JP7304306B2 - Seismic wall - Google Patents

Seismic wall Download PDF

Info

Publication number
JP7304306B2
JP7304306B2 JP2020047061A JP2020047061A JP7304306B2 JP 7304306 B2 JP7304306 B2 JP 7304306B2 JP 2020047061 A JP2020047061 A JP 2020047061A JP 2020047061 A JP2020047061 A JP 2020047061A JP 7304306 B2 JP7304306 B2 JP 7304306B2
Authority
JP
Japan
Prior art keywords
wooden
wall
boards
wall portion
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020047061A
Other languages
Japanese (ja)
Other versions
JP2021147816A (en
Inventor
弘之 成原
仁彦 森田
聡 安田
智明 相馬
圭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2020047061A priority Critical patent/JP7304306B2/en
Publication of JP2021147816A publication Critical patent/JP2021147816A/en
Application granted granted Critical
Publication of JP7304306B2 publication Critical patent/JP7304306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、柱梁架構の構面内に設けられる耐震壁に関する。 TECHNICAL FIELD The present invention relates to a seismic wall provided in a structure plane of a column-beam frame.

従来より、柱梁架構の構面内に、木質系の材料を用いた耐震壁を設ける場合がある(特許文献1、2参照)。
特許文献1には、鉄筋コンクリート製の架構内に木質壁が設置された耐震構造が示されている。木質壁は、壁側凹部および壁側凸部が架構側凸部および架構側凹部に係合することで、架構に接合されている。
特許文献2には、パネル枠体と、このパネル枠体に取り付けられたパネル体と、パネル体との間に隙間を空けてパネル枠体に取り付けられた壁面パネルと、を備える壁面パネルが示されている。パネル体は、間伐材を用いた多数のパネル板材をそれぞれ高さ方向に対して傾けた状態で組み合わせたものである。
Conventionally, earthquake-resistant walls made of wood-based materials have been provided in structural planes of beam-column structures (see Patent Documents 1 and 2).
Patent Literature 1 discloses an earthquake-resistant structure in which a wooden wall is installed in a frame made of reinforced concrete. The wooden wall is joined to the frame by engaging the wall-side concave portion and the wall-side convex portion with the frame-side convex portion and the frame-side concave portion.
Patent Document 2 shows a wall panel comprising a panel frame, a panel body attached to the panel frame, and a wall panel attached to the panel frame with a gap between the panel body and the panel body. It is The panel body is a combination of a large number of panel plates made of thinned wood, each of which is tilted with respect to the height direction.

特開2016-216899号公報JP 2016-216899 A 特開2010-106644号公報JP 2010-106644 A

本発明は、木質系の材料を用いて耐震性能の優れた耐震壁を提供することを課題とする。 An object of the present invention is to provide a quake-resistant wall that uses wood-based materials and has excellent quake-resistant performance.

本発明者らは、柱梁架構の構面内に設ける耐震壁として、柱梁架構の構面内に斜め方向に延びる木質板(集成材や製材)を複数並べて設置するとともに、これら木質板を複数層重ねて配置し、各層の木質板同士を互いに交差する方向に延びるように設置することで、地震時の水平力に木質板が十分に抵抗し、優れた耐震性能を発揮できる点に着目して、本発明に至った。
第1の発明の耐震壁(例えば、後述の耐震壁1、1A、1B、1C)は、柱梁架構(例えば、後述の柱梁架構10)の構面内に設けられる耐震壁であって、長さ方向を繊維方向とする木質板(例えば、後述の木質板21A、21B、ラミナ21C、21D)が複数並んで配置されて形成された木質壁部(例えば、後述の木質壁部20)と、前記木質壁部の周囲と前記柱梁架構との隙間を前記木質板よりも高強度の充填材で閉塞して形成された閉塞部(例えば、後述の閉塞部30)と、を備え、前記木質板の角度は、前記柱梁架構の対角線の角度から水平に対して略45°までの範囲であることを特徴とする。
The present inventors arranged and installed a plurality of wooden boards (laminated lumber or sawn lumber) extending diagonally in the structural plane of the beam-column structure as a seismic wall provided in the structural plane of the beam-column structure, and installed these wooden boards. By stacking multiple layers and installing the wooden boards in each layer so that they extend in mutually intersecting directions, the wooden boards can sufficiently resist the horizontal force during an earthquake and exhibit excellent earthquake resistance performance. As a result, the inventors arrived at the present invention.
The earthquake-resistant walls of the first invention (for example, earthquake-resistant walls 1, 1A, 1B, and 1C described later) are earthquake-resistant walls provided within the structural plane of the beam-column frame (for example, the beam-column frame 10 described later), A wooden wall portion (for example, a wooden wall portion 20 to be described later) formed by arranging a plurality of wooden plates (for example, wooden plates 21A and 21B and laminae 21C and 21D to be described later) whose fiber direction is the longitudinal direction. a closing portion (for example, a closing portion 30 described later) formed by closing a gap between the periphery of the wooden wall portion and the beam-beam frame with a filler having a strength higher than that of the wooden board; The angle of the wooden board is characterized in that it ranges from the angle of the diagonal line of the beam-column frame to approximately 45° with respect to the horizontal.

木質材とは、長さ方向を繊維方向とする板材であり、木を繊維方向に切り出したひき板や、このひき板を繊維方向が平行になるように重ねて接着した集成材がある。
木材は、異方性材料であり、針葉樹(例えばスギ)の繊維方向、半径方向、接線方向のヤング係数は、概ね100:10:5である。したがって、繊維方向に直応力が作用するように使用するのが合理的である。また、板目面内のせん断弾性係数は、繊維方向のヤング率の約1/15であり、板目面内のせん断強度は、繊維方向の圧縮強度の約1/10であるため、板目面内方向にせん断力が作用するように使用することは、力学的に合理的ではない。
A wood material is a plate material whose fiber direction is the longitudinal direction, and includes sawn boards cut from wood in the fiber direction, and laminated lumber obtained by stacking and bonding these sawn boards so that the fiber direction is parallel.
Wood is an anisotropic material, and the Young's moduli in the fiber direction, radial direction, and tangential direction of softwood (eg, cedar) are approximately 100:10:5. Therefore, it is rational to use it so that the normal stress acts in the fiber direction. In addition, the shear elastic modulus in the cross grain plane is about 1/15 of the Young's modulus in the fiber direction, and the shear strength in the cross grain plane is about 1/10 of the compressive strength in the fiber direction. It is not mechanically rational to use it so that the shear force acts in the in-plane direction.

そこで、この発明によれば、木質板の長さ方向を繊維方向とし、この木質板の角度を柱梁架構の対角線の角度から水平に対して45°までの範囲とした。地震などにより柱梁架構に水平方向の外荷重が加わると、柱梁架構の構面内には、対角線方向に引張力あるいは圧縮力が作用する。上述のように、木質板は繊維方向のヤング率および強度が高いため、この引張力あるいは圧縮力に対して、木質板が十分に抵抗し、優れた耐震性能を発揮できる。 Therefore, according to the present invention, the length direction of the wooden board is set as the fiber direction, and the angle of the wooden board is set within a range from the angle of the diagonal line of the column-beam frame to 45° with respect to the horizontal. When a horizontal external load is applied to the column-beam frame due to an earthquake or the like, a tensile force or a compressive force acts diagonally within the structural plane of the column-beam frame. As described above, since the wooden board has a high Young's modulus and strength in the fiber direction, the wooden board can sufficiently resist this tensile or compressive force and exhibit excellent earthquake resistance performance.

第2の発明の耐震壁は、前記木質板は、複数層重ねて配置され、各層の木質板同士は、互いに交差する方向に延びており、接着剤、ボルト(例えば、後述のボルト22)、ビス、ダボのうち少なくとも1つを用いて、所定間隔おきに互いに固定されていることを特徴とする。 In the earthquake-resistant wall of the second invention, the wooden boards are arranged in a plurality of layers, and the wooden boards in each layer extend in directions that intersect with each other. They are fixed to each other at predetermined intervals using at least one of screws and dowels.

この発明によれば、木質板を複数層重ねて、各層の木質板同士が互いに交差する方向に延びるように配置した。よって、柱梁架構に水平方向の外荷重が加わって、所定層の木質板が圧縮力を負担する場合には、残りの層の木質板が引張力を負担する。あるいは、所定層の木質板が引張力を負担する場合には、残りの層の木質板が圧縮力を負担する。よって、柱梁架構に水平方向にどちら向きの外荷重が加わっても、木質板が十分に抵抗する。
また、各層の互いに交差する方向に延びる木質板同士を、接着剤、ボルト、ビス、ダボのうち少なくとも1つを用いて、所定間隔おきに互いに固定した。上述のように、柱梁架構に水平方向の外荷重が加わって、所定層の木質板が圧縮力を負担している場合、残りの層の木質板が引張力を負担することになるので、引張力を負担する木質板が、圧縮力を負担する木質板の面外座屈を補剛することになり、圧縮力を負担する木質板の面外座屈を防止できる。また、このとき、圧縮力を負担する木質板の座屈長さは、引張力を負担する木質板に固定される間隔となる。
According to this invention, a plurality of layers of wood boards are stacked and arranged so that the wood boards of each layer extend in directions intersecting each other. Therefore, when a horizontal external load is applied to the column-beam frame and the wooden boards of a predetermined layer bear the compressive force, the wooden boards of the remaining layers bear the tensile force. Alternatively, if a given layer of wooden boards bears the tensile force, the rest of the wooden boards bears the compressive force. Therefore, even if an external load is applied to the column-beam frame in either direction in the horizontal direction, the wooden board will sufficiently resist it.
Also, wooden boards extending in directions intersecting each other in each layer were fixed to each other at predetermined intervals using at least one of an adhesive, bolts, screws, and dowels. As described above, when a horizontal external load is applied to the column-beam frame and the wooden boards in a given layer bear the compressive force, the wooden boards in the remaining layers bear the tensile force. The wooden board that bears the tensile force stiffens the out-of-plane buckling of the wooden board that bears the compressive force, thereby preventing the out-of-plane buckling of the wooden board that bears the compressive force. Also, at this time, the buckling length of the wooden board bearing the compressive force is the interval fixed to the wooden board bearing the tensile force.

第3の発明の耐震壁は、前記木質壁部の側面に沿って設けられた鉄筋コンクリート壁部をさらに備えることを特徴とする。
この発明によれば、木質壁部の側面に沿って鉄筋コンクリート壁部を設けたので、鉄筋コンクリート壁部の強度に木質壁部の強度が累加されるから、木質壁部を既存の鉄筋コンクリート耐震壁の補強構造として利用可能となる。
A quake-resistant wall according to a third aspect of the invention is characterized by further comprising a reinforced concrete wall provided along a side surface of the wooden wall.
According to this invention, since the reinforced concrete wall portion is provided along the side surface of the wooden wall portion, the strength of the wooden wall portion is added to the strength of the reinforced concrete wall portion. available as a structure.

本発明によれば、木質系の材料を用いて耐震性能の優れた耐震壁を提供できる。 According to the present invention, it is possible to provide a quake-resistant wall with excellent quake-resistant performance using wood-based materials.

本発明の第1実施形態に係る耐震壁の正面図および断面図である。1A and 1B are a front view and a cross-sectional view of a seismic wall according to a first embodiment of the present invention; FIG. 本発明の第2実施形態に係る耐震壁の正面図である。It is a front view of the earthquake-resistant wall which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る耐震壁の縦断面図である。It is a longitudinal cross-sectional view of a seismic wall according to a third embodiment of the present invention. 本発明の第4実施形態に係る耐震壁の正面図である。It is a front view of a seismic wall according to a fourth embodiment of the present invention. 耐震壁を構成するCLTの板取りの一例を示す図である。FIG. 3 is a diagram showing an example of cutting of CLTs that constitute a seismic wall. 本発明の変形例に係る耐震壁の正面図である。It is a front view of the earthquake-resistant wall which concerns on the modification of this invention.

本発明は、柱梁架構の構面内に対角線方向を含む斜め方向に延びる木質板を複数並べて形成した耐震壁である。第1実施形態は、ひき板または集成材からなる木質板を複数並行に配置して木質壁部を形成したものである。第2実施形態は、木質壁部の外周部が閉塞部内に凹凸状に入り込んだものである。第3実施形態は、木質壁部の側面に鉄筋コンクリート壁部を設けたものである。第4実施形態は、木質壁部をCLTで形成したものである。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1(a)は、本発明の第1実施形態に係る耐震壁1の正面図であり、図1(b)は、図1(a)のA-A断面図である。
耐震壁1は、矩形枠状の柱梁架構10の構面内に設けられている。この耐震壁1は、矩形状の木質壁部20と、木質壁部20の周囲と柱梁架構10との隙間を閉塞して形成された矩形枠状の閉塞部30と、を備える。
柱梁架構10は、一対の鉄筋コンクリート柱11と、これら鉄筋コンクリート柱11同士を連結する鉄筋コンクリート梁12と、を備える。
The present invention is a quake-resisting wall formed by arranging a plurality of wooden boards extending in oblique directions including diagonal directions within a structure plane of a column-beam frame. In the first embodiment, a wooden wall portion is formed by arranging a plurality of wooden boards made of sawn boards or laminated lumber in parallel. In the second embodiment, the outer peripheral portion of the wooden wall portion is recessed into the closed portion in an uneven manner. 3rd Embodiment provides a reinforced concrete wall part in the side surface of a wooden wall part. In the fourth embodiment, the wooden wall is made of CLT.
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. In the following description of the embodiments, the same components are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
[First embodiment]
FIG. 1(a) is a front view of a seismic wall 1 according to the first embodiment of the present invention, and FIG. 1(b) is a cross-sectional view taken along line AA of FIG. 1(a).
The quake-resistant wall 1 is provided within the construction plane of the column-beam frame 10 in the shape of a rectangular frame. The earthquake-resistant wall 1 includes a rectangular wooden wall portion 20 and a rectangular frame-like closed portion 30 formed by closing a gap between the periphery of the wooden wall portion 20 and the beam-column structure 10 .
The beam-column structure 10 includes a pair of reinforced concrete columns 11 and reinforced concrete beams 12 connecting the reinforced concrete columns 11 together.

木質壁部20は、第1層20Aと、この第1層20Aに重ねて配置された第2層20Bと、を備える。
第1層20Aは、水平に対して所定角度αで延びる木質板21Aを複数並べて形成されている。第2層20Bは、水平に対して所定角度βで延びる木質板21B(図1(a)中破線で示す)を複数並べて形成されている。具体的には、木質板21Aの長さ方向の角度αは、図1(a)中右下と左上とを結ぶ対角線の角度であり、ここでは、水平に対して略30°である。木質板21Bの長さ方向の角度βは、図1(a)中左下と右上とを結ぶ対角線の角度であり、ここでは、水平に対して略30°である。これら木質板21A、21Bは、互いに交差する方向に延びている。
木質板21A、21Bは、長さ方向を繊維方向とする板材であり、木を繊維方向に切り出したひき板、あるいは、ひき板を繊維方向が平行になるように重ねて接着した集成材である。
第1層20Aの木質板21Aと第2層20Bの木質板21Bとは、所定間隔おきにボルト22で互いに固定されている。なお、これに限らず、木質板21Aと木質板21Bとを、接着剤、ビス、ダボのいずれかを用いて互いに固定してもよいし、接着剤、ボルト、ビス、ダボのうち2種類以上を用いて互いに固定してもよい。
木質板21A、21Bの幅寸法Wは、例えば400mmである。また、各木質板21A、21Bの両端部は、柱梁架構10に略平行となるように切断加工されており、閉塞部30の木質壁部20側の面は平滑な平面となっている。
The wooden wall portion 20 includes a first layer 20A and a second layer 20B overlaid on the first layer 20A.
The first layer 20A is formed by arranging a plurality of wooden boards 21A extending at a predetermined angle α with respect to the horizontal. The second layer 20B is formed by arranging a plurality of wooden boards 21B (indicated by broken lines in FIG. 1(a)) extending at a predetermined angle β with respect to the horizontal. Specifically, the angle α in the length direction of the wooden board 21A is the angle of the diagonal line connecting the lower right and upper left in FIG. The angle β in the longitudinal direction of the wooden board 21B is the angle of the diagonal line connecting the lower left and upper right in FIG. These wooden boards 21A and 21B extend in mutually intersecting directions.
The wooden boards 21A and 21B are board materials whose fiber direction is the longitudinal direction, and are sawn boards obtained by cutting wood in the fiber direction, or laminated lumber obtained by stacking sawn boards so that the fiber directions are parallel to each other. .
The wooden board 21A of the first layer 20A and the wooden board 21B of the second layer 20B are fixed to each other with bolts 22 at predetermined intervals. Note that the wood board 21A and the wood board 21B may be fixed to each other using any one of adhesives, screws, and dowels, or two or more of adhesives, bolts, screws, and dowels may be used. may be used to secure each other.
A width dimension W1 of the wooden boards 21A and 21B is, for example, 400 mm. Both ends of the wooden boards 21A and 21B are cut so as to be substantially parallel to the beam-column frame 10, and the surface of the blocking part 30 on the side of the wooden wall 20 is a smooth plane.

閉塞部30は、木質板21A、21Bよりも高強度の充填材を充填して形成されている。この充填材としては、モルタル材やエポキシ樹脂が挙げられる。柱梁架構10の閉塞部30側の面には、所定間隔おきに二列でアンカー材13が打ち込まれており、これらアンカー材13を介して、閉塞部30が柱梁架構10に係止している。 The blocking part 30 is formed by filling a filler having a higher strength than the wooden boards 21A and 21B. Examples of this filler include mortar and epoxy resin. Anchor members 13 are driven in two rows at predetermined intervals on the surface of the column-beam frame 10 on the blocking portion 30 side. ing.

〔せん断剛性とせん断耐力の検証〕
以下、従来の耐震壁および本願発明の耐震壁について、せん断剛性およびせん断耐力を求めて比較した。
従来の耐震壁は、例えばCLTを用いて木質板の延出方向(繊維方向)を縦横方向とする。これに対し、本願発明の耐震壁は、例えばCLTを用いて木質板の角度(繊維方向)を水平に対して略45°とする。CLTとは、後述のように、ひき板である木質板としてのラミナを、繊維方向が直交するように複数層重ねて接着したものである。
従来の耐震壁では、繊維方向が縦横方向となるため、せん断に対して全断面有効とし、本願発明の耐震壁では、繊維方向が水平に対して略45°方向となるため、繊維方向に直応力が作用するラミナのみを有効とし、せん断に対して全断面の1/2を有効とする。また、柱梁架構を剛体とし、節点はピン接合とする。すなわち、柱梁架構は地震力を負担せず、耐震壁の反力のみ負担するものとする。
[Verification of shear rigidity and shear strength]
Below, the shear rigidity and shear strength of the conventional earthquake-resistant wall and the earthquake-resistant wall of the present invention were determined and compared.
Conventional earthquake-resisting walls use CLT, for example, and set the extending direction (fiber direction) of wooden boards as the vertical and horizontal directions. On the other hand, in the earthquake-resistant wall of the present invention, for example, CLT is used so that the angle (fiber direction) of the wooden board is approximately 45° with respect to the horizontal. As will be described later, CLT is obtained by laminating and bonding a plurality of layers of lamina as a wooden board, which is a sawn board, so that the fiber directions are perpendicular to each other.
In the conventional quake-resistant wall, the fiber direction is vertical and horizontal, so the entire cross section is effective against shearing. Only the lamina on which the stress acts is valid, and 1/2 of the total cross-section is valid for shear. In addition, the column-beam frame is a rigid body, and the nodes are pin joints. In other words, the beam-column structure does not bear the seismic force, but only the reaction force of the seismic wall.

まず、従来の耐震壁のせん断剛性Kは、以下の式(1)で表わされる。
=Q/Δ=(τ×t×W)/(γ×H)=Go×t×W/H
=Go×t=t・Eo/15 ・・・(1)
ここで、Qはせん断力、Δは水平変位、τはせん断応力度、γはせん断ひずみ度、tは壁厚、Wは壁幅,Hは壁高さである。
また、従来の耐震壁のせん断耐力Quは、以下の式(2)で表わされる。
Qu=Fs×t×W=0.1・Fo・t・W ・・・(2)
また、本願発明の耐震壁のせん断剛性Kは、以下の式(3)で表わされる。
=Q/Δ=(σ×t/2×W×sin45°)/(ε×H/sin45°)
=t・Eo/4
=15/4×K=3.75×K ・・・(3)
本願発明の耐震壁のせん断耐力Quは、以下の式(4)で表わされる。
Qu=Fo×t/2×W×sin45°=Fo×t/2×W×sin45°
=0.35・Fo・t・W
=3.5×Qu ・・・(4)
First, the shear stiffness K1 of a conventional seismic wall is expressed by the following equation (1).
K1 =Q/Δ=(τ×t×W)/(γ×H)=Go×t×W/H
=Go×t=t・Eo/15 (1)
where Q is shear force, Δ is horizontal displacement, τ is shear stress, γ is shear strain, t is wall thickness, W is wall width, and H is wall height.
Further, the shear strength Qu1 of the conventional seismic wall is expressed by the following equation (2).
Qu1 =Fs*t*W=0.1*Fo*t*W (2)
Moreover, the shear stiffness K2 of the earthquake-resistant wall of the present invention is expressed by the following equation (3).
K2 =Q/Δ=(σ×t/2×W×sin45°)/(ε×H/sin45°)
= t・Eo/4
= 15/4 x K1 = 3.75 x K1 (3)
The shear strength Qu2 of the earthquake-resistant wall of the present invention is expressed by the following equation (4).
Qu 2 = Fo x t/2 x W x sin45° = Fo x t/2 x W x sin45°
= 0.35·Fo·t·W
=3.5×Qu 1 (4)

以上のように,繊維方向が斜め45°方向となる本願発明の耐震壁は、繊維方向が縦横方向となる従来の耐震壁と比べて、せん断剛性が3.75倍、せん断耐力が3.5倍となる。これは、耐震壁の繊維方向を45°方向とすることにより、建物の耐震設計上必要な耐震壁の構面数を、従来と比べて1/3.5に削減できることを意味する。よって、建設工事のコストを低減できるうえに、建物の平面計画の自由度が増え、広い室内空間を確保することが可能となる。 As described above, the shear wall of the present invention, in which the fiber direction is diagonally 45°, has a shear rigidity of 3.75 times and a shear strength of 3.5 times compared to the conventional earthquake resistant wall, in which the fiber direction is in the vertical and horizontal directions. be doubled. This means that by setting the fiber direction of the earthquake-resistant wall at 45 degrees, the number of earthquake-resistant walls required for the earthquake-resistant design of the building can be reduced to 1/3.5 of the conventional number. Therefore, the cost of construction work can be reduced, the degree of freedom in the plan of the building is increased, and a large indoor space can be secured.

本実施形態によれば、以下のような効果がある。
(1)長さ方向を繊維方向とする木質板21A、21Bを対角線の角度α、βで複数並べた。地震などにより柱梁架構10に水平方向の外荷重(図1(a)中矢印で示す)が加わると、柱梁架構10の構面内には、対角線方向に引張力あるいは圧縮力が作用する。木質板21A、21Bは繊維方向のヤング率および強度が高いため、この引張力あるいは圧縮力に対して、木質板21A、21Bが十分に抵抗するから、優れた耐震性能を発揮できる。
According to this embodiment, there are the following effects.
(1) A plurality of wooden boards 21A and 21B whose length direction is the fiber direction are arranged at diagonal angles α and β. When a horizontal external load (indicated by the arrow in FIG. 1(a)) is applied to the beam-column frame 10 due to an earthquake or the like, a tensile force or a compressive force acts diagonally within the structure plane of the beam-column frame 10. . Since the wooden boards 21A and 21B have high Young's modulus and strength in the fiber direction, the wooden boards 21A and 21B can sufficiently resist this tensile force or compressive force, thereby exhibiting excellent earthquake resistance performance.

(2)木質板21A、21Bを2層重ねて、各層の木質板21A、21B同士が互いに交差する方向に延びるように配置した。よって、柱梁架構10に水平方向の外荷重が加わって、第1層20Aの木質板21Aが圧縮力を負担する場合、第2層20Bの木質板21Bが引張力を負担する。あるいは、第1層20Aの木質板21Aが引張力を負担する場合、第2層20Bの木質板21Bが圧縮力を負担する。よって、柱梁架構10に水平方向にどちら向きの外荷重が加わっても、木質板21Aまたは木質板21Bが十分に抵抗する。 (2) Two layers of the wooden boards 21A and 21B are stacked, and the wooden boards 21A and 21B of each layer are arranged so as to extend in directions intersecting each other. Therefore, when a horizontal external load is applied to the column-beam frame 10 and the wooden board 21A of the first layer 20A bears the compressive force, the wooden board 21B of the second layer 20B bears the tensile force. Alternatively, when the wooden board 21A of the first layer 20A bears the tensile force, the wooden board 21B of the second layer 20B bears the compressive force. Therefore, the wooden board 21A or the wooden board 21B sufficiently resists an external load applied to the column-beam frame 10 in either horizontal direction.

(3)第1層20Aおよび第2層20Bの互いに交差する方向に延びる木質板21A、21B同士を、所定間隔おきに互いに固定した。柱梁架構10に水平方向の外荷重が加わって、第1層20Aの木質板21Aが圧縮力を負担している場合、第2層20Bの木質板21Bが引張力を負担することになるので、引張力を負担する木質板21Bが、圧縮力を負担する木質板21Aの面外座屈を補剛することになり、圧縮力を負担する木質板21Aの面外座屈を防止できる。また、このとき、圧縮力を負担する木質板21Aの座屈長さは、引張力を負担する木質板21Bに固定される間隔となる。 (3) The wooden boards 21A and 21B of the first layer 20A and the second layer 20B extending in directions intersecting each other are fixed to each other at predetermined intervals. When a horizontal external load is applied to the column-beam frame 10 and the wooden board 21A of the first layer 20A bears the compressive force, the wooden board 21B of the second layer 20B bears the tensile force. , the wooden board 21B bearing the tensile force stiffens the out-of-plane buckling of the wooden board 21A bearing the compressive force, thereby preventing the out-of-plane buckling of the wooden board 21A bearing the compressive force. Also, at this time, the buckling length of the wooden board 21A bearing the compressive force is the interval fixed to the wooden board 21B bearing the tensile force.

〔第2実施形態〕
図2は、本発明の第2実施形態に係る耐震壁1Aの正面図である。
本実施形態では、木質板21A、21Bの幅寸法Wが木質板21A、21Bの幅寸法Wよりも狭い点が、第1実施形態と異なる。
すなわち、本実施形態では、木質板21の幅寸法Wは、例えば200mmである。また、第1層20Aの木質板21Aと第2層20Bの木質板21Bとは、所定間隔おきに接着剤で互いに固定されている。また、各木質板21A、21Bの両端部は、柱梁架構10に略平行となるように切断加工されておらず、閉塞部30の木質壁部20側の面には、凹凸が形成されている。具体的には、本実施形態における木質板21A、21Bは、丸太を矩形板状に切断加工したものである。
本実施形態によれば、上述の(1)~(3)と同様の効果がある。
[Second embodiment]
FIG. 2 is a front view of a seismic wall 1A according to a second embodiment of the present invention.
This embodiment differs from the first embodiment in that the width dimension W2 of the wooden boards 21A and 21B is narrower than the width dimension W1 of the wooden boards 21A and 21B.
That is, in this embodiment, the width dimension W2 of the wooden board 21 is, for example, 200 mm. The wood board 21A of the first layer 20A and the wood board 21B of the second layer 20B are fixed to each other with an adhesive at predetermined intervals. Both ends of the wooden boards 21A and 21B are not cut so as to be substantially parallel to the beam-column frame 10, and the surface of the blocking part 30 on the side of the wooden wall part 20 is uneven. there is Specifically, the wooden boards 21A and 21B in this embodiment are obtained by cutting a log into a rectangular plate shape.
According to this embodiment, the same effects as (1) to (3) described above are obtained.

〔第3実施形態〕
図3は、本発明の第3実施形態に係る耐震壁1Bの縦断面図である。
本実施形態では、木質壁部20の一側面に沿って鉄筋コンクリート造の鉄筋コンクリート壁部40をさらに備える点が、第1実施形態と異なる。
本実施形態によれば、上述の(1)~(3)に加えて、以下のような効果がある。
(4)木質壁部20の一側面に沿って鉄筋コンクリート壁部40を設けたので、鉄筋コンクリート壁部40の強度に木質壁部20の強度が累加されるから、木質壁部20を既存の鉄筋コンクリート耐震壁の補強構造として利用可能となる。
[Third Embodiment]
FIG. 3 is a longitudinal sectional view of a seismic wall 1B according to a third embodiment of the present invention.
The present embodiment differs from the first embodiment in that a reinforced concrete wall 40 made of reinforced concrete is further provided along one side surface of the wooden wall 20 .
According to this embodiment, in addition to the above (1) to (3), there are the following effects.
(4) Since the reinforced concrete wall portion 40 is provided along one side of the wooden wall portion 20, the strength of the wooden wall portion 20 is added to the strength of the reinforced concrete wall portion 40, so that the wooden wall portion 20 can be replaced with the existing reinforced concrete earthquake-resistant structure. It can be used as a reinforcing structure for walls.

〔第4実施形態〕
図4は、本発明の第4実施形態に係る耐震壁1Cの正面図である。図5は、耐震壁1Cを構成するCLT50の板取りの一例を示す図である。
本実施形態では、耐震壁1Cの木質壁部20をCLT50で構成した点が、第1実施形態と異なる。
すなわち、図5に示すように、1枚の矩形状のCLT50を用意する。このCLT50は、ひき板である木質板としてのラミナ21C、21Dを、繊維方向が直交するようにn(nは自然数)層重ねて接着したものである。偶数層のラミナ21Cは、繊維方向が図5中水平方向となっているが、奇数層のラミナ21D(図5中破線で示す)は、偶数層のラミナ21Cと繊維方向が直交しているため、繊維方向が図5中上下方向となっている。
[Fourth Embodiment]
FIG. 4 is a front view of a seismic wall 1C according to a fourth embodiment of the present invention. FIG. 5 is a diagram showing an example of cutting of the CLT 50 that constitutes the seismic wall 1C.
This embodiment is different from the first embodiment in that the wooden wall portion 20 of the earthquake-resistant wall 1C is made of CLT 50 .
That is, as shown in FIG. 5, one rectangular CLT 50 is prepared. The CLT 50 is obtained by stacking n (n is a natural number) layers and bonding laminas 21C and 21D as wooden boards, which are sawn boards, so that the fiber directions are orthogonal to each other. The fiber direction of the even-numbered lamina 21C is horizontal in FIG. 5, but the odd-numbered lamina 21D (indicated by the dashed line in FIG. 5) has a fiber direction orthogonal to that of the even-numbered lamina 21C. , the fiber direction is the vertical direction in FIG.

このCLT50の板材を図5に示すように1番~6番までの6つの部材に切断し、これら6つの部材を図4に示すように木質壁部20に割り付ける。
すると、偶数層のラミナ21Cは、繊維方向が図4中右下と左上とを結ぶ方向(水平に対して略45°)に配置され、奇数層のラミナ21Dは、繊維方向が図4中左下と右上とを結ぶ方向(水平に対して略45°)に配置される。
本実施形態によれば、上述の(1)~(3)と同様の効果がある。
The plate material of this CLT 50 is cut into six members No. 1 to No. 6 as shown in FIG. 5, and these six members are allocated to the wooden wall portion 20 as shown in FIG.
Then, the fiber direction of the lamina 21C of the even-numbered layers is arranged in the direction connecting the lower right and the upper left in FIG. and upper right (approximately 45° to the horizontal).
According to this embodiment, the same effects as (1) to (3) described above are obtained.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述の第1~4形態では、木質壁部20の全面に亘って、一定方向に延びる木質板21A、21Bを並べたが、これに限らず、図6に示すように、木質壁部20の左側半分を、図6中左下と右上とを結ぶ対角線の角度で延びる木質板21Eを複数並べて形成し、木質壁部20の右側半分を、図6中右下と左上とを結ぶ対角線の角度で延びる木質板21Fを複数並べて形成してもよい。
また、上述の第1~3実施形態では、木質壁部20を2層の木質板21A、21Bで構成したが、これに限らず、木質壁部を1層の木質板のみで構成してもよいし、耐震壁に必要な耐力や剛性を確保するために、3層以上の木質板で構成してもよい。
また、上述の第3実施形態では、鉄筋コンクリート壁部40の一側面に木質壁部20を設けたが、これに限らず、鉄筋コンクリート壁部40の両側面に木質壁部を設けて一体化させてもよい。
また、上述の第1~3実施形態では、木質板21A、21Bを、柱梁架構10の対角線の角度α、βとしたが、これに限らず、第4実施形態に示すように、水平に対して略45°としてもよいし、角度α、βから略45°までの範囲であればよい。
It should be noted that the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
For example, in the above-described first to fourth embodiments, the wooden boards 21A and 21B extending in a certain direction are arranged over the entire surface of the wooden wall section 20. However, as shown in FIG. The left half of the wooden wall portion 20 is formed by arranging a plurality of wooden boards 21E extending at an angle of a diagonal line connecting the lower left and upper right in FIG. A plurality of wooden boards 21F extending at an angle may be arranged side by side.
In addition, in the first to third embodiments described above, the wooden wall portion 20 is composed of two layers of wooden boards 21A and 21B, but this is not limiting, and the wooden wall may be composed of only one layer of wooden boards. Alternatively, in order to ensure the strength and rigidity required for the earthquake-resistant wall, it may be composed of three or more layers of wooden boards.
In addition, in the above-described third embodiment, the wooden wall portion 20 is provided on one side surface of the reinforced concrete wall portion 40. However, the present invention is not limited to this. good too.
In addition, in the first to third embodiments described above, the wooden boards 21A and 21B are set to the diagonal angles α and β of the column-beam frame 10. However, they are not limited to this. On the other hand, it may be approximately 45°, or may be in the range from angles α and β to approximately 45°.

1、1A、1B、1C、1D…耐震壁
10…柱梁架構 11…鉄筋コンクリート柱 12…鉄筋コンクリート梁
13…アンカー材
20…木質壁部 20A…第1層 20B…第2層
21A…第1層の木質板 21B…第2層の木質板
21C…偶数層のラミナ(木質板) 21D…奇数層のラミナ(木質板)
21E…左側半分の木質板 21F…右側半分の木質板
22…ボルト 30…閉塞部 40…鉄筋コンクリート壁部 50…CLT
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C, 1D... Seismic wall 10... Beam-column structure 11... Reinforced concrete column 12... Reinforced concrete beam 13... Anchor material 20... Wooden wall part 20A... First layer 20B... Second layer 21A... First layer Wood board 21B... Second layer wood board 21C... Even layer lamina (wood board) 21D... Odd number layer lamina (wood board)
21E left half wood plate 21F right half wood plate 22 bolt 30 blocking part 40 reinforced concrete wall part 50 CLT

Claims (3)

柱梁架構の構面内に設けられる耐震壁であって、
長さ方向を繊維方向とする木質板が複数並んで形成された層を複数重ねて形成された木質壁部と、
前記木質壁部の周囲と前記柱梁架構との隙間を前記木質板よりも高強度の充填材で閉塞して形成された閉塞部と、を備え、
前記木質壁部の壁幅は、前記木質壁部の壁高さよりも大きく、
各層の前記木質板の角度は、前記柱梁架構の対角線の角度から水平に対して略45°までの範囲であり、
異なる層の前記木質板同士は、互いに交差する方向に延びることを特徴とする耐震壁。
A quake-resistant wall provided in the structural plane of the column-beam frame,
a wooden wall portion formed by stacking a plurality of layers formed by arranging a plurality of wooden boards with the longitudinal direction being the fiber direction;
a closing portion formed by closing a gap between the periphery of the wooden wall portion and the beam-column structure with a filler having a strength higher than that of the wooden board;
The wall width of the wooden wall portion is greater than the wall height of the wooden wall portion,
The angle of the wooden board of each layer ranges from the angle of the diagonal line of the beam-column frame to approximately 45° with respect to the horizontal,
A quake-resistant wall , wherein the wooden boards in different layers extend in mutually intersecting directions .
前記木質板の長さ方向の両端縁は、前記木質板の長さ方向に略直交しており、
前記木質壁部の外周面には、当該木質壁部を形成する前記木質板の端縁により凹凸が形成され、
各層の木質板同士は、接着剤、ボルト、ビス、ダボのうち少なくとも1つを用いて、所定間隔おきに互いに固定されていることを特徴とする請求項1に記載の耐震壁。
Both edges in the length direction of the wooden board are substantially orthogonal to the length direction of the wooden board,
Concavities and convexities are formed on the outer peripheral surface of the wooden wall portion by the edge of the wooden board forming the wooden wall portion,
2. The earthquake-resisting wall according to claim 1, wherein the wooden boards of each layer are fixed to each other at predetermined intervals using at least one of adhesives , bolts, screws, and dowels.
前記木質壁部の側面に沿って設けられた鉄筋コンクリート壁部をさらに備えることを特徴とする請求項1または2に記載の耐震壁。 The earthquake-resistant wall according to claim 1 or 2, further comprising a reinforced concrete wall section provided along the side surface of the wooden wall section.
JP2020047061A 2020-03-18 2020-03-18 Seismic wall Active JP7304306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047061A JP7304306B2 (en) 2020-03-18 2020-03-18 Seismic wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047061A JP7304306B2 (en) 2020-03-18 2020-03-18 Seismic wall

Publications (2)

Publication Number Publication Date
JP2021147816A JP2021147816A (en) 2021-09-27
JP7304306B2 true JP7304306B2 (en) 2023-07-06

Family

ID=77847823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047061A Active JP7304306B2 (en) 2020-03-18 2020-03-18 Seismic wall

Country Status (1)

Country Link
JP (1) JP7304306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128502B1 (en) * 2022-05-26 2022-08-31 国立大学法人京都大学 Seismic design method for RC frame with wooden walls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314083A (en) 2002-04-18 2003-11-06 Takenaka Komuten Co Ltd Wooden quake-resisting wall with deformation-absorbing layer
JP2006307607A (en) 2005-05-02 2006-11-09 Masao Masuda Woody wall body
JP2015040401A (en) 2013-08-21 2015-03-02 株式会社竹中工務店 Wall structure
JP2019065685A (en) 2017-10-04 2019-04-25 株式会社竹中工務店 building
JP2020153152A (en) 2019-03-20 2020-09-24 株式会社大林組 Bearing wall structure and construction method of bearing wall structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168722U (en) * 1984-04-17 1985-11-08 石原 茂久 panel structure material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314083A (en) 2002-04-18 2003-11-06 Takenaka Komuten Co Ltd Wooden quake-resisting wall with deformation-absorbing layer
JP2006307607A (en) 2005-05-02 2006-11-09 Masao Masuda Woody wall body
JP2015040401A (en) 2013-08-21 2015-03-02 株式会社竹中工務店 Wall structure
JP2019065685A (en) 2017-10-04 2019-04-25 株式会社竹中工務店 building
JP2020153152A (en) 2019-03-20 2020-09-24 株式会社大林組 Bearing wall structure and construction method of bearing wall structure

Also Published As

Publication number Publication date
JP2021147816A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP4901491B2 (en) Buckling restraint brace
JP7059788B2 (en) Wood structure
JP7379293B2 (en) buckling restraint brace
JP7304306B2 (en) Seismic wall
JP7175694B2 (en) buckling restraint brace
ES2976764T3 (en) Technical wood structural system
JP2023141075A (en) buckling restraint brace
JP2016216899A (en) Earthquake-proof wall structure
JP7365173B2 (en) buckling restraint brace
JP2022144037A (en) Construction method of ligneous earthquake resisting wall and ligneous earthquake resisting wall
JP7283696B2 (en) buckling restraint brace
JP6745371B1 (en) Buckling restraint brace
JP4945428B2 (en) Reinforced structure
JP7201149B2 (en) Horizontal member reinforcement structure
JP7561165B2 (en) Joint structure and method for constructing the joint structure
JP6230331B2 (en) Wooden earthquake resistant wall
JP7233153B2 (en) bearing wall
JP2023042166A (en) Buckling restraining brace
JP2022020037A (en) Earthquake-resistant wall
JP2021143529A (en) Buckle-restraint brace
JP7308339B2 (en) bearing wall
JP7254590B2 (en) damping wall
JP2024113779A (en) Wall structure made of wood materials
JP4334742B2 (en) Method for manufacturing wooden beams and building members such as wooden beams and columns
JP2024134462A (en) Wall structure made of wood materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7304306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150