一般的に知られている撥水性樹脂を含むディスパージョンに導電性多孔質基材を浸漬する処理技術のほか、ダイコート、スプレーコートなどによって導電性多孔質基材に撥水性樹脂を塗布する塗布技術も適用可能である。また、フッ素樹脂のスパッタリングなどのドライプロセスによる加工も適用できる。なお、撥水処理の後、必要に応じて乾燥工程、さらには焼結工程を加えても良い。 Methods for water-repellent treatment of conductive porous substrates include the commonly known treatment technique of immersing the conductive porous substrate in a dispersion containing a water-repellent resin, as well as die coating, spray coating, etc. A coating technique of coating a water-repellent resin on a flexible porous substrate is also applicable. Processing by a dry process such as sputtering of fluororesin can also be applied. After the water-repellent treatment, a drying step and a sintering step may be added as necessary.

また本発明の燃料電池は、本発明のガス拡散電極を有することを特徴とする。本発明の燃料電池は、本発明のガス拡散電極を有するので、発電性能が高い特徴を有する。 Further, the fuel cell of the present invention is characterized by having the gas diffusion electrode of the present invention. Since the fuel cell of the present invention has the gas diffusion electrode of the present invention, it is characterized by high power generation performance.

以下、実施例によって本発明を具体的に説明する。実施例で用いた材料、ガス拡散電極の作製方法、燃料電池の発電性能評価方法を次に示した。 EXAMPLES The present invention will be specifically described below with reference to Examples. The materials used in the examples, the method for producing the gas diffusion electrode, and the method for evaluating the power generation performance of the fuel cell are shown below.

(実施例1)
<材料>
A.導電性多孔質基材
東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ”(登録商標)T300(平均直径:7μm)を短繊維の平均長さ6mmにカットし、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、バインダとしてポリビニルアルコールの10質量%水溶液を当該抄紙に塗布して乾燥させ、炭素繊維の目付が26g/mの炭素繊維シートを作製した。ポリビニルアルコールの付着量は、炭素繊維100質量部に対して18質量部であった。
(Example 1)
<Material>
A. Conductive porous substrate Polyacrylonitrile-based carbon fiber “Torayca” (registered trademark) T300 (average diameter: 7 μm) manufactured by Toray Industries, Inc. was cut into short fibers with an average length of 6 mm, dispersed in water, and subjected to a wet papermaking method. Paper was continuously made by Further, a 10% by mass aqueous solution of polyvinyl alcohol as a binder was applied to the paper and dried to produce a carbon fiber sheet having a carbon fiber basis weight of 26 g/m 2 . The adhered amount of polyvinyl alcohol was 18 parts by mass with respect to 100 parts by mass of the carbon fibers.

次に、熱硬化性樹脂としてレゾール型フェノール樹脂とノボラック型フェノール樹脂を不揮発分が1:1の質量比となるように混合したフェノール樹脂と、炭素粉末として鱗片状黒鉛粉末(平均粒径5μm)と、溶媒としてメタノールを用い、熱硬化性樹脂(不揮発分)/炭素粉末/溶媒=10質量部/5質量部/85質量部の配合比でこれらを混合し、均一に分散した樹脂組成物(混合液)を得た。 Next, a phenolic resin obtained by mixing a resol-type phenolic resin and a novolac-type phenolic resin as a thermosetting resin so that the non-volatile matter has a mass ratio of 1:1, and a flaky graphite powder (average particle size 5 μm) as a carbon powder. And, using methanol as a solvent, thermosetting resin (non-volatile matter) / carbon powder / solvent = 10 parts by weight / 5 parts by weight / 85 parts by weight, these are mixed to form a uniformly dispersed resin composition ( mixture) was obtained.

次に、炭素繊維シートを上記樹脂組成物の混合液に連続的に浸漬し、ロールで挟んで絞る樹脂含浸工程を経た後、ロール状に巻き取って前駆体繊維シートを得た。この際、ロールはドクターブレードで余分な樹脂組成物を取り除くことができる構造を持つ平滑な金属ロールであり、一定のクリアランスをあけて水平に2本配置して炭素繊維シートを垂直に上に引き上げることで全体の樹脂組成物の付着量を調整した。前駆体繊維シートにおけるフェノール樹脂の付着量は、炭素繊維100質量部に対し、130質量部であった。 Next, the carbon fiber sheet was continuously immersed in the mixed liquid of the resin composition, sandwiched between rolls and squeezed, and then wound into a roll to obtain a precursor fiber sheet. At this time, the roll is a smooth metal roll having a structure that allows removal of excess resin composition with a doctor blade. Thus, the adhesion amount of the entire resin composition was adjusted. The amount of phenol resin attached to the precursor fiber sheet was 130 parts by mass with respect to 100 parts by mass of carbon fibers.

プレス成型機に熱板が互いに平行になるようにセットし、下熱板上にスペーサーを配置して、上下から離型紙で挟み込んだ樹脂含浸炭素繊維紙を間欠的に搬送し、圧縮処理した。その際、加圧処理後に所望の前駆体繊維シートの厚さになるように、上下プレス面板の間隔を調整した。 The press molding machine was set so that the hot plates were parallel to each other, a spacer was placed on the lower hot plate, and the resin-impregnated carbon fiber paper sandwiched between the release papers from above and below was intermittently conveyed and compressed. At that time, the distance between the upper and lower pressing plates was adjusted so that the precursor fiber sheet had a desired thickness after the pressure treatment.

また、加熱加圧、型開き、炭素繊維の送り、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。圧縮工程における加圧処理後の前駆体繊維シートの0.15MPaでの厚さを測定したところ、180μmであった。 Further, compression treatment was performed by repeating heating and pressurization, mold opening, and feeding of carbon fibers, and the carbon fiber was wound into a roll. When the thickness at 0.15 MPa of the precursor fiber sheet after pressure treatment in the compression step was measured, it was 180 µm.

加圧処理をした前駆体繊維シートを、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、加熱炉内を連続的に走行させながら焼成する炭化工程に通した後、ロール状に巻き取って導電性多孔質基材を得た。得られた導電性多孔質基材の0.15MPaでの厚さは、145μmであった。 The pressurized precursor fiber sheet is introduced into a heating furnace with a maximum temperature of 2400° C. maintained in a nitrogen gas atmosphere, and passed through a carbonization step in which it is fired while continuously running in the heating furnace. A conductive porous substrate was obtained by winding up into a roll. The thickness of the resulting conductive porous substrate at 0.15 MPa was 145 μm.

さらに、上記で得られた導電性多孔質基材を、常温下で一定圧力にてプレスしながら連続的に搬送することで、ロール状に巻き取った。得られた導電性多孔質基材の0.15MPaでの厚さは、135μmであった。 Further, the conductive porous substrate obtained above was continuously transported while being pressed at a constant pressure at normal temperature, and wound into a roll. The thickness of the resulting conductive porous substrate at 0.15 MPa was 135 µm.

B.微多孔層
カーボンブラック、撥水性樹脂(“ネオフロン”(登録商標)FEPディスパージョンND-110(FEP樹脂、ダイキン工業(株)製))、界面活性剤(“TRITON”(登録商標)X-100(ナカライテスク(株)製))、および、水を用いた。
B. Microporous layer carbon black, water-repellent resin (“Neofuron” (registered trademark) FEP dispersion ND-110 (FEP resin, manufactured by Daikin Industries, Ltd.)), surfactant (“TRITON” (registered trademark) X-100 (manufactured by Nacalai Tesque Co., Ltd.) and water were used.

<評価>
A.しみ込み量の測定方法
まず、イオンミリング装置(日立ハイテクノロジーズ社製 IM4000型)により面直断面(厚み方向の断面)を切り出し、走査型電子顕微鏡(SEM、(株)日立製作所製S-4800)により、画像の倍率を200倍として観察した。
<Evaluation>
A. Method for measuring the amount of penetration First, an ion milling device (Model IM4000, manufactured by Hitachi High-Technologies Co., Ltd.) was used to cut out a vertical cross section (cross section in the thickness direction), and a scanning electron microscope (SEM, S-4800, manufactured by Hitachi, Ltd.) was used. , the image was observed at a magnification of 200 times.

次に、図1を用いて、微多孔層と導電性多孔質基材の境界を求める方法を説明する。微多孔層の最表面に存在する点(11)を起点に導電性多孔質基材の最表面(10)と平行な線を引き、その線を微多孔層の最表面(12)とした。微多孔層が導電性多孔質基材中にしみ込んでいる部分(しみ込み部分)の中で、最も導電性多孔質基材の最表面側へしみ込んでいる点(13)を起点に、導電性多孔質基材の最表面(10)と平行な線を引き、その線を微多孔層の最奥面(14)とした。導電性多孔質基材の微多孔層側の最表面の中で、最も微多孔層の最表面に近い点(15)を起点に、導電性多孔質基材の最表面(10)と平行な線を引き、その線を導電性多孔質基材の最奥面(16)とした。 Next, a method for determining the boundary between the microporous layer and the conductive porous substrate will be described with reference to FIG. Starting from the point (11) existing on the outermost surface of the microporous layer, a line parallel to the outermost surface (10) of the conductive porous substrate was drawn, and the line was defined as the outermost surface (12) of the microporous layer. In the portion where the microporous layer permeates into the conductive porous substrate (infiltration portion), starting from the point (13) where the microporous layer penetrates to the outermost surface side of the conductive porous substrate, the conductive A line parallel to the outermost surface (10) of the porous substrate was drawn, and the line was defined as the innermost surface (14) of the microporous layer. In the outermost surface of the conductive porous substrate on the microporous layer side, starting from the point (15) closest to the outermost surface of the microporous layer, parallel to the outermost surface (10) of the conductive porous substrate A line was drawn and the line was taken as the innermost surface (16) of the conductive porous substrate.

導電性多孔質基材の最表面(10)と導電性多孔質基材の最奥面(16)との距離を導電性多孔質基材の厚さ(a)、微多孔層の最奥面(14)と導電性多孔質基材の最奥面(16)との距離をしみ込み部分の厚さ(b)、および、微多孔層の最表面(12)と微多孔層の最奥面(14)との距離を微多孔層の厚さ(c)と定めた。 The distance between the outermost surface (10) of the conductive porous substrate and the innermost surface (16) of the conductive porous substrate is the thickness (a) of the conductive porous substrate, the innermost surface of the microporous layer The distance between (14) and the innermost surface (16) of the conductive porous substrate is the thickness (b) of the infiltrated portion, and the outermost surface (12) of the microporous layer and the innermost surface of the microporous layer (14) was defined as the thickness (c) of the microporous layer.

また、しみ込み部分の厚さ(b)/微多孔層の厚さ(c)×100の式からしみ込み量を求めた。微多孔層のしみ込み部分を3箇所の画像から3つ定義し、しみ込み量を3つの値の平均値として求めた。 Also, the permeation amount was determined from the formula: thickness of permeated portion (b)/thickness of microporous layer (c) x 100. Three permeation portions of the microporous layer were defined from three images, and the permeation amount was determined as the average value of the three values.

B.微多孔層を厚み方向に貫通する領域の合計の面積率の測定方法
微多孔層を厚み方向に貫通する領域の合計の面積を求める場合は、ガス拡散電極の微多孔層側から光学顕微鏡下で観察し、導電性多孔質基材側から光を照射し、微多孔層を厚み方向に貫通する領域を光らせ、撮像した。その後、画像処理ソフト(JTrim)に取り込み、輝度レベルが240以上の画素数の積算、つまり、白色領域の画素数の積算を貫通する領域の合計として、全体の画素数で除して、微多孔層を厚み方向に貫通する領域の合計の面積率(%)を求めた。
B. Method for measuring the total area ratio of the regions penetrating the microporous layer in the thickness direction To obtain the total area of the regions penetrating the microporous layer in the thickness direction, the gas diffusion electrode is examined from the microporous layer side of the gas diffusion electrode under an optical microscope. The microporous layer was observed, and light was irradiated from the side of the conductive porous substrate to illuminate a region penetrating the microporous layer in the thickness direction, and an image was taken. After that, it is imported into image processing software (JTrim), and the sum of the number of pixels with a brightness level of 240 or more, that is, the sum of the number of pixels in the white area is divided by the total number of pixels. The total area ratio (%) of the regions penetrating the layer in the thickness direction was obtained.


C.微多孔層を貫通する領域の面積とそれのアスペクト比の測定
得られたガス拡散電極を、透過光学系と反射光学系を組み合わせた装置に、水平になるようにガス拡散電極をセットした。ガス拡散電極に対して垂直に拡大鏡をセットし、上部から目視で、微多孔層を貫通する領域を確認してマークを入れ、連続搬送の際における、基材の流れ方向(以降、X方向と記載する)、基材の幅方向(以降、Y方向と記載する)の位置を計測した。その後、マークをした部分を光学顕微鏡で観察し、微多孔層を貫通する領域のそれぞれの面積を算出した。

C. Measurement of Area Penetrating Microporous Layer and Its Aspect Ratio The obtained gas diffusion electrode was set horizontally in an apparatus combining a transmission optical system and a reflection optical system. Set a magnifying glass perpendicular to the gas diffusion electrode, visually from the top, check the area that penetrates the microporous layer, mark it, and measure the flow direction of the base material during continuous transportation (hereinafter referred to as the X direction ), and the position in the width direction (hereinafter referred to as Y direction) of the substrate was measured. After that, the marked portion was observed with an optical microscope, and the area of each region penetrating through the microporous layer was calculated.

さらに、微多孔層を貫通する領域それぞれのアスペクト比(ここでいう、アスペクト比は、最も長い方向と最も短い方向で求める)を求め、非ホール領域の合計の面積率を算出した。 Furthermore, the aspect ratio of each region penetrating through the microporous layer (here, the aspect ratio is determined in the longest direction and the shortest direction) was determined, and the total area ratio of the non-hole regions was calculated.

D.導電性多孔質基材の密度の測定方法
導電性多孔質基材の密度は、導電性多孔質基材の質量を電子天秤で秤量し、A項で求めた導電性多孔質基材の厚さ(a)で除することで求めた。
D. Method for measuring the density of the conductive porous substrate The density of the conductive porous substrate is obtained by weighing the mass of the conductive porous substrate with an electronic balance and measuring the thickness of the conductive porous substrate obtained in Section A. It was obtained by dividing by (a).

E.透水圧の測定方法
ポーラスマテリアル(株)製のパームポロメーター(CFP-1500AEXLC)を用い、微多孔層上に水を滴下し、圧空を微多孔層側から導電性多孔質基材側に向かってかけ、圧空の圧力を上昇させ、導電性多孔質基材側に空気が流れ始めた圧空の圧力を測定することで、透水圧(kPa)を測定した。
E. Method of measuring water permeation pressure Using a perm porometer (CFP-1500AEXLC) manufactured by Porous Materials Co., Ltd., water is dropped on the microporous layer, and compressed air is blown from the microporous layer side toward the conductive porous substrate side. The water permeation pressure (kPa) was measured by increasing the pressure of the compressed air and measuring the pressure of the compressed air when the air began to flow toward the conductive porous substrate.

F.厚み方向のガス拡散性の測定方法
西華産業製水蒸気ガス水蒸気透過拡散評価装置(MVDP-200C)を用い、ガス拡散電極の一方の面側(1次側)に拡散性を測定したい酸素ガスと窒素ガスの混合ガスを流し、他方の面側(2次側)に窒素ガスを流した。1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御しておき(即ち圧力差によるガスの流れはほとんどなく、分子拡散によってのみガスの移動現象が起こる)、2次側の酸素濃度計により、平衡に達したときのガス濃度を測定し、この値(%)を厚み方向のガス拡散性の指標とした。
F. Measurement method of gas diffusivity in the thickness direction Using a water vapor gas vapor permeation diffusion evaluation device (MVDP-200C) manufactured by Seika Sangyo, oxygen gas whose diffusivity is to be measured is measured on one side (primary side) of the gas diffusion electrode. A mixed gas of nitrogen gas was flowed, and nitrogen gas was flowed to the other side (secondary side). The differential pressure between the primary side and the secondary side is controlled to about 0 Pa (0±3 Pa) (that is, there is almost no gas flow due to the pressure difference, and the gas movement phenomenon occurs only by molecular diffusion), and the secondary side The gas concentration when equilibrium was reached was measured using an oxygen concentration meter, and this value (%) was used as an index of gas diffusion in the thickness direction.

(実施例1)
ロール状に巻き取られたカーボンペーパーを巻き取り式の搬送装置を用いて、搬送しながら、フッ素樹脂濃度を2質量%になるように水に分散した撥水性樹脂ディスパージョンを満たした浸漬槽に浸漬して撥水処理を行い、100℃に設定した乾燥機で乾燥して巻き取り機で巻き取って、撥水処理した導電性多孔質基材を得た。撥水性樹脂ディスパージョンとして、FEPディスパージョン ND-110を水でFEPが3質量%濃度になるように薄めたものを用いた。
(Example 1)
While transporting the carbon paper wound into a roll using a winding-type transport device, it is placed in an immersion tank filled with a water-repellent resin dispersion dispersed in water so that the concentration of fluororesin is 2% by mass. The substrate was immersed for water-repellent treatment, dried in a dryer set at 100° C., and wound up by a winder to obtain a water-repellent conductive porous substrate. As the water-repellent resin dispersion, FEP Dispersion ND-110 was diluted with water so that the concentration of FEP was 3 mass %.

次に、巻き出し機、ガイドロール、バックロール、合紙巻き出し機、巻き取り機を備えた搬送装置にダイコーター、乾燥機および焼結機を備えた巻き取り式の連続コーターを用意した。 Next, a winding-type continuous coater equipped with a die coater, a dryer and a sintering machine was prepared in a conveying device equipped with an unwinder, a guide roll, a back roll, an interleaf unwinder and a winder.

前記撥水処理した導電性多孔質基材として、カーボンペーパーを400mロール状に巻いた原反を巻き出し機にセットした。 As the water-repellent conductive porous substrate, a 400-m rolled roll of carbon paper was set in an unwinder.

巻き出し部、巻き取り部、コーター部に設置された駆動ロールにより原反を搬送した。まず、ダイコーターを用いて微多孔層塗液の塗布位置と導電性多孔質基材の距離を、微多孔層塗液膜厚の90%にして塗布した後、乾燥機において140℃の熱風により水分を乾燥、さらに温度を350℃に設定した焼結機において、焼結を行なった後、巻き取り機にて巻き取った。 The original fabric was conveyed by drive rolls installed in the unwinding section, the winding section, and the coater section. First, using a die coater, the distance between the coating position of the microporous layer coating liquid and the conductive porous substrate was set to 90% of the thickness of the microporous layer coating liquid, and then the coating liquid was dried with hot air at 140°C in a dryer. After drying the water content and sintering in a sintering machine set at a temperature of 350° C., it was wound up with a winder.

なお、微多孔層塗液は以下のように調製した。 The microporous layer coating liquid was prepared as follows.

微多孔層塗液:
カーボンブラック 15質量部、撥水性樹脂(FEPディスパージョン、“ネオフロン”(登録商標)ND-110)9質量部、界面活性剤(“TRITON”(登録商標)X-100)7質量部、精製水69 質量部をプラネタリーミキサーで混練し、塗液を調製した。
Microporous layer coating liquid:
15 parts by mass of carbon black, 9 parts by mass of water-repellent resin (FEP dispersion, "Neophron" (registered trademark) ND-110), 7 parts by mass of surfactant ("TRITON" (registered trademark) X-100), purified water 69 parts by mass were kneaded with a planetary mixer to prepare a coating liquid.

微多孔層塗液の塗布にあたっては、焼結後の微多孔層の目付け量が25g/mとなるように調整した。 In applying the microporous layer coating liquid, the basis weight of the microporous layer after sintering was adjusted to 25 g/m 2 .

測定した物性を表1に示す。 Table 1 shows the measured physical properties.

(実施例2)
カーボンブラック 15質量部、撥水性樹脂(FEPディスパージョン、“ネオフロン”(登録商標)ND-110)13質量部、界面活性剤(“TRITON”(登録商標)X-100)7質量部、精製水65 質量部をプラネタリーミキサーで混練し、塗液を調製した以外は、実施例1と同様にしてガス拡散電極を得た。測定した物性を表1に示す。
(Example 2)
Carbon black 15 parts by mass, water-repellent resin (FEP dispersion, "Neophron" (registered trademark) ND-110) 13 parts by mass, surfactant ("TRITON" (registered trademark) X-100) 7 parts by mass, purified water A gas diffusion electrode was obtained in the same manner as in Example 1, except that 65 parts by mass were kneaded in a planetary mixer to prepare a coating liquid. Table 1 shows the measured physical properties.

(実施例3)
ダイコーターを用いて微多孔層塗液の塗布位置と導電性多孔質基材の距離を、微多孔層塗液膜厚の110%にして塗布した後、乾燥機において140℃の熱風により水分を乾燥、さらに温度を350℃に設定した焼結機において、焼結を行なった後、巻き取り機にて巻き取った以外は、実施例1と同様にしてガス拡散電極を得た。測定した物性を表1に示す。
(Example 3)
Using a die coater, apply the microporous layer coating liquid so that the distance between the coating position and the conductive porous substrate is 110% of the thickness of the microporous layer coating liquid, and then dry with hot air at 140 ° C. A gas diffusion electrode was obtained in the same manner as in Example 1, except that after drying and sintering in a sintering machine set at a temperature of 350° C., it was wound up with a winder. Table 1 shows the measured physical properties.

(実施例4)
導電性多孔質基材の密度を0.53g/cmとした以外は、実施例1と同様にしてガス拡散電極を得た。測定した物性を表1に示す。
(Example 4)
A gas diffusion electrode was obtained in the same manner as in Example 1, except that the density of the conductive porous substrate was 0.53 g/cm 3 . Table 1 shows the measured physical properties.

(比較例1)
カーボンブラック 15質量部、撥水性樹脂(FEPディスパージョン、“ネオフロン”(登録商標)ND-110)17質量部、界面活性剤(“TRITON”(登録商標)X-100)7質量部、精製水61 質量部をプラネタリーミキサーで混練し、塗液を調製した以外は、実施例1と同様にしてガス拡散電極を得た。測定した物性を表1に示す。
(Comparative example 1)
15 parts by mass of carbon black, 17 parts by mass of water-repellent resin (FEP dispersion, "Neophron" (registered trademark) ND-110), 7 parts by mass of surfactant ("TRITON" (registered trademark) X-100), purified water A gas diffusion electrode was obtained in the same manner as in Example 1, except that 61 parts by mass were kneaded in a planetary mixer to prepare a coating liquid. Table 1 shows the measured physical properties.

(比較例2)
ダイコーターを用いて微多孔層塗液の塗布位置と導電性多孔質基材の距離を、微多孔層塗液膜厚の130%にして塗布した後、乾燥機において140℃の熱風により水分を乾燥、さらに温度を350℃に設定した焼結機において、焼結を行なった後、巻き取り機にて巻き取った以外は、実施例1と同様にしてガス拡散電極を得た。測定した物性を表1に示す。
(Comparative example 2)
Using a die coater, apply the microporous layer coating liquid so that the distance between the coating position and the conductive porous substrate is 130% of the thickness of the microporous layer coating liquid, and then dry with hot air at 140 ° C. A gas diffusion electrode was obtained in the same manner as in Example 1, except that after drying and sintering in a sintering machine set at a temperature of 350° C., it was wound up with a winder. Table 1 shows the measured physical properties.

Figure 0007114858000001
Figure 0007114858000001

1 微多孔層
2 炭素繊維
10 導電性多孔質基材の最表面
11 微多孔層の最表面に存在する点
12 微多孔層の最表面
13 しみ込み部分の中で、最も導電性多孔質基材の最表面側へしみ込んでいる点
14 微多孔層の最奥面
15 導電性多孔質基材の微多孔層側の最表面の中で、最も微多孔層の最表面に近い点
16 導電性多孔質基材の最奥面
1 microporous layer 2 carbon fiber 10 outermost surface of conductive porous substrate 11 points present on outermost surface of microporous layer 12 outermost surface of microporous layer 13 most conductive porous substrate in permeated portion 14 The innermost surface of the microporous layer 15 The point closest to the outermost surface of the microporous layer among the outermost surfaces of the conductive porous substrate on the microporous layer side 16 The conductive porous innermost surface of the base material

Claims (5)

炭素繊維を含む多孔質基材である導電性多孔質基材の少なくとも片面に微多孔層を有するガス拡散電極であって、導電性多孔質基材側から光を当てた際に、微多孔層側まで光が透過する領域の合計の面積率が0.05%以上0.7%以下であり、
前記光が透過する領域の中で、アスペクト比が0.33以下又は2.0以上の領域を非ホール領域とすると、前記光が透過する領域における、非ホール領域の合計の面積率が90%以上99%以下であることを特徴とする、ガス拡散電極。
A gas diffusion electrode having a microporous layer on at least one side of a conductive porous substrate that is a porous substrate containing carbon fibers, wherein the microporous layer is formed when light is applied from the conductive porous substrate side. The total area ratio of the regions through which light is transmitted to the side is 0.05% or more and 0.7% or less,
If a region having an aspect ratio of 0.33 or less or 2.0 or more in the light -transmitting region is defined as a non-hole region, the total area ratio of the non-hole region in the light-transmitting region is 90%. A gas diffusion electrode, characterized in that the ratio is 99% or more.
微多孔層の最表面と微多孔層の最奥面との距離として定義される前記微多孔層の厚さを100%とした際の、前記導電性多孔質基材中へしみ込んだ前記微多孔層(以下、しみ込み部分という)の厚さの割合(以下、しみ込み量という)が、50%以上90%以下であることを特徴とする、請求項1に記載のガス拡散電極。 The microporous permeated into the conductive porous substrate when the thickness of the microporous layer defined as the distance between the outermost surface of the microporous layer and the innermost surface of the microporous layer is 100% 2. The gas diffusion electrode according to claim 1, wherein the thickness ratio of the layer (hereinafter referred to as the infiltration portion) (hereinafter referred to as the infiltration amount) is 50% or more and 90% or less. 前記導電性多孔質基材の密度が0.15g/cm以上0.5g/cm以下であることを特徴とする、請求項1または2に記載のガス拡散電極。 3. The gas diffusion electrode according to claim 1, wherein the conductive porous substrate has a density of 0.15 g/cm 3 or more and 0.5 g/cm 3 or less. 前記微多孔層の厚さが100μm以下であることを特徴とする、請求項1~3のいずれかに記載のガス拡散電極。 4. The gas diffusion electrode according to claim 1, wherein said microporous layer has a thickness of 100 μm or less. 請求項1~4のいずれかに記載のガス拡散電極を有することを特徴とする、燃料電池。
A fuel cell comprising the gas diffusion electrode according to any one of claims 1 to 4.
JP2017052315A 2017-03-17 2017-03-17 Gas diffusion electrode and fuel cell Active JP7114858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017052315A JP7114858B2 (en) 2017-03-17 2017-03-17 Gas diffusion electrode and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017052315A JP7114858B2 (en) 2017-03-17 2017-03-17 Gas diffusion electrode and fuel cell

Publications (2)

Publication Number Publication Date
JP2018156818A JP2018156818A (en) 2018-10-04
JP7114858B2 true JP7114858B2 (en) 2022-08-09

Family

ID=63718141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017052315A Active JP7114858B2 (en) 2017-03-17 2017-03-17 Gas diffusion electrode and fuel cell

Country Status (1)

Country Link
JP (1) JP7114858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272314B2 (en) * 2020-05-01 2023-05-12 トヨタ自動車株式会社 Laminates for fuel cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057217A (en) 1999-06-07 2001-02-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell
WO2011045933A1 (en) 2009-10-16 2011-04-21 パナソニック株式会社 Membrane electrode assembly for fuel cell, and fuel cell utilizing same
WO2014061280A1 (en) 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
JP2015015226A (en) 2013-06-07 2015-01-22 東レ株式会社 Gas-diffusion electrode base material for fuel cell and method for producing the same
WO2015125750A1 (en) 2014-02-24 2015-08-27 東レ株式会社 Gas diffusion electrode substrate
WO2016060044A1 (en) 2014-10-17 2016-04-21 東レ株式会社 Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2016060045A1 (en) 2014-10-17 2016-04-21 東レ株式会社 Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2016171082A1 (en) 2015-04-24 2016-10-27 東レ株式会社 Gas-diffusion electrode base material and method for manufacturing same
WO2018061833A1 (en) 2016-09-29 2018-04-05 東レ株式会社 Gas diffusion electrode and fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057217A (en) 1999-06-07 2001-02-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell
WO2011045933A1 (en) 2009-10-16 2011-04-21 パナソニック株式会社 Membrane electrode assembly for fuel cell, and fuel cell utilizing same
WO2014061280A1 (en) 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
JP2015015226A (en) 2013-06-07 2015-01-22 東レ株式会社 Gas-diffusion electrode base material for fuel cell and method for producing the same
WO2015125750A1 (en) 2014-02-24 2015-08-27 東レ株式会社 Gas diffusion electrode substrate
WO2016060044A1 (en) 2014-10-17 2016-04-21 東レ株式会社 Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2016060045A1 (en) 2014-10-17 2016-04-21 東レ株式会社 Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2016171082A1 (en) 2015-04-24 2016-10-27 東レ株式会社 Gas-diffusion electrode base material and method for manufacturing same
WO2018061833A1 (en) 2016-09-29 2018-04-05 東レ株式会社 Gas diffusion electrode and fuel cell

Also Published As

Publication number Publication date
JP2018156818A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
KR102224340B1 (en) Gas diffusion electrode and method for manufacturing the same
TWI705608B (en) Gas diffusion electrode
JP6933140B2 (en) Gas diffusion electrode and fuel cell
KR102597863B1 (en) Gas diffusion electrode
US10461334B2 (en) Gas diffusion electrode and fuel cell
JP6357923B2 (en) Gas diffusion electrode, manufacturing method and manufacturing apparatus thereof
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP7114858B2 (en) Gas diffusion electrode and fuel cell
KR102453036B1 (en) Gas diffusion electrodes and fuel cells
TWI705609B (en) Gas diffusion electrode and fuel cell
JP2020161389A (en) Gas diffusion electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R151 Written notification of patent or utility model registration

Ref document number: 7114858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151