JP2022144037A - Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall - Google Patents

Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall Download PDF

Info

Publication number
JP2022144037A
JP2022144037A JP2021044875A JP2021044875A JP2022144037A JP 2022144037 A JP2022144037 A JP 2022144037A JP 2021044875 A JP2021044875 A JP 2021044875A JP 2021044875 A JP2021044875 A JP 2021044875A JP 2022144037 A JP2022144037 A JP 2022144037A
Authority
JP
Japan
Prior art keywords
plate
clt
plates
earthquake
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044875A
Other languages
Japanese (ja)
Inventor
仁彦 森田
Masahiko Morita
浩 梅森
Hiroshi Umemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2021044875A priority Critical patent/JP2022144037A/en
Publication of JP2022144037A publication Critical patent/JP2022144037A/en
Pending legal-status Critical Current

Links

Images

Abstract

To make it possible to reduce cost by reducing processing time as a result of omitting slit processing.SOLUTION: A construction method of ligneous earthquake resisting walls is composed of multiple CLT plates stacked in the out-of-plane direction. At least inserting holes of drift pins are opened at joining steel plate mounting positions of a CLT plate, bonded steel plates with through holes aligned with the insertion holes are sandwiched between the CLT plates, by inserting the drift pins into the holes, ligneous earthquake resisting walls between the joint steel plates are formed, and by connecting the joining metals attached to beams or columns and the joining steel plates, the ligneous earthquake resisting walls are erected.SELECTED DRAWING: Figure 5

Description

本発明は、壁パネルにCLT板(直交集成板)を用いた木質耐震壁の構築方法および木質耐震壁に関し、特に耐震壁を施工する時間、コストの削減を目的としたものである。 TECHNICAL FIELD The present invention relates to a method for constructing a wooden earthquake-resistant wall using CLT plates (cross-laminated timbers) for wall panels, and a wooden earthquake-resistant wall, and in particular, it is intended to reduce the time and cost of constructing the earthquake-resistant wall.

直交集成板(Cross Laminated Timber、以下CLT板という)を壁板に用いた木質耐震壁が知られており、金物を介して柱梁架構と接合することで、耐震建屋が構築されている。 A wooden earthquake-resistant wall using cross laminated timber (hereinafter referred to as CLT plate) as a wall plate is known, and an earthquake-resistant building is constructed by connecting it to a beam-column structure via metal fittings.

特許文献1~5には、S造やRC造の柱梁架構内に木質パネルを耐震壁として組み込む技術が記載されている。これらはどれも地震力を壁に伝達するための接合方法として、「鋼板挿入ドリフトピン(DP)接合」という接合方法を用いている。この接合方法は、図5~6に示すように、CLT板1の木口に鋼板2を挿入するためのスリット3を丸ノコ4等で施工し、これに鋼板2を挿入後、CLT板1と鋼板2を縫うようにドリフトピン5を挿し込む方法である。いずれも鋼板2にドリフトピン5を挿入して接合することで架構6と一体化され、ダウェル作用によりせん断力を伝達し、地震力に抵抗するものとなっている。 Patent Literatures 1 to 5 describe techniques for incorporating wooden panels as seismic walls into beam-to-column structures of S and RC structures. All of these use a joining method called "steel plate insertion drift pin (DP) joining" as a joining method for transmitting seismic force to the wall. In this joining method, as shown in FIGS. 5 and 6, a slit 3 for inserting the steel plate 2 is constructed in the butt end of the CLT plate 1 with a circular saw 4 or the like, and after inserting the steel plate 2 into the slit 3, the CLT plate 1 and the CLT plate 1 are joined together. In this method, the drift pin 5 is inserted so as to weave the steel plate 2 . In both cases, drift pins 5 are inserted into the steel plate 2 and joined to be integrated with the frame 6, and the shear force is transmitted by the dowel action to resist the seismic force.

具体的には、CLT板1には所定の大きさの鋼板2を挿入するための板厚方向で板面中央部に沿ったスリット3を施工しなければならないが、必要なスリット3形状は1回の切削で完成するものではなく、何度か繰り返して切削深さ、幅を増しながら所定のサイズに到達させるので、挿入鋼板2が大型の場合は施工時間がかかり、コストアップにもつながる。 Specifically, the CLT plate 1 must be provided with a slit 3 along the central portion of the plate surface in the plate thickness direction for inserting a steel plate 2 of a predetermined size. It is not completed by one cutting, but it is repeated several times to increase the cutting depth and width to reach a predetermined size.

例えば、CLT板1に鋼板2を挿入するためには、丸ノコ4を操作してスリット3を施工する必要があった。通常、丸鋸の半径はスリット3の深さに対して大きめのサイズであるが、削る抵抗が大きいことや鋸歯の減りも関係するので、深さ80mmくらいが1回の切削限度である。従って、深さ120mm程度のスリット3の切削には、2度の切削および最後の仕上げ切削1回と、3回の切削回数が必要となる。また、鋸歯のあさり寸法(歯の切削幅)も通常8mm程度なので、9mmの鋼板2を挿入する場合+2mmの施工寸法が必要なことから11mmとなり、幅方向にも2回となり、壁右側のスリット施工だけでも6回の切削工程が必要となる。また、コストは切削に係る時間に依ることから、スリット3の長さも関係してくる。 For example, in order to insert the steel plate 2 into the CLT plate 1, it was necessary to operate the circular saw 4 to make the slit 3. Normally, the radius of the circular saw is larger than the depth of the slit 3, but the cutting depth is limited to about 80 mm because the cutting resistance is large and the sawtooth is reduced. Therefore, cutting the slit 3 with a depth of about 120 mm requires three times of cutting, including two times of cutting and one final finishing cutting. In addition, the setting dimension of the saw tooth (tooth cutting width) is usually about 8 mm, so when inserting a 9 mm steel plate 2, the construction dimension is +2 mm, so it will be 11 mm, and it will be 2 times in the width direction, and the slit on the right side of the wall Six cutting processes are required for construction alone. Moreover, since the cost depends on the time required for cutting, the length of the slit 3 is also related.

このように、スリット施工は壁の製作工期とコストへの影響が大きいので、壁の性能を確保した最低のサイズとしたいが、ドリフトピン5の最小間隔や鋼板2との端あき、また施工上の逃げ等、都合よく小さくすることは難しい。 In this way, the slit construction has a large effect on the wall production period and cost, so it is desirable to use the minimum size that ensures the performance of the wall. It is difficult to make it small conveniently, such as escape of .

特開2018-188845号JP 2018-188845 A 特開2019-65685 号Japanese Patent Application Laid-Open No. 2019-65685 特開2020-101052号JP 2020-101052 特開2019-119990号Japanese Patent Application Laid-Open No. 2019-119990 特開2019-196669号Japanese Patent Application Laid-Open No. 2019-196669

上記従来方法によれば、第1に、CLT板の木口に設けるスリットは、1回の切削で約80mm程度が限界で、何度か繰り返して切削深さを増しながら所定のサイズに到達させる必要があるため、挿入鋼板が大型の場合は施工時間がかかり、コストアップになっていた。第2には、通常のドリフトピンによる接合では、鋼板がスリットに挿入されているだけなので、初期剛性の不足や接合部の脆性破壊が懸念されており、CLT板が本来有している性能を十分に発揮できないおそれがある。 According to the above-mentioned conventional method, firstly, the slit provided in the butt end of the CLT plate is limited to about 80 mm by one cutting, and it is necessary to reach a predetermined size by increasing the cutting depth repeatedly several times. Therefore, if the steel plate to be inserted is large, it takes a long time for construction, resulting in an increase in cost. Secondly, in ordinary drift pin joining, since the steel plate is simply inserted into the slit, there are concerns about insufficient initial rigidity and brittle fracture at the joint, and the inherent performance of the CLT plate cannot be achieved. It may not be possible to fully demonstrate it.

本発明は上記従来の問題点に着目してなされたもので、スリット加工が不要なために加工時間が短縮され、コストの低減が可能なように、壁パネルを2枚以上重ね合わせることで、1枚の耐震壁を構成するようにしたものである。 The present invention has been made by paying attention to the above-mentioned conventional problems, and by superimposing two or more wall panels so that the slitting process is unnecessary, the processing time is shortened and the cost can be reduced. It is designed to form a single seismic wall.

上記目的を達成するために、本発明に係る木質耐震壁の構築方法は、面外方向に重ねられた複数のCLT板で構成される木質耐震壁の構築方法であって、これらCLT板の接合鋼板取付位置に少なくともドリフトピンの差込孔を開け、当該CLT板の間に前記差込孔と位置を合わせて挿通孔をあけた接合鋼板を挟み、前記ドリフトピンを前記孔に挿入することにより前記接合鋼板を間に挟み込んだ木質耐震壁を形成し、梁又は柱に取り付けた接合金物と前記接合鋼板とを連結することで前記耐震壁を建て込むことを特徴とする。この場合において、前記接合鋼板の肉厚に相当する隙間に補剛板を介在させ、該補剛板と共に前記CLT板を貫通するボルトで前記木質耐震壁を一体化することを特徴としている。 In order to achieve the above object, a method for constructing a wooden earthquake-resistant wall according to the present invention is a method for constructing a wooden earthquake-resistant wall composed of a plurality of CLT plates stacked in an out-of-plane direction, wherein these CLT plates are joined together. An insertion hole for at least a drift pin is opened at a steel plate mounting position, a joined steel plate having an insertion hole aligned with the insertion hole is sandwiched between the CLT plates, and the drift pin is inserted into the hole to perform the joining. A wooden earthquake-resistant wall is formed with a steel plate sandwiched between them, and the steel earthquake-resistant wall is erected by connecting metal joints attached to beams or columns to the joint steel plate. In this case, a stiffening plate is interposed in a gap corresponding to the thickness of the joined steel plates, and the wooden earthquake-resisting wall is integrated with the stiffening plate by bolts passing through the CLT plate.

本発明に係る木質耐震壁は、面外方向に重ねられた複数のCLT板で接合鋼板を挟み込みドリフトピンにより結合して一体化してなる木質耐震壁であって、前記接合鋼板を挟むCLT板の間には前記接合鋼板の肉厚に相当する隙間が形成されていることを特徴とする。この場合、木質耐震壁は、前記隙間に補剛板を備え、CLT板と補剛板を貫通する結合ボルトで締結固定されていることを特徴とする。 The wooden earthquake-resistant wall according to the present invention is a wooden earthquake-resistant wall formed by sandwiching a joint steel plate with a plurality of CLT plates stacked in the out-of-plane direction and joining them by drift pins to integrate them, and the CLT plates sandwiching the joint steel plate. is characterized in that a gap corresponding to the thickness of the joined steel plates is formed. In this case, the wooden earthquake-resisting wall is characterized by having a stiffening plate in the gap, which is fastened and fixed with a connecting bolt that penetrates the CLT plate and the stiffening plate.

上記のように構成することにより、スリット加工が不要なために加工時間が短縮され、コストの低減が可能になる。また、廃材(切り屑)が減り、歩留まりが向上する。更に、重ねたCLT板の間のスペースに断熱材や、吸音材を設置することもでき、配線することも可能になる。 With the configuration as described above, since slit processing is not required, the processing time can be shortened and the cost can be reduced. In addition, waste materials (chips) are reduced and the yield is improved. Furthermore, a heat insulating material or a sound absorbing material can be installed in the space between the stacked CLT plates, and wiring can also be performed.

本実施形態に係る木質耐震壁を構成するCLT板の正面図である。FIG. 4 is a front view of a CLT plate that constitutes the wooden earthquake-resistant wall according to the present embodiment; 本実施形態に係る木質耐震壁の部分断面図である。FIG. 4 is a partial cross-sectional view of the wooden earthquake-resistant wall according to the present embodiment; 同実施形態に係る木質耐震壁の部分正面図である。It is a partial front view of the wooden earthquake-resisting wall according to the same embodiment. 実施形態に用いられる中央接合用鋼板と端部接合用鋼板の斜視図である。It is a perspective view of the steel plate for center joining and the steel plate for end part joining which are used for embodiment. 本実施形態に係る木質耐震壁の架構への取付状態を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the state of attachment of the wooden earthquake-resistant wall to the frame structure according to the present embodiment; 同実施形態に係る木質耐震壁の架構への取付状態を示す部分正面図である。It is a partial front view which shows the attachment state to the frame of the wooden earthquake-resistant wall which concerns on the same embodiment. 本実施形態に係る木質耐震壁の架構への取付状態を示す全体断面図である。FIG. 4 is an overall cross-sectional view showing the state of attachment of the wooden earthquake-resistant wall to the frame structure according to the present embodiment. 同実施形態に係る木質耐震壁の架構への取付状態を示す全体正面図である。It is an overall front view showing a mounting state of the wooden earthquake-resistant wall according to the same embodiment to the frame. 従来例に係る木質耐震壁の取付状態の部分断面図である。FIG. 10 is a partial cross-sectional view of a conventional wooden earthquake-resistant wall in an attached state; 同部分正面図である。It is the same partial front view. 同木質耐震壁の加工状態を示す正面図である。It is a front view which shows the processing state of the same wooden earthquake-resistant wall.

以下に、本発明の実施形態に係る木質耐震壁の構築方法および木質耐震壁を、図面を参照しつつ、詳細に説明する。
なお、以下に示す実施形態は一例であり、発明の要旨を変更しない限り、あらゆる変形例を含むものとする。
Hereinafter, a wooden earthquake-resistant wall construction method and a wooden earthquake-resistant wall according to embodiments of the present invention will be described in detail with reference to the drawings.
It should be noted that the embodiment shown below is merely an example, and includes all modifications as long as the gist of the invention is not changed.

本実施形態は、切削工程における丸鋸の加工手間を無くし、施工時間短縮・コストダウンにつなげることで、耐震壁の施工の合理化を図るものである。その手段は、1枚のCLTパネルを耐震壁として利用するのではなく、1枚の耐震壁に相当するCLTパネルを2枚のCLTパネルに分離されたものを準備し、架構と連結される鋼板を挟んで2枚のCLTパネルを貼り合わせて1枚の耐震壁とすることである。
そこで、この課題を一気に解決する方法として、スリット施工の必要の無い「2枚合わせ」が有効となる。
This embodiment aims to streamline the construction of earthquake-resistant walls by eliminating the need for circular saw processing in the cutting process, shortening construction time, and reducing costs. Instead of using one CLT panel as a quake-resistant wall, the CLT panel equivalent to one quake-resistant wall is prepared by separating it into two CLT panels, which are connected to the frame by steel plates. It is to make one sheet of earthquake-resistant wall by pasting two CLT panels on both sides.
Therefore, as a method of solving this problem at once, "two-sheet combination" that does not require slit construction is effective.

以下にその耐震壁の施工順序に沿って説明する。図1はCLT板10の正面図であり、図2~3は鋼板を介在させた耐震壁であり、図4は接合用鋼板の斜視図、図5~6は耐震壁を架構に取り付けた施工状態の図である。また、全体図を図7~8に示す。
まず、同寸法のCLT板10を2枚準備し、図1に示すように、各CLT板10に、同位置にドリフトピン12とボルト14の差込孔16を施工する。CLT板10は直交集成板(CrossLaminated Timber)であり、これを造ろうとする壁板のサイズに合わせて縦横寸法を決定しており、厚みは造ろうとする壁板のほぼ1/2に設定している。このCLT板10には、上(下)辺部の中央に位置する中央接合鋼板18と、上(下)辺部の両サイドに位置する一対の端部接合鋼板20、20が取り付け可能とされており、それぞれの鋼板18,20に開けた挿通孔22の内、鋼板18,20の埋込部分に相当する位置に設けた挿通孔22と同じ位置にドリフトピン12の差込孔16を穿孔している。
The construction order of the seismic wall will be described below. Fig. 1 is a front view of the CLT plate 10, Figs. 2 and 3 are the seismic wall with steel plates interposed, Fig. 4 is a perspective view of the joining steel plates, and Figs. Fig. 4 is a diagram of states; Also, an overall view is shown in FIGS. 7 and 8. FIG.
First, two CLT plates 10 of the same size are prepared, and as shown in FIG. The CLT plate 10 is a cross-laminated timber, and its vertical and horizontal dimensions are determined according to the size of the wall plate to be manufactured, and the thickness is set to approximately 1/2 of the wall plate to be manufactured. there is A center joining steel plate 18 located in the center of the upper (lower) side and a pair of end joining steel plates 20, 20 located on both sides of the upper (lower) side can be attached to the CLT plate 10. Among the insertion holes 22 formed in the steel plates 18 and 20, the insertion holes 16 for the drift pins 12 are drilled at the same positions as the insertion holes 22 provided at positions corresponding to the embedded portions of the steel plates 18 and 20. is doing.

図4および図5~6に示されるように、端部接合鋼板20は矩形鋼板とされ、CLT板10の上辺部から短辺部を突出させ、長辺部をCLT板10の側縁に沿わせて配置される。また、中央接合鋼板18は矩形板辺の下部コーナ部を斜めにカットした逆山型形状とされ、いわば逆切り妻風の形状となっており、山型部をCLT板10内に埋め込み、上部の矩形部をCLT板10の上辺部から突出させるように配置される。両鋼板18、20のCLT板の上(下)辺からの突出部は同じ高さとなっており、厚さは共通である。 As shown in FIGS. 4 and 5 to 6, the end-bonded steel plate 20 is a rectangular steel plate having short sides protruding from the upper side of the CLT plate 10 and long sides along the side edges of the CLT plate 10. placed together. The central joint steel plate 18 has an inverted mountain shape obtained by obliquely cutting the lower corners of the sides of the rectangular plate, so to speak, in the shape of an inverted gable. is arranged so that the rectangular portion of the CLT plate 10 protrudes from the upper side portion of the CLT plate 10 . The protrusions from the upper (lower) side of the CLT plate of both steel plates 18 and 20 have the same height and the same thickness.

次に、CLT板10の2枚の間に位置を合わせて挿通孔22をあけた鋼板18,20を挟み、ドリフトピン12とボルト14を施工する。一方のCLT板10を下に敷き、次に中央接合鋼板18を中央部に配置し、端部接合鋼板20を両サイドに配置し、その上面に再度CLT板10を重ね合わせ、それらの差込孔16、挿通孔22、差込孔16の順にドリフトピン12を差し込み、更に一部の差込孔16と挿通孔22を利用して、ボルト14を差し込んで止め板24を介してナット26で止める。これにより、分離されているCLT板10は一体的に結合され、耐震壁28が形成される。なお、ボルト14の目的は、壁組立後の一体性保持とともに、端部接合鋼板20に圧縮力が作用した際の座屈補剛であり、ダウェル作用によるせん断力伝達ではないので、端部接合鋼板20のボルト用孔は、ボルト径に対し10mmほど大きく空けている。 Next, the positions of the two CLT plates 10 are aligned, and the steel plates 18 and 20 having the insertion holes 22 are sandwiched between them, and the drift pins 12 and the bolts 14 are installed. Place one CLT plate 10 on the bottom, then place the center joining steel plate 18 in the center, place the end joining steel plates 20 on both sides, overlap the CLT plate 10 again on the upper surface, and insert them. The drift pin 12 is inserted into the hole 16, the insertion hole 22, and the insertion hole 16 in this order. stop. As a result, the separated CLT plates 10 are integrally joined to form the seismic wall 28 . The purpose of the bolts 14 is to maintain integrity after wall assembly and to stiffen buckling when compressive force acts on the steel plates 20 to be joined at the ends. The bolt holes in the steel plate 20 are made about 10 mm larger than the bolt diameter.

このようにして工場で製作された耐震壁28は、現場に搬入され、建屋の梁30の上下に設けられた壁空間に配置して当該梁30が取り付けられる。いま、上部の梁30に取り付けることを例として説明する。上梁30はH型鋼からなり、そのフランジ32の下面にはボルトによりウェブ34の中心延長線となる位置を挟んで一対のL字型接合金物36が下向きに設置するよう固定されている。この一対のL字型接合金物36の幅寸法は各接合鋼板18、20の幅寸法の大きさに準じている。そして、耐震壁28は、これら中央接合鋼板18、端部接合鋼板20を介してボルト38によりL字型接合金物36に取り付けられ、図5~6のごとく取り付けられる。これは上梁30の片側フランジ32面に列状に一方のL字型接合金物36を配置しておき、これに耐震壁28を建て込み、その後、他方のL字型接合金物36を接合鋼板18、20に沿って配置し、ボルト締めを行って上梁30のフランジ32にボルト38によりセットし、架構40に組み入れることにより行われる。 The earthquake-resisting wall 28 manufactured in the factory in this manner is brought to the site, placed in wall spaces provided above and below the beams 30 of the building, and the beams 30 are attached. Now, the case of attaching to the upper beam 30 will be described as an example. The upper beam 30 is made of H-shaped steel, and a pair of L-shaped joint metal fittings 36 are fixed to the lower surface of the flange 32 by bolts so as to be installed downward across the center extension line of the web 34 . The width dimension of the pair of L-shaped joining metal fittings 36 conforms to the width dimension of each of the joining steel plates 18 and 20 . The seismic wall 28 is attached to the L-shaped joint hardware 36 with bolts 38 through the central joint steel plate 18 and the end joint steel plates 20, as shown in FIGS. This is done by arranging one L-shaped joining metal fitting 36 in a row on one side flange 32 of the upper beam 30, erecting a seismic wall 28 thereon, and then joining the other L-shaped joining metal fitting 36 to the steel plate. 18 and 20 , bolted, set to the flange 32 of the upper beam 30 with bolts 38 , and incorporated into the frame 40 .

なお、耐震壁28が、CLT板10が1枚の場合に比べて、同厚で2枚に分けるとなると1枚のCLT板10だと薄くなり、上下方向の軸力に対して座屈し易くなる場合は、図7~8に示したように、フィラープレート(補剛板)42を挟みボルト44により中央を綴ることでその対策とする。ボルト44部分は座彫り46を設け、埋木48を介在させるようにすればよい。 When the seismic wall 28 is divided into two pieces with the same thickness as compared to the case where the CLT plate 10 is one, the one CLT plate 10 becomes thinner and easily buckles against the axial force in the vertical direction. In such a case, as shown in FIGS. 7 and 8, a filler plate (stiffening plate) 42 is sandwiched at the center with a sandwich bolt 44 as a countermeasure. The bolt 44 portion may be provided with a recess 46 and an embedded wood 48 may be interposed.

なお、CLT板10を接合する際、どうしても接合鋼板18の隙間が空いてしまうが、必要であれば2枚の隙間に断熱材や吸音材および配線・配管等を仕込むことも可能である。挟み込む物の寸法が鋼板厚よりも大きい場合は、寸法確保用フィラープレート(一般部:構造用合板,接合鋼板部:鋼板)を入れて調整も可能である。 When the CLT plates 10 are joined together, there will inevitably be a gap between the joining steel plates 18, but if necessary, it is possible to fill the gap between the two plates with a heat insulating material, a sound absorbing material, wiring, piping, and the like. If the size of the object to be sandwiched is larger than the thickness of the steel plate, it is possible to insert a filler plate (general part: structural plywood, joining steel plate part: steel plate) for adjustment.

したがって、本実施形態によれば、以下の効果が期待できる。
まず、加工コストの低減である。従来は接合鋼板が入るスリットを複数回に亘って加工しなくてはならなかったが、本発明によれば、単にCLT板10を、接合鋼板18、20を挟んで重ね、ドリフトピン12を打ち込むだけでよいためスリット加工等が省略できる。また、これに要する加工時間も短縮できる。
Therefore, according to this embodiment, the following effects can be expected.
First, it reduces the processing cost. Conventionally, slits into which the joined steel plates are inserted must be processed multiple times, but according to the present invention, the CLT plates 10 are simply stacked with the joined steel plates 18 and 20 sandwiched therebetween, and the drift pins 12 are driven. Since only one step is required, slitting and the like can be omitted. Moreover, the processing time required for this can be shortened.

また、廃材(切り屑)が減り、歩留まりが向上し、資源有効利用することができる。更に、CLT板の間のスペースへの断熱や吸音の仕組の挿入が可能であり、また、パネル間の配線が可能となるメリットがある。 In addition, waste materials (chips) are reduced, the yield is improved, and resources can be effectively used. Furthermore, it is possible to insert a mechanism for heat insulation and sound absorption into the space between the CLT plates, and there is an advantage that wiring between panels is possible.

更に、本実施形態のごとく、2枚合わせの他、3枚合わせなど、理論的には何枚でも重ねられて高耐力化しやすい。製作面でも枚数が多くなれば、1枚板に比べてスリット加工時間増加となってコストアップ要因にもなることから、本実施形態の合理性は明らかである。 Furthermore, as in the present embodiment, in addition to two-layer stacking, it is theoretically possible to stack any number of layers, such as three-layer stacking, to easily increase yield strength. In terms of manufacturing, if the number of plates increases, the slit processing time will increase compared to a single plate, which will lead to an increase in cost, so the rationality of this embodiment is clear.

耐震壁の施工に応用可能である。 It can be applied to the construction of seismic walls.

10……CLT板、12……ドリフトピン、14……ボルト、16……差込孔、18……中央接合鋼板、20……端部接合鋼板、22……挿通孔、24……止め板、26……ナット、28……耐震壁、30……上梁、32……フランジ、34……ウェブ、36……L字型接合金物、38……ボルト、40……架構、42……フィラープレート、44……ボルト、46……座彫り、48……埋木。 10...CLT plate, 12...Drift pin, 14...Bolt, 16...Insertion hole, 18...Center joining steel plate, 20...End joining steel plate, 22...Insertion hole, 24...Stopping plate , 26... Nut, 28... Seismic wall, 30... Upper beam, 32... Flange, 34... Web, 36... L-shaped joint metal, 38... Bolt, 40... Frame, 42... Filler plate, 44--bolt, 46--seat carving, 48--filling wood.

Claims (4)

面外方向に重ねられた複数のCLT板で構成される木質耐震壁の構築方法であって、
これらCLT板の接合鋼板取付位置に少なくともドリフトピンの差込孔を開け、
当該CLT板の間に前記差込孔と位置を合わせて挿通孔をあけた接合鋼板を挟み、
前記ドリフトピンを前記差込孔に挿入することにより前記接合鋼板を間に挟み込んだ木質耐震壁を形成し、
梁又は柱に取り付けた接合金物と前記接合鋼板とを連結することで前記耐震壁を建て込むことを特徴とする木質耐震壁の構築方法。
A method for constructing a wooden shear wall composed of a plurality of CLT plates stacked in an out-of-plane direction,
At least a drift pin insertion hole is opened at the joining position of the CLT plate,
A bonded steel plate having an insertion hole aligned with the insertion hole is sandwiched between the CLT plates,
forming a wooden earthquake-resistant wall with the joining steel plate sandwiched therebetween by inserting the drift pin into the insertion hole;
A method for constructing a wooden earthquake-resistant wall, wherein the earthquake-resistant wall is erected by connecting joining metal fittings attached to beams or columns to the joining steel plate.
前記接合鋼板の肉厚に相当する隙間にフィラープレートを介在させ、該フィラープレートと共に前記CLT板を貫通するボルトで前記木質耐震壁を一体化することを特徴とする請求項1に記載の木質耐震壁の構築方法。 2. The wooden earthquake-resistant wall according to claim 1, wherein a filler plate is interposed in a gap corresponding to the thickness of said joined steel plates, and said wooden earthquake-resistant wall is integrated with said filler plate by bolts penetrating said CLT plate together with said filler plate. How to build walls. 面外方向に重ねられた複数のCLT板で接合鋼板を挟み込みドリフトピンにより結合して一体化してなる木質耐震壁であって、
前記接合鋼板を挟むCLT板の間には前記接合鋼板の肉厚に相当する隙間が形成されていることを特徴とする木質耐震壁。
A wooden earthquake-resisting wall formed by sandwiching a joint steel plate with a plurality of CLT plates stacked in the out-of-plane direction and connecting and integrating them with a drift pin,
A wooden earthquake-resisting wall characterized in that a gap corresponding to the thickness of said joined steel plates is formed between CLT plates sandwiching said joined steel plates.
前記隙間に補剛板を備え、CLT板と補剛板を貫通する結合ボルトで締結固定されていることを特徴とする請求項3に記載の木質耐震壁。 4. The wooden earthquake-resisting wall according to claim 3, wherein a stiffening plate is provided in the gap, and the CLT plate and the stiffening plate are fastened and fixed by connecting bolts passing through the stiffening plate.
JP2021044875A 2021-03-18 2021-03-18 Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall Pending JP2022144037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044875A JP2022144037A (en) 2021-03-18 2021-03-18 Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044875A JP2022144037A (en) 2021-03-18 2021-03-18 Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall

Publications (1)

Publication Number Publication Date
JP2022144037A true JP2022144037A (en) 2022-10-03

Family

ID=83454504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044875A Pending JP2022144037A (en) 2021-03-18 2021-03-18 Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall

Country Status (1)

Country Link
JP (1) JP2022144037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281725B1 (en) * 2023-03-25 2023-05-26 倉沢建設株式会社 bearing walls and buildings
DE102023121328A1 (en) 2022-09-09 2024-03-14 Shimano Inc. CONTROL DEVICE FOR A MUSCLE POWER VEHICLE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023121328A1 (en) 2022-09-09 2024-03-14 Shimano Inc. CONTROL DEVICE FOR A MUSCLE POWER VEHICLE
JP7281725B1 (en) * 2023-03-25 2023-05-26 倉沢建設株式会社 bearing walls and buildings

Similar Documents

Publication Publication Date Title
JP6202465B2 (en) Joint structure of wood members
JP2022144037A (en) Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall
JP2020183701A (en) Buckling restraint brace
JP4710067B2 (en) Beam-column joint structure
JP2009228257A (en) Earthquake resisting wall
JP2017110402A (en) Buckling stiffening brace
JP7059788B2 (en) Wood structure
JP6745371B1 (en) Buckling restraint brace
JP2019065482A (en) Wooden bearing wall
JP6241097B2 (en) Wood structure member, joining structure of wood structure member and construction method thereof
JP7175694B2 (en) buckling restraint brace
JP2021050507A (en) Buckling restraint brace
JP7201149B2 (en) Horizontal member reinforcement structure
WO2018074487A1 (en) Restraining fitting and method for restraining structure skeleton
JP7304306B2 (en) Seismic wall
JP2020143502A (en) Bearing wall
WO2018074488A1 (en) Reinforcement hardware and reinforcement method for wooden construction member
JP7263958B2 (en) Column-beam connection structure and column-beam connection method
JP2024036886A (en) wooden shear wall
JP4334742B2 (en) Method for manufacturing wooden beams and building members such as wooden beams and columns
JP7283696B2 (en) buckling restraint brace
JP7254590B2 (en) damping wall
JP2023176674A (en) steel damper
JP4178157B2 (en) Beam-column joint structure
JP6931558B2 (en) Roof frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240313