JP2022148804A - Flux-cored wire for gas-shielded arc welding - Google Patents
Flux-cored wire for gas-shielded arc welding Download PDFInfo
- Publication number
- JP2022148804A JP2022148804A JP2021050622A JP2021050622A JP2022148804A JP 2022148804 A JP2022148804 A JP 2022148804A JP 2021050622 A JP2021050622 A JP 2021050622A JP 2021050622 A JP2021050622 A JP 2021050622A JP 2022148804 A JP2022148804 A JP 2022148804A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- welding
- total
- heat input
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 133
- 230000004907 flux Effects 0.000 claims abstract description 47
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 39
- 239000010959 steel Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 6
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 13
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 73
- 239000002184 metal Substances 0.000 abstract description 73
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 229910052796 boron Inorganic materials 0.000 abstract description 8
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- 229910052748 manganese Inorganic materials 0.000 abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 7
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- 239000011734 sodium Substances 0.000 description 23
- 239000010949 copper Substances 0.000 description 17
- 239000002893 slag Substances 0.000 description 16
- 239000011324 bead Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 229910002593 Fe-Ti Inorganic materials 0.000 description 2
- 239000004111 Potassium silicate Substances 0.000 description 2
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052913 potassium silicate Inorganic materials 0.000 description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052652 orthoclase Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は、低入熱の溶接条件から大入熱・高パス間温度の高能率の溶接条件で溶接をしても、良好な機械的性質を有する溶接金属を得ることができ、高電流の溶接においてもアークが安定してスパッタ発生量が少なく溶接作業性に優れるガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention can obtain a weld metal having good mechanical properties even when welding is performed under high-efficiency welding conditions, from low heat input welding conditions to high heat input and high interpass temperatures. The present invention relates to a flux-cored wire for gas-shielded arc welding, which has a stable arc, less spatter generation, and excellent welding workability even in welding.
造船及び建築鉄骨等の分野では、鋼構造物の高能率な溶接施工法としてソリッドワイヤを用いたガスシールドアーク溶接が多用されている。適用される溶接条件は高電流で30~40kJ/cmの大入熱溶接となり、さらに、各溶接パスの時間を短くしてなるべく連続的に溶接を行おうとすると、高パス間温度となる。近年、さらなる溶接効率向上のため、さらに40kJ/cmを超える大入熱・高パス間温度での溶接に移行しつつあるが、溶接金属には所定の強度と靭性を有することが必要である。しかしながらこのような大入熱、高パス間温度で溶接した場合、溶接金属の機械的性質は劣化する傾向にあり、健全な溶接継手が得られないとともに、ガスシールドアーク溶接用ソリッドワイヤを用いて高電流で溶接をすると大粒のスパッタが多く発生し、溶接作業性も著しく劣化するという問題がある。 Gas-shielded arc welding using a solid wire is frequently used as a highly efficient welding method for steel structures in the fields of shipbuilding and building steel frames. The applied welding conditions are high current and high heat input welding of 30 to 40 kJ/cm. Furthermore, if the time of each welding pass is shortened and welding is to be performed as continuously as possible, the temperature between passes becomes high. In recent years, in order to further improve welding efficiency, there is a shift to welding at a high heat input and high interpass temperature exceeding 40 kJ/cm, but it is necessary for the weld metal to have a predetermined strength and toughness. However, when welding is performed at such a high heat input and high interpass temperature, the mechanical properties of the weld metal tend to deteriorate, making it impossible to obtain sound welded joints, and using a solid wire for gas-shielded arc welding. Welding with a high current generates a large amount of spatter, which causes a problem that welding workability is remarkably deteriorated.
これらの問題を解決する手段として、大入熱・高パス間温度での溶接において、優れた機械的性質を有する溶接金属を得られる溶接用ソリッドワイヤとして、Ti-B系の溶接材料の提案がいくつかなされている。例えば、特許文献1には、C、Si、Mn、Ti及びMgまたはAlの1種類以上を含有し、B、Cu、Ni、Cr、Moを所定量含む溶接用ソリッドワイヤの提案がされている。 As a means to solve these problems, Ti-B welding consumables have been proposed as solid wires for welding that can produce weld metals with excellent mechanical properties in welding at high heat input and high interpass temperature. Some have been done. For example, Patent Document 1 proposes a welding solid wire containing one or more of C, Si, Mn, Ti and Mg or Al, and containing predetermined amounts of B, Cu, Ni, Cr, and Mo. .
また、特許文献2には、C、Si、Mn,Ti、Al、Cu、Mo、Bを含有し、さらにNiを所定量含有し、Nを一定量以下に制限し、さらにKを所定量含む溶接用ソリッドワイヤが提案されている。しかし、これら特許文献1及び特許文献2に開示された溶接用ソリッドワイヤは、溶接入熱量が40kj/cmまでの大入熱・高パス間溶接条件で溶接した場合、溶接金属の強度および靭性は優れた性質を得られるが、横向姿勢溶接等の溶接入熱量20kJ/cm程度の低入熱の溶接条件の場合、溶接金属は強度が過多になるなど、所定の機械的性質を満足できない。 Further, Patent Document 2 contains C, Si, Mn, Ti, Al, Cu, Mo, B, further contains a predetermined amount of Ni, limits N to a certain amount or less, and further contains a predetermined amount of K A solid wire for welding has been proposed. However, when the welding solid wires disclosed in Patent Documents 1 and 2 are welded under high heat input and high interpass welding conditions with a welding heat input of up to 40 kj/cm, the strength and toughness of the weld metal are Although excellent properties can be obtained, in the case of welding conditions with a low heat input of about 20 kJ/cm such as horizontal position welding, the weld metal has excessive strength and cannot satisfy the predetermined mechanical properties.
また、特許文献3には、C、Si、Mn、Mo、Ti、B、Cu、Ni及びCrを適量含有することによって、低入熱から高入熱・高パス間温度の溶接を行っても溶接金属の強度及び靭性が得られる溶接用ソリッドワイヤの開示がある。しかし、特許文献3に開示された溶接用ソリッドワイヤにおいても溶接入熱量が40kJ/cmを超える大入熱で高パス間温度の溶接条件においては、溶接金属の強度及び靭性が得られず、溶接時のスパッタ発生量が多くなるという問題がある。 Further, in Patent Document 3, by containing appropriate amounts of C, Si, Mn, Mo, Ti, B, Cu, Ni, and Cr, welding from low heat input to high heat input and high interpass temperature can be performed. There is a disclosure of a solid wire for welding that provides the strength and toughness of the weld metal. However, even with the solid wire for welding disclosed in Patent Document 3, under welding conditions of a large heat input exceeding 40 kJ/cm and a high temperature between passes, the strength and toughness of the weld metal cannot be obtained. However, there is a problem that the amount of spatter generated increases at times.
高電流での溶接で問題となる、スパッタ発生量が少ないガスシールドアーク溶接用ソリッドワイヤの開発が行われており、例えば特許文献4には、希土類元素を含有し、ワイヤ表面に固形潤滑剤を有し、さらに固形潤滑剤の外周面に液体潤滑剤皮膜を有することによって、スパッタ発生量が少なく、かつワイヤ送給性を良好にする技術が開示されている。 A solid wire for gas-shielded arc welding that generates less spatter, which is a problem in welding at high current, has been developed. A technique is disclosed in which the amount of spatter generated is reduced and the wire feedability is improved by providing a liquid lubricant film on the outer peripheral surface of the solid lubricant.
また、特許文献5には、2種類以上のアルカリ金属を含侵させたアルカリ金属含侵部をワイヤ表層下に形成させることによってスパッタ発生量を低減できるガスシールドアーク溶接用ソリッドワイヤが開示されている。しかし、ガスシールドアーク溶接用ソリッドワイヤを用いた大電流溶接では、発生するスパッタ自体が多いので、たとえワイヤ送給性が良好になってもスパッタ発生量を十分に低減できず、またビード外観・形状も改善できないという問題があった。 In addition, Patent Document 5 discloses a solid wire for gas shielded arc welding that can reduce the amount of spatter generated by forming an alkali metal-impregnated portion impregnated with two or more types of alkali metals under the wire surface layer. there is However, high-current welding using a solid wire for gas-shielded arc welding generates a large amount of spatter itself. There was also a problem that the shape could not be improved.
一方、大入熱・高パス間温度の溶接施工条件で溶接金属の強度及び靭性を確保しつつ、溶接作業性が良好なガスシールドアーク溶接用フラックス入りワイヤとして、例えば特許文献6や特許文献7には、大入熱・高パス間温度の溶接施工条件の下で、良好な溶接作業性が得られるとともに、機械的性質が優れた溶接金属が得られるフラックス入りワイヤが開示されている。しかし、これらのフラックス入りワイヤにおいても、溶接入熱量が40kJ/cmを超える高入熱で高パス間温度の溶接施工条件では溶接金属の強度及び靭性が得られないという問題があった。また、後者はスラグ生成量も多くなるので、スラグ巻き込みなどの溶接欠陥が発生しやすくなるという問題があった。 On the other hand, as a flux-cored wire for gas-shielded arc welding that ensures good welding workability while ensuring the strength and toughness of the weld metal under welding conditions of large heat input and high interpass temperature, for example, Patent Document 6 and Patent Document 7 discloses a flux-cored wire that provides good welding workability and weld metal with excellent mechanical properties under welding conditions of high heat input and high interpass temperature. However, even with these flux-cored wires, there is a problem that the strength and toughness of the weld metal cannot be obtained under welding conditions of a high heat input exceeding 40 kJ/cm and a high temperature between passes. In addition, the latter method has a problem that welding defects such as slag entrainment are likely to occur because the amount of slag generated increases.
そこで本発明は、上述した問題点に鑑みて案出されたものであり、溶接入熱量20kJ/cm程度の低入熱の溶接条件から溶接入熱量60kJ/cmの大入熱で高パス間温度のような高能率の溶接条件で溶接をしても、溶接欠陥が生じることなく良好な機械的性質を有する溶接金属を得ることができ、高電流の溶接でもアークが安定してスパッタ発生量が少なく溶接作業性に優れるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and the welding conditions of a low heat input of about 20 kJ/cm are changed to a high heat input of 60 kJ/cm and a high interpass temperature. It is possible to obtain weld metal with good mechanical properties without welding defects even if welding is performed under highly efficient welding conditions such as , and the arc is stable even in high-current welding, and the amount of spatter generation is reduced. An object of the present invention is to provide a flux-cored wire for gas-shielded arc welding which is less and excellent in welding workability.
本発明者らは、溶接入熱量20kJ/cm程度の低入熱の溶接条件から溶接入熱量60kJ/cmの大入熱で高パス間温度のような高能率の溶接条件で溶接をしても、溶接欠陥が生じることなく良好な機械的性質を有する溶接金属を得ることができ、高電流の溶接でもアークが安定してスパッタ発生量が少ない等の溶接作業性に優れるガスシールドアーク溶接用フラックス入りワイヤの成分組成について詳細に検討した。 The present inventors have found that even if welding is performed under highly efficient welding conditions such as a low heat input welding heat input of about 20 kJ / cm to a large heat input of 60 kJ / cm and a high interpass temperature. A flux for gas-shielded arc welding that can obtain weld metal with good mechanical properties without welding defects, and has excellent welding workability such as a stable arc and little spatter even in high-current welding. The component composition of the cored wire was investigated in detail.
その結果、溶接入熱量20kJ/cm程度の低入熱の溶接条件、高電流の溶接施工条件及び溶接入熱量60kJ/cmの大入熱・高パス間温度の溶接施工条件においても溶接欠陥が生じることなく、溶接金属の適正な強度と安定した靱性を達成するためには、ワイヤ中のスラグ生成剤である酸化物を極力減らし、合金成分のC、Si、Mn、Cu及びTiのそれぞれの適量化が有効であることを見出した。 As a result, welding defects occur even under low heat input welding conditions of about 20 kJ/cm, high current welding conditions, and high heat input and high interpass temperature welding conditions of 60 kJ/cm. In order to achieve proper strength and stable toughness of the weld metal, it is necessary to reduce oxides, which are slag-forming agents, in the wire as much as possible, and to It was found that the transformation is effective.
また、ワイヤ中のMo、B量を適量にすることにより、溶接入熱量60kJ/cmの大入熱で高パス間温度の溶接施工条件においても、溶接金属の靱性を低下させることなく所定の引張強さを有する溶接金属を得られることを見出した。 In addition, by setting the amounts of Mo and B in the wire to appropriate amounts, even under the welding conditions of a large welding heat input of 60 kJ/cm and a high temperature between passes, the toughness of the weld metal is not lowered and a predetermined tensile strength can be achieved. It has been found that a weld metal having strength can be obtained.
さらに、ワイヤ中のAl及びMgを適量にすることにより、溶接金属の靭性をさらに良好にすることも見出した。 Furthermore, it was found that the toughness of the weld metal can be further improved by adjusting the amounts of Al and Mg in the wire.
また、溶接作業性は、C、Ti、金属弗化物のF換算値の合計及びNa酸化物及びK酸化物のNa2O換算値とK2O換算値の合計を適量とすることでアークを安定化させてスパッタ発生量を低減させ、Si酸化物のSiO2換算値の合計を適量とすることでビード外観・形状を良好にできることを見出した。 Welding workability is determined by adjusting the sum of the F conversion values of C, Ti, and metal fluorides and the sum of the Na oxide and K oxide conversion values of Na 2 O and K 2 O to an appropriate amount. It was found that the appearance and shape of the bead can be improved by stabilizing and reducing the amount of spatter generated and by adjusting the total amount of Si oxide equivalent to SiO 2 to an appropriate amount.
すなわち、本発明の要旨は、鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.04~0.10%、Si:0.4~1.4%、Mn:1.7~2.5%未満、Mo:0.6~1.0%、Cu:0.05~0.5%、Ti:0.1~0.4%、B:0.0015~0.010%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、金属弗化物:F換算値の合計で0.005~0.10%、Si酸化物:SiO2換算値の合計で0.01~0.2%、Na酸化物及びK酸化物の1種または2種以上:Na2O換算値とK2O換算値の合計で0.02~0.14%を含有し、残部が鋼製外皮のFe、成分調整のために添加する鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 That is, the gist of the present invention is a flux-cored wire for gas-shielded arc welding in which a steel outer sheath is filled with flux, and the total weight of the steel outer sheath and the flux is C: 0.04. ~0.10%, Si: 0.4 to 1.4%, Mn: 1.7 to less than 2.5%, Mo: 0.6 to 1.0%, Cu: 0.05 to 0.5% , Ti: 0.1 to 0.4%, B: 0.0015 to 0.010%, and further, in mass% with respect to the total mass of the wire, in the flux, metal fluoride: total F conversion value 0.005 to 0.10%, Si oxide: 0.01 to 0.2% in total of SiO 2 conversion value, one or more of Na oxide and K oxide: Na 2 O conversion value and Contain 0.02 to 0.14% in total in terms of K 2 O, and the balance consists of Fe in the steel outer shell, iron powder added for component adjustment, Fe content in iron alloy powder, and unavoidable impurities characterized by
また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Al及びMgの一方または両方の合計:0.25%以下をさらに含有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。 In addition, the flux-containing flux for gas-shielded arc welding characterized by further containing the total of one or both of Al and Mg: 0.25% or less in mass% with respect to the total mass of the wire, in the total of the steel outer sheath and the flux on the wire.
本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、溶接入熱量20kJ/cm程度の低入熱の溶接条件から溶接入熱量60kJ/cmの大入熱で高パス間温度のような高能率の溶接施工条件で溶接をしても、溶接欠陥が生じることなく良好な機械的性質を有する溶接金属を得ることができ、高電流の溶接でもアークが安定してスパッタ発生量が少なく、ビード外観・形状が良好であるなどの溶接作業性に優れる等、高品質な溶接部を高能率に得ることができる。 According to the flux-cored wire for gas shielded arc welding of the present invention, high efficiency such as high interpass temperature can be achieved from welding conditions with a low heat input of about 20 kJ / cm to a large heat input of 60 kJ / cm. It is possible to obtain a weld metal with good mechanical properties without welding defects even if welding is performed under the welding conditions of , and the arc is stable even with high current welding, the amount of spatter is small, and the appearance of the bead is improved.・It is possible to obtain high-quality welds with high efficiency, such as excellent welding workability such as good shape.
以下、本発明を適用したガスシールドアーク溶接用フラックス入りワイヤの成分組成及びその含有量と、各成分組成の限定理由とについて説明する。なお、各成分組成の含有量は、質量%で表すものとし、その質量%に関する記載を単に%と記載して表すこととする。 Hereinafter, the component composition and content of the flux-cored wire for gas-shielded arc welding to which the present invention is applied, and the reasons for limiting each component composition will be described. In addition, content of each component composition shall be represented by mass %, and the description regarding the mass % shall be simply described as %.
[鋼製外皮とフラックスの合計でC:0.04~0.10%]
Cは、溶接金属の強度を向上させる効果がある。Cが0.04%未満であると、大入熱・高パス間温度の溶接施工条件で十分な溶接金属の強度が得られない。一方、Cが0.10%を超えると、溶接金属の強度が高くなり靱性が低下する。従って、鋼製外皮とフラックスの合計でCは0.04~0.10%とする。なお、Cは鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉末等から添加できる。
[Total C of steel skin and flux: 0.04 to 0.10%]
C has the effect of improving the strength of the weld metal. If C is less than 0.04%, sufficient strength of the weld metal cannot be obtained under welding conditions of high heat input and high temperature between passes. On the other hand, if C exceeds 0.10%, the strength of the weld metal increases and the toughness decreases. Therefore, the total content of C in the steel skin and flux should be 0.04 to 0.10%. C can be added from metal powder, alloy powder, etc. from the flux, in addition to the components contained in the steel outer sheath.
[鋼製外皮とフラックスの合計でSi:0.4~1.4%]
Siは、脱酸剤であり溶接金属の酸素量を調整する。またSiは、溶接金属の強度を向上させる効果がある。Siが0.4%未満であると、脱酸不足となり溶接金属の強度が低く、靱性が低下する。一方、Siが1.4%を超えると、溶接金属の強度が過剰に高くなり、靱性が安定して得られない。またSiが1.4%を超えると、溶接時に生成するスラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でSiは0.4~1.4%とする。なお、Siは鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe-Si、Fe-Si-Mn等の合金粉末から添加できる。
[Si: 0.4 to 1.4% in total of steel skin and flux]
Si is a deoxidizing agent and adjusts the amount of oxygen in the weld metal. Si also has the effect of improving the strength of the weld metal. If the Si content is less than 0.4%, deoxidation will be insufficient, resulting in low strength and toughness of the weld metal. On the other hand, if Si exceeds 1.4%, the strength of the weld metal becomes excessively high, and toughness cannot be stably obtained. On the other hand, if the Si content exceeds 1.4%, the amount of slag generated during welding increases, and welding defects such as slag entrainment tend to occur. Therefore, the total Si content of the steel sheath and flux should be 0.4 to 1.4%. Si can be added from metal Si, Fe--Si, Fe--Si--Mn and other alloy powders from the flux, in addition to the components contained in the steel outer sheath.
[鋼製外皮とフラックスの合計でMn:1.7~2.5%未満]
Mnは、大入熱・高パス間温度の溶接施工条件で溶接金属の靱性及び強度を向上させる効果がある。Mnが1.7%未満であると、大入熱・高パス間温度の溶接施工条件で溶接金属の強度が低くなり靱性が低下する。一方、Mnが2.5%以上になると、低入熱の溶接施工で溶接金属の強度が高くなり、靱性が安定して得られない。また、Mnが2.5%以上になると、低入熱及び大入熱・高パス間温度の溶接条件共にスラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でMnは1.7~2.5%未満とする。なお、Mnは、鋼製外皮に含まれる成分の他、金属Mn、Fe-Mn、Fe-Si-Mn等の合金粉末から添加できる。
[Total Mn of steel skin and flux: 1.7 to less than 2.5%]
Mn has the effect of improving the toughness and strength of the weld metal under welding conditions of high heat input and high interpass temperature. If the Mn content is less than 1.7%, the strength of the weld metal is low and the toughness is low under the welding conditions of high heat input and high interpass temperature. On the other hand, when the Mn content is 2.5% or more, the strength of the weld metal is increased by welding with a low heat input, and toughness cannot be stably obtained. Moreover, when the Mn content is 2.5% or more, the amount of slag increases under both low heat input and high heat input/high interpass temperature welding conditions, and welding defects such as slag entrainment tend to occur. Therefore, the total Mn of the steel sheath and flux should be less than 1.7 to 2.5%. Mn can be added from alloy powder such as metallic Mn, Fe--Mn, Fe--Si--Mn, etc., in addition to components contained in the steel outer shell.
[鋼製外皮とフラックスの合計でMo:0.6~1.0%]
Moは、Mnが前述の範囲内で、大入熱・高パス間温度の溶接施工条件において、溶接金属の強度を確保するうえで重要である。Moが0.6%未満であると、大入熱・高パス間温度の溶接施工条件で溶接金属の強度が低くなる。一方、Moが1.0%を超えると、低入熱の溶接施工条件で溶接金属の強度が過剰に高くなり、靭性が安定して得られない。従って、鋼製外皮とフラックスの合計でMoは0.6~1.0%とする。なお、Moは、鋼製外皮に含まれる成分の他、フラックスからの金属Mo粉から添加できる。
[Total Mo of steel skin and flux: 0.6 to 1.0%]
Mo is important for securing the strength of the weld metal under the welding conditions of high heat input and high interpass temperature while Mn is within the range described above. If Mo is less than 0.6%, the strength of the weld metal will be low under welding conditions of high heat input and high temperature between passes. On the other hand, when Mo exceeds 1.0%, the strength of the weld metal becomes excessively high under low heat input welding conditions, and toughness cannot be stably obtained. Therefore, Mo is set to 0.6 to 1.0% in total in the steel outer sheath and flux. In addition, Mo can be added from the metal Mo powder from flux other than the component contained in steel outer coverings.
[鋼製外皮とフラックスの合計でCu:0.05~0.5%]
Cuは、析出強化作用を有し、変態温度を低下させ溶接金属の組織を微細化して靭性を安定させる効果がある。Cuが0.05%未満であると、この効果が得られず、安定した溶接金属の靭性が得られない。一方、Cuが0.5%を超えると、析出脆化が生じて溶接金属の靭性が低下し、また高温割れが生じやすくなる。従って、鋼製外皮とフラックスの合計でCuは0.05~0.5%とする。なお、Cuは、鋼製外皮に含まれる成分及び鋼製外皮表面に施したCuめっき分の他、フラックスからの金属Cu、Fe-Si-Cu等の合金粉から添加できる。
[Cu: 0.05 to 0.5% in total of steel skin and flux]
Cu has a precipitation strengthening action, lowers the transformation temperature, refines the structure of the weld metal, and stabilizes toughness. If Cu is less than 0.05%, this effect cannot be obtained, and stable toughness of the weld metal cannot be obtained. On the other hand, when Cu exceeds 0.5%, precipitation embrittlement occurs, the toughness of the weld metal is lowered, and hot cracking is likely to occur. Therefore, Cu is set to 0.05 to 0.5% in the total of the steel sheath and the flux. Cu can be added from metal Cu from flux, alloy powder such as Fe--Si--Cu, in addition to components contained in the steel skin and Cu plating applied to the surface of the steel skin.
[鋼製外皮とフラックスの合計でTi:0.1~0.4%]
Tiは、特に高電流での溶接及び大入熱・高パス間温度での溶接施工時にアークを安定にし、脱酸剤として作用するとともに、溶接金属中にTiの微細酸化物を生成し溶接金属の靭性をより向上させる効果がある。Tiが0.1%未満であると、この効果が得られず、高電流での溶接及び大入熱・高パス間温度での溶接施工時にアークが不安定になるとともに溶接金属の靭性が低下する。一方、Tiが0.4%を超えると、溶接金属中にTiの析出物が多くなり、靭性が低下する。従って、鋼製外皮とフラックスの合計でTiは0.1~0.4%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe-Ti等の合金粉から添加できる。
[Total Ti of steel skin and flux: 0.1 to 0.4%]
Ti stabilizes the arc and acts as a deoxidizing agent, especially during high-current welding and welding at high heat input and high interpass temperature, and produces fine oxides of Ti in the weld metal. has the effect of further improving the toughness of If Ti is less than 0.1%, this effect cannot be obtained, and the arc becomes unstable and the toughness of the weld metal decreases during welding at high current and high heat input and high interpass temperature. do. On the other hand, if Ti exceeds 0.4%, the amount of precipitates of Ti increases in the weld metal and the toughness decreases. Therefore, Ti is set to 0.1 to 0.4% in total of the steel outer covering and the flux. In addition to the components contained in the steel outer shell, Ti can be added from metal Ti from flux, alloy powder such as Fe—Ti, and the like.
[鋼製外皮とフラックスの合計でB:0.0015~0.010%]
Bは、大入熱・高パス間温度での溶接施工条件において、溶接金属の結晶粒界に生成する粒界フェライトの生成を抑制し靭性を向上させる効果がある。Bが0.0015%未満であると、大入熱・高パス間温度での溶接施工条件で溶接金属の靭性が低下する。一方、Bが0.010%を超えると、高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でBは0.0015~0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、Fe-Si-B、Fe-Mn-B等の合金粉から添加できる。
[Total B of steel skin and flux: 0.0015 to 0.010%]
B has the effect of suppressing the formation of intergranular ferrite formed at the grain boundaries of the weld metal under welding conditions of high heat input and high interpass temperature, thereby improving the toughness. When the B content is less than 0.0015%, the toughness of the weld metal is lowered under welding conditions of high heat input and high interpass temperature. On the other hand, when B exceeds 0.010%, hot cracking is likely to occur. Therefore, B is set to 0.0015 to 0.010% in total of the steel skin and the flux. B can be added from alloy powders such as Fe--Si--B and Fe--Mn--B in addition to components contained in the steel outer shell.
[フラックス中の金属弗化物:F換算値の合計:0.005~0.10%]
金属弗化物は、アークを集中させて安定させる効果がある。金属弗化物のF換算値の合計が0.005%未満では、この効果が得られず、アークが不安定でスパッタ発生量が多くなる。一方、金属弗化物のF換算値の合計が0.10%を超えると、アークが強くて不安定になり、スパッタ発生量が多くなる。従って、フラックス中に含有する金属弗化物のF換算値の合計は0.005~0.10%とする。なお、金属弗化物は、フラックスからのCaF2、NaF、LiF、MgF2、K2SiF6、Na3AlF6、AlF3等から添加でき、F換算値はそれらに含有されるFの含有量の合計である。
[Metal fluoride in flux: total F conversion value: 0.005 to 0.10%]
Metal fluoride has the effect of concentrating and stabilizing the arc. If the total F conversion value of the metal fluorides is less than 0.005%, this effect cannot be obtained, the arc becomes unstable, and the amount of spatter generation increases. On the other hand, if the total F conversion value of the metal fluoride exceeds 0.10%, the arc becomes strong and unstable, and the amount of spatter generation increases. Therefore, the total F conversion value of the metal fluorides contained in the flux should be 0.005 to 0.10%. In addition, the metal fluoride can be added from CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , Na 3 AlF 6 , AlF 3 etc. from the flux, and the F conversion value is the content of F contained in them is the sum of
[フラックス中のSi酸化物:SiO2換算値の合計:0.01~0.2%]
フラックス中のSi酸化物は、溶融スラグの粘性を高めてスラグ被包性を向上させてビード止端部のなじみを良好にし、ビード外観・形状を良好にする効果がある。Si酸化物のSiO2換算値の合計が0.01%未満であると、溶接ビードの止端部のなじみが悪くなり、ビード外観・形状が悪くなる。一方、Si酸化物のSiO2換算値の合計が0.2%を超えると、溶接金属中の酸素量が増加して靭性が低下する。また、Si酸化物のSiO2換算値の合計が0.2%を超えるとスラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するSi酸化物のSiO2換算値の合計は0.01~0.2%とする。なお、Si酸化物は、フラックスからの珪砂、正長石、珪酸カリウムからなる水ガラスの固質成分等から添加できる。
[Si oxide in flux: total SiO2 conversion value: 0.01 to 0.2%]
The Si oxide in the flux has the effect of increasing the viscosity of the molten slag, improving the slag enveloping property, improving the conformability of the bead toe, and improving the bead appearance and shape. If the total SiO 2 equivalent value of Si oxides is less than 0.01%, the conformability of the toe of the weld bead is poor, and the appearance and shape of the bead are poor. On the other hand, if the total SiO2 conversion value of Si oxides exceeds 0.2%, the amount of oxygen in the weld metal increases and the toughness decreases. Also, if the total SiO 2 conversion value of Si oxides exceeds 0.2%, the amount of slag increases, and welding defects such as slag entrainment tend to occur. Therefore, the total SiO 2 conversion value of Si oxides contained in the flux should be 0.01 to 0.2%. The Si oxide can be added from silica sand, orthoclase, solid components of water glass composed of potassium silicate, etc. from the flux.
[フラックス中のNa酸化物及びK酸化物の1種または2種以上:Na2O換算値とK2O換算値の合計で0.02~0.14%]
Na酸化物及びK酸化物は、アークを安定にする効果がある。Na酸化物及びK酸化物の1種または2種以上がNa2O換算値とK2O換算値の合計で0.02%未満であると、アークが不安定になり、スパッタ発生量が多くなる。一方、Na酸化物及びK酸化物の1種または2種以上がNa2O換算値とK2O換算値の合計で0.14%を超えると、アークが不安定でスパッタ発生量が多くなる。また、Na酸化物及びK酸化物の1種または2種以上がNa2O換算値とK2O換算値の合計で0.14%を超えると、溶接時に生成するスラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するNa酸化物及びK酸化物の1種または2種以上はNa2OとK2O換算値の合計で0.02~0.14%とする。なお、Na酸化物及びK酸化物は、珪酸ソーダ及び珪酸カリウムからなる水ガラスの固質成分、カリ長石、チタン酸ナトリウム等の等の粉末から添加できる。
[One or more of Na oxide and K oxide in flux: 0.02 to 0.14% in total of Na 2 O conversion value and K 2 O conversion value]
Na oxide and K oxide have the effect of stabilizing the arc. When one or more of Na oxide and K oxide is less than 0.02% in total of Na 2 O conversion value and K 2 O conversion value, the arc becomes unstable and the amount of spatter generation is large. Become. On the other hand, when one or more of Na oxide and K oxide exceeds 0.14% in total of Na 2 O conversion value and K 2 O conversion value, the arc becomes unstable and the amount of spatter generation increases. . In addition, when one or more of Na oxide and K oxide exceeds 0.14% in total of Na 2 O conversion value and K 2 O conversion value, the amount of slag generated during welding increases, and slag Welding defects such as entrainment are more likely to occur. Therefore, one or more of Na oxides and K oxides contained in the flux should be 0.02 to 0.14% in terms of Na 2 O and K 2 O equivalents. Na oxides and K oxides can be added from solid components of water glass composed of sodium silicate and potassium silicate, powders of potassium feldspar, sodium titanate and the like.
[鋼製外皮とフラックスの合計でAl及びMgの一方または両方:0.25%以下]
Al及びMgは、強脱酸剤で溶接金属中の酸素を低減し、溶接金属の靭性を高める効果がある。しかし、Al及びMgの一方または両方で0.25%を超えると、溶接時にアーク中で激しく酸化反応してヒューム発生量やスパッタ発生量が多くなる。従って、鋼製外皮とフラックスの合計でAl及びMgの一方または両方は0.25%以下とする。なお、溶接金属中の酸素を低減し、溶接金属の靭性を高める効果を得るために、Al及びMgの一方または両方は0.05%以上であることが好ましい。Al及びMgは、金属Al、Fe-Al、金属Mg、Al-Mg等の合金粉から添加できる。
[One or both of Al and Mg in total of steel skin and flux: 0.25% or less]
Al and Mg are strong deoxidizers and have the effect of reducing oxygen in the weld metal and increasing the toughness of the weld metal. However, if one or both of Al and Mg exceeds 0.25%, a violent oxidation reaction occurs in the arc during welding, resulting in a large amount of fume generation and spatter generation. Therefore, one or both of Al and Mg in the total of the steel skin and flux should be 0.25% or less. In order to obtain the effect of reducing oxygen in the weld metal and increasing the toughness of the weld metal, one or both of Al and Mg are preferably 0.05% or more. Al and Mg can be added from alloy powders such as metallic Al, Fe--Al, metallic Mg, and Al--Mg.
本発明のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のために添加する鉄粉、Fe-Si、Fe-Mn、Fe-Ti合金などの鉄合金粉のFe分及び不可避不純物である。不純物については特に規定しないが、高温割れ及び溶接金属の靱性の観点から、P:0.03%以下、S:0.03%以下であることが好ましい。 The remainder of the flux-cored wire for gas-shielded arc welding of the present invention is Fe in the steel outer sheath, iron powder added for component adjustment, and Fe in iron alloy powder such as Fe—Si, Fe—Mn, and Fe—Ti alloy. and unavoidable impurities. Impurities are not particularly specified, but from the viewpoint of hot cracking and weld metal toughness, P: 0.03% or less and S: 0.03% or less are preferable.
また、フラックス充填率は特に限定しないが、生産性の観点からワイヤ全質量に対して8~20%とするのが好ましい。 Although the flux filling rate is not particularly limited, it is preferably 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity.
以下、本発明の効果を実施例により具体的に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be specifically described with reference to examples.
まず、鋼製外皮にJIS G3141 SPHC(C:0.02質量%、Si:0.01質量%、Mn:0.40質量%、P:0.012質量%、S:0.010質量%)を使用し、鋼製外皮をU字形に成形、フラックス充填率を10~15%で充填してC字形に成形した後、鋼製外皮の合わせ目を溶接して造菅、伸線し、表1に示す各種成分のフラックス入りワイヤを試作した。なお、試作したワイヤ径は1.4mmとした。 First, JIS G3141 SPHC (C: 0.02% by mass, Si: 0.01% by mass, Mn: 0.40% by mass, P: 0.012% by mass, S: 0.010% by mass) was applied to the steel outer skin. is used to form the steel skin into a U shape, fill it with a flux filling rate of 10 to 15%, and form it into a C shape. Experimental flux-cored wires of various components shown in 1 were produced. The wire diameter of the prototype was 1.4 mm.
表1に示す試作したフラックス入りワイヤを用いて、スパッタ発生量、アーク安定性、ビード外観・形状、X線透過試験による欠陥の有無及び溶接金属性能の調査を行った。 Using the prototype flux-cored wires shown in Table 1, spatter generation, arc stability, bead appearance/shape, presence or absence of defects by X-ray transmission test, and weld metal performance were investigated.
スパッタの発生量は、銅製の捕集箱を用いて、1分間溶接した際に発生するスパッタの重量を測定することにより、単時間当たりの値(g/min)を求めた。なお、スパッタの測定は、表2に示す条件No.T1の溶接条件で5回測定した平均値とし、1.5g/min以下を良好とした。 The amount of spatter generated was determined as a value per unit time (g/min) by measuring the weight of spatter generated when welding for 1 minute using a collection box made of copper. Sputtering was measured under condition No. 1 shown in Table 2. The average value of 5 measurements under the welding conditions of T1, and 1.5 g/min or less was considered good.
アークの安定性は、スパッタ発生量の測定中に10秒間電圧変動を5回測定し、その電圧の大きさを介して評価した。評価は1に時系列的な電圧変動のチャートを示すが、平均電圧に対して±1Vを閾値としたとき、電圧変動が閾値を超える時間が10秒間で90%以下の場合をアーク安定とし、電圧変動が閾値を超える時間が10秒間で10%を超える場合はアーク不安定とした。 The stability of the arc was evaluated by measuring the voltage fluctuation five times for 10 seconds during the measurement of the amount of spatter generated and evaluating the magnitude of the voltage. For evaluation, a chart of time-series voltage fluctuations is shown in 1. When ±1 V is set as a threshold for the average voltage, the arc is stable when the voltage fluctuation exceeds the threshold for 90% or less in 10 seconds. Arc was determined to be unstable when the voltage fluctuation exceeded the threshold for more than 10% of the 10 seconds.
ビード外観・形状のビード形状は、溶接ビード健全部で手直しが必要なアンダーカットやオーバーラップがないものを良好とした。ビード外観は、部分的な波形の乱れがなく均一に揃っているものを良好とした。 The bead appearance and shape of the bead was judged to be good if there were no undercuts or overlaps that required repair at the weld bead sound part. The appearance of the bead was judged to be good when the waveforms were uniform without any partial turbulence.
溶接作業性及び溶接金属性能は、表2に示す条件No.T2(以下、低入熱という。)及び条件No.T3(以下、大入熱・高パス間という。)の施工条件で、35°レ形開先、ルートギャップ7mmの裏当金付きの試験体を用いた多層盛溶接金属試験を行い、溶接時のアーク安定性及びビード外観・形状を調査した。溶接終了後、裏当金を削除してX線透過試験を行い溶接欠陥の有無を調べた。また、溶接金属部から引張試験片(JIS Z2201 A0号)及び衝撃試験片(JIS Z2202 4号)を採取して機械的性質を調査した。 Welding workability and weld metal performance were evaluated under condition No. 1 shown in Table 2. T2 (hereinafter referred to as low heat input) and condition No. Under the construction conditions of T3 (hereinafter referred to as between high heat input and high pass), a multi-layer weld metal test was performed using a test piece with a 35 ° L-shaped groove and a root gap of 7 mm with a backing metal. Arc stability and bead appearance/shape were investigated. After completion of welding, the backing metal was removed and an X-ray transmission test was performed to check for weld defects. Also, a tensile test piece (JIS Z2201 No. AO) and an impact test piece (JIS Z2202 No. 4) were taken from the welded metal portion to investigate the mechanical properties.
強度の評価は、引張強さが490~690MPa、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値が80J以上、最低値が60J以上を良好とした。それらの結果を表3にまとめて示す。 For evaluation of strength, tensile strength was 490 to 690 MPa, and for evaluation of toughness, five Charpy impact tests at 0°C were performed, and an average absorbed energy of 80 J or more and a minimum value of 60 J or more were considered good. These results are summarized in Table 3.
表1及び表3中のワイヤ記号W1~W10が本発明例、ワイヤ記号W11~W22は比較例である。本発明例であるワイヤ記号W1~W10は、フラックス入りワイヤ中のC、Si、Mn、Mo、Cu、Ti、Bの含有量が適量で、フラックス中の金属弗化物のF換算値の合計、Si酸化物のSiO2換算値の合計、Na酸化物及びK酸化物の1種または2種以上のNa2O換算値とK2O換算値の合計が適量であるので、スパッタ発生量が少なく、低入熱及び大入熱・高パス間温度の溶接条件共に、アークが安定して、ビード外観・形状が良好で、溶接欠陥がなく、溶接金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好であった。 Wire symbols W1 to W10 in Tables 1 and 3 are examples of the present invention, and wire symbols W11 to W22 are comparative examples. The wire symbols W1 to W10, which are examples of the present invention, have appropriate amounts of C, Si, Mn, Mo, Cu, Ti, and B in the flux-cored wire, and the sum of the F conversion values of the metal fluorides in the flux, Since the sum of the SiO 2 conversion values of Si oxides and the sum of Na 2 O conversion values and K 2 O conversion values of one or more of Na oxides and K oxides is appropriate, the amount of spatter generation is small. , Under both low and high heat input and high interpass temperature welding conditions, the arc is stable, the bead appearance and shape are good, there are no weld defects, the tensile strength of the weld metal and the average value of absorbed energy and Both lowest values were good.
なお、Al及びMgの一方または両方の合計が適量であるワイヤ記号W2、W5、W6及びW9は、低入熱及び大入熱・高パス間温度の溶接条件共に溶接金属の吸収エネルギーの平均値が100J以上得られ極めて満足な結果であった。 Wire symbols W2, W5, W6, and W9, in which the total amount of one or both of Al and Mg is appropriate, are the average values of the absorbed energy of the weld metal under the welding conditions of low heat input and high heat input/high interpass temperature. of 100 J or more was obtained, which was an extremely satisfactory result.
比較例中ワイヤ記号W11は、Cが少ないので、大入熱・高パス間温度の溶接条件で溶接金属の引張強さが低かった。また、Si酸化物のSiO2換算値の合計が多いので、低入熱及び大入熱・高パス間温度の溶接条件共にスラグ巻き込みが生じ、溶接金属の吸収エネルギーが低値であった。 In the comparative example, wire symbol W11 had a small amount of C, so the tensile strength of the weld metal was low under the welding conditions of large heat input and high temperature between passes. In addition, since the total SiO 2 equivalent value of Si oxide is large, slag entrainment occurs under both low heat input and high heat input/high interpass temperature welding conditions, and the absorbed energy of the weld metal is low.
ワイヤ記号W12は、Cが多いので、低入熱及び大入熱・高パス間温度の溶接条件共に溶接金属の引張強さが高く、吸収エネルギーが低値であった。また、金属弗化物のF換算値の合計が多いので、スパッタ発生量が多く、低入熱及び大入熱・高パス間温度の溶接条件共にアークが強く不安定であった。 Since wire symbol W12 has a large amount of C, the tensile strength of the weld metal is high and the absorbed energy is low under both low heat input and high heat input/high interpass temperature welding conditions. In addition, since the total F conversion value of metal fluorides is large, the amount of spatter generated is large, and the arc is strong and unstable under both low heat input and high heat input/high interpass temperature welding conditions.
ワイヤ記号W13は、Siが少ないので、低入熱及び大入熱・高パス間温度の溶接条件共に溶接金属の引張強さ及び吸収エネルギーが低値であった。また、Si酸化物のSiO2換算値の合計が少ないので、低入熱及び大入熱・高パス間温度の溶接条件共に溶接ビードの止端部のなじみが悪くビード外観・形状が不良であった。 Wire symbol W13 has a small amount of Si, so the tensile strength and absorbed energy of the weld metal are low under both low heat input and high heat input/high interpass temperature welding conditions. In addition, since the total SiO2 equivalent value of Si oxide is small, the weld bead toe has poor conformability under both low heat input and high heat input/high interpass temperature welding conditions, resulting in poor bead appearance and shape. rice field.
ワイヤ記号W14は、Siが多いので、低入熱及び大入熱・高パス間温度の溶接条件共にスラグ巻き込みが生じ、溶接金属の引張強さが高く、吸収エネルギーが低値であった。また、金属弗化物のF換算値の合計が少ないので、スパッタ発生量が多く、低入熱及び大入熱・高パス間温度の溶接条件共にアークが不安定であった。 Wire symbol W14 contains a large amount of Si, so slag entrainment occurs under both low heat input and high heat input/high interpass temperature welding conditions, and the tensile strength of the weld metal is high and the absorbed energy is low. In addition, since the total F-converted value of the metal fluorides was small, the amount of spatter generated was large, and the arc was unstable under both low heat input and high heat input/high interpass temperature welding conditions.
ワイヤ記号W15は、Mnが少ないので、大入熱・高パス間温度の溶接条件の溶接金属の引張強さ及び吸収エネルギーが低値であった。また、Na酸化物及びK酸化物の1種または2種以上のNa2O換算値とK2O換算値の合計が少ないので、スパッタ発生量が多く、低入熱及び大入熱・高パス間温度の溶接条件共にアークが不安定であった。 Wire symbol W15 had a small amount of Mn, so the tensile strength and absorbed energy of the weld metal under the welding conditions of large heat input and high temperature between passes were low. In addition, since the sum of the Na 2 O conversion value and the K 2 O conversion value of one or more of Na oxide and K oxide is small, the amount of spatter generation is large, and low heat input and high heat input/high pass The arc was unstable under both welding conditions of medium temperature.
ワイヤ記号W16は、Mnが多いので、低入熱の溶接条件で溶接金属の引張強さが高く、吸収エネルギーの最低値が低かった。また、Mnが多いので、低入熱及び大入熱・高パス間温度の溶接条件共にスラグ巻き込みが生じた。 Wire symbol W16 had a large amount of Mn, so the tensile strength of the weld metal was high under low heat input welding conditions, and the minimum value of absorbed energy was low. In addition, since the Mn content was large, slag entrainment occurred under both low heat input and high heat input/high interpass temperature welding conditions.
ワイヤ記号W17は、Moが少ないので、大入熱・高パス間温度の溶接条件で溶接金属の引張強さが低かった。また、Bが少ないので、大入熱・高パス間温度の溶接条件で溶接金属の吸収エネルギーが低値であった。 Wire symbol W17 had a low Mo content, so the tensile strength of the weld metal was low under the welding conditions of large heat input and high temperature between passes. In addition, since the amount of B was small, the absorbed energy of the weld metal was low under the welding conditions of high heat input and high temperature between passes.
ワイヤ記号W18は、Moが多いので、低入熱の溶接条件で溶接金属の引張強さが高く、吸収エネルギーの最低値が低かった。また、Bが多いので、低入熱及び大入熱・高パス間温度の溶接条件共に初層に高温割れが生じた。 Wire symbol W18 had a large amount of Mo, so the tensile strength of the weld metal was high under low heat input welding conditions, and the minimum value of absorbed energy was low. In addition, since the amount of B was large, hot cracks occurred in the first layer under the welding conditions of low heat input and high heat input/high temperature between passes.
ワイヤ記号W19は、Cuが少ないので、低入熱及び大入熱・高パス間温度の溶接条件共に溶接金属の吸収エネルギーの最低値が低値であった。また、Na酸化物及びK酸化物の1種または2種以上のNa2O換算値とK2O換算値の合計が多いので、スパッタ発生量が多く、低入熱及び大入熱・高パス間温度の溶接条件共にアークが不安定で、スラグ巻き込みが生じた。 With the wire symbol W19, the Cu content was small, so the minimum value of the absorbed energy of the weld metal was low under both low heat input and high heat input/high interpass temperature welding conditions. In addition, since the sum of the Na 2 O conversion value and the K 2 O conversion value of one or more of Na oxide and K oxide is large, the amount of spatter generation is large, low heat input and high heat input/high pass The arc was unstable under both low and medium temperature welding conditions, and slag entrainment occurred.
ワイヤ記号W20は、Cuが多いので、低入熱及び大入熱・高パス間温度の溶接条件共に初層に高温割れが生じ、溶接金属の吸収エネルギーが低値であった。 Wire symbol W20 has a large amount of Cu, so hot cracks occur in the first layer under both low heat input and high heat input/high interpass temperature welding conditions, and the absorbed energy of the weld metal is low.
ワイヤ記号W21は、Tiが少ないので、大入熱・高パス間温度の溶接条件でアークが不安定で、溶接金属の吸収エネルギーが低値であった。また、Al及びMgの一方または両方の合計が多いので、スパッタ発生量が多く、ヒュームの発生量も多かった。 Wire symbol W21 had a small amount of Ti, so the arc was unstable under the welding conditions of large heat input and high temperature between passes, and the absorbed energy of the weld metal was low. In addition, since the total amount of one or both of Al and Mg was large, a large amount of spatter was generated, and a large amount of fume was also generated.
ワイヤ記号W22は、Tiが多いので、低入熱及び大入熱・高パス間温度の溶接条件共に溶接金属の吸収エネルギーが低値であった。なお、Al及びMgの合計が少ないので、吸収エネルギーを向上する効果は得られなかった。 Wire symbol W22 has a large amount of Ti, so the absorbed energy of the weld metal is low under both low heat input and high heat input/high interpass temperature welding conditions. In addition, since the total amount of Al and Mg was small, the effect of improving the absorbed energy was not obtained.
Claims (2)
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.04~0.10%、
Si:0.4~1.4%、
Mn:1.7~2.5%未満、
Mo:0.6~1.0%、
Cu:0.05~0.5%、
Ti:0.1~0.4%、
B:0.0015~0.010%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
金属弗化物:F換算値の合計で0.005~0.10%、
Si酸化物:SiO2換算値の合計で0.01~0.2%、
Na酸化物及びK酸化物の1種または2種以上:Na2O換算値とK2O換算値の合計で0.02~0.14%を含有し、
残部が鋼製外皮のFe、成分調整のために添加する鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。 A flux-cored wire for gas-shielded arc welding in which a steel sheath is filled with flux,
% by mass of the total mass of the wire, the sum of the steel sheath and flux,
C: 0.04 to 0.10%,
Si: 0.4 to 1.4%,
Mn: less than 1.7 to 2.5%,
Mo: 0.6-1.0%,
Cu: 0.05-0.5%,
Ti: 0.1 to 0.4%,
B: contains 0.0015 to 0.010%,
In addition, in mass % with respect to the total mass of the wire, in the flux,
Metal fluoride: 0.005 to 0.10% in total F conversion value,
Si oxide: 0.01 to 0.2% in total in terms of SiO2 ,
One or more of Na oxide and K oxide: 0.02 to 0.14% in total of Na 2 O conversion value and K 2 O conversion value,
A flux-cored wire for gas-shielded arc welding, wherein the balance consists of Fe in the steel outer sheath, iron powder added for component adjustment, Fe content in the iron alloy powder, and unavoidable impurities.
Al及びMgの一方または両方の合計:0.25%以下をさらに含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。 % by mass of the total mass of the wire, the sum of the steel sheath and flux,
The flux-cored wire for gas-shielded arc welding according to claim 1, further containing 0.25% or less of the total of one or both of Al and Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021050622A JP2022148804A (en) | 2021-03-24 | 2021-03-24 | Flux-cored wire for gas-shielded arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021050622A JP2022148804A (en) | 2021-03-24 | 2021-03-24 | Flux-cored wire for gas-shielded arc welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022148804A true JP2022148804A (en) | 2022-10-06 |
Family
ID=83462322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021050622A Pending JP2022148804A (en) | 2021-03-24 | 2021-03-24 | Flux-cored wire for gas-shielded arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022148804A (en) |
-
2021
- 2021-03-24 JP JP2021050622A patent/JP2022148804A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6437327B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6382117B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP6033755B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP6786427B2 (en) | Flux-filled wire for gas shielded arc welding | |
JP6437378B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5356142B2 (en) | Gas shield arc welding method | |
JP2009248137A (en) | Flux cored wire for gas-shielded arc welding | |
JP2017131950A (en) | Flux-cored wire for gas shield arc welding | |
JP6437419B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP2012218065A (en) | Flux-cored wire for two-electrode horizontal fillet co2 gas-shielded arc welding | |
JP2017094360A (en) | Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture | |
JP2010064087A (en) | Flux cored wire for gas-shielded arc welding | |
JP2017164772A (en) | Flux-cored wire for carbon dioxide gas shield arc welding | |
JP7221812B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel | |
JP7257189B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel | |
JP2022148804A (en) | Flux-cored wire for gas-shielded arc welding | |
JP2022143059A (en) | Flux-cored wire for gas-shielded arc welding | |
JP7247081B2 (en) | Metallic flux-cored wire for gas-shielded arc welding | |
JP7221742B2 (en) | Pulse MAG multi-layer welding method | |
JP2020131234A (en) | Stainless steel flux-cored wire for self-shielded arc-welding | |
JP6863862B2 (en) | Flux-filled wire for gas shielded arc welding | |
JP7247079B2 (en) | Flux-cored wire for gas-shielded arc welding | |
JP2018158367A (en) | Metallic flux-cored wire for carbon dioxide gas shielded arc welding | |
JP7244399B2 (en) | Flux-cored wire for gas-shielded arc welding | |
JP7260316B2 (en) | High current density gas-shielded arc welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241001 |