JP2022149718A - Interface detection sensor and interface detection method - Google Patents

Interface detection sensor and interface detection method Download PDF

Info

Publication number
JP2022149718A
JP2022149718A JP2021051993A JP2021051993A JP2022149718A JP 2022149718 A JP2022149718 A JP 2022149718A JP 2021051993 A JP2021051993 A JP 2021051993A JP 2021051993 A JP2021051993 A JP 2021051993A JP 2022149718 A JP2022149718 A JP 2022149718A
Authority
JP
Japan
Prior art keywords
light
received
projected
projection
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021051993A
Other languages
Japanese (ja)
Other versions
JP2022149718A5 (en
Inventor
憲士朗 長坂
Kenshiro NAGASAKA
正寿 河合
Masatoshi Kawai
孝泰 松浦
Takayasu Matsuura
俊貴 佐々木
Toshiki Sasaki
知弥 奥野
Tomoya Okuno
浩幸 酒向
Hiroyuki Sako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021051993A priority Critical patent/JP2022149718A/en
Priority to PCT/JP2022/001238 priority patent/WO2022201774A1/en
Publication of JP2022149718A publication Critical patent/JP2022149718A/en
Publication of JP2022149718A5 publication Critical patent/JP2022149718A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To provide an interface detection sensor that can increase a scan speed at which a light scans a detection target and can suppress a decline of a detection accuracy of an interface included in a detection target.SOLUTION: An interface detection sensor comprises: a light projecting unit for sequentially projecting a projection object light set including a first projection object light having a first wavelength and a second projection object light having a second wavelength, to a detection target having multiple layers; a light receiving unit for sequentially receiving a reception object light set including a first reception object light derived from the first projection object light through passing through the detection target, and a second reception object light derived from the second projection object light through passing through the detection target; and a control unit for synchronizing a light projecting timing of the light projecting unit and a light receiving timing of the light receiving unit, and for detecting interfaces of the multiple layers included in the detection target based on the sequentially reception object light set. The light projecting unit starts projecting the second projection object light during or at finishing the projection of the first projection object light.SELECTED DRAWING: Figure 3

Description

本開示は、界面検出センサ及び界面検出方法に関する。 The present disclosure relates to interface detection sensors and interface detection methods.

従来、界面を検出する方法が知られている。例えば、異なる波長を有する2つの光パルスを、時間間隔を空けて交互に点灯してサンプル管を照らし、サンプル管を通過した2つの光パルスの強度を測定し、測定された2つの光パルスの強度に応じて界面検出を検出する界面検出方法が知られている(特許文献1参照)。ここでの2つの光パルスは、サンプル管を通過する本質的に同一の光軸をたどる。また、例えば、ビーム結合器により異なる波長を有する2つの放射線を異なるタイミングでサンプル管に向かって放射し、同一の検出器により2つの透過放射線を検出して、サンプル管についての情報を検出する遠心分離機システムが知られている(特許文献2参照)。ここでの2つの放射線は、僅かに異なる位置を進み、2つの透過放射線もわずかに異なる位置を進む。 Conventionally, methods for detecting interfaces are known. For example, two light pulses having different wavelengths are alternately illuminated at time intervals to illuminate a sample tube, the intensity of the two light pulses that pass through the sample tube is measured, and the intensity of the two light pulses measured is measured. An interface detection method is known for detecting interface detection according to intensity (see Patent Document 1). The two light pulses here follow essentially the same optical axis through the sample tube. Also, for example, a beam combiner emits two radiations having different wavelengths at different times toward the sample tube, and the same detector detects the two transmitted radiations to detect information about the sample tube. A separator system is known (see Patent Document 2). The two rays here go to slightly different positions, and the two penetrating rays also go to slightly different positions.

米国特許出願公開第2012/0013889号明細書U.S. Patent Application Publication No. 2012/0013889 特表2015-502841公報Special table 2015-502841 publication

従来技術では、血液等の検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制することが困難である。 In the prior art, it is difficult to increase the scanning speed for scanning a detection target such as blood while suppressing deterioration in interface detection accuracy within the detection target.

本開示は、上記事情に鑑みてなされたものであって、検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制できる界面検出センサ及び界面検出方法を提供する。 The present disclosure has been made in view of the above circumstances, and provides an interface detection sensor and an interface detection method capable of suppressing deterioration in interface detection accuracy within a detection target while increasing the scanning speed for scanning the detection target. .

本開示の一態様は、複数の層を有する検出対象に、第1波長を有する第1の投光光と第2波長を有する第2の投光光とを含む投光光セットを順次投光する投光部と、前記第1の投光光が前記検出対象を透過した信号である第1の受光光と、前記第2の投光光が前記検出対象を透過した信号である第2の受光光と、を含む受光光セットを順次受光する受光部と、前記投光部による投光タイミングと前記受光部による受光タイミングとを同期させ、前記受光光セットに基づいて、前記検出対象に含まれる前記複数の層の界面を検出する制御部と、を備え、前記投光部は、前記第1の投光光の投光中又は投光終了時に前記第2の投光光の投光を開始する、界面検出センサである。 One aspect of the present disclosure sequentially projects a light projection light set including a first light having a first wavelength and a second light having a second wavelength onto a detection target having a plurality of layers. a light projecting unit, a first light receiving light that is a signal transmitted through the detection object by the first light projection, and a second light that is a signal transmitted through the detection object by the second projection light; a light-receiving unit for sequentially receiving a set of received light including received light; and timing of light projection by the light-projecting unit and timing of light-receiving by the light-receiving unit are synchronized, and included in the detection target based on the set of received light. and a controller for detecting the interfaces of the plurality of layers, wherein the light projecting unit controls the projection of the second light during or at the end of the projection of the first light. Starting with the interface detection sensor.

本開示の一態様は、複数の層を有する検出対象に、第1波長を有する第1の投光光を投光するステップと、前記検出対象に、前記第1の投光光の投光中又は投光終了時に、第2波長を有する第2の投光光の投光を開始することで、前記第2の投光光を投光するステップと、前記第1の投光光が前記検出対象を透過した信号である第1の受光光と、前記第2の投光光が前記検出対象を透過した信号である第2の受光光と、を含む受光光セットを受光するステップと、前記受光光セットに基づいて、前記検出対象に含まれる前記複数の層の界面を検出するステップと、を有する界面検出方法である。 According to one aspect of the present disclosure, a step of projecting a first projected light having a first wavelength onto a detection target having a plurality of layers; Alternatively, at the end of light projection, by starting projection of a second light having a second wavelength, the step of projecting the second light is projected; a step of receiving a received light set including a first received light that is a signal transmitted through an object and a second received light that is a signal of the second projected light transmitted through the detection object; and detecting the interfaces of the plurality of layers included in the detection target based on the received light set.

本開示によれば、検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制できる。 Advantageous Effects of Invention According to the present disclosure, it is possible to suppress deterioration in interface detection accuracy within a detection target while speeding up the scanning speed for scanning the detection target.

実施形態における血液界面検出システムの構成例を示す図FIG. 2 is a diagram showing a configuration example of a blood interface detection system according to an embodiment; 界面検出センサの構成例を示すブロック図Block diagram showing a configuration example of an interface detection sensor 血液サンプルに対する各投光光の透過特性を示すグラフGraph showing the transmission characteristics of each projected light for a blood sample 投光光セットの投光タイミングと、受光光セットの受光タイミングと、採血管に対する垂直照射位置と、の第1例を示す図A diagram showing a first example of the light projection timing of the light projection light set, the light reception timing of the light reception light set, and the vertical irradiation position with respect to the blood collection tube. 図3の投光光セットに含まれる各投光光の投光タイミングと投光量との第1例を示す図A diagram showing a first example of the light projection timing and the light projection amount of each light beam included in the light projection light set of FIG. 図3の投光光セットに含まれる各投光光の投光タイミングと投光量との第2例を示す図FIG. 4 is a diagram showing a second example of the light projection timing and the light projection amount of each light beam included in the light projection light set of FIG. 3; 図3の投光光セットに含まれる各投光光の投光タイミングと投光量との第3例を示す図A diagram showing a third example of the light projection timing and the light projection amount of each light projection light included in the light projection light set of FIG. 第1の投光光と第2の投光光とが時間的に隣接配置される場合の、投光光セットの投光タイミングと、受光光セットの受光タイミングと、採血管に対する垂直照射位置と、の第2例を示す図When the first projected light and the second projected light are arranged temporally adjacent to each other, the light projection timing of the light projection light set, the light reception timing of the light reception light set, and the vertical irradiation position with respect to the blood collection tube A diagram showing a second example of 図3の受光光セットに含まれる各受光光の受光タイミングと受光量との一例を示す図FIG. 4 is a diagram showing an example of light receiving timing and light receiving amount of each light receiving light included in the light receiving light set of FIG. 3 ; 図5の受光光セットに含まれる各受光光の受光タイミングと受光量との一例を示す図FIG. 6 is a diagram showing an example of light reception timing and light reception amount of each light reception light included in the light reception light set of FIG. 5 ; 採血管に対するスキャン位置と、各スキャン位置をスキャンするための円形ビーム及び長方形ビームと、の一例を示す図FIG. 11 shows an example of scanning positions for a blood collection tube and circular beams and rectangular beams for scanning each scanning position; 投光光が円形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progression state of the projected light on the observation surface according to the presence or absence of displacement of the blood collection tube when the projected light is a circular beam; 投光光が円形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progression state of the projected light on the observation surface according to the presence or absence of displacement of the blood collection tube when the projected light is a circular beam; 投光光が円形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progression state of the projected light on the observation surface according to the presence or absence of displacement of the blood collection tube when the projected light is a circular beam; 投光光が長方形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progress of projected light on an observation surface according to the presence or absence of displacement of a blood collection tube when projected light is a rectangular beam; 投光光が長方形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progress of projected light on an observation surface according to the presence or absence of displacement of a blood collection tube when projected light is a rectangular beam; 投光光が長方形ビームである場合における採血管の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図FIG. 10 is a diagram for explaining the progress of projected light on an observation surface according to the presence or absence of displacement of a blood collection tube when projected light is a rectangular beam; 投光光が円形ビームである場合の、投光光に対応する受光光の受光量の一例を示す図FIG. 4 is a diagram showing an example of the amount of received light corresponding to projected light when the projected light is a circular beam; 投光光が長方形ビームである場合の、投光光に対応する受光光の受光量の一例を示す図FIG. 6 is a diagram showing an example of the amount of received light corresponding to the projected light when the projected light is a rectangular beam; 受光光セット内の複数の受光光の時間的隣接の効果を説明するための図A diagram for explaining the effect of temporal adjacency of a plurality of received lights within a set of received lights. 血液サンプルのz方向に並ぶスキャン領域の空間的隣接の効果を説明するための図A diagram for explaining the effect of spatial adjacency of scan areas aligned in the z-direction of a blood sample.

以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。尚、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.

(実施形態の内容に至る経緯)
従来の界面検出センサは、光パルスを投光する光源に対する光パルスが照射されるサンプル管の位置を、サンプル管の長手方向に沿って一定速度で変更しながら、2種類の光パルスを交互に点灯することを繰り返している。フォトダイオードのPN接合部の蓄積電荷による立下り波形(尾引き波形)が重ならず、時系列で隣り合う次信号への影響が少なくなるように、2種類の光パルスの点灯の繰り返し周期(投光周期)は、長めに設定されている。
(Background leading up to the content of the embodiment)
The conventional interface detection sensor alternately emits two types of light pulses while changing the position of the sample tube irradiated with the light pulse with respect to the light source emitting the light pulse at a constant speed along the longitudinal direction of the sample tube. Repeatedly lit. The repetition period of the lighting of the two types of light pulses ( light projection cycle) is set longer.

ここで、界面検出に要する時間を短縮するためには、上記の光源に対するサンプル管の位置の更新速度(スキャン速度)を高速化する必要がある。これに対し、投光周期を変更せずに、スキャン速度を高速化すると(例えばスキャン速度を2倍にすると)、サンプル管に光パルスが照射される照射位置(垂直照射位置とも称する)の間隔が広がる。この場合、サンプル管の長手方向に沿って垂直照射位置を細かく設定できないので、界面検出精度が低下する。 Here, in order to shorten the time required for interface detection, it is necessary to increase the update speed (scan speed) of the position of the sample tube with respect to the light source. On the other hand, if the scanning speed is increased without changing the light projection period (for example, if the scanning speed is doubled), the interval between the irradiation positions (also referred to as vertical irradiation positions) at which the sample tube is irradiated with the light pulse is spreads. In this case, since vertical irradiation positions cannot be finely set along the longitudinal direction of the sample tube, the interface detection accuracy is lowered.

これに対し、サンプル管の長手方向に沿って垂直照射位置を細かく設定するために、投光周期を短くすると(例えば投光周期を1/2にすると)、時系列で隣合う前信号の立下り波形が次信号に重なり、次信号の受光波形に対して影響を生じる。そのため、やはり界面検出精度が低下する。 On the other hand, if the light projection period is shortened (for example, if the light projection period is halved) in order to finely set the vertical irradiation positions along the longitudinal direction of the sample tube, the rising edge of the previous signal adjacent in time series will be reduced. The downstream waveform overlaps the next signal, and affects the received light waveform of the next signal. As a result, the interface detection accuracy also decreases.

以下の実施形態では、検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制できる界面検出センサ及び界面検出方法について説明する。 In the following embodiments, an interface detection sensor and an interface detection method capable of suppressing a decrease in interface detection accuracy in a detection target while increasing the scanning speed for scanning the detection target will be described.

(実施形態)
<血液界面検出システムの構成>
図1は、実施形態における血液界面検出システム5の構成例を示す図である。血液界面検出システム5は、採血管50と、移動機構60と、界面検出センサ100と、を含む構成である。
(embodiment)
<Configuration of blood interface detection system>
FIG. 1 is a diagram showing a configuration example of a blood interface detection system 5 according to an embodiment. The blood interface detection system 5 includes a blood collection tube 50 , a moving mechanism 60 and an interface detection sensor 100 .

なお、本実施形態では、x方向、y方向及びz方向を規定している。z方向は、採血管50の延在方向であり、例えば鉛直方向である。y方向は、z方向に垂直な方向であり、後述する投光部110から投光される投光光の進行方向である。x方向は、y方向及びz方向に垂直な方向である。z方向の正側を上とも記載し、z方向の負側を下とも記載する。 In addition, in this embodiment, the x direction, the y direction, and the z direction are defined. The z-direction is the extending direction of the blood collection tube 50, for example, the vertical direction. The y direction is a direction perpendicular to the z direction, and is the traveling direction of light projected from a light projecting unit 110, which will be described later. The x direction is the direction perpendicular to the y and z directions. The positive side in the z-direction is also described as top, and the negative side in the z-direction is also described as bottom.

採血管50は、血液サンプルCを収容する(図3等参照)。血液サンプルCは、界面の検出対象の一例である。血液サンプルCは、複数の層を有し、例えば、血餅C1の層及び血清C3の層を有する(図3等参照)。血液サンプルCは、分離材C2の層を有してもよい(図3等参照)。分離材C2は、例えば有機性分離ゲルである。例えば、採血管50内に分離材C2が注入され、遠心分離機により遠心分離されることで、血液サンプルCが血餅C1と分離材C2と血清C3とに分離される。血餅C1は、バフィーコートC12の層及び赤血球C11の層を有する。バフィーコートC12は、例えば白血球及び血小板を有する。 The blood collection tube 50 accommodates the blood sample C (see FIG. 3, etc.). A blood sample C is an example of an interface detection target. The blood sample C has a plurality of layers, for example, a layer of blood clot C1 and a layer of serum C3 (see FIG. 3, etc.). The blood sample C may have a layer of the separation material C2 (see FIG. 3, etc.). Separating material C2 is, for example, an organic separating gel. For example, a separation material C2 is injected into the blood collection tube 50 and centrifuged by a centrifuge to separate the blood sample C into a clot C1, a separation material C2, and serum C3. The clot C1 has a layer of buffy coat C12 and a layer of red blood cells C11. Buffy coat C12 has, for example, white blood cells and platelets.

移動機構60は、採血管50を保持する保持アーム61と、保持アーム61に駆動力を供給する駆動部材(例えばモータ)と、を有する。移動機構60は、採血管50を、採血管50の長手方向(z方向)に沿って移動させる。採血管50の長手方向は、鉛直方向に平行である。なお、採血管50の移動方向(z方向)は、界面検出のためのスキャン方向である。 The moving mechanism 60 has a holding arm 61 that holds the blood collection tube 50 and a driving member (for example, a motor) that supplies driving force to the holding arm 61 . The movement mechanism 60 moves the blood collection tube 50 along the longitudinal direction (z direction) of the blood collection tube 50 . The longitudinal direction of the blood collection tube 50 is parallel to the vertical direction. The moving direction (z direction) of the blood collection tube 50 is the scanning direction for interface detection.

界面検出センサ100は、投光部110と、受光部120と、制御部130と、を含む構成である。界面検出センサ100の筐体は、任意の形状を有し、例えば図1に示すようにコの字形状を有する。コの字形状では、投光部110と受光部120との間に空間が存在し、投光部110と受光部120とが距離d1離れて配置される。投光部110と受光部120との間の空間には、採血管50がz方向に移動自在に配置される。距離d1は、投光部110の投光口から受光部120の受光口までの距離であり、投受光間距離とも称する。なお、採血管50の位置が固定され、界面検出センサ100が移動機構60によってz方向に移動自在に配置されてもよい。この場合でも、界面検出センサ100と採血管50とのz方向に沿う相対的な位置関係を変更可能である。 The interface detection sensor 100 includes a light projecting section 110 , a light receiving section 120 and a control section 130 . The housing of the interface detection sensor 100 has an arbitrary shape, for example, a U-shape as shown in FIG. In the U-shape, there is a space between the light projecting section 110 and the light receiving section 120, and the light projecting section 110 and the light receiving section 120 are arranged at a distance d1. A blood collection tube 50 is arranged in the space between the light projecting section 110 and the light receiving section 120 so as to be movable in the z direction. A distance d1 is the distance from the light projecting port of the light projecting unit 110 to the light receiving port of the light receiving unit 120, and is also referred to as the distance between light projecting and receiving. Alternatively, the position of the blood collection tube 50 may be fixed, and the interface detection sensor 100 may be arranged so as to be movable in the z-direction by the moving mechanism 60 . Even in this case, the relative positional relationship along the z-direction between the interface detection sensor 100 and the blood collection tube 50 can be changed.

界面検出センサ100が上記のコの字形状を有する場合、投光部110と受光部120とが一体に固定の形状となるので、投光部110の投光と受光部120の受光との光軸合わせが容易になる。なお、界面検出センサ100が、コの字形状に形成されなくてもよい。 When the interface detection sensor 100 has the above-described U-shape, the light projecting portion 110 and the light receiving portion 120 are integrally fixed. Alignment becomes easier. Note that the interface detection sensor 100 does not have to be formed in a U-shape.

投光部110は、波長λ(λ1、λ2、…)の異なる複数の投光光S11,S12,…を含む投光光セットS10を、採血管50に向かって順次投光(照射)する。投光光は、例えば、レーザ光であり、パルス状の光であってよい。受光部120は、波長λの異なる複数の受光光S21,S22,…を含む受光光セットS20を順次受光する。受光光は、例えば、レーザ光であり、パルス状の光であってよい。受光光は、投光部110により投光された投光光が採血管50を透過した信号である。制御部130は、受光部120により受光された受光光セットS20に基づいて、採血管50内の血液サンプルCの各層の境界(界面)を非接触で検出する。 The light projection unit 110 sequentially projects (irradiates) a light projection light set S10 including a plurality of light projection lights S11, S12, . . . having different wavelengths λ (λ1, λ2, . The projected light may be, for example, laser light or pulsed light. The light receiving section 120 sequentially receives a received light set S20 including a plurality of received lights S21, S22, . . . having different wavelengths λ. The received light may be, for example, laser light or pulsed light. The received light is a signal obtained by transmitting the light projected by the light projecting unit 110 through the blood collection tube 50 . Based on the received light set S20 received by the light receiving unit 120, the control unit 130 detects the boundaries (interfaces) of the layers of the blood sample C in the blood collection tube 50 in a non-contact manner.

具体的には、採血管50内の血液サンプルCに分離材C2が存在する場合、制御部130は、血餅C1の層と分離材C2の層との界面、分離材C2の層と血清C3の層との界面、及び血清C3の層と空気層との界面の少なくとも1つを検出する。また、採血管50内の血液サンプルCに分離材C2が存在しない場合、制御部130は、血餅C1の層と血清C3の層との界面、及び、血清C3の層と空気層との界面の少なくとも1つを検出する。 Specifically, when the separation material C2 is present in the blood sample C in the blood collection tube 50, the controller 130 controls the interface between the layer of the clot C1 and the layer of the separation material C2, the layer of the separation material C2 and the serum C3. at least one of the interface with the layer of serum C3 and the interface between the layer of serum C3 and the air layer. Further, when the separation material C2 is not present in the blood sample C in the blood collection tube 50, the control unit 130 controls the interface between the clot C1 layer and the serum C3 layer and the interface between the serum C3 layer and the air layer. detect at least one of

図2Aは、界面検出センサ100の構成例を示すブロック図である。界面検出センサ100は、上述のように、投光部110と、受光部120と、制御部130と、を備える。 FIG. 2A is a block diagram showing a configuration example of the interface detection sensor 100. As shown in FIG. The interface detection sensor 100 includes the light projecting section 110, the light receiving section 120, and the control section 130 as described above.

投光部110は、1つ以上(例えば2つ)のドライバ111と、1つ以上(例えば2つ)の投光素子112と、1つ以上(例えば2つ)のレンズ113と、合波器114と、を備える。なお、ドライバ111、投光素子112,及びレンズ113は、投光部110により投光され波長の異なる投光光の数に対応して、複数系統設けられる。 The light projecting unit 110 includes one or more (for example, two) drivers 111, one or more (for example, two) light projecting elements 112, one or more (for example, two) lenses 113, and a multiplexer. 114 and. A plurality of systems of the driver 111, the light projecting element 112, and the lens 113 are provided corresponding to the number of light beams projected by the light projecting unit 110 and having different wavelengths.

各ドライバ111は、制御部130から制御情報を取得し、制御情報に基づいて、各ドライバ111に接続された各投光素子112を駆動し、投光信号を供給する。例えば、ドライバ111Aは、投光素子112Aを駆動し、投光信号を供給する。ドライバ111Bは、投光素子112Bを駆動し、投光信号を供給する。 Each driver 111 acquires control information from the control unit 130, drives each light projecting element 112 connected to each driver 111 based on the control information, and supplies a light projection signal. For example, the driver 111A drives the light projecting element 112A and supplies a light projection signal. The driver 111B drives the light projecting element 112B and supplies a light projection signal.

各投光素子112は、ドライバ111からの投光信号を電気信号から光信号に変換し、異なる波長λ(λ1,λ2,…)を有する各投光光を投光する。例えば、投光素子112Aは、波長λ1(例えば1550nm又は1300nm)の投光光S11を投光する。投光素子112Aは、波長λ2(例えば980nm)の投光光S12を投光する。 Each light projecting element 112 converts the light projection signal from the driver 111 from an electrical signal to an optical signal, and projects light having different wavelengths λ (λ1, λ2, . . . ). For example, the light projecting element 112A projects light S11 having a wavelength λ1 (for example, 1550 nm or 1300 nm). The light projecting element 112A projects light S12 having a wavelength λ2 (980 nm, for example).

投光光S11の波長λ1と投光光S12の波長λ2は、制御部130によって、検出対象に応じて決定されてもよい。波長λ1と波長λ2とは、投光光S11と投光光S12とが検出対象の各層間で変化するように決定される。各層間とは、血餅C1の層と分離材62の層との間、分離材62の層と血清C3の層との間、血清C3の層と空気の層との間、又は分離材C2が不在である場合の血餅C1の層と血清C3の層との間の少なくとも1つを含んでよい。 The wavelength λ1 of the projected light S11 and the wavelength λ2 of the projected light S12 may be determined by the control unit 130 according to the detection target. The wavelength λ1 and the wavelength λ2 are determined so that the projected light S11 and the projected light S12 change between layers to be detected. Each layer means between the layer of clot C1 and the layer of separation material 62, between the layer of separation material 62 and the layer of serum C3, between the layer of serum C3 and the layer of air, or between the layer of separation material C2. at least one between the layer of clot C1 and the layer of serum C3 in the absence of C.

投光光S11は、赤外線領域の波長を有する光である。また、投光光S12は、投光光S11の波長よりも短波長側の波長領域の波長の光である。投光光S11,S12は、近赤外線領域の波長の光であることが好ましい。波長λ1は、例えば1300nm以上2000nm以下のいずれかの波長である。波長λ2は、例えば800nm以上1100nm以下のいずれかの波長である。波長λ1は例えば1550nmである。波長λ2は例えば980nmである。 The projected light S11 is light having a wavelength in the infrared region. Further, the projected light S12 is light having a wavelength in a wavelength region shorter than the wavelength of the projected light S11. The projected lights S11 and S12 are preferably lights with wavelengths in the near-infrared region. The wavelength λ1 is, for example, any wavelength between 1300 nm and 2000 nm. The wavelength λ2 is, for example, any wavelength between 800 nm and 1100 nm. The wavelength λ1 is, for example, 1550 nm. The wavelength λ2 is, for example, 980 nm.

各レンズ113は、各投光素子112から投光された各投光光を合波器114に進行させる。例えば、レンズ113Aは、投光光S11を合波器114に進行させ、レンズ113Bは、投光光S12を合波器114に進行させる。 Each lens 113 causes each light projected from each light projecting element 112 to travel to the combiner 114 . For example, the lens 113A advances the projected light S11 to the combiner 114, and the lens 113B advances the projected light S12 to the combiner 114. FIG.

合波器114は、各レンズ113を介して取得された各投光光(例えば投光光S11,S12)を、同一光路上に合流させる。この同一光路は、合波器114から採血管50を透過して受光部120に向かう光路である。合波器114は、例えば反射ミラーとダイクロイックミラーとを備えてよい。合流された投光光S11,S12は、投光光セットS10を形成し、投光口から投光部110の外部に出射され、採血管50を透過して受光部120に向かう。 The multiplexer 114 merges the projection lights (for example, the projection lights S11 and S12) obtained through the lenses 113 on the same optical path. This same optical path is an optical path from the multiplexer 114 to the light receiving section 120 through the blood collection tube 50 . Combiner 114 may comprise, for example, a reflective mirror and a dichroic mirror. The combined projection lights S11 and S12 form a projection light set S10, are emitted from the light projection port to the outside of the light projection section 110, pass through the blood collection tube 50, and proceed to the light receiving section 120. FIG.

受光部120は、レンズ121と、受光素子122と、増幅器123と、を備える。なお、受光部120は、レンズ121を備えなくてもよい。 The light receiving section 120 includes a lens 121 , a light receiving element 122 and an amplifier 123 . Note that the light receiving unit 120 does not have to include the lens 121 .

レンズ121は、各投光光S11,S12が透過した各受光光S21,S22を含む受光光セットS20を、受光口を介して取得する。レンズ121は、各受光光S21,S22を受光素子122に集光する。受光素子122は、受光光としての光信号を電気信号に変換し、受光光の受光量に応じた信号レベルの受光信号を増幅器123に出力する。増幅器123は、受光素子21から出力される各受光信号を増幅して制御部130に出力する。 The lens 121 acquires a received light set S20 including the received lights S21 and S22 transmitted by the projected lights S11 and S12 through the light receiving opening. The lens 121 converges the received light beams S21 and S22 onto the light receiving element 122 . The light receiving element 122 converts an optical signal as received light into an electrical signal and outputs a received light signal having a signal level corresponding to the amount of received light to the amplifier 123 . The amplifier 123 amplifies each light receiving signal output from the light receiving element 21 and outputs it to the control section 130 .

制御部130は、増幅器131、AD変換器132、CPU133、出力部144、及び出力部145を備える。なお、制御部130は、増幅器131を備えなくてもよい。 The control section 130 includes an amplifier 131 , an AD converter 132 , a CPU 133 , an output section 144 and an output section 145 . Note that the control unit 130 does not have to include the amplifier 131 .

増幅器131は、受光部120から取得した各受光信号を増幅する。AD変換器132は、これらの受光信号のアナログ値をデジタル値に変換し、CPU133に送る。このデジタル値は、受光部120が受光する受光光セットS20に含まれる受光光S21,S22の受光量を示す。 The amplifier 131 amplifies each received light signal acquired from the light receiving section 120 . The AD converter 132 converts the analog values of these received light signals into digital values and sends them to the CPU 133 . This digital value indicates the amount of received light S21 and S22 included in the received light set S20 received by the light receiving unit 120 .

CPU133は、プロセッサの一例であり、投光部110及び受光部120を制御する。CPU133は、例えば、投光部110による投光タイミングと受光部120による受光タイミングを同期させる。CPU133は、AD変換器132から取得された受光光S21,S22の受光量(受信信号の信号レベル)に基づいて、検査対象(例えば採血管50内の血液サンプルC)の各層の界面を検出する。 The CPU 133 is an example of a processor and controls the light projecting section 110 and the light receiving section 120 . The CPU 133 synchronizes the timing of light projection by the light projecting unit 110 and the timing of light reception by the light receiving unit 120, for example. The CPU 133 detects the interface of each layer of the test object (for example, the blood sample C in the blood collection tube 50) based on the amount of received light S21 and S22 (the signal level of the received signal) obtained from the AD converter 132. .

例えば、CPU133は、受光光S21の受光量の時間変化を示すデータと受光光S22の受光量の時間変化を示すデータとを収集し、収集されたデータに基づいて、血液サンプルCの各層の界面を検出してよい。例えば、CPU133は、受光光S21の受光量と受光光S22の受光量との差に基づいて、血液サンプルCの各層の界面を検出してよい。例えば、CPU133は、制御部130が備えるメモリ(不図示)に記憶された閾値と受光量とを比較し、この比較の結果により界面を検出してよい。閾値は、検出対象に応じて設定される。例えば、検出対象としての血液サンプルCにおいて、血餅C1と分離材C2との界面、分離材C2の層と血清C3の層との界面、血清C3の層と空気の層との界面を検出する場合、それぞれの界面を検出する閾値がそれぞれ設定されていてよい。CPU133は、出力部134を介して、検出された界面の情報を含む検出信号を外部に出力する。 For example, the CPU 133 collects data indicating temporal changes in the amount of received light S21 and data indicating temporal changes in the amount of received light S22, and based on the collected data, determines the interface of each layer of the blood sample C. may be detected. For example, the CPU 133 may detect the interface of each layer of the blood sample C based on the difference between the amount of received light S21 and the amount of received light S22. For example, the CPU 133 may compare a threshold value stored in a memory (not shown) included in the control unit 130 with the amount of received light, and detect the interface based on the result of this comparison. A threshold is set according to a detection target. For example, in the blood sample C to be detected, the interface between the clot C1 and the separation material C2, the interface between the layer of the separation material C2 and the layer of serum C3, and the interface between the layer of serum C3 and the air layer are detected. In this case, a threshold for detecting each interface may be set. The CPU 133 outputs a detection signal including information on the detected interface to the outside via the output unit 134 .

CPU133は、光の各波長と透過率との関係を示す特性情報、つまり各波長の透過スペクトルの情報を予めメモリに保持しておいてよい。図2Bは、血液サンプルCに対する各投光光の透過特性(特性情報の一例)を示すグラフである。この透過特性は、各投光光の波長と透過率との関係を示している。この透過率は、任意の受光素子により投光光を受光光として直接受光したときの受光量と、厚さ16mmの検体を透過した受光光を同じ受光素子により受光したときの受光量と、の割合を示す。実線の特性線A1は、血清C3の透過率を示す。破線の特性線A2は、分離材C2の透過率を示す。破線の特性線A3は、血餅C1の透過率を示す。CPU133は、特性情報を基に、投光部110により投光される投光光S11の波長λ1及び投光光S12の波長λ2を決定してよい。CPU133は、投光光S11の波長λ1及び投光光S12の波長λ2の情報を制御情報に含めて、出力部135を介して投光部110に送ってよい。 The CPU 133 may store characteristic information indicating the relationship between each wavelength of light and transmittance, that is, information on the transmission spectrum of each wavelength in advance in the memory. FIG. 2B is a graph showing transmission characteristics (an example of characteristic information) of each projected light with respect to the blood sample C. FIG. This transmission characteristic indicates the relationship between the wavelength of each projected light and the transmittance. This transmittance is the amount of light received when the projected light is directly received as received light by an arbitrary light receiving element, and the amount of light received when the same light receiving element receives the light that has passed through a sample with a thickness of 16 mm. Show a percentage. A solid characteristic line A1 indicates the transmittance of serum C3. A dashed characteristic line A2 indicates the transmittance of the separation material C2. A dashed characteristic line A3 indicates the transmittance of the clot C1. The CPU 133 may determine the wavelength λ1 of the projection light S11 and the wavelength λ2 of the projection light S12 projected by the light projecting section 110 based on the characteristic information. The CPU 133 may include information on the wavelength λ1 of the projected light S11 and the wavelength λ2 of the projected light S12 in the control information and send the control information to the light projecting section 110 via the output section 135 .

CPU133は、受光光セットS20の受光量が時系列で上り階段状に大きくなるように、投光部110による投光を制御する。例えば、CPU133は、メモリに保持された特性情報に基づいて、各投光光の投光に関する投光情報を決定してよい。投光光の投光情報は、例えば、各投光光の投光量(投光信号の信号レベル)、各投光光の波長、及び各投光光の投光順序の少なくとも一方を含んでよい。この場合、CPU133は、特性情報として、波長毎の光が投光された場合の検出対象の各層の透過率の情報を取得し、この透過率に基づいて、各波長の投光光が検出対象の各層を透過した場合の減衰量を算出してよい。そして、CPU133は、投光光の投光量から減衰量が減算された受光光の受光量が、時系列で上り階段状になるように、投光光の投光量を決定してよい。また、CPU133は、予め投光光の投光量が決まっている場合には、所望の受光量が得られる減衰量を算出し、減衰量に対応する透過率を算出し、その透過率となるような波長を、特性情報から導出してもよい。CPU133は、決定された投光情報を制御情報に含めて、出力部135を介して投光部110に送ってよい。 The CPU 133 controls light projection by the light projecting section 110 so that the amount of light received by the light receiving light set S20 increases in time series in an upward staircase pattern. For example, the CPU 133 may determine light projection information regarding each light projection based on the characteristic information held in the memory. The projection information of the projected light may include, for example, at least one of the projected amount of each projected light (the signal level of the projected light signal), the wavelength of each projected light, and the order of projection of each projected light. . In this case, the CPU 133 acquires, as the characteristic information, information on the transmittance of each layer to be detected when light of each wavelength is projected, and based on this transmittance, the projected light of each wavelength is the detection target. You may calculate the amount of attenuation when it permeate|transmits each layer of. Then, the CPU 133 may determine the amount of projected light so that the amount of received light obtained by subtracting the attenuation amount from the amount of projected light ascends in time series. Further, when the amount of projected light is determined in advance, the CPU 133 calculates the amount of attenuation at which the desired amount of received light is obtained, calculates the transmittance corresponding to the amount of attenuation, and wavelength may be derived from the characteristic information. The CPU 133 may include the determined light projection information in the control information and send it to the light projection section 110 via the output section 135 .

CPU133は、受光光セットS20の受光量が時系列で下り階段状に小さくなっている場合、投光光セットS10に含まれる複数の投光光の投光順序を入れ替える。CPU133は、入れ替えられた投光順序の情報を制御情報に含めて、出力部135を介して投光部110に送ってよい。 When the amount of light received by the received light set S20 decreases in time series in a descending staircase pattern, the CPU 133 changes the order of projection of the plurality of projected lights included in the projected light set S10. The CPU 133 may include the information on the order of light projection that has been changed in the control information and send the control information to the light projection section 110 via the output section 135 .

図3は、投光光セットS10の投光タイミングと、受光光セットS20の受光タイミングと、採血管50に対する垂直照射位置と、の第1例を示す図である。垂直照射位置は、採血管50の移動方向に沿う位置(z方向位置)であって、投光部110からy方向に沿って投光された投光光が透過する位置である。図3では、受光光セットS20として、受光光S21の受光タイミングと受光光S22の受光タイミングとが時系列で重複せず隣接するように、投光光セットS10を投光することを例示する。 FIG. 3 is a diagram showing a first example of the light projection timing of the light projection light set S10, the light reception timing of the light reception light set S20, and the vertical irradiation position with respect to the blood collection tube 50. As shown in FIG. The vertical irradiation position is a position (z-direction position) along the moving direction of the blood collection tube 50, and is a position through which the light projected from the light projection unit 110 along the y-direction is transmitted. In FIG. 3, as the received light set S20, the projected light set S10 is projected such that the light receiving timing of the received light S21 and the light receiving timing of the received light S22 do not overlap in time series and are adjacent to each other.

つまり、投光部110は、制御部130による制御に従って、投光光セットS10の投光時に、まず投光光S11の投光を開始する。そして、投光部110は、投光光S11の投光の終了時に投光光S12の投光を開始し、その後投光光S12の投光を終了する。この場合、制御部130は、投光タイミングと受光タイミングとを同期させるので、受光部120は、投光光S11の投光タイミングと投光光S12の投光タイミングとに同期して、受光光S21と受光光S22とを含む受光光セットS20を受光する。この結果、受光部120は、受光光セットS20の受光時に、まず受光光S21の受光を開始し、受光光S21の受光の終了時に受光光S22の受光を開始し、その後受光光S22の受光を終了する。 That is, according to the control by the control unit 130, the light projecting unit 110 first starts projecting the light projecting light S11 when projecting the light projecting light set S10. Then, the light projecting section 110 starts projecting the projected light S12 when the projection of the projected light S11 ends, and then ends the projection of the projected light S12. In this case, since the control unit 130 synchronizes the light projection timing and the light reception timing, the light reception unit 120 synchronizes the light projection timing of the light projection light S11 and the light projection timing of the light projection light S12. A received light set S20 including S21 and received light S22 is received. As a result, the light-receiving unit 120 first starts receiving the received light S21 when receiving the light-receiving light set S20, starts receiving the light-receiving light S22 when the light-receiving light set S21 is finished, and then starts receiving the light-receiving light S22. finish.

図3では、投光光セットS10の投光期間T1は、投光光S11が投光される第1投光期間T11と、投光光S12が投光される第2投光期間T12と、を含む。投光期間T1において、第1投光期間T11が時系列で前半の期間であり、第2投光期間T12が時系列で後半の期間である。第1投光期間T11と第2投光期間T12とは隣接しており、時系列で連続している。投光部110は、1つの投光光セットS10を投光した後、所定の時間間隔TI1を空けて、次の投光光セットS10を投光する。このような投光光セットS10の投光を繰り返す。よって、投光期間T1と所定の時間間隔TI1とを合わせた期間が投光周期TPとなり、投光周期TPで投光光セットS10の投光が繰り返される。投光周期TPの1周期で、投光光S11と投光光S12との双方が、1回投光される。 In FIG. 3, the light projection period T1 of the light projection light set S10 includes a first light projection period T11 in which the light S11 is projected, a second light projection period T12 in which the light S12 is projected, including. In the light projection period T1, the first light projection period T11 is the first half period in time series, and the second light projection period T12 is the second half period in time series. The first light projection period T11 and the second light projection period T12 are adjacent and continuous in time series. After projecting one projection light set S10, the light projection unit 110 projects the next projection light set S10 after a predetermined time interval TI1. Such projection of the projection light set S10 is repeated. Therefore, a period obtained by combining the light projection period T1 and the predetermined time interval TI1 is the light projection period TP, and the projection of the light projection light set S10 is repeated at the light projection period TP. Both the projected light S11 and the projected light S12 are projected once in one period of the light projection period TP.

また、受光光セットS20の受光期間T2は、受光光S21が受光される第1受光期間T21と、受光光S22が受光される第2受光期間T22と、を含む。受光期間T2において、第1受光期間T21が時系列で前半の期間であり、第2受光期間T22が時系列で後半の期間である。第1受光期間T21と第2受光期間T22とは隣接しており、時系列で連続している。受光部120は、1つの受光光セットS20を受光した後、所定の時間間隔TI2を空けて、次の受光光セットS20を受光する。このような受光光セットS20の受光を繰り返す。よって、受光期間T2と所定の時間間隔TI2とを合わせた期間が受光周期TRとなり、受光周期TRで受光光セットS20の受光が繰り返される。受光周期TRの1周期で、受光光S21と受光光S21との双方が、1回受光される。 The light receiving period T2 of the light receiving light set S20 includes a first light receiving period T21 during which the light receiving light S21 is received and a second light receiving period T22 during which the light receiving light S22 is received. In the light receiving period T2, the first light receiving period T21 is the first half period in time series, and the second light receiving period T22 is the second half period in time series. The first light receiving period T21 and the second light receiving period T22 are adjacent and continuous in time series. After receiving one received light set S20, the light receiving section 120 receives the next received light set S20 after a predetermined time interval TI2. Such light reception of the light reception light set S20 is repeated. Therefore, a period obtained by combining the light receiving period T2 and the predetermined time interval TI2 is the light receiving period TR, and light reception by the light receiving light set S20 is repeated in the light receiving period TR. Both the received light S21 and the received light S21 are received once in one cycle of the light receiving cycle TR.

また、移動機構60は、界面検出センサ100による血液サンプルCに含まれる各層の界面を検出する界面検出動作時(投光動作時及び受光動作時)に、採血管50をz方向に移動可能である。つまり、採血管50が移動機構60による移動制御に従ってz方向に移動しながら、投光部110による投光光セットS10の投光及び受光部120による受光光セットS20の受光を行う。 Further, the moving mechanism 60 is capable of moving the blood collection tube 50 in the z direction during the interface detection operation (during the light projection operation and the light reception operation) for detecting the interface of each layer contained in the blood sample C by the interface detection sensor 100. be. That is, while the blood collection tube 50 moves in the z-direction according to movement control by the moving mechanism 60, the light projecting unit 110 projects the light projecting light set S10 and the light receiving unit 120 receives the light receiving light set S20.

例えば、図3では、採血管50は、界面検出動作時には、z方向の負側から正側に向かって(上方向)に移動中である。採血管50は、z方向に一定速度で移動してよい。採血管50の移動速度が一定速度である場合、一定の投光周期TPで投光光セットS10を投光することで、一定の受光周期TRで受光光セットS20を受光する。 For example, in FIG. 3, the blood collection tube 50 is moving from the negative side to the positive side (upward) in the z direction during the interface detection operation. The blood collection tube 50 may move at a constant speed in the z-direction. When the moving speed of the blood collection tube 50 is constant, the light-projecting light set S10 is projected at a constant light-projecting period TP, and the light-receiving light set S20 is received at a constant light-receiving period TR.

この場合、例えば、投光部110は、第1の投光光セットS10の投光時には、第1投光期間T11に採血管50の第1空間領域R1に投光光S11を照射し、受光部120は、第1受光期間T21に第1空間領域R1を透過した受光光S21を受光する。第1空間領域R1は、採血管50内の最下層に位置する血餅C1の層の下端付近に位置する。続いて、投光部110は、第2投光期間T12に採血管50の第2空間領域R2に投光光S12を照射し、受光部120は、第2受光期間T22に第2空間領域R2を透過した受光光S22を受光する。第2空間領域R2は、採血管50内の血餅C1の層の位置に含まれ、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置する。制御部130は、第1空間領域R1及び第2空間領域R2を合わせた領域内に、血液サンプルCの界面が存在するか否かを判別する。なお、各空間領域は、血液サンプルCを検査するためのスキャン領域(走査領域)の一例である。また、各空間領域は、採血管50に投光光が照射される垂直照射位置が連続する領域であるとも言える。 In this case, for example, when the first set of projected light beams S10 is projected, the light projection unit 110 irradiates the first spatial region R1 of the blood collection tube 50 with the projected light beams S11 during the first light projection period T11, and receives the light beams. The unit 120 receives the received light S21 that has passed through the first spatial region R1 during the first light receiving period T21. The first spatial region R1 is located near the lower end of the layer of clot C1 located at the bottom in the blood collection tube 50 . Subsequently, the light projecting unit 110 irradiates the second spatial region R2 of the blood collection tube 50 with the light projecting light S12 during the second light projecting period T12, and the light receiving unit 120 irradiates the second space region R2 during the second light receiving period T22. The received light S22 transmitted through is received. The second spatial region R2 is included at the location of the layer of the clot C1 within the blood collection tube 50 and is positioned above and spatially continuous with the first spatial region R1. The control unit 130 determines whether or not the interface of the blood sample C exists within the combined area of the first spatial area R1 and the second spatial area R2. Each spatial region is an example of a scanning region (scanning region) for testing the blood sample C. FIG. Further, it can be said that each spatial region is a region in which the vertical irradiation positions where the blood collection tube 50 is irradiated with the projection light are continuous.

そして、投光中の第1の投光光セットS10の投光光S12の投光から次の第2の投光光セットS10の投光光S11の投光までの期間は、投光光が投光されない時間間隔TI1が存在する。そのため、受光中の受光光セットS20の受光光S22の受光から次の受光光セットS20の受光光S21の投光までの期間は、受光光が受光されない時間間隔TI2が存在する。この時間間隔TI1,TI2は、第2受光期間T22における受光光S22の立下り期間S22aが加味されて定められてよい。立下り期間S22aは、受光光S22の受光終了直後から、受光光S22の受光量が所定量以下となるまでの期間である。所定量は、値0であってもよいし、値0でなくても、次に受光される受光光セットS20の第1受光期間T21の受光光に対して重畳される残存信号が微小であり、次に受光される受光光セットS20の受光に基づく界面検出への影響を無視できる程度であればよい。例えば、第1の受光光セットS20の受光終了時点から、第1の受光光セットS20に後続する第2の受光光セットS20の受光開始時点までの期間は、立下り期間S22aよりも長い、又は立下り期間S22aと同じ長さであってよい。 In the period from the projection of the projected light S12 of the first projected light set S10 during projection to the projection of the projected light S11 of the next second projected light set S10, the projected light is There is a time interval TI1 during which no light is emitted. Therefore, there is a time interval TI2 during which no received light is received during the period from the reception of the received light S22 of the currently received light set S20 to the projection of the received light S21 of the next received light set S20. The time intervals TI1 and TI2 may be determined taking into account the falling period S22a of the received light S22 in the second light receiving period T22. The fall period S22a is a period from immediately after the end of the reception of the received light S22 until the amount of received light S22 becomes equal to or less than a predetermined amount. The predetermined amount may have a value of 0, or even if it does not have a value of 0, the remaining signal superimposed on the received light in the first light receiving period T21 of the received light set S20 to be received next is minute. , the influence on the interface detection based on the light reception of the light reception light set S20 to be received next can be ignored. For example, the period from the end of light reception of the first set of received light S20 to the start of light reception of the second set of received light S20 subsequent to the first set of received light S20 is longer than the fall period S22a, or It may have the same length as the fall period S22a.

投光部110は、一定の投光周期TPで、投光光セットS10を繰り返し投光する。よって、一定の投光周期TPで、投光光S11,S12の投光も繰り返される。したがって、受光部120は、一定の受光周期TRで、受光光セットS20を繰り返し受光する。よって、一定の受光周期TRで、受光光S21,S22の受光も繰り返される。 The light projecting unit 110 repeatedly projects the light projecting light set S10 at a constant light projecting period TP. Therefore, the projection of the light beams S11 and S12 is also repeated at a fixed light projection period TP. Therefore, the light receiving section 120 repeatedly receives the received light set S20 at a constant light receiving period TR. Therefore, the light reception of the light reception lights S21 and S22 is also repeated at a constant light reception cycle TR.

例えば、投光部110は、第1の投光光セットS10の次に、第1の投光光セットS10に後続する第2の投光光セットS10を投光する。図3では、第2の投光光セットS10の投光光S11が投光される第1空間領域R1は、採血管50内のz方向の中間付近に位置する分離材C2の層の付近に位置する。受光部120は、この第1空間領域R1を透過した受光光S21を受光する。また、第2の投光光セットS10の投光光S12が投光される第2空間領域R2は、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置し、分離材C2の層の上方に位置する血清C3の層の下端付近に位置する。受光部120は、この第2空間領域R2を透過した受光光S22を受光する。 For example, the light projecting unit 110 projects the first set of projected lights S10 and then the second set of projected lights S10 subsequent to the first set of projected lights S10. In FIG. 3, the first spatial region R1 where the projected light S11 of the second projected light set S10 is projected is near the layer of the separation material C2 located near the middle in the z direction inside the blood collection tube 50. To position. The light receiving section 120 receives the received light S21 transmitted through the first spatial region R1. Further, the second spatial region R2 onto which the projected light beams S12 of the second set of projected light beams S10 are projected is located above the first spatial region R1 and spatially continuous with the first spatial region R1, Located near the lower end of the layer of serum C3 located above the layer of separation material C2. The light receiving section 120 receives the received light S22 transmitted through the second spatial region R2.

同様に、投光部110は、第2の投光光セットS10の次に、第2の投光光セットS10に後続する第3の投光光セットS10を投光する。図3では、第3の投光光セットS10の投光光S11が投光される第1空間領域R1は、採血管50内のz方向の上方に位置する空気の層に位置する。受光部120は、この第1空間領域R1を透過した受光光S21を受光する。また、第3の投光光セットS10の投光光S12が投光される第2空間領域R2は、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置し、空気の層に位置する。受光部120は、この第2空間領域R2を透過した受光光S22を受光する。 Similarly, the light projecting unit 110 projects the second set of projected lights S10 and then the third set of projected lights S10 subsequent to the second set of projected lights S10. In FIG. 3, the first spatial region R1 where the projected light S11 of the third projected light set S10 is projected is located in the air layer above the blood collection tube 50 in the z direction. The light receiving section 120 receives the received light S21 transmitted through the first spatial region R1. Further, the second spatial region R2 onto which the projection light S12 of the third projection light set S10 is projected is located above the first spatial region R1 and spatially continuous with the first spatial region R1, Located in the layer of air. The light receiving section 120 receives the received light S22 transmitted through the second spatial region R2.

移動機構60による採血管50のz方向への移動速度が高速である程、繰り返し投光される垂直照射位置の空間的な間隔が広がる。つまり移動機構60による採血管50のz方向への移動速度が高速である程、検出対象についての検出結果をなるべく多く得るためには、隣り合う投光光セットS10の投光光S11が投光される垂直照射位置のz方向に沿う距離d2が、短い方が好ましい。一方、距離d2を短くするためには、投光周期TPを短くすることが必要とされる。この場合、投光光S11と投光光S12とが時間的間隔をあけて投光されていると、受光光S21と受光光S22とが混在し易くなる。 The higher the moving speed of the blood sampling tube 50 in the z direction by the moving mechanism 60, the wider the spatial interval between the vertical irradiation positions that are repeatedly projected. In other words, the higher the moving speed of the blood sampling tube 50 in the z direction by the moving mechanism 60, the more the projection light S11 of the adjacent light projection light set S10 is projected in order to obtain as many detection results as possible for the detection target. It is preferable that the distance d2 along the z-direction of the vertical irradiation position where the light is applied is short. On the other hand, in order to shorten the distance d2, it is necessary to shorten the light projection period TP. In this case, if the projected light S11 and the projected light S12 are projected with a time interval, the received light S21 and the received light S22 are likely to coexist.

これに対し、界面検出センサ100は、投光光S11,S12を時系列で連続して送ることで、受光光S21,S22を時系列で連続して受光でき、投光周期TP及び受光周期TRを短縮し易くできる。よって、界面検出センサ100は、なるべく短期間でなるべく多くの投光光S11,S12を投光でき、なるべく短期間でなるべく多くの受光光S21,S22を受光できる。よって、距離d2をなるべく短くできる。 On the other hand, the interface detection sensor 100 can continuously receive the received light beams S21 and S22 in time series by continuously transmitting the projected light beams S11 and S12 in chronological order. can be easily shortened. Therefore, the interface detection sensor 100 can project as many light beams S11 and S12 as possible in a short period of time and receive as many light beams S21 and S22 as possible in a short period of time. Therefore, the distance d2 can be made as short as possible.

また、制御部130は、受光光セットS20に含まれる時系列での受光量が上り階段状に大きくなるように、投光部110に投光させる。つまり、各受光期間T2において、第1受光期間T21に受光される受光光の受光量よりも第2受光期間T22に受光される受光光の受光量の方が大きくなるように、投光部110により投光される投光光S11,S12の特性(例えば投光量又は波長)や投光光S11,S12の投光順序を調整する。つまり、受光側において、受光光S21,S22の受光量(光エネルギー)が、時系列で上り階段状に大きくなるように調整される。 Further, the control unit 130 causes the light projecting unit 110 to project light so that the amount of received light in the time series included in the received light set S20 increases in an upward staircase pattern. That is, in each light receiving period T2, the light projecting section 110 is arranged such that the amount of light received during the second light receiving period T22 is larger than the amount of light received during the first light receiving period T21. The characteristics of the projected light beams S11 and S12 (for example, the amount of light projected or the wavelength) and the light projection order of the projected light beams S11 and S12 are adjusted. That is, on the light-receiving side, the amount of received light (light energy) of the light-receiving lights S21 and S22 is adjusted so as to increase in ascending steps in time series.

同一の受光光セットS20内において、時系列で先に受光される受光光S21の立下り成分が時系列で後に受光される受光光S22に重畳し得る。この場合でも、受光光セットS20の時系列での受光量が上り階段状であることで、受光光S21の立下り成分が受光光S22の受光量に対して十分に小さい。したがって、界面検出センサ100は、第1受光期間T21に受光される受光光S21が第2受光期間T22に受光される受光光S22に干渉し、受光光S21,S22の双方を含む同じ受光光セットS20に基づく界面検出の精度の低下を抑制できる。 Within the same received light set S20, the falling component of the received light S21 received earlier in time series can be superimposed on the received light S22 received later in time series. Even in this case, the falling component of the received light beam S21 is sufficiently smaller than the received light quantity of the received light beam S22 because the received light amount in the time series of the received light set S20 is in an upward staircase pattern. Therefore, the interface detection sensor 100 detects that the received light S21 received during the first light receiving period T21 interferes with the received light S22 received during the second light receiving period T22, and the same received light set including both the received lights S21 and S22 is detected. It is possible to suppress deterioration in accuracy of interface detection based on S20.

また、異なる受光光セットS20内において、先に受光される受光光セットS20の受光光S22が、後に受光される受光光セットS20の受光光S21に混在しやすくなる。これに対し、立下りを加味した時間間隔TI2が確保されることで、界面検出センサ100は、時系列で前の受光光セット20の受光光S22によって、後の受光光セットS20の受光光S21に干渉し、後の受光光セットS20に基づく界面検出の精度の劣化を抑制できる。 Further, in different received light sets S20, the received light S22 of the received light set S20 that is received first is likely to be mixed with the received light S21 of the received light set S20 that is received later. On the other hand, by ensuring the time interval TI2 taking into account the falling edge, the interface detection sensor 100 detects the received light S22 of the previous received light set 20 in chronological order and the received light S21 of the later received light set S20. , thereby suppressing deterioration in accuracy of interface detection based on the subsequent received light set S20.

図3に示した第1動作例によれば、界面検出センサ100は、時系列で2つの隣接する投光光S11,S12が採血管50を透過後に、時系列で2つの隣接する受光光S21,S22を取得できる。そして、界面検出センサ100は、受光光S21,S22の受光量が時系列で上り階段状に大きくなるように調整できる。よって、界面検出センサ100は受光光セットS20の立下り鈍りによる界面検出精度の低下を抑制できる。また、界面検出センサ100は、光パルス照射の繰り返し周期を最大化できるので、z方向に沿って多数の垂直照射位置に対応する受光光セットS20を得ることができ、z方向の界面検出の分解能を向上できる。 According to the first operation example shown in FIG. 3, the interface detection sensor 100 detects two adjacent received light beams S21 in time series after the two adjacent light beams S11 and S12 in time series pass through the blood collection tube 50. , S22 can be obtained. The interface detection sensor 100 can be adjusted so that the amount of received light S21 and S22 increases in time series in an upward staircase manner. Therefore, the interface detection sensor 100 can suppress the deterioration of the interface detection accuracy due to the slow fall of the light receiving light set S20. In addition, since the interface detection sensor 100 can maximize the repetition period of the light pulse irradiation, it is possible to obtain the received light set S20 corresponding to a large number of vertical irradiation positions along the z direction, and the resolution of the interface detection in the z direction. can be improved.

図4A~図4Cは、図3に示した第1例の投光光セットS10に含まれる各投光光S11,S12の投光タイミングと投光量との一例を示す図である。 4A to 4C are diagrams showing an example of the light projection timing and the light projection amount of each of the light projection lights S11 and S12 included in the light projection light set S10 of the first example shown in FIG.

図4Aでは、各投光光セットS10に含まれる投光光S11,S12の時系列での投光量が、上り階段状に大きくなっている。つまり、同じ投光光セットS10内の投光光S11よりも投光光S12の投光量が大きい。この場合、この投光光セットS10が採血管50内の血液サンプルCを透過した受光光セットS20の時系列での受光量も、上り階段状に大きくなり易い。例えば、前述のような投光光S11,S12の波長λ1,λ2を加味した血液サンプルCに対する透過特性において、投光光S11,S12の透過率がほぼ等しい場合には、受光側でも受光光セットS20の時系列での受光量が上り階段状に大きくなる。 In FIG. 4A, the amount of projected light S11 and S12 included in each projected light set S10 in time series increases in an upward staircase manner. That is, the amount of projected light S12 is larger than that of projected light S11 in the same set S10 of projected light. In this case, the amount of light received in the time series of the light receiving light set S20 transmitted through the blood sample C in the blood collection tube 50 by the light projecting light set S10 also tends to increase in an upward staircase manner. For example, when the transmittance of the projected light beams S11 and S12 is substantially equal in the transmittance characteristics of the blood sample C in consideration of the wavelengths λ1 and λ2 of the projected light beams S11 and S12 as described above, the received light set is set on the light receiving side as well. The amount of received light in the time series of S20 increases in an upward stair-like manner.

図4Bでは、各投光光セットS10に含まれる投光光S11,S12の時系列での投光量が、下り階段状に小さくなっている。つまり、同じ投光光セットS10内の投光光S11よりも投光光S12の投光量が小さい。この場合でも、前述のような投光光S11,S12の波長λ1,λ2を加味した血液サンプルCに対する透過特性に応じて、受光部120に受光される受光光セットS20の時系列での受光量が、上り階段状に大きくなればよい。 In FIG. 4B, the amount of projected light S11 and S12 included in each set of projected light S10 decreases in a time-series manner. That is, the amount of projected light S12 is smaller than that of projected light S11 in the same set S10 of projected light. Even in this case, the amount of light received by the light receiving unit 120 in the time series of the light receiving light set S20 received by the light receiving unit 120 is determined according to the transmission characteristics of the blood sample C in consideration of the wavelengths λ1 and λ2 of the light emitting lights S11 and S12 as described above. should increase in the shape of an upward staircase.

図4Cでは、各投光光セットS10に含まれる投光光S11,S12の時系列での投光量が示す形状が、矩形状になっている。つまり、同じ投光光セットS10内の投光光S11と投光光S12との投光量が等しい。この場合でも、前述のような投光光S11,S12の波長λ1,λ2を加味した血液サンプルCに対する透過特性に応じて、受光部120に受光される受光光セットS20の時系列での受光量が、上り階段状に大きくなればよい。 In FIG. 4C, the shape indicated by the amount of light projected in time series of the light projected lights S11 and S12 included in each light projected light set S10 is rectangular. That is, the light projection amounts of the light projection light S11 and the light projection light S12 in the same light projection light set S10 are equal. Even in this case, the amount of light received by the light receiving unit 120 in the time series of the light receiving light set S20 received by the light receiving unit 120 is determined according to the transmission characteristics of the blood sample C in consideration of the wavelengths λ1 and λ2 of the light emitting lights S11 and S12 as described above. should increase in the shape of an upward staircase.

図5は、投光光セットS10の投光タイミングと、受光光セットS20の受光タイミングと、採血管50に対する垂直照射位置と、の第2例を示す図である。図5では、受光光セットS20として、受光光S21の受光タイミングと受光光S22の受光タイミングとが時系列で重複するように、投光光セットS10を投光することを例示する。 FIG. 5 is a diagram showing a second example of the light projection timing of the light projection light set S10, the light reception timing of the light reception light set S20, and the vertical irradiation position with respect to the blood collection tube 50. As shown in FIG. In FIG. 5, as the received light set S20, the projected light set S10 is projected so that the light receiving timing of the received light S21 and the light receiving timing of the received light S22 overlap in time series.

つまり、投光部110は、制御部130による制御に従って、投光光セットS10の投光時に、まず投光光S11の投光を開始する。そして、投光部110は、投光光S11の投光中、つまり投光光S11の投光が終了する前に、投光光S12の投光を開始し、その後投光光S12の投光を終了する。この場合、制御部130は、投光タイミングと受光タイミングとを同期させるので、受光部120は、投光光S11の投光タイミングと投光光S12の投光タイミングとに同期して、受光光S21と受光光S22とを含む受光光セットS20を受光する。この結果、受光部120は、受光光セットS20の受光時に、まず受光光S21の受光を開始し、受光光S21の受光中つまり受光光S21の受光が終了する前に受光光S22の受光を開始し、その後受光光S22の投光を終了する。 That is, according to the control by the control unit 130, the light projecting unit 110 first starts projecting the light projecting light S11 when projecting the light projecting light set S10. The light projecting unit 110 starts projecting the light S12 during the projection of the light S11, that is, before the light S11 is completely projected. exit. In this case, since the control unit 130 synchronizes the light projection timing and the light reception timing, the light reception unit 120 synchronizes the light projection timing of the light projection light S11 and the light projection timing of the light projection light S12. A received light set S20 including S21 and received light S22 is received. As a result, the light receiving section 120 first starts receiving the received light S21 when receiving the received light set S20, and starts receiving the received light S22 during the reception of the received light S21, that is, before the reception of the received light S21 ends. After that, the projection of the received light S22 is terminated.

つまり、図3に示した第1例と比較すると、図5に示す第2例では、時系列で先に投光される投光光S11の投光継続時間が長く、投光光S11の投光期間と投光光S12の投光期間とが少なくとも一部重複している。よって、図3に示した第1例と比較すると、図5に示す第2例では、時系列で先に受光される受光光S21の受光継続時間が長く、受光光S21の受光期間と受光光S22の受光期間とが少なくとも一部重複している。 That is, compared with the first example shown in FIG. 3, in the second example shown in FIG. The light period and the projection period of the projection light S12 at least partially overlap. Therefore, as compared with the first example shown in FIG. 3, in the second example shown in FIG. It at least partially overlaps with the light receiving period of S22.

図5では、投光光セットS10の投光期間T1は、投光光S11が投光される第1投光期間T11と、投光光S11及び投光光S12が投光される第2投光期間T12と、を含む。投光期間T1において、第1投光期間T11が時系列で前半の期間であり、第2投光期間T12が時系列で後半の期間である。第1投光期間T11と第2投光期間T12とは隣接しており、時系列で連続している。投光部110は、1つの投光光セットS10を投光した後、所定の時間間隔TI1を空けて、次の投光光セットS10を投光する。このような投光光セットS10の投光を繰り返す。よって、投光期間T1と所定の時間間隔TI1とを合わせた期間が投光周期TPとなり、投光周期TPで投光光セットS10の投光が繰り返される。投光周期TPの1周期で、投光光S11と投光光S12との双方が、1回投光される。 In FIG. 5, the light projection period T1 of the light projection light set S10 consists of a first light projection period T11 during which the light projection light S11 is projected and a second light projection period T11 during which the light projection light S11 and the light projection light S12 are projected. and a light period T12. In the light projection period T1, the first light projection period T11 is the first half period in time series, and the second light projection period T12 is the second half period in time series. The first light projection period T11 and the second light projection period T12 are adjacent and continuous in time series. After projecting one projection light set S10, the light projection unit 110 projects the next projection light set S10 after a predetermined time interval TI1. Such projection of the projection light set S10 is repeated. Therefore, a period obtained by combining the light projection period T1 and the predetermined time interval TI1 is the light projection period TP, and the projection of the light projection light set S10 is repeated at the light projection period TP. Both the projected light S11 and the projected light S12 are projected once in one period of the light projection period TP.

また、受光光セットS20の受光期間T2は、受光光S21が受光される第1受光期間T21と、受光光S21及び受光光S22が受光される第2受光期間T22と、を含む。受光期間T2において、第1受光期間T21が時系列で前半の期間であり、第2受光期間T22が時系列で後半の期間である。第1受光期間T21と第2受光期間T22とは隣接しており、時系列で連続している。受光部120は、1つの受光光セットS20を受光した後、所定の時間間隔TI2を空けて、次の受光光セットS20を受光する。このような受光光セットS20の受光を繰り返す。よって、受光期間T2と所定の時間間隔TI2とを合わせた期間が受光周期TRとなり、受光周期TRで受光光セットS20の受光が繰り返される。受光周期TRの1周期で、受光光S21と受光光S21との双方が、1回受光される。 The light receiving period T2 of the received light set S20 includes a first light receiving period T21 during which the received light S21 is received and a second light receiving period T22 during which the received light S21 and the received light S22 are received. In the light receiving period T2, the first light receiving period T21 is the first half period in time series, and the second light receiving period T22 is the second half period in time series. The first light receiving period T21 and the second light receiving period T22 are adjacent and continuous in time series. After receiving one received light set S20, the light receiving section 120 receives the next received light set S20 after a predetermined time interval TI2. Such light reception of the light reception light set S20 is repeated. Therefore, a period obtained by combining the light receiving period T2 and the predetermined time interval TI2 is the light receiving period TR, and light reception by the light receiving light set S20 is repeated in the light receiving period TR. Both the received light S21 and the received light S21 are received once in one cycle of the light receiving cycle TR.

また、移動機構60は、界面検出センサ100による血液サンプルCに含まれる各層の界面を検出する界面検出動作時(投光動作時及び受光動作時)に、採血管50をz方向に移動可能である。つまり、採血管50が移動機構60による移動制御に従ってz方向に移動しながら、投光部110による投光光セットS10の投光及び受光部120による受光光セットS20の受光を行う。 Further, the moving mechanism 60 is capable of moving the blood collection tube 50 in the z direction during the interface detection operation (during the light projection operation and the light reception operation) for detecting the interface of each layer contained in the blood sample C by the interface detection sensor 100. be. That is, while the blood collection tube 50 moves in the z-direction according to movement control by the moving mechanism 60, the light projecting unit 110 projects the light projecting light set S10 and the light receiving unit 120 receives the light receiving light set S20.

例えば、図5では、採血管50は、界面検出動作時には、z方向の負側から正側に向かって(上方向)に移動中である。採血管50は、z方向に一定速度で移動してよい。採血管50の移動速度が一定速度である場合、一定の投光周期TPで投光光セットS10を投光することで、一定の受光周期TRで受光光セットS20を受光する。 For example, in FIG. 5, the blood collection tube 50 is moving from the negative side to the positive side (upward) in the z direction during the interface detection operation. The blood collection tube 50 may move at a constant speed in the z-direction. When the moving speed of the blood collection tube 50 is constant, the light-projecting light set S10 is projected at a constant light-projecting period TP, and the light-receiving light set S20 is received at a constant light-receiving period TR.

この場合、例えば、投光部110は、第1の投光光セットS10の投光時には、第1投光期間T11に採血管50の第1空間領域R1に投光光S11を照射する。受光部120は、第1受光期間T21に、第1空間領域R1を透過した受光光S21を受光する。第1空間領域R1は、採血管50内の最下層に位置する血餅C1の層の下端付近に位置する。続いて、投光部110は、第2投光期間T12に、採血管50の第2空間領域R2に、投光光S11及び投光光S12を照射する。受光部120は、第2受光期間T22に、第2空間領域R2を透過した受光光S21及び受光光S22を受光する。第2空間領域R2は、採血管50内の血餅C1の層の位置に含まれ、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置する。制御部130は、第1空間領域R1及び第2空間領域R2を合わせた領域内に、血液サンプルCの界面が存在するか否かを判別する。 In this case, for example, the light projecting unit 110 irradiates the first spatial region R1 of the blood collection tube 50 with the light S11 during the first light projection period T11 when the first light projection light set S10 is used. The light receiving section 120 receives the received light S21 transmitted through the first spatial region R1 during the first light receiving period T21. The first spatial region R1 is located near the lower end of the layer of clot C1 located at the bottom in the blood collection tube 50 . Subsequently, the light projecting section 110 irradiates the second spatial region R2 of the blood collection tube 50 with the light projecting light S11 and the light projecting light S12 during the second light projecting period T12. The light receiving section 120 receives the received light S21 and the received light S22 that have passed through the second spatial region R2 during the second light receiving period T22. The second spatial region R2 is included at the location of the layer of the clot C1 within the blood collection tube 50 and is positioned above and spatially continuous with the first spatial region R1. The control unit 130 determines whether or not the interface of the blood sample C exists within the combined area of the first spatial area R1 and the second spatial area R2.

そして、投光中の第1の投光光セットS10の投光光S12の投光から次の第2の投光光セットS10の投光光S11の投光までの期間は、投光光が投光されない時間間隔TI1が存在する。そのため、受光中の受光光セットS20の受光光S22の受光から次の受光光セットS20の受光光S21の投光までの期間は、受光光が受光されない時間間隔TI2が存在する。この時間間隔TI1,TI2は、第2受光期間T22における受光光S21及び受光光S22の立下り期間S22aが加味されて定められてよい。立下り期間S22aは、受光光S21及び受光光S22の受光終了直後から、受光光S21及び受光光S22の受光量の合計が所定量以下となるまでの期間である。所定量は、値0であってもよいし、値0でなくても、次に受光される受光光セットS20の第1受光期間T21の受光光に対して重畳される残存信号が微小であり、次に受光される受光光セットS20の受光に基づく界面検出への影響を無視できる程度であればよい。例えば、第1の受光光セットS20の受光終了時点から、第1の受光光セットS20に後続する第2の受光光セットS20の受光開始時点までの期間は、立下り期間S22aよりも長い、又は立下り期間S22aと同じ長さであってよい。 In the period from the projection of the projected light S12 of the first projected light set S10 during projection to the projection of the projected light S11 of the next second projected light set S10, the projected light is There is a time interval TI1 during which no light is emitted. Therefore, there is a time interval TI2 during which no received light is received during the period from the reception of the received light S22 of the currently received light set S20 to the projection of the received light S21 of the next received light set S20. The time intervals TI1 and TI2 may be determined in consideration of the falling period S22a of the received light S21 and the received light S22 in the second light receiving period T22. The fall period S22a is a period from immediately after the end of the reception of the received light S21 and the received light S22 until the sum of the received light amounts of the received light S21 and the received light S22 becomes equal to or less than a predetermined amount. The predetermined amount may have a value of 0, or even if it does not have a value of 0, the remaining signal superimposed on the received light in the first light receiving period T21 of the received light set S20 to be received next is minute. , the influence on the interface detection based on the light reception of the light reception light set S20 to be received next can be ignored. For example, the period from the end of light reception of the first set of received light S20 to the start of light reception of the second set of received light S20 subsequent to the first set of received light S20 is longer than the fall period S22a, or It may have the same length as the fall period S22a.

投光部110は、一定の投光周期TPで、投光光セットS10を繰り返し投光する。よって、一定の投光周期TPで、投光光S11,S12の投光も繰り返される。したがって、受光部120は、一定の受光周期TRで、受光光セットS20を繰り返し受光する。よって、一定の受光周期TRで、受光光S21,S22の受光も繰り返される。 The light projecting unit 110 repeatedly projects the light projecting light set S10 at a constant light projecting period TP. Therefore, the projection of the light beams S11 and S12 is also repeated at a fixed light projection period TP. Therefore, the light receiving section 120 repeatedly receives the received light set S20 at a constant light receiving period TR. Therefore, the light reception of the light reception lights S21 and S22 is also repeated at a constant light reception cycle TR.

例えば、投光部110は、第1の投光光セットS10の次に、第1の投光光セットS10に後続する第2の投光光セットS10を投光する。図5では、第2の投光光セットS10の投光光S11が投光される第1空間領域R1は、採血管50内のz方向の中間付近に位置する分離材C2の層の付近に位置する。受光部120は、この第1空間領域R1を透過した受光光S21を受光する。また、第2の投光光セットS10の投光光S11及び投光光S12が投光される第2空間領域R2は、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置し、分離材C2の層の上方に位置する血清C3の層の下端付近に位置する。受光部120は、この第2空間領域R2を透過した受光光S21及び受光光S22を受光する。 For example, the light projecting unit 110 projects the first set of projected lights S10 and then the second set of projected lights S10 subsequent to the first set of projected lights S10. In FIG. 5, the first spatial region R1 where the projected light S11 of the second projected light set S10 is projected is near the layer of the separation material C2 located near the middle in the z direction inside the blood collection tube 50. To position. The light receiving section 120 receives the received light S21 transmitted through the first spatial region R1. A second spatial region R2, in which the projected light beams S11 and S12 of the second projected light set S10 are projected, is spatially continuous with the first spatial region R1 above the first spatial region R1. and near the lower end of the layer of serum C3 located above the layer of separation material C2. The light receiving section 120 receives the received light S21 and the received light S22 transmitted through the second spatial region R2.

同様に、投光部110は、第2の投光光セットS10の次に、第2の投光光セットS10に後続する第3の投光光セットS10を投光する。図5では、第3の投光光セットS10の投光光S11が投光される第1空間領域R1は、採血管50内のz方向の上方に位置する空気の層に位置する。受光部120は、この第1空間領域R1を透過した受光光S21を受光する。また、第3の投光光セットS10の投光光S12が投光される第2空間領域R2は、第1空間領域R1の上方に第1空間領域R1に空間的に連続して位置し、空気の層に位置する。受光部120は、この第2空間領域R2を透過した受光光S21及び受光光S22を受光する。 Similarly, the light projecting unit 110 projects the second set of projected lights S10 and then the third set of projected lights S10 subsequent to the second set of projected lights S10. In FIG. 5, the first spatial region R1 projected by the projection light S11 of the third projection light set S10 is located in the air layer located above in the z-direction inside the blood collection tube 50 . The light receiving section 120 receives the received light S21 transmitted through the first spatial region R1. Further, the second spatial region R2 onto which the projection light S12 of the third projection light set S10 is projected is located above the first spatial region R1 and spatially continuous with the first spatial region R1, Located in the layer of air. The light receiving section 120 receives the received light S21 and the received light S22 transmitted through the second spatial region R2.

移動機構60による採血管50のz方向への移動速度が高速である程、繰り返し投光される垂直照射位置の空間的な間隔が広がる。つまり移動機構60による採血管50のz方向への移動速度が高速である程、検出対象についての検出結果をなるべく多く得るためには、隣り合う投光光セットS10の投光光S11が投光される垂直照射位置のz方向に沿う距離d2が、短い方が好ましい。一方、距離d2を短くするためには、投光周期TPを短くすることが必要とされる。この場合、投光光S11と投光光S12とが時間的間隔をあけて投光されていると、受光光S21と受光光S22とが混在し易くなる。 The higher the moving speed of the blood sampling tube 50 in the z direction by the moving mechanism 60, the wider the spatial interval between the vertical irradiation positions that are repeatedly projected. In other words, the higher the moving speed of the blood sampling tube 50 in the z direction by the moving mechanism 60, the more the projection light S11 of the adjacent light projection light set S10 is projected in order to obtain as many detection results as possible for the detection target. It is preferable that the distance d2 along the z-direction of the vertical irradiation position where the light is applied is short. On the other hand, in order to shorten the distance d2, it is necessary to shorten the light projection cycle TP. In this case, if the projected light S11 and the projected light S12 are projected with a time interval, the received light S21 and the received light S22 are likely to coexist.

これに対し、界面検出センサ100は、投光光S11,S12を時系列で重複して投光することで、受光光S21,S22を時系列で重複して受光でき、投光周期TP及び受光周期TRを短縮し易くできる。よって、界面検出センサ100は、なるべく短期間でなるべく多くの投光光S11,S12を投光でき、なるべく短期間でなるべく多くの受光光S21,S22を受光できる。よって、距離d2をなるべく短くできる。 On the other hand, the interface detection sensor 100 can overlap and receive the received lights S21 and S22 in time series by emitting the projected lights S11 and S12 in a time series overlapping manner. The period TR can be easily shortened. Therefore, the interface detection sensor 100 can project as many light beams S11 and S12 as possible in a short period of time and receive as many light beams S21 and S22 as possible in a short period of time. Therefore, the distance d2 can be made as short as possible.

また、制御部130は、受光光セットS20の時系列での受光量が上り階段状に大きくなるように、投光部110に投光させる。つまり、各受光期間T2において、第1受光期間T21に受光される受光光の受光量よりも第2受光期間T22に受光される受光光の受光量の方が大きくなるように、投光部110により投光される投光光S11,S12の特性(例えば投光量又は波長)を調整する。つまり、受光側において、第1受光期間T21における受光光S21の受光量(光エネルギー)と第2受光期間T22における受光光S21及び受光光S22の受光量との合計(光エネルギー)が、時系列で上り階段状に大きくなるように調整される。 Further, the control unit 130 causes the light projecting unit 110 to project light so that the amount of light received in the time series of the light receiving light set S20 increases in an upward staircase pattern. That is, in each light receiving period T2, the light projecting section 110 is arranged such that the amount of light received during the second light receiving period T22 is larger than the amount of light received during the first light receiving period T21. to adjust the characteristics of the projected light beams S11 and S12 (for example, the amount of projected light or the wavelength). That is, on the light receiving side, the sum (optical energy) of the received light amount (optical energy) of the received light S21 in the first light receiving period T21 and the received amount of the received light S21 and the received light S22 in the second light receiving period T22 is time-series. It is adjusted so that it becomes larger in the shape of an upward staircase.

同一の受光光セットS20内において、時系列で後に受光される第2受光期間T22には、受光光S21及び受光光S22が重畳して受光される。ここで、受光光S21は第1受光期間T21から継続して受光されるので、第2受光期間T22の際には、受光光S21の特性は既知である。したがって、制御部130は、受光光S21及び受光光S22の合計の特性から既知の受光光S21の特性を差し引くことで、受光光S22の特性を算出可能である。よって、界面検出センサ100は、受光光S21,S22の双方を含む同じ受光光セットS20に基づく界面検出の精度の低下を抑制できる。 In the same received light set S20, the received light S21 and the received light S22 are superimposed and received in the second light receiving period T22 that is received later in time series. Here, since the received light S21 is continuously received from the first light receiving period T21, the characteristics of the received light S21 are known during the second light receiving period T22. Therefore, the control unit 130 can calculate the characteristics of the received light S22 by subtracting the known characteristics of the received light S21 from the total characteristics of the received light S21 and the received light S22. Therefore, the interface detection sensor 100 can suppress deterioration in accuracy of interface detection based on the same received light set S20 including both the received lights S21 and S22.

また、異なる受光光セットS20内において、先に受光される受光光セットS20の受光光S22が、後に受光される受光光セットS20の受光光S21に混在しやすくなる。これに対し、立下りを加味した時間間隔TI2が確保されることで、界面検出センサ100は、時系列で前の受光光セット20の受光光S22によって、後の受光光セットS20の受光光S21に干渉し、後の受光光セットS20に基づく界面検出の精度の劣化を抑制できる。 Further, in different received light sets S20, the received light S22 of the received light set S20 that is received first is likely to be mixed with the received light S21 of the received light set S20 that is received later. On the other hand, by ensuring the time interval TI2 taking into account the falling edge, the interface detection sensor 100 detects the received light S22 of the previous received light set 20 in chronological order and the received light S21 of the later received light set S20. , thereby suppressing deterioration in accuracy of interface detection based on the subsequent received light set S20.

さらに、第2受光期間T22では、受光光S21,S22が重畳しているので、第1受光期間T21の受光光S21の受光量に対して第2受光期間T22の受光光S22の受光量を容易に大きく調整できる。よって、界面検出センサ100は、制御部130による投光光の投光量制御を簡素化でき、制御部130の処理負荷を低減できる。 Furthermore, in the second light-receiving period T22, the light-receiving lights S21 and S22 are superimposed. can be adjusted to a large extent. Therefore, the interface detection sensor 100 can simplify the projection amount control of the projected light by the control section 130 and reduce the processing load of the control section 130 .

図5に示した第2動作例によれば、界面検出センサ100は、時系列で重畳した投光光S11,S12が採血管50を透過後に、時系列で重畳した受光光S21,S22を取得できる。そして、界面検出センサ100は、受光光S21,S22の受光量が時系列で上り階段状に大きくなるように調整できる。また、受光光セットS20の立下り鈍りによる界面検出精度の低下を抑制できる。また、界面検出センサ100は、光パルス照射の繰り返し周期を最大化できるので、z方向に沿って多数の垂直照射位置に対応する受光光セットS20を得ることができ、z方向の界面検出の分解能を向上できる。 According to the second operation example shown in FIG. 5, the interface detection sensor 100 acquires the received light beams S21 and S22 that are superimposed in time series after the projected light beams S11 and S12 that are superimposed in time series pass through the blood collection tube 50. can. The interface detection sensor 100 can be adjusted so that the amount of received light S21 and S22 increases in time series in an upward staircase manner. In addition, it is possible to suppress the deterioration of the interface detection accuracy due to the blunted fall of the received light set S20. In addition, since the interface detection sensor 100 can maximize the repetition period of the light pulse irradiation, it is possible to obtain the received light set S20 corresponding to a large number of vertical irradiation positions along the z direction, and the resolution of the interface detection in the z direction. can be improved.

図6は、図3に示した第1例の受光光セットS20に含まれる各受光光S21,S22の受光タイミングと受光量との一例を示す図である。 FIG. 6 is a diagram showing an example of light reception timings and light reception amounts of the light reception lights S21 and S22 included in the light reception light set S20 of the first example shown in FIG.

図3では、各受光光セットS20に含まれる受光光S21,S22の受光量が一定量で受信されることを例示したが、実際には各受光光S21,S22の受光量が変化し得る。制御部130は、受光光セットS20内の受光光S21,S22の受光量を基に、時系列で受光光セットS20の時系列での受光量が上り階段状に大きくなるように、つまり第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が大きくなるように、投光光S11,S12の投光順序を調整してよい。例えば、第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が大きい場合、投光光S11,S12の投光順序を変更しなくてよい。現状の状態で上り階段状となっているためである。例えば、第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が小さい場合、投光光S11,S12の投光順序を入れ替えてよい。これにより、界面検出センサ100は、投光順序の入れ替え後に、時系列で受光光セットS20の時系列での受光量が上り階段状に大きくなる可能性が高くなり、界面検出精度の向上が期待できる。また、例えば、第1受光期間T21に受光する受光光の受光量と第2受光期間T22に受光する受光光の受光量とが等しい場合、投光光S11,S12の投光順序を入れ替えても入れ替えなくてもよい。 Although FIG. 3 illustrates that the amount of received light S21 and S22 included in each set of received light S20 is constant, the amount of received light S21 and S22 may vary in practice. Based on the received light amounts of the received light beams S21 and S22 in the received light set S20, the control unit 130 controls the time series so that the received light amount of the received light set S20 increases in an upward staircase manner, that is, the first The order of projection lights S11 and S12 may be adjusted so that the amount of light received during the second light receiving period T22 is greater than the amount of light received during the light receiving period T21. For example, when the amount of received light received during the second light receiving period T22 is greater than the amount of received light received during the first light receiving period T21, the order of projection lights S11 and S12 need not be changed. . This is because, in the current state, it is in the shape of an upward staircase. For example, when the amount of received light received during the second light receiving period T22 is smaller than the amount of received light received during the first light receiving period T21, the order of projection lights S11 and S12 may be changed. As a result, the interface detection sensor 100 has a high possibility that the amount of received light in the time series of the received light set S20 increases in a stepwise manner after the order of light projection is changed, and an improvement in interface detection accuracy is expected. can. Further, for example, when the amount of received light received during the first light receiving period T21 and the amount of received light received during the second light receiving period T22 are equal, the order of the projected lights S11 and S12 may be changed. No need to replace.

制御部130は、受光部120により受光光セットS20が受光される毎に、受光光セットS20の時系列での受光量が上り階段状に大きくなるように、つまり第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が大きくなるように、投光光S11,S12の順序を調整してよい。この場合、制御部130は、受光部120による受光状態を投光部110に毎回フィードバックするために、受光部120による受光状態を常時監視していてよい。そして、制御部130は、必要時に、受光部120による受光状態に応じて、投光部110による投光状態(例えば各投光光の投光量)を制御してよい。 The control unit 130 receives the light in the first light receiving period T21 so that the amount of light received in the time series of the light receiving light set S20 increases in an upward staircase every time the light receiving unit 120 receives the light receiving light set S20. The order of the projected lights S11 and S12 may be adjusted so that the amount of received light received during the second light receiving period T22 is greater than the amount of received light. In this case, the control unit 130 may constantly monitor the light receiving state of the light receiving unit 120 in order to feed back the light receiving state of the light receiving unit 120 to the light projecting unit 110 each time. Then, the control unit 130 may control the state of light projection by the light projecting unit 110 (for example, the amount of light to be projected) according to the light receiving state of the light receiving unit 120 when necessary.

図6では、時系列で1番目の受光光セットS20では、第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が大きいので、制御部130は投光順序(投光光S11、S12の順)を入れ替えていない。その結果、時系列で2番目の受光光セットS20では、受光光S21、S22の順に受光される。また、時系列で2番目の受光光セットS20では、第1受光期間T21に受光する受光光の受光量と第2受光期間T22に受光する受光光の受光量とが等しく、制御部130は投光順序(投光光S11、S12の順)を入れ替えていない。その結果、時系列で3番目の受光光セットS20では、受光光S21、S22の順に受光される。また、時系列で3番目の受光光セットS20では、第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が小さいので、制御部130は、投光順序を入れ替え、投光光S12、S11の順にしている。その結果、時系列で4番目の受光光セットS20では、受光光S22、S21の順に受光される。また、時系列で4番目の受光光セットS20では、第1受光期間T21に受光する受光光の受光量よりも第2受光期間T22に受光する受光光の受光量が大きいので、制御部130は投光順序(投光光S12、S11の順)を入れ替えていない。その結果、時系列で5番目の受光光セットS20では、受光光S22、S21の順に受光される。 In FIG. 6, in the first received light set S20 in time series, the amount of received light received during the second light receiving period T22 is greater than the amount of received light received during the first light receiving period T21. 130 does not change the light projection order (the order of the light projection lights S11 and S12). As a result, in the second received light set S20 in time series, the received lights S21 and S22 are received in this order. In addition, in the received light set S20 that is second in time series, the amount of received light received in the first light receiving period T21 and the amount of received light received in the second light receiving period T22 are equal, and the control unit 130 The light order (the order of the projected light beams S11 and S12) is not changed. As a result, the received light beams S21 and S22 are received in this order in the received light set S20, which is the third in time series. In addition, in the received light set S20 that is third in time series, the amount of received light received during the second light receiving period T22 is smaller than the amount of received light received during the first light receiving period T21. , the light projection order is changed, and the order of the light projection lights is S12 and S11. As a result, the received light beams S22 and S21 are received in this order in the received light set S20, which is fourth in time series. In addition, in the received light set S20 that is fourth in time series, the amount of received light received during the second light receiving period T22 is greater than the amount of received light received during the first light receiving period T21. The light projection order (the order of the light projection lights S12 and S11) is not changed. As a result, the received light beams S22 and S21 are received in this order in the received light set S20, which is fifth in time series.

図7は、図5に示した第2例の受光光セットS20に含まれる各受光光S21,S22の受光タイミングと受光量との一例を示す図である。 FIG. 7 is a diagram showing an example of light reception timings and light reception amounts of the light reception lights S21 and S22 included in the light reception light set S20 of the second example shown in FIG.

図5では、各受光光セットS20に含まれる受光光S21,S22の受光量が一定量で受信されることを例示したが、実際には各受光光の受光量が変化し得る。図7では、各受光光セットS20の受光期間T2に含まれる第1受光期間T21では、1つの受光光S21を受光し、第2受光期間T22では、受光光S21及び受光光S22の双方を受光する。そのため、受光光S21,S22の受光量が変化しても、第1受光期間T21の受光量よりも第2受光期間T22の受光量の方が常に大きくなる。そのため、時系列で受光光セットS20の時系列での受光量が、常に上り階段状に大きくなる。よって、上述したような投光順序の調整は不要である。 Although FIG. 5 illustrates that the amount of received light S21 and S22 included in each set of received light S20 is constant, the amount of received light may vary in practice. In FIG. 7, in the first light receiving period T21 included in the light receiving period T2 of each light receiving light set S20, one light receiving light S21 is received, and in the second light receiving period T22, both the light receiving light S21 and the light receiving light S22 are received. do. Therefore, even if the received light amounts of the received lights S21 and S22 change, the received light amount during the second light receiving period T22 is always larger than the received light amount during the first light receiving period T21. Therefore, the amount of light received by the light receiving light set S20 in time series always increases in an upward staircase manner. Therefore, adjustment of the light projection order as described above is unnecessary.

次に、投光光S11,S12の光ビーム形状について説明する。 Next, the light beam shapes of the projected lights S11 and S12 will be described.

図8は、採血管50に対する垂直照射位置と、各スキャン位置に配列された円形ビームB1及び長方形ビームB2と、の一例を示す図である。 FIG. 8 is a diagram showing an example of the vertical irradiation position on the blood collection tube 50 and the circular beam B1 and rectangular beam B2 arranged at each scanning position.

投光部110により投光される投光光の光ビーム形状は、円形状又は長方形状等があり得る。なお、円形ビームB1及び長方形ビームB2のz方向に垂直なx方向に沿う長さl1は、受光部120の受光口のx方向に沿う長さを示す。円形ビームB1及び長方形ビームB2のz方向に沿う長さl2は、受光部120の受光口のz方向に沿う長さを示す。よって、図8を参照すると、円形ビームB1の方が、長方形ビームB2よりも、受光口により受光されない光ビームの量が多いことが理解できる。つまり、長方形ビームB2の方が円形ビームB1よりも光のエネルギ利用効率が高い。 The light beam shape of the light projected by the light projecting unit 110 may be circular, rectangular, or the like. The length l1 of the circular beam B1 and the rectangular beam B2 along the x direction perpendicular to the z direction indicates the length of the light receiving aperture of the light receiving section 120 along the x direction. A length l2 along the z-direction of the circular beam B1 and the rectangular beam B2 indicates the length along the z-direction of the light-receiving aperture of the light-receiving unit 120 . Therefore, referring to FIG. 8, it can be understood that the circular beam B1 has a larger amount of light beams not received by the light receiving aperture than the rectangular beam B2. That is, the rectangular beam B2 has a higher light energy utilization efficiency than the circular beam B1.

図9A、図9B、及び図9Cは、投光光が円形ビームである場合における採血管50の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図である。 FIGS. 9A, 9B, and 9C are diagrams for explaining how the projected light progresses on the observation plane according to the presence or absence of displacement of the blood collection tube 50 when the projected light is a circular beam. .

図9Aでは、採血管50内の分離材C2の層に、垂直照射位置があり、観察面が含まれており、投光光がy方向に投光されることを示している。また、図9Bは、移動機構60の保持アーム61に保持された採血管50を上方から見た様子を示している。図9Bでは、採血管50がxy平面に平行な方向において位置ずれせずに配置されており、投光光の円形ビームB1が採血管50のx方向の中央部を直進して通過することを示している。また、図9Cは、移動機構60の保持アーム61に保持された採血管50を上方から見た様子を示している。図9Cでは、採血管50がxy平面に平行な方向において位置ずれして配置されており、投光光の円形ビームB1が、採血管50のx方向の中央部から若干ずれて採血管50内に入射し、採血管50内で屈折して採血管50外に出射することを示している。 In FIG. 9A, the layer of separation material C2 in the blood collection tube 50 has a vertical illumination position, includes a viewing plane, and shows that the floodlight is projected in the y-direction. 9B shows a top view of the blood collection tube 50 held by the holding arm 61 of the moving mechanism 60. FIG. In FIG. 9B, the blood collection tube 50 is arranged without any displacement in the direction parallel to the xy plane, and the circular beam B1 of the projected light passes straight through the center of the blood collection tube 50 in the x direction. showing. 9C shows a top view of the blood collection tube 50 held by the holding arm 61 of the moving mechanism 60. FIG. In FIG. 9C, the blood collection tube 50 is displaced in the direction parallel to the xy plane, and the circular beam B1 of the projected light is slightly shifted from the center of the blood collection tube 50 in the x direction. , is refracted in the blood collection tube 50 and exits the blood collection tube 50 .

図10A、図10B、及び図10Cは、投光光が長方形ビームB2である場合における採血管50の位置ずれの有無に応じた観察面での投光光の進行状態を説明するための図である。 FIGS. 10A, 10B, and 10C are diagrams for explaining the progress of the projected light on the observation plane according to the presence or absence of positional displacement of the blood collection tube 50 when the projected light is the rectangular beam B2. be.

図10Aでは、採血管50内の分離材C2の層に、垂直照射位置があり、観察面が含まれており、投光光がy方向に投光されることを示している。また、図10Bは、移動機構60の保持アーム61に保持された採血管50を上方から見た様子を示している。図10Bでは、採血管50がxy平面に平行な方向において位置ずれせずに配置されており、投光光の長方形ビームB2が採血管50のx方向の中央部を直進して通過することを示している。また、図10Cは、移動機構60の保持アーム61に保持された採血管50を上方から見た様子を示している。図10Cでは、採血管50がxy平面に平行な方向において位置ずれして配置されており、投光光の長方形ビームB2が、採血管50のx方向の中央部から若干ずれて採血管50内に入射している。しかし、長方形ビームB2は、採血管50内で屈折するものの、受光部120の光軸上に長方形ビームB2の大部分が存在する状態で、採血管50外に出射することを示している。 FIG. 10A shows that the layer of separation material C2 in the blood collection tube 50 has a vertical illumination position, includes the viewing plane, and the floodlight is projected in the y-direction. 10B shows a top view of the blood collection tube 50 held by the holding arm 61 of the moving mechanism 60. FIG. In FIG. 10B, the blood collection tube 50 is arranged without any displacement in the direction parallel to the xy plane, and the rectangular beam B2 of the projected light passes straight through the center of the blood collection tube 50 in the x direction. showing. 10C shows a top view of the blood collection tube 50 held by the holding arm 61 of the moving mechanism 60. FIG. In FIG. 10C, the blood collection tube 50 is displaced in the direction parallel to the xy plane, and the rectangular beam B2 of the projected light is slightly shifted from the center of the blood collection tube 50 in the x direction. is incident on However, although the rectangular beam B2 is refracted inside the blood collection tube 50, it is emitted out of the blood collection tube 50 with most of the rectangular beam B2 existing on the optical axis of the light receiving section 120. FIG.

したがって、図10Cでは、図9Cの円形ビームB1の場合と比較すると、採血管50のxy平面での位置ずれが発生しても、受光部120の光軸OC上に長方形ビームB2の大部分が存在する。よって、界面検出センサ100は、受光部120が長方形ビームB2としての受光光の大部分を受光でき、界面検出精度の低下を抑制できる。 Therefore, in FIG. 10C, when compared with the circular beam B1 in FIG. 9C, most of the rectangular beam B2 remains on the optical axis OC of the light receiving unit 120 even if the blood collection tube 50 is misaligned on the xy plane. exist. Therefore, in the interface detection sensor 100, the light receiving section 120 can receive most of the received light as the rectangular beam B2, thereby suppressing deterioration in interface detection accuracy.

図11Aは、投光光が円形ビームB1である場合の、投光光に対応する受光光の受光量の一例を示す図である。 FIG. 11A is a diagram showing an example of the amount of received light corresponding to the projected light when the projected light is a circular beam B1.

円形ビームB1は、x方向の長さとz方向の長さが等しいので、採血管50の幅に合わせてx方向の長さを長くすると、z方向の長さも長くなる。この場合、z方向の広範囲において血液サンプルC内の各層の状態に影響を受け易い。例えば、実際には血清C3の層の成分の検出を希望する場合でも、血清C3の上下に存在する分離材C2の層と空気の層とを透過した受光光が取得され得る。そのため、血液サンプルC内の各層の界面付近の受光量が、滑らかに変化する傾向がある。 Since the circular beam B1 has the same length in the x direction and the length in the z direction, if the length in the x direction is increased to match the width of the blood collection tube 50, the length in the z direction also increases. In this case, it is likely to be affected by the state of each layer in the blood sample C over a wide range in the z direction. For example, even if it is actually desired to detect the components of the layer of serum C3, the received light transmitted through the layer of separation material C2 and the layer of air existing above and below the serum C3 can be acquired. Therefore, the amount of light received near the interface of each layer in the blood sample C tends to change smoothly.

図11Bは、投光光が長方形ビームB2である場合の、投光光に対応する受光光の受光量の一例を示す図である。 FIG. 11B is a diagram showing an example of the amount of received light corresponding to the projected light when the projected light is the rectangular beam B2.

長方形ビームB2は、x方向の長さよりもz方向の長さを短くできる。図11Bでは、採血管50の幅に合わせてx方向の長さを長くする一方、z方向の長さをx方向よりも短くしている。この場合、界面検出センサ100は、z方向の広範囲において血液サンプルC内の各層の状態に影響を受けることを抑制できる。そのため、血液サンプルC内の各層の界面付近を透過した受光光の受光量が、鋭く変化する傾向がある。よって、界面検出センサ100は、受光光の受光量に基づく界面検出精度を高くできる。 The rectangular beam B2 can be shorter in the z direction than in the x direction. In FIG. 11B, the length in the x direction is made longer to match the width of the blood collection tube 50, while the length in the z direction is made shorter than the length in the x direction. In this case, interface detection sensor 100 can suppress the influence of the state of each layer in blood sample C over a wide range in the z direction. Therefore, the amount of received light that has passed through the vicinity of the interface of each layer in the blood sample C tends to sharply change. Therefore, the interface detection sensor 100 can improve the accuracy of interface detection based on the amount of received light.

なお、円形ビームB1及び長方形ビームB2のx方向の長さは、採血管50の幅よりも短いことが好ましい。採血管50内を通らない光を受光することで、界面検出の精度が低下することを回避するためである。 It is preferable that the length in the x direction of the circular beam B1 and the rectangular beam B2 is shorter than the width of the blood collection tube 50. FIG. This is to avoid a drop in interface detection accuracy due to receiving light that does not pass through the blood collection tube 50 .

なお、波長λ1の投光光S11及び波長λ2の投光光S12は、血餅C1に対する透過率がいずれも低い。また、波長λ1の投光光S11は、血清C3に対する透過率が低く、波長λ2の投光光S12は、血清C3に対する透過率が高い。また、波長λ1の投光光S11及び波長λ2の投光光S12は、分離材C2に対する透過率がいずれも高い。また、波長λ1の投光光S11及び波長λ2の投光光S12は、空気に対する透過率が、分離材C2に対する透過率よりもさらに高い。そのため、時系列で先に投光光S11が投光され、後に投光光S12が投光されることで、受光光セットS20の時系列での受光量は、上り階段状に大きくなり易い。 Note that both the projection light S11 with the wavelength λ1 and the projection light S12 with the wavelength λ2 have a low transmittance with respect to the blood clot C1. Further, the projection light S11 with the wavelength λ1 has a low transmittance for the serum C3, and the projection light S12 with the wavelength λ2 has a high transmittance for the serum C3. Further, the projected light S11 with the wavelength λ1 and the projected light S12 with the wavelength λ2 both have high transmittance with respect to the separation material C2. Further, the projected light S11 with the wavelength λ1 and the projected light S12 with the wavelength λ2 have a higher transmittance to air than the transmittance to the separation material C2. Therefore, the projected light S11 is projected first in time series, and the projected light S12 is projected later, so that the amount of light received by the received light set S20 in time series tends to increase like an upward staircase.

受光部120により受光された受光光セットS20は、血液サンプルCを透過した受光光S21と受光光S22との双方を含む。よって、受光光セットS20の受光量は、小さい方から順に並べると、血餅C1、血清C3、分離材C2、及び空気の順となる。 The received light set S20 received by the light receiving unit 120 includes both the received light S21 and the received light S22 that have passed through the blood sample C. FIG. Therefore, the amount of light received by the light receiving light set S20 is arranged in ascending order of clot C1, serum C3, separation material C2, and air.

このように、投光光のビーム形状のz方向の長さが、このビーム形状のx方向の長さよりも短いことで、界面検出センサ100は、界面検出のための各垂直照射位置でのデータの測定性及びデータの測定の安定性を向上できる。界面検出センサ100は、z方向におけるスキャン(検出)間隔を短くすることができ、検出分解能を向上させることができる。したがって、z方向の変化に対する感度を高くできる。また、ビーム形状のx方向の長さを確保することで、採血管50内の血液サンプルCを透過した受光光を広く取得でき、採血管50が多少位置ずれしても、光軸OC上に光が含まれやすいので、測定安定性が向上する。なお、ビーム形状のz方向の長さが、このビーム形状のx方向の長さよりも短い場合、ビーム形状は、長方形状に限られず、その他の形状(例えば楕円形状)を含んでもよい。 Since the length of the beam shape of the projected light in the z direction is shorter than the length of the beam shape in the x direction, the interface detection sensor 100 can detect the data at each vertical irradiation position for interface detection. can improve the stability of measurement and data measurement. The interface detection sensor 100 can shorten the scanning (detection) interval in the z direction, and can improve the detection resolution. Therefore, sensitivity to changes in the z-direction can be increased. In addition, by ensuring the length of the beam shape in the x direction, it is possible to obtain a wide range of received light that has passed through the blood sample C in the blood collection tube 50. Even if the blood collection tube 50 is slightly displaced, Since light is likely to be included, measurement stability is improved. Note that when the length of the beam shape in the z direction is shorter than the length of the beam shape in the x direction, the beam shape is not limited to a rectangular shape, and may include other shapes (for example, an elliptical shape).

次に、本実施形態における時間的隣接及び空間的隣接の効果について説明する。 Next, the effects of temporal adjacency and spatial adjacency in this embodiment will be described.

図12は、受光光セットS20内の複数の受光光S21,S22の時間的隣接の効果を説明するための図である。 FIG. 12 is a diagram for explaining the effect of the temporal adjacency of the received light beams S21 and S22 in the received light set S20.

図12では、比較例として、時系列で隔絶して交互に2つの異なる波長の2つの受光光S21X,S22Xが得られる場合と、本実施形態として、時系列で隣接して交互に2つの異なる波長λ1,λ2の2つの受光光S21、S22が得られる場合と、を示している。図12の時系列で隔絶される場合と時系列で隣接する場合とでは、受光周期は同じであることを想定する。また、界面を検出するための2つの受光光を抽出するサンプリング間隔SIは、受光周期の半分程度の間隔であることを想定する。また、移動機構60によって、採血管50がz方向に連続して一定速度で移動されることを想定する。 In FIG. 12, as a comparative example, two received light beams S21X and S22X of two different wavelengths are alternately obtained separated in time series. A case where two received light beams S21 and S22 with wavelengths λ1 and λ2 are obtained is shown. It is assumed that the light-receiving period is the same between the case of being isolated in time series and the case of being adjacent in time series in FIG. 12 . Also, it is assumed that the sampling interval SI for extracting two received light beams for detecting the interface is approximately half the light receiving period. It is also assumed that the movement mechanism 60 continuously moves the blood collection tube 50 in the z direction at a constant speed.

この場合、図12に示すように、比較例のように時系列で隔絶される場合には、1つのサンプリング間隔SIの内側に、2つの異なる波長のうちのいずれかの波長の1つの受光光だけが含まれる。一方、実施形態のように時系列で隣接する場合には、1つのサンプリング間隔SIの内側に、2つの異なる波長の2つの受光光S21,S22(受光光セットS20)がいずれも含まれる。 In this case, as shown in FIG. 12, when separated in time series as in the comparative example, within one sampling interval SI, one received light having one of two different wavelengths only included. On the other hand, when adjacent in time series as in the embodiment, two received light beams S21 and S22 of two different wavelengths (received light set S20) are both included inside one sampling interval SI.

よって、比較例では、血液サンプルCにおける空間的なサンプリング間隔に対応する空間領域に含まれる1つの受光光の受光量に基づいて界面検出するので、この空間領域における界面の検出精度が不十分となる。これに対し、本実施形態の界面検出センサ100は、血液サンプルCにおける空間的なサンプリング間隔に対応する空間領域に含まれる2つの受光光の受光光に基づいて界面検出することで、この空間領域における界面を高精度に検出できる。 Therefore, in the comparative example, since the interface is detected based on the received light amount of one received light included in the spatial region corresponding to the spatial sampling interval in the blood sample C, the detection accuracy of the interface in this spatial region is insufficient. Become. On the other hand, the interface detection sensor 100 of the present embodiment performs interface detection based on two received light beams included in the spatial region corresponding to the spatial sampling interval in the blood sample C, thereby detecting the spatial region. The interface in can be detected with high accuracy.

また、血餅C1の層は、白血球及び血小板を含むバフィーコートC12の層と、赤血球C11を含む層と、を含む。バフィーコートC12の層のz方向の長さは、赤血球C11の層のz方向の長さよりも極めて短く、極めてz方向の厚みが薄い空間領域となっている。本実施形態の界面検出センサ100は、血液サンプルCにおける空間的なサンプリング間隔に対応する空間領域にこのようなバフィーコートC12が含まれる場合でも、バフィーコートC12の層の界面を高精度に検出できる。このように、界面検出センサ100は、z方向の長さが短い微小領域の透過光量(受光量)測定を、2つの異なる波長λ1,λ2を有する2つの受光光S21,S22を用いて高精度を実施できる。 The layer of clot C1 also includes a layer of buffy coat C12 containing white blood cells and platelets and a layer containing red blood cells C11. The length of the layer of the buffy coat C12 in the z-direction is much shorter than the length of the layer of the red blood cells C11 in the z-direction, forming a spatial region with an extremely thin thickness in the z-direction. The interface detection sensor 100 of the present embodiment can detect the interface of the layer of the buffy coat C12 with high accuracy even when such buffy coat C12 is included in the spatial region corresponding to the spatial sampling interval in the blood sample C. . In this manner, the interface detection sensor 100 can accurately measure the amount of transmitted light (the amount of received light) in a minute area with a short length in the z direction using the two received light beams S21 and S22 having two different wavelengths λ1 and λ2. can be implemented.

図13は、血液サンプルCのz方向に並ぶスキャン領域の空間的隣接の効果を説明するための図である。図13では、投光部110による投光周期TPを一定(例えば上限、最短)にした状態で、採血管50のz方向の移動速度(スキャン速度)がV1,V2,V3である場合の、z方向における2つの投光光を照射する垂直照射位置(空間領域)のパターンを、複数例示している。ここでは、V3、V2、V1の順に高速(つまりV3>V2>V1)である。 FIG. 13 is a diagram for explaining the effect of spatial adjacency of the scan regions of the blood sample C aligned in the z-direction. In FIG. 13, when the light projection period TP of the light projection unit 110 is set constant (for example, the upper limit, the shortest), and the movement speed (scan speed) of the blood collection tube 50 in the z direction is V1, V2, V3, A plurality of patterns of vertical irradiation positions (spatial regions) irradiated with two projection lights in the z direction are exemplified. Here, V3, V2 and V1 are in order of high speed (that is, V3>V2>V1).

図13では、比較例として、空間的に隔絶された2つの垂直照射位置を示している。また、本実施形態として、空間的に隣接した2つの垂直照射位置を示している。界面検出のためには、波長の異なる2つの受光光が必要となる。 FIG. 13 shows two spatially separated vertical irradiation positions as a comparative example. Also, as this embodiment, two spatially adjacent vertical irradiation positions are shown. For interface detection, two received lights with different wavelengths are required.

図13では、空間的に垂直照射位置が隔絶している場合、波長の異なる2つの受光光を得るために必要なz方向の長さが長くなり、この2つの受光光に基づく界面検出の対象となる空間領域が広範囲になる。または、同じ垂直照射位置で異なる波長の受光光が得られるまで待機し、同じ垂直照射位置で得られた2つの受光光のペアを用いて界面検出しようとすると、界面検出に要する時間が長時間化する。さらに、スキャン速度V3のように高速である場合、同じ垂直照射位置では波長の異なる受光光のペアを得ることができないこともある。 In FIG. 13, when the vertical irradiation positions are spatially separated, the length in the z-direction required to obtain two received light beams with different wavelengths becomes longer, and the interface detection target based on these two received light beams becomes longer. The spatial region that becomes becomes wide. Alternatively, if we wait until received light beams with different wavelengths are obtained at the same vertical irradiation position and try to detect the interface using a pair of received light beams obtained at the same vertical irradiation position, it takes a long time to detect the interface. become Furthermore, when the scanning speed is high like V3, it may not be possible to obtain a pair of received light beams having different wavelengths at the same vertical irradiation position.

これに対し、空間的に垂直照射位置が隣接している場合、波長の異なる2つの受光光を得るために必要なz方向の長さが短くなり、この2つの受光光に基づく界面検出の対象となる空間領域が狭範囲になる。したがって、空間的に垂直照射位置が隔絶している場合よりも、本実施形態のように空間的に垂直照射位置が隣接する方が、界面検出の精度が高くなる。さらに、界面検出センサ100は、スキャン速度に依存せずに、隣接する2つの垂直照射位置で受光される受光光S21,S22を得ることができるので、採血管50のz方向の移動速度を高速化しても、界面検出精度が低下することを抑制でき、スキャン速度の選択性を向上できる。 On the other hand, when the vertical irradiation positions are spatially adjacent to each other, the length in the z-direction required to obtain two received light beams with different wavelengths becomes shorter, and the object of interface detection based on these two received light beams is becomes a narrow range. Therefore, the accuracy of interface detection is higher when the vertical irradiation positions are spatially adjacent to each other as in the present embodiment than when the vertical irradiation positions are spatially separated. Furthermore, since the interface detection sensor 100 can obtain the received light beams S21 and S22 received at two adjacent vertical irradiation positions without depending on the scanning speed, the movement speed of the blood collection tube 50 in the z direction can be increased. Even if it is reduced, it is possible to suppress the deterioration of the interface detection accuracy and improve the selectivity of the scanning speed.

このように、本実施形態の界面検出センサ100によれば、血液サンプルC中の血餅C1又は血清C3等の下面又は上面等の界面を検出できる。そして、界面検出センサ100は、例えば検出された血清C3の下面及び上面の界面を基に、血清量を容易に取得できる。また、界面検出センサ100は、タクトタイム(例えば検出対象全体の界面検出に要する時間)の向上と界面検出精度の向上とを実現できる。また、界面検出センサ100は、z方向での単位長さ当たりの垂直照射位置の数、つまりz方向の単位長さあたりの光パルスの数を維持又は増加等させることができる。そのため、タクトタイム向上のため検出対象を収容する採血管50のスキャン速度を高速化する場合でも、界面検出精度を維持又は向上できる。また、単位時間当たりに照射される光の総量総パワー(平均パワー)の増大を抑制して、効率良く界面を検出できる。 As described above, the interface detection sensor 100 of the present embodiment can detect the interface such as the lower surface or the upper surface of the blood clot C1 or serum C3 in the blood sample C. FIG. Then, the interface detection sensor 100 can easily obtain the amount of serum based on, for example, the detected interface between the lower surface and the upper surface of the serum C3. In addition, the interface detection sensor 100 can improve the tact time (for example, the time required to detect the interface of the entire detection target) and improve the interface detection accuracy. Also, the interface detection sensor 100 can maintain, increase, etc., the number of vertical illumination positions per unit length in the z-direction, ie, the number of light pulses per unit length in the z-direction. Therefore, even when the scanning speed of the blood collection tube 50 containing the detection target is increased in order to improve the tact time, the interface detection accuracy can be maintained or improved. In addition, the interface can be efficiently detected by suppressing an increase in the total power (average power) of light irradiated per unit time.

また、界面検出センサ100は、投光光セットS10として2つの投光光S11,S12を連続して投光することで、採血管50のスキャン速度が高速化されても、照射される光パルスの間隔が広がることを抑制でき、2つの投光光S11,S12の時間的及び空間的な一致性が低下することを抑制できる。よって、界面検出センサ100は、微小な層(例えば、バッフィーコート(約1mm厚)、メニスカス(約2mm厚)の検出データが取得できなったり、微小な層の界面判定の精度が低下したりすることを抑制できる。 Further, the interface detection sensor 100 continuously emits the two light beams S11 and S12 as the light set S10, so that even if the scanning speed of the blood collection tube 50 is increased, the emitted light pulse is can be suppressed from widening, and deterioration of the temporal and spatial coincidence of the two projection lights S11 and S12 can be suppressed. Therefore, the interface detection sensor 100 cannot acquire detection data of a minute layer (for example, a buffy coat (about 1 mm thick) or a meniscus (about 2 mm thick), or the accuracy of interface determination of a minute layer decreases. can be suppressed.

以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.

上記実施形態では、採血管50は、採血管50に収容された血液サンプルCの界面検出動作時に、z方向の負側から正側に向かう方向(上方向)に移動することを例示したが、この逆方向(下方向)に移動してもよい。 In the above embodiment, the blood collection tube 50 moves in the direction (upward) from the negative side to the positive side in the z direction during the operation of detecting the interface of the blood sample C contained in the blood collection tube 50. You may move in this reverse direction (downward).

上記実施形態では、図3、図4A~図4C、及び図5では、投光部110が、基本の投光動作として、波長λ1を有する投光光を時系列で先に投光し、波長λ2を有する投光光を時系列で後に投光することを例示したが、これに限られない。投光部110は、基本の投光動作として、波長λ2を有する投光光を時系列で先に投光し、波長λ1を有する投光光を時系列で後に投光してもよい。 In the above embodiments, in FIGS. 3, 4A to 4C, and 5, the light projecting unit 110 first projects the light having the wavelength λ1 in chronological order as the basic light projecting operation, and the wavelength Although the example of projecting the projection light having λ2 later in time series has been described, the present invention is not limited to this. As a basic light projecting operation, light projecting section 110 may project light having wavelength λ2 first in time series, and may project light having wavelength λ1 later in time series.

上記実施形態では、界面検出センサ100と採血管50とのz方向に沿う相対的な位置関係を変更可能であることを例示したが、これに限られない。例えば、界面検出センサ100が採血管50の長さをカバーするように長尺のもので、z方向に複数の投光素子及びその複数の投光素子に対応する受光素子を備えた、いわゆる多光軸光電センサを構成して、界面検出センサ100は、界面検出センサ100(例えば投光部110又は受光部120)と採血管50とのz方向に沿う相対的な位置関係が不変であってもよい。この場合、制御部130が、投光部110から投光される投光光の投光方向を順次変更することで、採血管50への投光光の照射位置を順次変更するようにしてもよい。 In the above embodiment, the relative positional relationship between the interface detection sensor 100 and the blood collection tube 50 along the z-direction was exemplified as changeable, but the present invention is not limited to this. For example, the interface detection sensor 100 is long enough to cover the length of the blood collection tube 50, and includes a plurality of light emitting elements in the z direction and light receiving elements corresponding to the plurality of light emitting elements. In the interface detection sensor 100, which constitutes an optical axis photoelectric sensor, the relative positional relationship between the interface detection sensor 100 (e.g., the light projecting unit 110 or the light receiving unit 120) and the blood collection tube 50 along the z direction is unchanged. good too. In this case, the control unit 130 may sequentially change the projection direction of the light projected from the light projecting unit 110 to sequentially change the irradiation position of the light projected onto the blood sampling tube 50. good.

上記実施形態では、CPU等のプロセッサは、物理的にどのように構成してもよい。また、プログラム可能なプロセッサを用いれば、プログラムの変更により処理内容を変更できるので、プロセッサの設計の自由度を高めることができる。プロセッサは、1つの半導体チップで構成してもよいし、物理的に複数の半導体チップで構成してもよい。複数の半導体チップで構成する場合、上記実施形態の各制御をそれぞれ別の半導体チップで実現してもよい。この場合、それらの複数の半導体チップで1つのプロセッサを構成すると考えることができる。また、プロセッサは、半導体チップと別の機能を有する部材(コンデンサ等)で構成してもよい。また、プロセッサが有する機能とそれ以外の機能とを実現するように、1つの半導体チップを構成してもよい。また、複数のプロセッサが1つのプロセッサで構成されてもよい。 In the above embodiments, processors such as CPUs may be physically configured in any way. Moreover, if a programmable processor is used, the content of processing can be changed by changing the program, so that the degree of freedom in designing the processor can be increased. The processor may be composed of one semiconductor chip, or physically composed of a plurality of semiconductor chips. When configured with a plurality of semiconductor chips, each control of the above embodiments may be realized by separate semiconductor chips. In this case, it can be considered that the plurality of semiconductor chips constitutes one processor. Also, the processor may be composed of a member (capacitor, etc.) having a function different from that of the semiconductor chip. Also, one semiconductor chip may be configured to implement the functions of the processor and other functions. Also, a plurality of processors may be composed of one processor.

以上のように、上記実施形態の界面検出センサ100は、投光部110と、受光部120と、制御部130と、を備える。投光部110は、複数の層を有する血液サンプルC(検出対象の一例)に、波長λ1(第1波長の一例)を有する投光光S11(第1の投光光の一例)と波長λ2(第2波長の一例)を有する投光光S12(第2の投光光の一例)とを含む投光光セットS10を順次投光する。受光部120は、投光光S11が検出対象を透過した信号である受光光S21(第1の受光光の一例)と、投光光S12が検出対象を透過した信号である受光光S22(第2の受光光の一例)と、を含む受光光セットS20を順次受光する。制御部130は、投光部110による投光タイミングと受光部120による受光タイミングとを同期させ、順次受光された受光光セットS20に基づいて、検出対象に含まれる複数の層(例えば血餅C1、分離材C2、血清C3の各層)の界面を検出する。投光部110は、投光光S11の投光中又は投光終了時に投光光S12の投光を開始する。 As described above, the interface detection sensor 100 of the embodiment includes the light projecting section 110, the light receiving section 120, and the control section . Light projecting unit 110 projects light S11 (an example of first wavelength) having wavelength λ1 (an example of first wavelength) and wavelength λ2 onto blood sample C (an example of a detection target) having a plurality of layers. A light projection light set S10 including a light projection light S12 (an example of a second light projection light) having (an example of a second wavelength) is sequentially projected. The light receiving unit 120 includes a received light S21 (an example of a first received light) that is a signal of the projected light S11 transmitted through the detection target, and a received light S22 (a first received light) that is a signal of the projected light S12 transmitted through the detection target. 2) and the received light set S20 are sequentially received. The control unit 130 synchronizes the light projection timing by the light projection unit 110 and the light reception timing by the light reception unit 120, and based on the sequentially received light reception light set S20, a plurality of layers (for example, blood clot C1) included in the detection target. , separation material C2, and serum C3). The light projecting unit 110 starts projecting the light S12 during or when the light S11 is being projected.

これにより、受光光S21と受光光S22との受光期間が時間的に連続しているので、受光光S21と受光光S22による検出対象の検出領域が空間的に連続した領域となる。そのため、界面検出センサ100は、受光光セットS20による検出領域がスキャン方向(例えばz方向)に沿った微小な長さを有する微小領域であっても、この検出領域での界面検出精度を維持できる。また、受光光S21及び受光光S22による検出領域が空間的に連続した領域となることで、スキャン速度に依存せずに、受光光セットS20による検出領域に対して2つの受光光S21,S22に基づいて界面検出できる。よって、界面検出センサ100は、スキャン速度の高速化を実現できる。このように、界面検出センサ100は、検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制できる。また、投光光S11と投光光S12との投光タイミングが完全に一致しないことで、受光光S21と受光光S21との受光タイミングが完全に一致しない。そのため、界面検出センサ100は、例えば各受光光を含む受光光セットS20の特性から既知の受光光の特性を差し引くことで、未知の受光光の特性を得ることができ、それぞれの受光光S21,S22を識別できる。 As a result, the light receiving periods of the received light S21 and the received light S22 are temporally continuous, so that the detection area to be detected by the received light S21 and the received light S22 is a spatially continuous area. Therefore, the interface detection sensor 100 can maintain the interface detection accuracy in this detection area even if the detection area by the light receiving light set S20 is a minute area having a minute length along the scanning direction (for example, the z direction). . In addition, since the detection areas by the received light beam S21 and the received light beam S22 are spatially continuous areas, the two received light beams S21 and S22 are applied to the detection area by the received light beam set S20 without depending on the scanning speed. interface can be detected based on Therefore, the interface detection sensor 100 can achieve high scanning speed. In this way, the interface detection sensor 100 can speed up the scanning speed for scanning the detection target while suppressing deterioration in interface detection accuracy within the detection target. Further, since the projection timings of the projected light beam S11 and the projected light beam S12 do not completely match, the light receiving timings of the received light beam S21 and the received light beam S21 do not completely match. Therefore, the interface detection sensor 100 can obtain the unknown characteristics of the received light by subtracting the characteristics of the known received light from the characteristics of the received light set S20 including each received light. S22 can be identified.

また、受光部120は、投光部110による投光光セットS10の投光に同期して、受光光S21の受光中又は受光終了時に受光光S22の受光を開始してよい。制御部130は、受光光セットS20の受光量のうち、受光光S22の受光開始前の受光部120による受光光の受光量よりも、受光光S22の受光開始以降の受光部120による受光光の受光量が大きくなるように、投光部110に投光光セットS10を投光させてよい。 Further, the light receiving section 120 may start receiving the received light S22 during or at the end of receiving the received light S21 in synchronization with the projection of the projected light set S10 by the light projecting section 110 . The control unit 130 controls the amount of light received by the light receiving unit 120 after the start of receiving the received light S22 to be higher than the amount of light received by the light receiving unit 120 before the start of receiving the light S22 among the amounts of light received by the light receiving light set S20. The light projection unit 110 may be caused to project the projection light set S10 so that the amount of light received increases.

これにより、受光光S22の受光開始前の期間である第1受光期間T21での受光光の受光量よりも、受光光S22の受光開始以降の期間である第2受光期間T22での受光光の受光量が大きくなる。つまり、受光光セットS20の受光量は、時系列で上り階段状に大きくなる。また、受光光S21と受光光S22とが連続して受光されるので、第1受光期間T21に受光される受光光S21の立下りが第2受光期間T22に残存し得る。この場合でも、受光量が上り階段状に大きくなることで、残存する受光光S21の立下り成分が第2受光期間T22の受光量に対して十分に小さい。したがって、界面検出センサ100は、第1受光期間T21に受光される受光光が第2受光期間T22に受光される受光光に干渉し、双方の受光光を含む同じ受光光セットS20に基づく界面検出の精度の低下を抑制できる。また、受光光セットS20の特性から既知の受光光S21の特性を差し引くことで、未知の受光光S22の特性を得て、界面検出精度の低下が抑制されてもよい。 As a result, the amount of received light in the second light receiving period T22, which is the period after the start of light reception of the light receiving light S22, is greater than the amount of light received in the first light receiving period T21, which is the period before the start of light receiving of the light receiving light S22. The amount of light received increases. That is, the amount of light received by the received light set S20 increases in ascending steps in time series. Further, since the received light S21 and the received light S22 are received continuously, the fall of the received light S21 received in the first light receiving period T21 can remain in the second light receiving period T22. Even in this case, the amount of light received increases in an upward staircase manner, so that the remaining falling component of the received light S21 is sufficiently smaller than the amount of light received during the second light receiving period T22. Therefore, the interface detection sensor 100 detects the interface based on the same received light set S20 including the received light received during the first light receiving period T21 and the received light received during the second light receiving period T22. It is possible to suppress the deterioration of the accuracy of Further, by subtracting the known characteristics of the received light S21 from the characteristics of the received light set S20, the unknown characteristics of the received light S22 may be obtained, thereby suppressing the deterioration of the interface detection accuracy.

また、受光部120は、第1の受光光セットS20に後続して第2の受光光セットS20を受光してよい。第1の受光光セットS20の受光終了時点から第2の受光光セットの受光開始時点までの第1の期間は、第1の受光光セットS20の受光終了時点の受光量の立下りに要する立下り期間S22aよりも長い、又はこの立下り期間S22aと同じ長さでよい。 Further, the light receiving section 120 may receive the second received light set S20 following the first received light set S20. The first period from the time when the first received light set S20 ends receiving light to the time when the second received light set S20 starts receiving light is the rise required for the amount of received light to fall at the time when the first received light set S20 ends receiving light. It may be longer than the fall period S22a or the same length as the fall period S22a.

これにより、界面検出センサ100は、第2受光期間T22に受光した受光光(少なくとも受光光S22)の立下りが第2受光期間T22以降に残存しても、次に受光される受光光セットS20を受光するまでに時間間隔TI2が確保されることで、後続の受光光セットS20に基づく界面検出精度の低下を抑制できる。なお、第2受光期間T22に受光した受光光の立下りは、受光光セットS20の受光終了時点の受光量の立下りに相当する。 As a result, even if the fall of the received light (at least the received light S22) received during the second light receiving period T22 remains after the second light receiving period T22, the interface detection sensor 100 detects the next received light set S20. is ensured until the time interval TI2 is received, it is possible to suppress deterioration in interface detection accuracy based on the subsequent received light set S20. The fall of the received light received during the second light receiving period T22 corresponds to the fall of the received light amount at the end of light reception of the received light set S20.

また、投光部110は、検出対象に対する投光光S11の透過率と、検出対象に対する投光光S12の透過率と、に基づいて、投光光S11の投光量と、投光光S12の投光量と、を決定してよい。 Further, the light projecting unit 110 determines the amount of projected light S11 and the amount of projected light S12 based on the transmittance of the projected light S11 to the detection target and the transmittance of the projected light S12 to the detection target. and may be determined.

これにより、界面検出センサ100は、各投光光の透過率を加味して、各投光光の投光量を様々な投光量に調整できる。例えば、界面検出センサ100は、検出対象に対する投光光の透過率が大きい程、検出対象を透過し易く減衰し難いので、投光光の投光量を小さく決定できる。一方、界面検出センサ100は、検出対象に対する透過率が小さい程、検出対象を透過し難く減衰し易いので、投光光の投光量を大きく決定できる。この場合でも、界面検出センサ100は、受光光セットS20の受光量が時系列で上り階段状に大きくなることで、界面検出精度の低下を抑制できる。 Thereby, the interface detection sensor 100 can adjust the light projection amount of each light projection light to various light projection amounts in consideration of the transmittance of each light projection light. For example, the higher the transmittance of the projected light to the detection target, the easier the interface detection sensor 100 transmits the detection target and the less it is attenuated. On the other hand, the smaller the transmittance of the detection target, the more difficult the interface detection sensor 100 is to transmit the detection target and the more likely it is to attenuate. Even in this case, the interface detection sensor 100 can suppress a decrease in interface detection accuracy by increasing the amount of light received by the light receiving light set S20 in a time-series manner.

また、制御部130は、受光光セットS20の受光量に含まれる、受光光S22の受光開始前の受光部120による受光光の受光量である第1の受光量と、受光光S22の受光開始以降の受光部120による受光光の受光量である第2の受光量と、を比較してよい。制御部130は、第1の受光量が第2の受光量よりも大きい場合、投光光S11と投光光S12との投光順序を入れ替えるよう投光部110に指示してよい。 In addition, the control unit 130 controls the first light receiving amount, which is the amount of light received by the light receiving unit 120 before the start of light reception of the light receiving light S22, which is included in the light receiving amount of the light receiving light set S20, and the light reception start amount of the light receiving light S22. You may compare with the 2nd light reception amount which is the light reception amount of the light reception part 120 after that. When the first received light amount is larger than the second received light amount, the control unit 130 may instruct the light projecting unit 110 to change the order of projecting the light beams S11 and S12.

これにより、界面検出センサ100は、実際の第1受光期間T21の受光光の受光量と第2受光期間T22の受光光の受光量とに応じて、受光光セットS20の受光量が時系列で上り階段状に大きくなるように、投光部110にフィードバックできる。よって、界面検出センサ100は、予め各投光光の特性を把握しておかなくても、投光部110による各投光光の投光順序を、受光側で上記の上り階段状になるように調整できる。また、予め各投光光の特性を把握して各投光光の投光順序を調整した場合であって、検出対象の検出環境によって意図せずに各受光光の受光量の大きさが逆転し得る。この場合でも、界面検出センサ100は、実際の各受光光の受光量に応じて、投光部110による各投光光の投光順序を、受光側で上記の上り階段状になるように調整できる。 As a result, the interface detection sensor 100 detects the received light amount of the received light set S20 in time series according to the actual received light amount in the first light receiving period T21 and the received light amount in the second light receiving period T22. It can be fed back to the light projecting section 110 so that it increases like an upward staircase. Therefore, the interface detection sensor 100 can arrange the light projecting order of each light projecting light by the light projecting unit 110 so that the above-mentioned ascending staircase pattern is formed on the light receiving side without grasping the characteristics of each light projecting light in advance. can be adjusted to Also, in the case where the characteristics of each projected light are grasped in advance and the light projection order of each light is adjusted, the magnitude of the received light amount of each received light may be reversed unintentionally depending on the detection environment of the detection target. can. Even in this case, the interface detection sensor 100 adjusts the light projection order of the respective light beams by the light projecting unit 110 according to the actual amount of received light so that the light receiving side becomes the above-mentioned ascending staircase pattern. can.

また、検出対象は、採血管50(収容器の一例)に収容されて第1の方向(例えばz方向、鉛直方向)に沿って延在してよい。第1の方向に沿って投光部110に対する検出対象の位置が移動可能であってよい。投光部110は、検出対象の第1の方向に沿った連続する位置(例えば垂直照射位置)に対して、第1の方向に垂直な方向(例えばy方向)に、投光光セットS10を順次投光してよい。 Further, the detection target may be accommodated in a blood collection tube 50 (an example of a container) and extend along the first direction (eg, z direction, vertical direction). The position of the detection target with respect to light projecting section 110 may be movable along the first direction. The light projecting unit 110 projects the light projecting light set S10 in a direction perpendicular to the first direction (for example, the y direction) with respect to successive positions (for example, vertical irradiation positions) of the detection target along the first direction. Light may be emitted sequentially.

これにより、界面検出センサ100は、検出対象の第1の方向に沿った連続する位置で異なる波長を有する複数の受光光S21,S22の受光量を検出でき、検出された受光量に応じて界面検出できる。よって、界面検出センサ100は、空間的に連続する狭領域において、界面検出できる。 As a result, the interface detection sensor 100 can detect the amount of received light S21 and S22 having different wavelengths at successive positions along the first direction of the detection target, and the interface detection sensor 100 can detectable. Therefore, the interface detection sensor 100 can detect the interface in a spatially continuous narrow area.

また、投光部110により投光される投光光S11及び投光光S12の、第1の方向に平行な方向の長さは、第1の方向に対して垂直且つ投光光S11及び投光光S12の進行方向(例えばy方向)に対して垂直な方向(例えばx方向)の長さよりも短い、 Further, the lengths of the projected light S11 and the projected light S12 projected by the light projecting unit 110 in the direction parallel to the first direction are perpendicular to the first direction and the lengths of the projected light S11 and the projected light S12 shorter than the length of the direction (eg, x-direction) perpendicular to the traveling direction (eg, y-direction) of the light beam S12,

投光光S11,S12のビームのz方向の長さとx方向の長さとが同じ(例えばビーム形状が円形又は正方形状)である場合には、z方向の検出間隔を狭めて界面検出精度を高めるようとすると、投光光のビームのz方向及びx方向の長さが短くなる。そのため、例えば検出対象が収容された採血管50に軸ずれが発生するなどして検出対象がx方向にずれた場合には、受光光S21,S22が受光部120に受光されない可能性が高くなる。そのため、受光光S21,S22の受光の安定性が低下し、界面検出精度が低下し得る。これに対し、界面検出センサ100は、各投光光S11,S12のビームのz方向の長さをx方向よりも短くすることで、空間的な検出間隔を狭めて界面検出精度を向上でき、且つ、検出対象のx方向のずれが発生しても受光光の受光の安定性を維持できる。このように、投光光のビームの光エネルギの利用効率を高くできる。 When the beams of the projection lights S11 and S12 have the same length in the z direction and the length in the x direction (for example, the beam shape is circular or square), the detection interval in the z direction is narrowed to increase the interface detection accuracy. If so, the lengths of the beam of projection light in the z-direction and the x-direction are shortened. Therefore, if the detection target is displaced in the x-direction due to, for example, axial misalignment of the blood collection tube 50 containing the detection target, there is a high possibility that the received light beams S21 and S22 will not be received by the light receiving unit 120. . As a result, the stability of the received light beams S21 and S22 is degraded, and the interface detection accuracy may be degraded. On the other hand, in the interface detection sensor 100, by making the length of the beams of the projected light beams S11 and S12 in the z direction shorter than the length in the x direction, the spatial detection interval can be narrowed and the interface detection accuracy can be improved. Moreover, even if the object to be detected is shifted in the x direction, the stability of the received light can be maintained. In this way, it is possible to increase the utilization efficiency of the light energy of the projection light beam.

また、検出対象は、血液サンプルCでよい。複数の層は、血清C3の層及び血餅C1の層を含んでよい。 Also, the blood sample C may be the detection target. The multiple layers may include a layer of serum C3 and a layer of clot C1.

血液サンプルC中の血清C3及び血餅C1では、波長λ1及び波長λ2での透過率が異なる。界面検出センサ100は、この透過率の差分を利用して、例えば、血液サンプルC中の血清C3の層及び血餅C1の層との界面や、他の層との界面を検出できる。 Serum C3 and clot C1 in blood sample C have different transmittances at wavelength λ1 and wavelength λ2. The interface detection sensor 100 can detect, for example, the interface between the serum C3 layer and the blood clot C1 layer in the blood sample C and the interface with other layers by using the difference in transmittance.

本開示は、検出対象を走査するスキャン速度を高速化しつつ、検出対象内の界面検出精度の低下を抑制できる界面検出センサ及び界面検出方法等に有用である。 INDUSTRIAL APPLICABILITY The present disclosure is useful for an interface detection sensor, an interface detection method, and the like capable of suppressing deterioration in interface detection accuracy within a detection target while increasing the scanning speed for scanning the detection target.

5 血液界面検出システム
50 採血管
60 移動機構
61 保持アーム
100 界面検出センサ
110 投光部
111 ドライバ
112 投光素子
113 レンズ
114 合波器
120 受光部
121 レンズ
122 受光素子
123 増幅器
130 制御部
131 増幅器
132 AD変換器
133 CPU
134,135 出力部
B1 円形ビーム
B2 長方形ビーム
C 血液サンプル
C1 血餅
C11 赤血球
C12 バフィーコート
C2 分離材
C3 血清
S10 投光光セット
S11,S12 投光光
S20 受光光セット
S21,S22 受光光
5 Blood Interface Detection System 50 Blood Collection Tube 60 Moving Mechanism 61 Holding Arm 100 Interface Detection Sensor 110 Light Projecting Unit 111 Driver 112 Light Projecting Element 113 Lens 114 Multiplexer 120 Light Receiving Unit 121 Lens 122 Light Receiving Element 123 Amplifier 130 Control Unit 131 Amplifier 132 AD converter 133 CPU
134, 135 Output section B1 Circular beam B2 Rectangular beam C Blood sample C1 Blood clot C11 Red blood cell C12 Buffy coat C2 Separating material C3 Serum S10 Projected light set S11, S12 Projected light S20 Received light set S21, S22 Received light

Claims (9)

複数の層を有する検出対象に、第1波長を有する第1の投光光と第2波長を有する第2の投光光とを含む投光光セットを順次投光する投光部と、
前記第1の投光光が前記検出対象を透過した信号である第1の受光光と、前記第2の投光光が前記検出対象を透過した信号である第2の受光光と、を含む受光光セットを順次受光する受光部と、
前記投光部による投光タイミングと前記受光部による受光タイミングとを同期させ、順次受光された前記受光光セットに基づいて、前記検出対象に含まれる前記複数の層の界面を検出する制御部と、
を備え、
前記投光部は、前記第1の投光光の投光中又は投光終了時に前記第2の投光光の投光を開始する、
界面検出センサ。
a light projecting unit that sequentially projects a light set including a first light having a first wavelength and a second light having a second wavelength onto a detection target having a plurality of layers;
The first projected light includes first received light that is a signal transmitted through the detection target, and the second projected light includes second received light that is a signal transmitted through the detection target. a light receiving unit that sequentially receives the received light set;
a control unit for synchronizing the timing of light projection by the light projecting unit and the timing of light reception by the light receiving unit, and detecting the interfaces of the plurality of layers included in the detection target based on the set of received light sequentially received; ,
with
The light projecting unit starts projecting the second light projecting during or at the end of projecting the first light projecting light,
Interface detection sensor.
前記受光部は、前記投光部による前記投光光セットの投光に同期して、前記第1の受光光の受光中又は受光終了時に前記第2の受光光の受光を開始し、
前記制御部は、前記受光光セットの受光量のうち、前記第2の受光光の受光開始前の前記受光部による受光光の受光量よりも、前記第2の受光光の受光開始以降の前記受光部による受光光の受光量が大きくなるように、前記投光部に前記投光光セットを投光させる、
請求項1に記載の界面検出センサ。
the light-receiving unit starts receiving the second light-receiving light during or at the end of receiving the first light-receiving light in synchronization with the projection of the set of light-projecting light by the light-projecting unit;
The control section controls the amount of light received by the light receiving section before the start of reception of the second light reception among the light reception amounts of the light reception light set. causing the light projecting unit to project the light projecting light set so that the amount of received light received by the light receiving unit increases;
The interface detection sensor according to claim 1.
前記受光部は、第1の受光光セットに後続して第2の受光光セットを受光し、
前記第1の受光光セットの受光終了時点から前記第2の受光光セットの受光開始時点までの第1の期間は、前記第1の受光光セットの受光終了時点の受光量の立下りに要する立下り期間よりも長い、又は前記立下り期間と同じ長さである、
請求項2に記載の界面検出センサ。
The light receiving unit receives a second set of received light subsequent to the first set of received light,
A first period from the end of light reception of the first set of received light to the start of light reception of the second set of received light is required for the amount of received light to fall at the end of light reception of the first set of received light. longer than or as long as the fall period;
The interface detection sensor according to claim 2.
前記投光部は、
前記検出対象に対する前記第1の投光光の透過率と、前記検出対象に対する前記第2の投光光の透過率と、に基づいて、前記第1の投光光の投光量と、前記第2の投光光の投光量と、を決定する、
請求項2又は3に記載の界面検出センサ。
The light projecting unit
Based on the transmittance of the first projected light with respect to the detection target and the transmittance of the second projected light with respect to the detection target, the amount of the first projected light and the second 2. determine the amount of projected light;
The interface detection sensor according to claim 2 or 3.
前記制御部は、
前記受光光セットの受光量に含まれる、前記第2の受光光の受光開始前の前記受光部による受光光の受光量である第1の受光量と、前記第2の受光光の受光開始以降の前記受光部による受光光の受光量である第2の受光量と、を比較し、
前記第1の受光量が前記第2の受光量よりも大きい場合、前記第1の投光光と前記第2の投光光との投光順序を入れ替えるよう前記投光部に指示する、
請求項2~4のいずれか1項に記載の界面検出センサ。
The control unit
A first received light amount that is the amount of received light received by the light receiving unit before the start of receiving the second received light, which is included in the amount of received light of the set of received light, and after the start of receiving the second received light. with a second received light amount, which is the amount of received light received by the light receiving unit, and
instructing the light projecting unit to change the order of projecting the first light and the second light when the first amount of received light is greater than the second amount of received light;
The interface detection sensor according to any one of claims 2 to 4.
前記検出対象は、収容器に収容されて第1の方向に沿って延在し、
前記第1の方向に沿って前記投光部に対する前記検出対象の位置が移動可能であり、
前記投光部は、前記検出対象の第1の方向に沿った連続する位置に対して、前記第1の方向に垂直な方向に、前記投光光セットを順次投光する、
請求項1~5のいずれか1項に記載の界面検出センサ。
The detection target is accommodated in a container and extends along a first direction,
a position of the detection target is movable with respect to the light projecting unit along the first direction;
The light projecting unit sequentially projects the light projecting light set in a direction perpendicular to the first direction on successive positions of the detection target along the first direction.
The interface detection sensor according to any one of claims 1 to 5.
前記投光部により投光される前記第1の投光光及び前記第2の投光光の、前記第1の方向に平行な方向の長さは、前記第1の方向に対して垂直且つ前記第1の投光光及び前記第2の投光光の進行方向に対して垂直な方向の長さよりも短い、
請求項6に記載の界面検出センサ。
The lengths of the first projected light and the second projected light projected by the light projection unit in a direction parallel to the first direction are perpendicular to the first direction and shorter than the length of the direction perpendicular to the traveling direction of the first projected light and the second projected light;
The interface detection sensor according to claim 6.
前記検出対象は、血液サンプルであり、
前記複数の層は、血清の層及び血餅の層を含む、
請求項1~7のいずれか1項に記載の界面検出センサ。
The detection target is a blood sample,
wherein said plurality of layers comprises a layer of serum and a layer of clot;
The interface detection sensor according to any one of claims 1 to 7.
複数の層を有する検出対象に、第1波長を有する第1の投光光を投光するステップと、
前記検出対象に、前記第1の投光光の投光中又は投光終了時に、第2波長を有する第2の投光光の投光を開始することで、前記第2の投光光を投光するステップと、
前記第1の投光光が前記検出対象を透過した信号である第1の受光光と、前記第2の投光光が前記検出対象を透過した信号である第2の受光光と、を含む受光光セットを受光するステップと、
前記受光光セットに基づいて、前記検出対象に含まれる前記複数の層の界面を検出するステップと、
を有する界面検出方法。
projecting a first floodlight having a first wavelength onto a detection target having a plurality of layers;
By starting to project a second projected light having a second wavelength onto the detection target during or at the end of projecting the first projected light, the second projected light is emitted to the detection target. a step of projecting light;
The first projected light includes first received light that is a signal transmitted through the detection target, and the second projected light includes second received light that is a signal transmitted through the detection target. receiving a set of received light;
detecting an interface between the plurality of layers included in the detection target based on the received light set;
interface detection method.
JP2021051993A 2021-03-25 2021-03-25 Interface detection sensor and interface detection method Pending JP2022149718A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021051993A JP2022149718A (en) 2021-03-25 2021-03-25 Interface detection sensor and interface detection method
PCT/JP2022/001238 WO2022201774A1 (en) 2021-03-25 2022-01-14 Interface detection sensor and interface detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021051993A JP2022149718A (en) 2021-03-25 2021-03-25 Interface detection sensor and interface detection method

Publications (2)

Publication Number Publication Date
JP2022149718A true JP2022149718A (en) 2022-10-07
JP2022149718A5 JP2022149718A5 (en) 2024-04-01

Family

ID=83396769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021051993A Pending JP2022149718A (en) 2021-03-25 2021-03-25 Interface detection sensor and interface detection method

Country Status (2)

Country Link
JP (1) JP2022149718A (en)
WO (1) WO2022201774A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028899A (en) * 1973-07-13 1975-03-24
JP4472442B2 (en) * 2004-06-24 2010-06-02 アロカ株式会社 Interface detection device, volume measuring device, and interface detection method
DE102009005252A1 (en) * 2009-01-14 2010-07-15 Pvt Probenverteiltechnik Gmbh Method and device for determining the position of an interface
EP2770318B1 (en) * 2013-02-21 2018-03-21 Roche Diagniostics GmbH Method and apparatus for detecting clots in a liquid and laboratory automation system
JP2018096740A (en) * 2016-12-09 2018-06-21 株式会社日立ハイテクノロジーズ Biological sample analyzer
JP6999500B2 (en) * 2018-06-04 2022-02-10 株式会社日立ハイテク Analysis equipment
JP7411908B2 (en) * 2020-02-28 2024-01-12 パナソニックIpマネジメント株式会社 Interface detection sensor

Also Published As

Publication number Publication date
WO2022201774A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
US7916287B2 (en) Surface inspection method and surface inspection apparatus
KR20120124227A (en) Fluorescence detecting optical system and multi-channel fluorescence detection apparatus having the same
JP6462843B1 (en) Detection method, inspection method, detection device, and inspection device
JP2014514559A (en) Interferometer for TSV measurement and measurement method using the same
TWI756306B (en) Optical characteristic measuring apparatus and optical characteristic measuring method
US11703571B2 (en) Optical device
CN115684079A (en) Transient absorption spectrum measuring system with high sensitivity and high signal-to-noise ratio
KR20170131084A (en) 3-Dimensional Shape Measuring Apparatus Using Multi Wavelength Lights Scanning Interferometry
WO2022201774A1 (en) Interface detection sensor and interface detection method
JP4851737B2 (en) Distance measuring device
JP2008020380A (en) Absorbance measuring instrument
JP2007333409A (en) Suspended particle measurement device
US8097849B2 (en) Electron microscope device
JP2004239908A (en) Device and method for measuring diameter of rod-like object especially in tobacco manufacturing industry
JP2010156557A (en) Incident optical system and raman scattering measurement apparatus
JP5430614B2 (en) Optical device
JPH03102249A (en) Method and apparatus for detecting foreign matter
JPH0340821B2 (en)
EP2840352A1 (en) Interferometric apparatus combined with a non interferometric apparatus, and measuring method
JP2009047429A (en) Light measuring device
JP2004301648A (en) Analysis apparatus
US20230124033A1 (en) Optical measurement device and optical measurement method
JPH01295134A (en) Automatic chemical analyzer
JPS63289426A (en) Fourier transform spectroanalyser
WO2023079955A1 (en) Optical measuring method, and optical measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322