JP2022141675A - 光散乱検出器及び光散乱検出器のための方法 - Google Patents

光散乱検出器及び光散乱検出器のための方法 Download PDF

Info

Publication number
JP2022141675A
JP2022141675A JP2022103518A JP2022103518A JP2022141675A JP 2022141675 A JP2022141675 A JP 2022141675A JP 2022103518 A JP2022103518 A JP 2022103518A JP 2022103518 A JP2022103518 A JP 2022103518A JP 2022141675 A JP2022141675 A JP 2022141675A
Authority
JP
Japan
Prior art keywords
angle
degrees
solution
particle
scattering intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022103518A
Other languages
English (en)
Other versions
JP7469685B2 (ja
Inventor
マックス ヘイニー
Haney Max
マイケル ピー. マーフィー
P Murphy Michael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M & J Scientific LLC
Original Assignee
M & J Scientific LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M & J Scientific LLC filed Critical M & J Scientific LLC
Priority to JP2022103518A priority Critical patent/JP7469685B2/ja
Publication of JP2022141675A publication Critical patent/JP2022141675A/ja
Application granted granted Critical
Publication of JP7469685B2 publication Critical patent/JP7469685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/03Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1022Measurement of deformation of individual particles by non-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • G01N2021/513Cuvettes for scattering measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

【課題】光散乱検出器を使用して溶液内粒子の回転半径を求める方法が提供される。【解決手段】方法は、サンプルセル内の流路を通して溶液を通過させることと、検出器の第1の角度及び第2の角度についてそれぞれの角度正規化係数を求めることと、第1の角度における溶液内粒子の第1の散乱強度を取得することと、第2の角度における溶液内粒子の第2の散乱強度を取得することと、約10度の角度における溶液内粒子の10度散乱強度を取得することと、第1の粒子散乱係数を求めることと、第2の粒子散乱係数を求めることと、角度的非対称プロットをプロットすることと、角度的非対称プロットに線を当てはめることと、線上の選択されたロケーションにおける線の傾斜を求めることと、線の傾斜から溶液内粒子の回転半径を求めることと、回転半径を出力することとを含むことができる。【選択図】図1A

Description

従来の光散乱検出器は、しばしば、クロマトグラフィー技法と連携して利用されて、溶
液中に懸濁された種々の分子又は溶質の1つ以上の物理的属性又は特徴を特定する。例え
ば、光散乱検出器は、しばしば、ゲル浸透クロマトグラフィー(GPC:gel permeation
chromatography)とともに利用されて、ポリマー等の種々の粒子の分子重量及び回転半
径を求める。光散乱検出器において、分子(例えば、ポリマー)を含むサンプル又は流出
物は、サンプルセルを通して入口からサンプルセルの対向端に配設された出口まで流され
る。流出物は、サンプルセルを通って流されるときに、コリメートされた光ビーム(例え
ば、レーザー)によって照射される。光ビームと流出物のポリマーとの相互作用は散乱光
を生成する。散乱光は、その後、強度及び角度等の様々な属性について測定及び分析され
て、ポリマーの物理的特徴を特定する。
従来の光散乱検出器は、多種多様の分子の物理的属性を特定するのに有効であることが
分かっているが、小さい分子を分析するその能力が制限される。例えば、従来の光散乱検
出器は、しばしば、約10nm未満の回転半径を有する分子のRgを測定するための感度
及び/又は分解能に欠ける。上記を考慮して、従来の光散乱検出器は、しばしば、比較的
大きいパワー又はエネルギーを有するレーザーを組み込んで、検出器の感度を上げる。し
かしながら、より大きいパワーを有するレーザーを組み込むことは、法外な費用がかかり
、また、レーザーのフットプリントが比較的大きいため、より大きい機器をしばしば必要
とする。代替的に、従来の光散乱検出器内のサンプルセルの体積は、散乱光の強度を増す
ために増加され得る。しかしながら、従来のサンプルセルの体積を増加させることは、過
剰なピークの幅広化をもたらす。
したがって、改良型光散乱検出器及びそのサンプルセル、ピーク幅広化を増加させるこ
となく光散乱検出器の感度及び/又は分解能を増大させる方法、並びに粒子の回転半径を
求めるための改良型方法が必要とされている。
本概要は、本開示の1つ以上の実装態様の幾つかの態様の簡略化した概要を導入するこ
とを単に意図される。本開示の利用可能性の更なる範囲は、以降で提供される詳細な説明
から明らかになる。本概要は、広範な概略でもなく、本概要は、本教示の主要な又は極め
て重要な要素を特定することも、本開示の範囲を詳しく説明することも意図されない。む
しろ、その目的は、単に、以下の詳細な説明に対する前置きとして簡略化した形態で1つ
以上の概念を提示することである。
本開示において具現化される上記の態様及び有用性及び/又は他の態様及び有用性は、
光散乱検出器を使用して溶液内粒子の回転半径(Rg)を求める方法を提供することによ
って達成することができる。方法は、サンプルセル内の流路を通して溶液内粒子を通過さ
せることを含むことができ、流路は検出器の光ビームに整列した中心ラインを有する。方
法は、検出器の第1の角度についての角度正規化係数(Nθ1)及び検出器の第2の角度
の角度正規化係数(Nθ2)を求めることを含むこともでき、第1の角度は中心ラインに
対して約90度であり、第2の角度は中心ラインに対して約170度である。方法は、第
1の角度における溶液内粒子の第1の散乱強度(Iθ1)を取得することを含むこともで
きる。方法は、第2の角度における溶液内粒子の第2の散乱強度(Iθ2)を取得するこ
とを含むこともできる。方法は、約10度の角度における溶液内粒子の10度散乱強度(
10)を取得することを含むこともできる。方法は、第1の角度について、第1の散乱
強度(Iθ1)、10度散乱強度(I10)、及び角度正規化係数(Nθ1)によって第
1の粒子散乱係数(Pθ1)を求めることを含むこともできる。方法は、第2の角度につ
いて、第2の散乱強度(Iθ2)、10度散乱強度(I10)、及び角度正規化係数(N
θ2)によって第2の粒子散乱係数(Pθ2)を求めることを含むこともできる。方法は
、第1の粒子散乱係数(Pθ1)及び第2の粒子散乱係数(Pθ2)を含む角度的非対称
プロットをプロットすることを含むこともできる。方法は、角度的非対称プロットに線を
当てはめることを含むこともできる。方法は、線上の選択されたロケーションにおける線
の傾斜を求めることを含むこともできる。方法は、線の傾斜から溶液内粒子の回転半径(
Rg)を求めることを含むこともできる。方法は、回転半径(Rg)を出力することを含
むこともできる。
少なくとも1つの実装態様において、検出器の第1の角度及び第2の角度の角度正規化
係数を求めることは、サンプルセルの流路を通して複数の知られている溶液内粒子のそれ
ぞれを通過させることを含むことができる。検出器の第1の角度及び第2の角度の角度正
規化係数を求めることは、約10度の角度において、第1の角度において、及び第2の角
度において、複数の知られている溶液内粒子のそれぞれについて散乱強度値を取得するこ
とを含むこともできる。検出器の第1の角度及び第2の角度の角度正規化係数を求めるこ
とは、第1の角度における複数の知られている粒子のそれぞれの粒子の散乱強度値と約1
0度の角度における複数の知られている粒子のそれぞれの粒子の散乱強度値との比のプロ
ットによって、第1の角度についての角度正規化係数(Nθ1)を求めることを含むこと
もできる。検出器の第1の角度及び第2の角度の角度正規化係数を求めることは、第2の
角度における複数の知られている粒子のそれぞれの粒子の散乱強度値と約10度の角度に
おける複数の知られている粒子のそれぞれの粒子の散乱強度値との比のプロットによって
、第2の角度についての角度正規化係数(Nθ2)を求めることを含むこともできる。
少なくとも1つの実装態様において、複数の知られている溶液内粒子のそれぞれは、知
られている分子量を有する。
少なくとも1つの実装態様において、第1の粒子散乱係数(Pθ1)は、形式
Figure 2022141675000002
であり、ここで、Iθ1は第1の角度における溶液内粒子の散乱強度であり、I10は約
10度の角度における溶液内粒子の散乱強度であり、Nθ1は第1の角度についての角度
正規化係数である。
少なくとも1つの実装態様において、第2の粒子散乱係数(Pθ2)は、形式
Figure 2022141675000003
であり、ここで、Iθ2は第2の角度における溶液内粒子の散乱強度であり、I10は約
10度の角度における溶液内粒子の散乱強度であり、Nθ2は第2の角度についての角度
正規化係数である。
少なくとも1つの実装態様において、角度的非対称プロットをプロットすることは、平
面上に第1の点をプロットすることであって、第1の点は第1の座標及び第2の座標を含
み、第1の点の第1の座標は第1の粒子散乱係数(Pθ1)であり、第1の点の第2の座
標は形式
Figure 2022141675000004
であり、ここで、nは溶液の屈折率であり、θは第1の角度であり、λは光ビームの
波長である、プロットすることと、平面上に第2の点をプロットすることであって、第2
の点は第1の座標及び第2の座標を含み、第2の点の第1の座標は第2の粒子散乱係数(
θ2)であり、第2の点の第2の座標は形式
Figure 2022141675000005
であり、ここで、nは溶液の屈折率であり、θは第2の角度であり、λは光ビームの
波長である、プロットすることとを含む。
少なくとも1つの実装態様において、角度的非対称プロットに線を当てはめることは、
最小2乗当てはめを含む。線は、3未満の多項式次数を含むことができる。
本開示において具現化される上記の態様及び有用性及び/又は他の態様及び有用性は、
光散乱検出器を使用して溶液内粒子の回転半径(Rg)を求める方法を提供することによ
って達成することができる。方法は、サンプルセル内の流路を通して溶液内粒子を通過さ
せることを含むことができ、流路は検出器の光ビームに整列した中心ラインを有する。方
法は、検出器の第1の角度について角度正規化係数(Nθ1)を求めることを含むことも
でき、第1の角度は、中心ラインに対して約90度又は約170度である。方法は、第1
の角度における溶液内粒子の第1の散乱強度(Iθ1)を取得することを含むこともでき
る。方法は、約10度以下の角度における溶液内粒子の10度散乱強度(I10)を取得
することを含むこともできる。方法は、第1の角度について、第1の散乱強度(Iθ1
、10度散乱強度(I10)、及び角度正規化係数(Nθ1)によって第1の粒子散乱係
数(Pθ1)を求めることを含むこともできる。方法は、第1の粒子散乱係数(Pθ1
を含む角度的非対称プロットをプロットすることを含むこともできる。方法は、角度的非
対称プロットに線を当てはめることを含むこともできる。方法は、線上の選択されたロケ
ーションにおける線の傾斜を求めることを含むこともできる。方法は、線の傾斜から溶液
内粒子の回転半径(Rg)を求めることを含むこともできる。方法は、回転半径を出力す
ることを含むこともできる。
少なくとも1つの実装態様において、検出器の第1の角度について角度正規化係数(N
θ1)を求めることは、サンプルセルの流路を通して複数の知られている溶液内粒子のそ
れぞれを通過させることと、約10度の角度において及び第1の角度において、複数の知
られている溶液内粒子のそれぞれの粒子の散乱強度値を取得することと、複数の知られて
いる溶液内粒子のそれぞれ粒子のそれぞれの重量平均分子量に対する、第1の角度におけ
る複数の知られている粒子のそれぞれの粒子の散乱強度値と約10度の角度における複数
の知られている粒子のそれぞれの粒子の散乱強度値との比のプロットによって、第1の角
度についての角度正規化係数(Nθ1)を求めることとを含む。
少なくとも1つの実装態様において、複数の知られている溶液内粒子のそれぞれは、知
られている分子量を有する。
少なくとも1つの実装態様において、第1の粒子散乱係数(Pθ1)は、形式
Figure 2022141675000006
であり、ここで、Iθ1は第1の角度における溶液内粒子の散乱強度であり、I10は約
10度の角度における溶液内粒子の散乱強度であり、Nθ1は第1の角度についての角度
正規化係数である。
少なくとも1つの実装態様において、角度的非対称プロットをプロットすることは、平
面上に第1の点をプロットすることであって、第1の点は第1の座標及び第2の座標を含
み、第1の点の第1の座標は第1の粒子散乱係数(Pθ1)であり、第1の点の第2の座
標は形式
Figure 2022141675000007
であり、ここで、nは溶液の屈折率であり、θは第1の角度であり、λは光ビームの
波長である、プロットすることを含む。
少なくとも1つの実装態様において、角度的非対称プロットの線は直線である。
少なくとも1つの実装態様において、溶液内粒子の回転半径(Rg)は10nm未満で
ある。
少なくとも1つの実装態様において、方法は、検出器の第2の角度の角度正規化係数(
θ2)を取得することであって、第2の角度は、中心線に対して約90度又は約170
度であり、第2の角度は第1の角度と異なる、取得することと、第2の角度における溶液
内粒子の第2の散乱強度(Iθ2)を取得することと、第2の角度について、第2の散乱
強度(Iθ2)、10度散乱強度(I10)、及び角度正規化係数(Nθ2)によって第
2の粒子散乱係数(Pθ2)を求めることとを更に含むことができる。角度的非対称プロ
ットは第2の粒子散乱係数(Pθ2)を更に含むことができる。
少なくとも1つの実装態様において、検出器の第2の角度の角度正規化係数を求めるこ
とは、第2の角度において、複数の知られている溶液内粒子のそれぞれの粒子の散乱強度
値を取得することと、複数の知られている溶液内粒子のそれぞれの粒子のそれぞれの重量
平均分子量に対する、第2の角度における複数の知られている粒子のそれぞれの粒子の散
乱強度値と約10度の角度における複数の知られている粒子のそれぞれの粒子の散乱強度
値との比のプロットによって、第2の角度についての角度正規化係数(Nθ2)を求める
こととを含む。
少なくとも1つの実装態様において、第2の粒子散乱係数(Pθ2)は、形式
Figure 2022141675000008
であり、ここで、Iθ2は第2の角度における溶液内粒子の散乱強度であり、I10は約
10度の角度における溶液内粒子の散乱強度であり、Nθ2は第2の角度についての角度
正規化係数である。
少なくとも1つの実装態様において、角度的非対称プロットをプロットすることは、平
面上に第2の点をプロットすることであって、第2の点は第1の座標及び第2の座標を含
み、第2の点の第1の座標は第2の粒子散乱係数(Pθ2)であり、第2の点の第2の座
標は形式
Figure 2022141675000009
であり、ここで、nは溶液の屈折率であり、θは第2の角度であり、λは光ビームの
波長である、プロットすることを更に含む。
少なくとも1つの実装態様において、角度的非対称プロットの線は曲線である。
少なくとも1つの実装態様において、溶液内粒子の回転半径(Rg)は100nm未満
、任意選択で10nmより大きい。
本開示の利用可能性の更なる範囲は、以降で提供される詳細な説明から明らかになる。
詳細な説明及び特定の例が、本開示の幾つかの典型的な態様を示しながら、単に例証のた
めに意図され、本開示の範囲を制限することを意図されないことが理解されるべきである
本明細書に組み込まれ、本明細書の一部を構成する添付図面は、本開示の様々な実装態
様を示す。本開示の実装態様におけるこれらの態様及び利点及び/又は他の態様及び利点
は、添付図面と併せた、種々の実装態様の以下の説明から明らかになるとともにより容易
に認識される。図面の一部の詳細が、簡略化されており、厳密な構造的精度、詳細、及び
縮尺を維持するためにではなく本開示の理解を容易にするために描かれていることが留意
されるべきである。これらの図面/図は、制限的ではなく、例示的であることを意図され
る。
開示される1つ以上の実装態様による、例示的なサンプルセルを含む例示的な光散乱検出器の概略図である。 開示される1つ以上の実装態様による、図1Aの例示的なサンプルセルの概略図である。 開示される1つ以上の実装態様による、分析物(analyte)散乱光がない図1Aの例示的なサンプルセルの概略図である。 開示される1つ以上の実装態様による、図1Cにおいて1Dとラベル付けされたボックスで示すサンプルセルの部分の拡大図である。 開示される1つ以上の実装態様による、複数の知られている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対する比(Iθ/I10)のプロットである。 開示される1つ以上の実装態様による角度的非対称プロットである。 開示される1つ以上の実装態様による角度的非対称プロットである。 開示される1つ以上の実装態様による、光散乱検出器からのデータを受信及び/又は分析するコンピューターシステム又は電子プロセッサを示す図である。 開示される1つ以上の実装態様による図5のコンピューターシステム又は電子プロセッサのブロック図である。
種々の典型的な態様(複数の場合もある)の以下の説明は、単に本質的に例示であり、
本開示、その適用、又は使用を制限することを決して意図しない。
本開示全体を通して使用されるとき、範囲は、その範囲内にあるそれぞれの又は全ての
値を述べるために省略表現として使用される。範囲フォーマットでの記述が、便宜のため
また簡潔にするためのものにすぎず、本明細書で開示する任意の実施形態又は実装態様の
範囲に対する柔軟性のない制限として解釈されるべきでないことが認識されるとともに理
解されるべきである。したがって、開示される範囲は、その範囲内の考えられる全ての部
分範囲及び個々の数値を具体的に開示しているものと考えられるべきである。したがって
、その範囲内の任意の値は、その範囲の終端として選択することができる。例えば、1~
5等の範囲の記述は、1.5~3、1~4.5、2~5、3.1~5等のような部分範囲
、及び、その範囲内の個々の数値、例えば1、2、3、3.2、4、5等を具体的に開示
しているものと考えられるべきである。これは、範囲の幅によらず当てはまる。
さらに、全ての数値は、「約(about)」又は「ほぼ(approximately)」示す値であり
、当業者であれば予想される実験的誤差及び変動を考慮したものである。本明細書で開示
される全ての数値及び範囲は、「約」がその数値及び範囲とともに使用されるか否かによ
らず、近似の値及び範囲であることが認識されるべきである。数値とともに本明細書で使
用される用語「約」は、その数値の±0.01%(両端の数値を含む)、±0.1%(両
端の数値を含む)、±0.5%(両端の数値を含む)、±1%(両端の数値を含む)、そ
の数値の±2%(両端の数値を含む)、その数値の±3%(両端の数値を含む)、その数
値の±5%(両端の数値を含む)、その数値の±10%(両端の数値を含む)、又はその
数値の±15%(両端の数値を含む)とすることができる値を指すことも認識されるべき
である。或る数値範囲が本明細書で開示されるとき、その範囲に入る任意の数値もまた具
体的に開示されることが更に認識されるべきである。
本明細書で引用される全ての参考文献は、引用することによりその全体の内容が本明細
書の一部をなす。本開示の定義及び引用される参考文献の定義において不一致がある場合
、本開示が統括する。
本明細書で使用するとき、用語又は表現「感度(sensitivity)」は、信号対雑音比を
指すことができる。レーザーパワーを増加させることが必ずしも感度を改善しないことが
当業者によって認識されるべきである。
図1Aは、1つ以上の実装態様による、例示的なサンプルセル102を備える例示的な
光散乱検出器(LSD)100の概略図を示す。LSD100は、サンプル源又はデバイ
ス104に動作可能に結合し、サンプル源又はデバイス104からのサンプル又は流出物
を受け取ることが可能である又は受け取るように構成することができる。例えば、図1A
に示すように、LSD100は、ライン106を介してサンプル源又はデバイス104に
流体結合し、サンプル源又はデバイス104からの流出物を受け取るように構成すること
ができる。例証的なサンプル源又はデバイス104は、サンプル又は溶離液の1つ以上の
分析物を互いから分離することが可能である又は分離するように構成されるクロマトグラ
フィー機器を含むことができるが、それに限定されない。例えば、サンプル源又はデバイ
ス104は、溶離液の分析物を、それらの分析物のそれぞれの電荷(例えば、イオン交換
クロマトグラフィー)、サイズ(例えば、サイズ排除クロマトグラフィー又はゲル浸透ク
ロマトグラフィー)等に基づいて、互いから分離することが可能である又は分離するよう
に構成される液体クロマトグラフィー機器とすることができる。例示的な実装態様におい
て、LSD100は、分析物を、それらの分析物のそれぞれのサイズに基づいて、互いか
ら分離するように構成される液体クロマトグラフィー機器に動作可能に結合される。例え
ば、LSD100は、ゲル浸透クロマトグラフィーカラムを備える液体クロマトグラフィ
ー機器に動作可能に結合される。
LSD100は、例示的なサンプルセル102、レーザー108等のコリメートされた
光ビーム源、及び、互いに動作可能に結合された1つ以上の検出器110、112、11
4(3つが示される)を含むことができる。検出器110、112、114は、分析物散
乱光を受信することが可能である又は受信するように構成される任意の適した検出器とす
ることができる。例えば、検出器110、112、114のうちの任意の1つ以上の検出
器は、シリコン光検出器等の光検出器とすることができる。LSD100は、LSD10
0を通して透過された光を屈折、集束、減衰させる、及び/又は収集することが可能であ
る又はそうするように構成される1つ以上のレンズ116、118、120、122、1
24(5つが示される)、及び、LSD100を通して透過された光を反射させる又は再
方向付けすることが可能である又はそうするように構成される1つ以上のミラー126、
128(2つが示される)を備えることができる。
少なくとも1つの実装態様において、第1のレンズ116及び第2のレンズ118は、
サンプルセル102の対向する側面又は軸方向端部に配設し、レンズを通して透過された
光を屈折、集束、減衰させる、及び/又は収集するように構成することができる。別の実
装態様において、サンプルセル102の本体130が、第1のレンズ116及び第2のレ
ンズ118を収容するように構成される凹所132、134を画定することができる。例
えば、図1Aに示し、図1Bに詳細に更に示すように、サンプルセル102の本体130
は、本体130を通して長手方向に又は軸方向に延在し、第1のレンズ116及び第2の
レンズ118をそれぞれ収容するように構成される第1の凹所132及び第2の凹所13
4を画定することができる。図1A及び図1Bに示すように、第1のレンズ116及び第
2のレンズ118のそれぞれは、レンズのそれぞれの第1の又は外側の端部分136、1
38に沿って凸表面を画定することができる。第1のレンズ116及び第2のレンズ11
8の第1の端部分136、138は、凸表面を画定するものとして示されるが、第1のレ
ンズ116及び第2のレンズ118のそれぞれの第1の端部分136、138のうちの任
意の第1の端部分が、代替的に平坦表面を画定することができることが認識されるべきで
ある。図1Aに更に示すように、第1のレンズ116及び第2のレンズ118のそれぞれ
は、レンズのそれぞれの第2の又は内側の端部分140、142に沿って平坦表面を画定
することができる。本明細書で更に述べるように、第1のレンズ116及び第2のレンズ
118のそれぞれの第2の端部分140、142は、サンプルセル102を通して延在す
るチャネル又は流路144をシールする及び/又は少なくとも部分的に画定することがで
きる。
レーザー108は、十分な波長及び/又はパワーを有する光ビーム146を提供するこ
とが可能である又は提供するように構成される任意の適したレーザーとすることができる
。例えば、レーザー108は、ダイオードレーザー、固体レーザー等とすることができる
。レーザー108は、サンプルセル102を通して光ビーム146を放射するように構成
することができる。例えば、図1Aに示すように、レーザー108は、レーザー108か
ら放射された光ビーム146がサンプルセル102を通して透過されるようにLSD10
0の周りに配置又は配設することができる。図1Aに更に示すように、第3のレンズ12
0を、サンプルセル102とレーザー108との間に挿入し、サンプルセル102にかつ
サンプルセル102を通して方向付けられる光ビーム146を集束させるように構成する
ことができる。
少なくとも1つの実装態様において、ミラー126、128のうちの少なくとも一方は
、それぞれの検出器110、112に関連付け、それぞれの検出器110、112に向か
って光(例えば、散乱光又は分析物散乱光)を反射させる又は再方向付けするように構成
することができる。例えば、図1Aに示すように、第1のミラー126は、第1のレンズ
116に近接して配設し、第1のレンズ116からの光の少なくとも一部分を第1の検出
器110に向かって反射させるように構成することができる。別の例において、第2のミ
ラー128は、第2のレンズ118に近接して配設し、及び/又は、第2のレンズ118
と第3のレンズ120との間に挿入し、第2のレンズ118からの光の少なくとも一部分
を第2の検出器112に向かって反射させるように構成することができる。少なくとも1
つの実装態様において、1つ以上のレンズ122、124は、第1のミラー126及び第
2のミラー128と第1の検出器110及び第2の検出器112との間に挿入して、ミラ
ー126、128からの光を集束、屈折させる、又は別の方法で検出器110、112に
方向付けることができる。例えば、図1Aに示すように、第4のレンズ122を、第1の
検出器110と第1のミラー126との間に挿入することができ、第5のレンズ124を
、第2の検出器112と第2のミラー128との間に挿入することができる。
少なくとも1つの実装態様において、検出器110、112、114のうちの少なくと
も1つの検出器は、ミラー126、128のうちの一方の助け又は反射なしでサンプルセ
ル102からの光(例えば、散乱光又は分析物散乱光)を受信するように構成することが
できる。例えば、図1A及び図1Bに示すように、第3の検出器114を、サンプルセル
102に隣接して配設するか又はサンプルセル102に結合し、光ビーム146に対して
約90度の角度をなす、サンプルセル102からの光(例えば、散乱光)を受信するよう
に構成することができる。本明細書で更に論じるように、光学的に透明な材料又は第6の
レンズ186を、散乱光を第3の検出器114に向けて屈折させるか又は方向付けるよう
に構成することができる。
図1Aに示すように、サンプルセル102、第1のレンズ116、第2のレンズ118
、及び第3のレンズ120、並びに、第1のミラー126及び第2のミラー128は、レ
ーザー108によって放射される光ビーム146の方向に沿って平行に、同軸に、又は別
の方法で互いに整列して配設することができる。図1Aに更に示すように、第1の検出器
110及び第2の検出器112のそれぞれは、レーザー108によって放射される光ビー
ム146の略垂直な方向において、それぞれのミラー126、128からの光(例えば、
散乱光又は分析物散乱光)を受信するように配設又は位置決めすることができる。第1の
ミラー126及び第2のミラー128のそれぞれは、ミラーを通って延在するそれぞれの
ボア又は通路150、152を画定することができる。例えば、第1のミラー126は、
光ビーム146に平行な、同軸な、又は別の方法で光ビーム146に整列する方向におい
て、第1のミラー126を通して延在するボア150を画定することができる。同様に、
第2のミラー128は、光ビーム146に平行な、同軸な、又は別の方法で光ビーム14
6に整列する方向において、第2のミラー128を通して延在するボア152を画定する
ことができる。レーザー108から放射された光ビーム146が第1のミラー126及び
第2のミラー128を透過し、それにより、光ビーム146が第1の検出器110及び第
2の検出器112に向かって反射することを防止することを、それぞれのミラー126、
128を通って延在するボア150、152が可能にすることができることが認識される
べきである。
図1Dは、1つ以上の実装態様による、図1Cの1Dとラベル付けされたボックスで示
す例示的なLSD100の部分の拡大図を示す。上記で論じたように、サンプルセル10
2の本体130は、本体130を通して延在するチャネル又は流路144を少なくとも部
分的に画定することができる。例えば、図1Dに示すように、本体130の内側表面15
4は、本体130を通して延在する流路144を少なくとも部分的に画定することができ
る。流路144はサンプルセル102の体積を画定することができる。流路144は、流
路144を通して延在する中心軸又は中心ライン156を含み、流路144の全体的な向
きを規定するように構成することができる。図1Bに示すように、流路144及びその中
心軸156は、レーザー108から放射された光ビーム146に整列する又は同軸である
とすることができる。サンプルセル102の流路144は、第1のレンズ116と第2の
レンズ118との間に挿入することができる。少なくとも1つの実装態様において、第1
のレンズ116及び第2のレンズ118は、サンプルセル102の本体130に本体13
0の対向する側面上で密閉式に係合し、それにより、本体130とそれぞれの第1のレン
ズ116及び第2のレンズ118との間の界面を介する流路144からのサンプル又は流
出物の流れを防止することができる。別の実装態様において、シール(例えば、ガスケッ
ト、Oリング等)(図示せず)を、本体130と第1のレンズ116及び第2のレンズ1
18との間に配設して、両者の間に液密シールを提供することができる。
流路144は、流路144の中心ライン156に沿って配設された内側セクション15
8及び2つの外側セクション160、162を含むことができる。図1Dに示すように、
内側セクション158は、2つの外側セクション160と162との間に挿入することが
できる。内側セクション158は、サンプル源104に流体結合し、サンプル源104か
らのサンプル又は流出物を受け取るように構成することができる。例えば、図1Aを引き
続き参照しながらだと図1Dに示されるように、サンプルセル102の本体130は、本
体130を通して延在する入口164を画定し、ライン106を介してサンプル源104
を内側セクション158に流体結合させるように構成することができる。好ましい実装態
様において、入口164は、サンプル源104からのサンプルが、流路144又は流路1
44の内側セクション158の中央又は中心に方向付けられるように構成される。
少なくとも1つの実装態様において、内側セクション158は、円柱とするか又は円柱
体積を画定することができ、また、円形断面プロファイルを有することができる。しかし
ながら、断面プロファイルを任意の適した形状及び/又はサイズで示すことができること
が認識されるべきである。例えば、断面プロファイルは、楕円形、角丸長方形等の長方形
等とすることができる。内側セクション158は、任意の適した寸法を有することができ
る。少なくとも1つの実装態様において、内側セクション158は、約4mm~約12m
m又はそれより大きい、2つの外側セクション160と162との間に延在する長さを有
することができる。例えば、内側セクション158は、約4mm、約5mm、約6mm、
約7mm、又は約7.5mmから、約8.5mm、約9mm、約10mm、約11mm、
約12mm又はそれより大きい長さまでの長さを有することができる。別の例において、
内側セクション158は、約4mm~約12mm、約5mm~約11mm、約6mm~約
10mm、約7mm~約9mm、又は約7.5mm~約8.5mmの長さを有することが
できる。好ましい実装態様において、内側セクション158は、約7mm~約9mm、好
ましくは約7.5mm~約8.5mm、より好ましくは約8mmの長さを有することがで
きる。少なくとも1つの実装態様において、内側セクション158は、約1.2mm~約
2.0mm又はそれより大きい直径を有することができる。例えば、内側セクション15
8は、約1.2mm、約1.3mm、約1.4mm、約1.5mm、又は約1.55mm
から、約1.65mm、約1.7mm、約1.8mm、約1.9mm、約2.0mm又は
それより大きい直径までの直径を有することができる。別の例において、内側セクション
158は、約1.2mm~約2.0mm、約1.3mm~約1.9mm、約1.4mm~
約1.8mm、約1.5mm~約1.7mm、又は約1.55mm~約1.65mmの直
径を有することができる。好ましい実装態様において、内側セクション158は、約1.
5mm~約1.7mm、好ましくは約1.55mm~約1.65mm、より好ましくは約
1.6mmの直径を有することができる。
流路144の外側セクション160、162は、内側セクション158と流体結合し、
内側セクション158からのサンプル又は流出物を受け取るように構成することができる
。少なくとも1つの実装態様において、第1の外側セクション160及び第2の外側セク
ション162のうちの少なくとも一方は、円柱とするか又は円柱体積を画定することがで
き、また、円形断面プロファイルを有することができる。例えば、第1の外側セクション
160及び第2の外側セクション162のうちの少なくとも一方は、図1Dの内側セクシ
ョン158と同様にサイズ決定し、形作ることができる。別の実装態様において、第1の
外側セクション160及び第2の外側セクション162のうちの少なくとも一方は、外側
セクションのそれぞれの第1の端部分又は入口166、168の断面積を、外側セクショ
ンのそれぞれの第2の端部分又は出口170、172の断面積より相対的に小さくするこ
とができるように円錐状又は円錐台状とすることができる。好ましい実装態様において、
第1の外側セクション160及び第2の外側セクション162はともに、円錐台状とする
か又は円錐台を画定することができ、それぞれの第1の端部分又は入口166、168は
内側セクション158からのサンプルを受け取るように構成され、それぞれの第2の端部
分又は出口170、172は、サンプルを廃棄ライン174(図1A参照)に送出するよ
うに構成される。
本体130の内側表面154は、第1の外側セクション160及び第2の外側セクショ
ン162のそれぞれのテーパー角度(θ,θ)を少なくとも部分的に規定することが
できる。例えば、図1Dに示すように、流路144の第1の外側セクション160を規定
又は形成する内側表面154の部分及び流路144の中心ライン156は第1の外側セク
ション160のそれぞれのテーパー角度(θ)を規定することができる。別の例におい
て、流路144の第2の外側セクション162を規定又は形成する内側表面154の部分
及び流路144の中心ライン156は第2の外側セクション162のそれぞれのテーパー
角度(θ)を規定することができる。第1の外側セクション160及び第2の外側セク
ション162は、LSD100及びその検出器110、112、114が、任意の所望の
角度で散乱光を受信することを可能にすることが可能である又は受信するように構成され
る任意のテーパー角度(θ,θ)を有することができる。図1Dは、互いに相対的に
等しい第1の外側セクション160及び第2の外側セクション162のテーパー角度(θ
,θ)を示すが、テーパー角度(θ,θ)のうちの一方が他方より相対的に大き
いとすることができることが認識されるべきである。第1の外側セクション160及び第
2の外側セクション162の任意の1つ以上の属性(例えば、長さ、テーパー角度、直径
、形状、サイズ等)が異なるとすることができることが更に認識されるべきである。好ま
しい実装態様において、第1の外側セクション160及び第2の外側セクション162の
属性(例えば、長さ、テーパー角度、直径、形状、サイズ等)は同じ又は実質的に同じで
ある。
外側セクション160、162のそれぞれは廃棄ライン174に流体結合することがで
きる。例えば、図1A及び図1Dに示すように、本体130は、第1の出口176及び第
2の出口178を画定することができ、第1の出口176及び第2の出口178は、本体
130を通して延在し、第1の外側セクション160及び第2の外側セクション162を
それぞれ第1の出口ライン180及び第2の出口ライン182を介して廃棄ライン174
に流体結合するように構成される。図1Dに更に示すように、第1の出口176及び第2
の出口178は、外側セクション160、162のそれぞれの第2の端部分170、17
2に流体結合することができる。入口164並びに第1の出口176及び第2の出口17
8の向き(例えば、円周の向き)又はロケーションが変動することができることが認識さ
れるべきである。例えば、入口164は、第1の出口176及び第2の出口178のうち
の少なくとも一方に円周方向に整列することができる。別の例において、入口164は、
第1の出口176及び第2の出口178のうちの少なくとも一方から円周方向にオフセッ
トすることができる。更に別の例において、第1の出口176及び第2の出口178は、
互いに円周方向に整列するか、又は、互いに円周方向にオフセットすることができる。
図1Dに示すように、サンプルセル102の本体130は、アパーチャ184を画定す
ることができ、アパーチャ184は、本体130の少なくとも一部分を通して延在し、内
側セクション158からの光(例えば、散乱光)が第3の検出器114に方向付けられる
か又は透過することを可能にするように構成される。アパーチャ184は、石英結晶等の
光学的に透明な材料186でシールされ、それにより、内側セクション158からの光が
第3の検出器114に方向付けられることを可能にすることができる。図1B及び図1D
に示す例示的な実装態様において、光学的に透明な材料186は、第3の検出器114に
向けて光の一部分を屈折させるように形作ることができる。例えば、光学的に透明な材料
186は、アパーチャ184をシールし、第3の検出器114に向けて光を少なくとも部
分的に屈折させるように構成される第6のレンズ(例えば、ボールレンズ)とすることが
できる。
本体130は、任意の適した材料を含むことができるか又は任意の適した材料から作製
することができる。本体130は、本体130の内側表面154が光の反射を減衰させる
ように構成することができる。例えば、本体130は非反射性材料から作製することがで
きる。別の例において、本体130を、反射性材料から少なくとも部分的に作製し、非反
射性材料で少なくとも部分的にコーティングすることができる。少なくとも1つの実装態
様において、サンプルセル102は、黒石英等の石英から作製することができる。例示的
な実装態様において、本体130は、ポリマーを含むことができるか又はポリマーから作
製することができる。例証的なポリマーは、ポリオレフィンベースポリマー、アクリルベ
ースポリマー、ポリウレタンベースポリマー、エーテルベースポリマー、ポリエステルベ
ースポリマー、ポリアミドベースポリマー、ホルムアルデヒドベースポリマー、シリコン
ベースポリマー、その任意のコポリマー、又はその任意の組み合わせとするか又はそれを
含むことができるが、それに限定されない。例えば、ポリマーは、ポリ(エーテルエーテ
ルケトン)(PEEK)、TORLON(登録商標)、ポリアミドイミド、ポリエチレン
(PE)、ポリフッ化ビニル(PVF)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリ
デン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリクロロトリフルオロエチレン
(PCTFE)、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン(PP)、
ポリ(1-ブテン)、ポリ(4-メチルペンテン)、ポリスチレン、ポリビニルピリジン
、ポリブタジエン、ポリイソプレン、ポリクロロプレン、スチレンアクリロニトリルコポ
リマー、アクリロニトリル-ブタジエン-スチレンターポリマー、エチレン-メタクリル
酸コポリマー、スチレン-ブタジエンゴム、テトラフルオロエチレンコポリマー、ポリア
クリレート、ポリメタクリル酸、ポリアクリルアミド、ポリ酢酸ビニル、ポリビニルアル
コール、ポリビニルブチラール、ポリビニルエーテル、ポリビニルピロリドン、ポリビニ
ルカルバゾール、ポリウレタン、ポリアセタール、ポリエチレングリコール、ポリプロピ
レングリコール、エポキシ樹脂、ポリフェニレンオキシド、ポリエチレンテレフタレート
、ポリブチレンテレフタレート、ポリジヒドロキシメチルシクロヘキシルテレフタレート
、セルロースエステル、ポリカーボネート、ポリアミド、ポリイミド、その任意のコポリ
マー、又はその任意の組み合わせを含むことができるが、それに限定されない。ポリマー
は、エラストマー又はエラストマー材料、合成ゴム等とするか又はそれを含むことができ
るが、それに限定されない。例証的なエラストマー材料及び合成ゴムは、VITON(登
録商標)、ニトリル、ポリブタジエン、アクリロニトリル、ポリイソプレン、ネオプレン
、ブチルゴム、クロロプレン、ポリシロキサン、スチレン-ブタジエンゴム、ヒドリンゴ
ム、シリコーンゴム、エチレン-プロピレン-ジエンターポリマー、その任意のコポリマ
ー、又はその任意の組み合わせを含むことができるが、それに限定されない。
LSD100の例示的な動作において、図1A~図1Dを継続して参照すると、サンプ
ル源104(例えば、ゲル浸透クロマトグラフィーカラムを備える液体クロマトグラフ)
は、サンプル又は流出物(例えば、希薄粒子及び/又はポリマー溶液)をライン106及
び入口164を介してサンプルセル102の流路144にかつ流路144を通して注入す
るか又は方向付けることができる。図1Dに示すように、サンプル源104からのサンプ
ルは、サンプルセル102の流路144及び/又は内側セクション158の中心又は中央
に向けて方向付けることができる。サンプルが内側セクション158の中心に流れるとき
、サンプルの流れを、サンプルの第1の部分が第1の外側セクション160に向かって流
れ、サンプルの第2の部分が第2の外側セクション162に向かって流れるように分割す
ることができる。第1の外側セクション160及び第2の外側セクション162内のサン
プルの部分は、その後、それぞれ、第1の出口176及び第2の出口178並びに第1の
出口ライン180及び第2の出口ライン182を介してサンプルセル102から出て廃棄
ライン174に方向付けることができる。
第1の外側セクション160及び第2の外側セクション162を通るサンプルの流量は
、第1の出口ライン180及び第2の出口ライン182のそれぞれの長さを調整すること
によって、修正又は調整する(すなわち、増加又は減少させる)ことができる。少なくと
も1つの実装態様において、第1の外側セクション160及び第2の外側セクション16
2を通るサンプルの第1の部分及び第2の部分の流量は、同じ又は実質的に同じとするこ
とができる。例えば、第1の外側セクション160を通るサンプルの第1の部分の流量は
第2の外側セクション162を通るサンプルの第2の部分の流量と同じ又は実質的に同じ
である。別の実装態様において、第1の外側セクション160及び第2の外側セクション
162を通るサンプルの第1の部分及び第2の部分の流量は異なるとすることができる。
しかしながら、第1の外側セクション160及び第2の外側セクション162を通る流量
が異なる場合、時間補正を適用することができることが認識されるべきである。
サンプルがサンプルセル102の流路144を通って流れるとき、レーザー108は、
第2のミラー128のボア152を介して流路144の中心ライン156に沿ってかつ中
心ライン156を通して光ビーム146を放射することができる。図1Aに示す少なくと
も1つの実装態様において、光ビーム146は、第3のレンズ120を通して透過するこ
とができ、第3のレンズ120は、光ビーム146を、流路144の中心ライン156に
沿って少なくとも部分的に集束させることができる。別の実装態様において、第3のレン
ズ120を省略することができる。少なくとも1つの実装態様において、任意選択的なス
クリーン又はダイアフラム188を、レーザー108とサンプルセル102との間に配設
し、光ビーム146からの迷光(例えば、光輪(halo of light))を、「クリーンアッ
プする(cleanup)」、分離する、又は別の方法でフィルタリングするように構成するこ
とができる。例えば、ダイアフラム188は、光ビーム146からの迷光をフィルタリン
グ除去することが可能であるか又はフィルタリング除去するように構成されるホール又は
アパーチャ(例えば、調整可能なアパーチャ/アイリス)を画定することができる。
光ビーム146の少なくとも一部分は、レーザー108から、サンプルセル102、第
1のレンズ116、第2のミラー128のボア152、及び/又は任意選択的なダイアフ
ラム196にかつそれを通して進行又は透過することができる。例えば、光ビーム146
の少なくとも一部分は、妨害されず又はサンプル内の分析物のいずれの分析物とも相互作
用することなく、レーザー108から、サンプルセル102、第1のレンズ116、第2
のミラー128のボア152、及び/又は任意選択的なダイアフラム188にかつそれを
通して透過し得る。流路144を通して透過された光ビーム146の残りの部分は、サン
プル内で懸濁、分散、又は別の方法で配される及び/又はサンプルセル102を通して流
れる分析物と相互作用するか又は別の方法で接触し得る。
光ビーム146とサンプル内の分析物との間の接触は散乱光又は分析物散乱ビーム19
0、192、194を生成又は誘発することができる(図1A及び図1B参照)。例えば
、光ビーム146とサンプル内に含まれるか又はサンプルセル102の流路144を通っ
て流れる分析物との間の接触は、前方分析物散乱ビーム190及び後方分析物散乱ビーム
192を生成することができる。別の例において、光ビーム146とサンプル内に含まれ
るか又はサンプルセル102の流路144を通って流れる分析物との間の接触は、光ビー
ム146に略垂直な方向において直角(例えば、中心ライン156に対して約90度)散
乱ビーム194を生成することができる。
入口164を介した流路144の中心へのサンプルの流れにより、サンプルが光ビーム
146と即座に相互作用することを可能になり、それにより、ピーク幅広化が最小になる
ことが認識されるべきである。例えば、流路144の中心にサンプルを直接流すことは、
サンプルセル102及びサンプルセル102の流路144の長さ又は体積の(例えば、側
部又は軸方向において)少なくとも半分を通して流れることなく、サンプルが光ビーム1
46と相互作用することを可能にする。流路144の中心にサンプルを直接流すことは、
サンプルが、光ビーム146と相互作用し、分析物散乱ビーム190、192、194を
生成するために必要な時間量も最小にする。LSD100の1つ以上のコンポーネントが
、流路144の中心から散乱された光のみが検出器110、112、114によって収集
されるように構成されることが更に認識されるべきである。例えば、第1のレンズ116
、第1のミラー、及び第4のレンズ122のうちの少なくとも1つは、流路144の中心
から生じる前方光散乱190を流路144の他の領域から生じる前方光散乱190から分
離するように構成することができ、それにより、第1の検出器110は、流路144の中
心から生じる前方光散乱190のみを受信する。同様に、第2のレンズ116、第2のミ
ラー128、及び第5のレンズ124のうちの少なくとも1つは、流路144の中心から
生じる後方光散乱192を流路144の他の領域から生じる後方光散乱192から分離す
るように構成することができ、それにより、第2の検出器112は、流路144の中心か
ら生じる後方光散乱192のみを受信する。
図1Aに示すように、前方分析物散乱ビーム又は前方散乱光190は、第1のレンズ1
16、第1のミラー126、及び第4のレンズ122を介して第1の検出器110に向け
て方向付けることができる。前方散乱光190の少なくとも一部分は、第1のレンズ11
6の第1の端部分136に沿って画定される凸表面によって少なくとも部分的に屈折する
ことができる。図1Aに示すように、前方散乱光190は、凸表面によって第1のミラー
126に向かって屈折することができ、第1のミラー126は、前方散乱光190を、第
4のレンズ122を介して第1の検出器110に向けて屈折させることができる。第4の
レンズ122は、前方散乱光190を収集し、前方散乱光190を第1の検出器110に
向けて方向付ける及び/又は集束させることができる。
前方散乱光190は、レーザー108から放射された光ビーム146及び/又は流路1
44の中心ライン156に対して0度より大きい値から90度より小さい値の様々な角度
で散乱することができる。例えば、前方散乱光190は、0度より大きい値、約5度、約
10度、約15度、約20度、約25度、約30度、約35度、約40度、又は約45度
から、約50度、約55度、約60度、約65度、約70度、約75度、約80度、約8
5度、又は約90度より小さい値までの任意の角度で散乱することができる。別の例にお
いて、前方散乱光190は、レーザー108から放射された光ビーム146及び/又は流
路144の中心ライン156に対して約5度、約6度、約7度、約8度、約9度、又は約
9.5度から、約10.5度、約11度、約12度、約13度、約14度、又は約15度
までの任意の角度で散乱することができる。更に別の例において、前方散乱光190は、
約5度~約15度、約6度~約14度、約7度~約13度、約8度~約12度、約9度~
約11度、又は約9.5度~約10.5度の角度で散乱することができる。LSD100
及びその任意のコンポーネントが0度より大きくかつ90度より小さい任意の角度で散乱
した前方散乱光190を受信するように構成することができることが認識されるべきであ
る。例えば、第1の検出器110、第1のレンズ116、第1のミラー126、第4のレ
ンズ122、及び/又は任意の更なる任意選択的なダイアフラムの1つ以上の任意の属性
(例えば、形状、ロケーション、向き等)は、第1の検出器110が前方散乱光190の
任意の前方散乱光を受信できるように、調整、修正、又は別の方法で構成することができ
る。好ましい実装態様において、LSD100及びその第1の検出器110は、光ビーム
146及び/又は流路144の中心ライン156に対して約9度~約11度の角度で、好
ましくは約9.5度~約10.5度の角度で、より好ましくは約10度の角度で前方散乱
光190を受信又は収集するように構成される。
図1Aに示すように、後方分析物散乱ビーム又は後方散乱光192は、第2のレンズ1
18、第2のミラー128、及び第5のレンズ124を介して第2の検出器112に向け
て方向付けることができる。後方散乱光192の少なくとも一部分は、第2のレンズ11
8の凸表面によって少なくとも部分的に屈折することができる。図1Aに示すように、後
方散乱光192は、凸表面によって第2のミラー128に向かって屈折することができ、
第2のミラー128は、後方散乱光192を、第5のレンズ124を介して第2の検出器
112に向かって屈折することができる。第5のレンズ124は、後方散乱光192を収
集し、後方散乱光192を第2の検出器112に向けて方向付ける及び/又は集束させる
ことができる。
後方散乱光192は、レーザー108から放射された光ビーム146及び/又は流路1
44の中心ライン156に対して90度より大きい値から180度より小さい値の様々な
角度で散乱することができる。例えば、後方散乱光192は、90度より大きい値、約9
5度、約100度、約105度、約110度、約115度、約120度、約125度、約
130度、又は約135度から、約140度、約145度、約150度、約155度、約
160度、約165度、約170度、約175度、又は約180度より小さい値までの任
意の角度で散乱することができる。別の例において、後方散乱光192は、レーザー10
8から放射された光ビーム146及び/又は流路144の中心ライン156に対して約1
65度、約166度、約167度、約168度、約169度、又は約169.5度から、
約170.5度、約171度、約172度、約173度、約174度、又は約175度ま
での任意の角度で散乱することができる。更に別の例において、後方散乱光192は、約
165度~約175度、約166度~約174度、約167度~約173度、約168度
~約172度、約169度~約171度、又は約169.5度~約170.5度の角度で
散乱することができる。LSD100及びその任意のコンポーネントが90度より大きく
かつ180度より小さい任意の角度で散乱した後方散乱光192を受信するように構成す
ることができることが認識されるべきである。例えば、第2の検出器112、第2のレン
ズ118、第2のミラー128、第5のレンズ124、及び/又は任意の更なる任意選択
的なダイアフラムの1つ以上の任意の属性(例えば、形状、ロケーション、向き等)は、
第2の検出器112が後方散乱光192の任意の後方散乱光を受信できるように、調整、
修正、又は別の方法で構成することができる。好ましい実装態様において、LSD100
及びその第2の検出器112は、光ビーム146及び/又は流路144の中心ライン15
6に対して約169度~約171度の角度で、好ましくは約169.5度~約170.5
度の角度で、より好ましくは約170度の角度で後方散乱光192を受信又は収集するよ
うに構成される。
図1Dに示すように、直角分析物散乱ビーム又は直角散乱光194は、第3の検出器1
14と流路144の内側セクション158との間に延在するアパーチャ184を介して第
3の検出器114に向けて方向付けることができる。少なくとも1つの実装態様において
、第3の検出器114は、内側セクション158に隣接してアパーチャ184内に配設す
ることができる。図1Dに示す別の実装態様において、光学的に透明な材料186は、ア
パーチャ184内に配設して、流路144の内側セクション158をシールすることがで
きる。光学的に透明な材料186は、直角散乱光194が第3の検出器114に透過する
ことを可能にする任意の適した材料とすることができる。光学的に透明な材料186は、
直角散乱光194の少なくとも一部分を第3の検出器114に向けて屈折させるように形
作ることができる。例えば、上記で論じたように、光学的に透明な材料186は、直角散
乱光194を第3の検出器114に向けて屈折させるように形作られたボールレンズとす
ることができる。
直角散乱光194は、光ビーム146及び/又は流路144の中心ライン156に略垂
直な方向に散乱することができる。例えば、直角散乱光194は、約87度、約88度、
約89度、約89.5度、又は約90度から、約90.5度、約91度、約92度、又は
約93度までの角度で散乱することができる。別の例において、直角散乱光194は、約
87度~約93度、約88度~約92度、約89度~約91度、又は約89.5度~約9
0.5度の角度で散乱することができる。LSD100及びその任意のコンポーネントが
光ビーム146及び/又は流路144の中心ライン156に略垂直な方向に散乱する直角
散乱光194を受信するように構成することができることが認識されるべきである。例え
ば、光学的に透明な材料186(例えば、第6のレンズ)及び/又は第3の検出器114
の形状、ロケーション、向き、又は任意の他の属性は、第3の検出器114が直角散乱光
194の任意の直角散乱光を受信できるように、調整、修正、又は別の方法で構成するこ
とができる。好ましい実装態様において、LSD100及びその第3の検出器114は、
光ビーム146及び/又は流路144の中心ライン156に対して約89度~約91度の
角度で、好ましくは約89.5度~約90.5度の角度で、より好ましくは約90度の角
度で直角散乱光194を受信又は収集するように構成される。
本開示は、本明細書で開示されるLSD100等の光散乱検出器を使用して溶液内粒子
(例えば、ナノ粒子、マイクロ粒子等)の回転半径(Rg)を求める方法を提供すること
ができる。粒子は、例えば、ポリマー、タンパク質、タンパク質結合体、又はDNAフラ
グメントとすることができる。例えば、本開示は、光散乱検出器(例えば、LSD100
)からのデータを(例えば、電子プロセッサ又はコンピューターシステムによって)分析
することによって、溶液内粒子の回転半径(Rg)を求める方法を提供することができる
。本明細書で述べるLSD100及びそのコンポーネントに対して参照を行う場合がある
が、回転半径(Rg)を求める方法を任意の適した光散乱検出器によって行う又は実施す
ることができることが認識されるべきである。
光散乱検出器(例えば、LSD100)を使用して溶液内粒子の回転半径(Rg)を求
める方法は、LSD100のサンプルセル102内の流路144を通して溶液内粒子を通
過させる又は流すことを含むことができ、流路144の中心ライン156はLSD100
の光ビーム146に整列する。方法は、光散乱検出器(例えば、LSD100)の1つ以
上の角度を正規化すること、又は、光散乱検出器の1つ以上の角度について角度正規化係
数(Nθ)を求めることを含むこともできる。例えば、方法は、第1の角度について角度
正規化係数(Nθ)を求めることを含むことができる。別の例において、方法は、第1の
角度及び第2の角度について角度正規化係数(Nθ)を求めることを含むことができる。
本明細書で更に論じるように、第1の角度は流路144の中心ライン156に対して約9
0度又は約170度とすることができ、第2の角度は約90度又は約170度であり、第
1の角度と異なるものとすることができる。方法は、第1の角度における溶液内粒子の第
1の散乱強度(Iθ1)を取得することを含むこともできる。方法は、任意選択で、第2
の角度における溶液内粒子の第2の散乱強度(Iθ2)を取得することを含むこともでき
る。方法は、約10度以下の角度における溶液内粒子の10度散乱強度(I10)を取得
することを更に含むことができる。方法は、第1の角度について、第1の散乱強度(Iθ
)、10度散乱強度(I10)、及び角度正規化係数(Nθ1)によって第1の粒子散
乱係数(Pθ1)を求めることを含むこともできる。方法は、任意選択で、第2の角度に
ついて、第2の散乱強度(Iθ2)、10度散乱強度(I10)、及び角度正規化係数(
θ2)によって第2の粒子散乱係数(Pθ2)を求めることを含むこともできる。方法
は、角度的非対称プロットをプロットすることと、角度的非対称プロットに線を当てはめ
ることと、選択されたロケーションにおける角度的非対称プロットの線の傾斜を求めるこ
ととを含むこともできる。方法は、線の傾斜から溶液内粒子の回転半径(Rg)を求める
ことと、任選択で、回転半径を出力又は表示することとを含むこともできる。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、光散乱検出器の
1つ以上の角度を正規化すること、又は、LSD100の1つ以上の角度について角度正
規化係数(Nθ)を求めることを含むことができる。LSD100の1つ以上の角度につ
いて角度正規化係数(Nθ)を求めることは、LSD100の散乱体積差又は検出器11
0、112、114のうちの任意の1つ以上の検出器の変動する感度を反映するために実
施することができる。
少なくとも1つの実装態様において、LSD100の1つの角度のみが正規化される。
正規化することができるLSD100の1つの角度又は第1の角度は約90度又は約17
0度の角度を含むことができる。別の実装態様において、LSD100の2つの角度又は
第1の角度及び第2の角度が正規化される。例えば、約90度の第1の角度及び約170
度の第2の角度が正規化される。正規化される角度の数は、粒子のサイズ又は回転半径に
よって少なくとも部分的に求めることができる。例えば、LSD100の1つの角度又は
第1の角度のみを、約10nm以下のRgを有する粒子のRgを求めるために正規化する
ことができる。別の例において、LSD100の2つの角度又は第1の角度及び第2の角
度を、約10nm以上~約100nmのRgを有する粒子のRgを求めるために正規化す
ることができる。LSD100の第1の角度及び第2の角度を、10nm未満のRgを有
する粒子のRgを求めるために同様に正規化することができることが認識されるべきであ
る。
LSD100の角度(例えば、90度、170度等)を正規化すること又は角度につい
て角度正規化係数(Nθ)を求めることは、サンプルセル102の流路144を通して複
数の知られている溶液内標準粒子(例えば、知られている標準ポリマー)を通過させるこ
とと、流路144の中心ライン156を通して光ビーム146を通過させることと、上記
角度において分析物散乱光192、194を収集することと、上記角度において収集され
た分析物散乱光192、194によって上記角度における散乱強度(Iθ)を求めること
とを含むことができる。例えば、約90度又は約170度の角度について角度正規化係数
(Nθ)を求めることは、サンプルセル102の流路144を通して複数の知られている
溶液内標準粒子を通過させることと、流路144の中心ライン156を通して光ビーム1
46を通過させることと、それぞれ約90度又は約170度の角度において分析物散乱光
192、194を収集することと、それぞれ約90度又は約170度の角度において収集
された分析物散乱光192、194によって約90度(I90)又は約170度(I17
)の角度における散乱強度(Iθ)を求めることとを含むことができる。
角度(例えば、90度、170度等)について角度正規化係数(Nθ)を求めることは
、光ビーム146に近い又は光ビーム146に入射する角度(例えば、0度)において分
析物散乱光190を収集することと、光ビームに近い又は光ビームに入射する角度におけ
る散乱強度(I)を求めることとを含むこともできる。光ビーム146からの信号が、
約0度の角度におけるいずれの分析物散乱光よりも比較的大きく、したがって、約0度の
角度におけるいずれの分析物散乱光もマスクすることになるため、中心ライン156に対
して約0度の角度において分析物散乱光190を収集することが可能でないことが認識さ
れるべきである。したがって、分析物散乱光190は、光ビーム146に近い角度で収集
される。例えば、約10度以下の角度において収集される分析物散乱光190が、約0度
において収集される分析物散乱光と同等であることが仮定される。したがって、約10度
の角度における散乱強度(I10)は約0度における散乱強度(I)と同等又は実質的
に同等である。
角度(例えば、90度、170度等)について角度正規化係数(Nθ)を求めることは
、複数の知られている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対して、角度
(例えば、90度、170度等)における複数の知られている粒子のそれぞれの散乱強度
値と約10度の角度における複数の知られている粒子のそれぞれの粒子の散乱強度(I
)値との比、すなわち(Iθ/I10)の比をプロットすることを含むこともできる。
複数の知られている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対する、比(I
θ/I10)の例証的なプロットが図2に示される。例えば、約90度の角度について角
度正規化係数(N90)を求めることは、複数の知られている粒子のそれぞれの粒子のそ
れぞれの重量平均分子量に対して、約90度の角度における複数の知られている粒子のそ
れぞれの粒子の散乱強度(I90)値と約10度の角度における複数の知られている粒子
のそれぞれの粒子の散乱強度(I10)値との比(I90/I10)をプロットすること
を含むことができる。別の例において、約170度の角度について角度正規化係数(N
70)を求めることは、複数の知られている粒子のそれぞれの粒子のそれぞれの重量平均
分子量に対して、約170度の角度における複数の知られている粒子のそれぞれの粒子の
散乱強度(I170)値と約10度の角度における複数の知られている粒子のそれぞれの
粒子の散乱強度(I10)値との比(I170/I10)をプロットすることを含むこと
ができる。
角度(例えば、90度、170度等)について角度正規化係数(Nθ)を求めることは
、複数の知られている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対する比(I
θ/I10)のプロットに線を当てはめることを含むこともできる。例えば、図2に示す
ように、約90度の角度について角度正規化係数(N90)を求めることは、複数の知ら
れている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対する比(I90/I10
)のプロットに線202を当てはめることを含むことができる。図2に示す別の例におい
て、約170度の角度について角度正規化係数(N170)を求めることは、複数の知ら
れている粒子のそれぞれの粒子のそれぞれの重量平均分子量に対する比(I170/I
)のプロットに線204を当てはめることを含むことができる。
角度(例えば、90度、170度等)について角度正規化係数(Nθ)を求めることは
、角度正規化係数(Nθ)を求めるためにプロットの各プロットのそれぞれの線202、
204を外挿することを更に含むことができる。角度についての角度正規化係数(Nθ
を0の分子量又はx値における外挿値とすることができることが認識されるべきである。
例えば、それぞれの角度についての角度正規化係数(Nθ)は、線202、204のそれ
ぞれの線のそれぞれのy切片206、208の値とすることができる。例えば、図2に示
すように、約90度の角度についてのy切片206によって求められる角度正規化係数(
90)は約1.0099である。図2に更に示すように、約170度の角度についての
y切片208によって求められる角度正規化係数(N170)は約0.7807である。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、第1の角度(例
えば、90度、170度等)における溶液内粒子(例えば、未知の溶液内粒子)の第1の
光散乱強度(Iθ1)を取得することと、任意選択で、第2の角度における溶液内粒子の
第2の光散乱強度(Iθ2)を取得することとを含むことができる。例えば、方法は、サ
ンプルセル102内の流路144を通して溶液内粒子を通過させることと、第1の角度及
び/又は第2の角度において分析物散乱光192、194を収集することと、第1の角度
における散乱強度(Iθ1)及び/又は第2の角度における散乱強度(Iθ2)を求める
こととを含むことができる。
方法は、中心ライン156に対して約0度の角度において分析物散乱光190を収集す
ることによって、光ビーム146に近い又は光ビーム146に入射する角度における溶液
内粒子の散乱強度(I)を取得することを含むこともできる。上記で論じたように、光
ビーム146からの信号が、約0度の角度におけるいずれの分析物散乱光よりも比較的大
きく、したがって、約0度の角度におけるいずれの分析物散乱光もマスクすることになる
ため、中心ライン156に対して約0度の角度において分析物散乱光190を収集するこ
とは可能でない。したがって、溶液内粒子の分析物散乱光190は、光ビーム146に近
い角度において収集される。例えば、約10度以下の角度において収集される分析物散乱
光190が、約0度において収集される分析物散乱光と同等であることが仮定される。し
たがって、約10度の角度における溶液内粒子の散乱強度(I10)は約0度における溶
液内粒子の散乱強度(I)と同等である。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、第1の角度につ
いて、第1の散乱強度(Iθ1)、10度散乱強度(I10)、及び角度正規化係数(N
θ1)によって又はそれを利用して第1の粒子散乱係数(Pθ1)を求めることを含むこ
とができる。溶液内粒子の回転半径(Rg)を求める方法は、任意選択で、第2の角度に
ついて、第2の散乱強度(Iθ2)、10度散乱強度(I10)、及び角度正規化係数(
θ2)によって又はそれを利用して第2の粒子散乱係数(Pθ2)を求めることを含む
こともできる。
少なくとも1つの実装態様において、粒子散乱係数(Pθ)は、式1によって表すこと
ができる。
Figure 2022141675000010
ここで、
θはそれぞれの角度(例えば、約90度又は約170度)における溶液内粒子の散乱
強度とすることができ、
10は約10度以下の角度における溶液内粒子の散乱強度であり、
θはそれぞれの角度についての角度正規化係数である。
0度における粒子散乱係数(P)を、1に等しい、約10度における同じ粒子散乱係数
(P10)であると仮定することができることが認識されるべきである。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、角度的非対称プ
ロットをプロットすることを更に含むことができる。例証的な角度的非対称プロットは図
3及び図4に示される。角度的非対称プロットは、平面上に1つ以上の点を含むことがで
きる。例えば、角度的非対称プロットは、平面上に1つ、2つ、3つ、4つ、又はそれよ
り多い数の点を含むことができる。図3に示すように、角度的非対称プロットは、第1の
点302及び第2の点304を含むことができる。図4に更に示すように、角度的非対称
プロットは、第1の点402、第2の点404、及び第3の点406を含むことができる
。点302、304、402、404、406のそれぞれは、x座標等の第1の座標及び
y座標等の第2の座標を含むことができる。第1の座標又はx座標はμで表すことがで
き、μは式(2)で表現することができる。
Figure 2022141675000011
ここで、
は粒子がその中に含まれる溶液の屈折率であり、
θはそれぞれの角度(例えば、約90度又は約170度)であり、
λは光ビームの波長である。
第2の座標又はy座標は、それぞれの粒子散乱係数(Pθ)で表すことができる。光ビー
ムが任意の適した波長を有することができることが認識されるべきである。少なくとも1
つの実装態様において、波長は約400nm~約600nmとすることができる。例えば
、光ビームの波長は、約400nm、約450nm、又は約500nmから、約550n
m、又は約600nmまでとすることができる。好ましい実装態様において、光ビームの
波長は、約450nm~約550nm、約500nm~約530nm、又は約515nm
とすることができる。一実装態様において、光ビームの波長は、約600nm以上~約7
00nmの波長を排除することができる。
図3に示すように、角度的非対称プロットは、上記で論じた仮定に基づいて0度又は約
10度の角度に対応する第1の点302、及び、約90度の角度又は約170度の角度に
対応する第2の点304を含むことができる。第1の点302の第1の座標又はx座標は
μに等しく、μは、式2によれば0に等しい。第1の点302の第2の座標は粒子散
乱係数(P10)に等しく、粒子散乱係数(P10)は1に等しい。同様に、第2の点3
04の第1座標の又はx座標は、約90度又は約170度において計算されるμに等し
く、第2の点304の第2の座標又はy座標はそれぞれの粒子散乱係数(Pθ)に等しい
。図4に示すように、角度的非対称プロットは、上記で論じた仮定に基づいて0度又は約
10度の角度に対応する第1の点402、約90度の角度に対応する第2の点404、及
び約170度の角度に対応する第3の点406を含むことができる。図4の角度的非対称
プロットの第1の点402、第2の点404、及び第3の点406のそれぞれの点のそれ
ぞれの第1の座標及び第2の座標は、上記で論じたように求めることができる。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、角度的非対称プ
ロットに線306、408を当てはめることを含むこともできる。角度的非対称プロット
に線306、408を当てはめることは最小2乗当てはめを含むことができる。線306
、408は3未満の多項式次数を含むことができる。線306、408は直線又は曲線と
することができる。例えば、図3に示すように、線306は、直線であり、1の多項式次
数を含むことができる。図4に示す別の例において、線408は、2次的関係及び2の多
項式次数を有することができる曲線とすることができる。
上記で論じたように、溶液内粒子の回転半径(Rg)を求める方法は、線306、40
8上の選択されたロケーションにおける線306、408の傾斜を求めることを含むがで
きる。線306、408上の選択されたロケーションは、線に沿う任意の場所とすること
ができる。少なくとも1つの実装態様において、線306、408上の選択されたロケー
ションは、y切片又はx値がゼロである場所とすることができる。
溶液内粒子の回転半径(Rg)を求める方法は、選択されたロケーションにおける線3
06、408の傾斜によって又は傾斜から溶液内粒子の回転半径(Rg)を計算する又は
求めることを含むこともできる。溶液内粒子の回転半径(Rg)は式(3)で表すことが
できる。
Figure 2022141675000012
ここで、bは選択されたロケーションにおける線の傾斜である。
溶液内粒子の回転半径(Rg)を求める方法は、回転半径(Rg)を出力又は表示する
ことを含むこともできる。例えば、方法は、本明細書で述べるコンピューティングシステ
ム等のコンピューティングシステムのディスプレイ(例えば、コンピューターディスプレ
イ)、読み出し、レポート、ディスクストレージ上に回転半径(Rg)を出力することを
含むことができる。
図5は、1つ以上の実装態様による、LSD100からのデータを受信及び/又は分析
するコンピューターシステム又は電子プロセッサ500を示す。コンピューターシステム
又は電子プロセッサ500は、汎用コンピューターとすることができ、また、ユーザー又
はクロマトグラファーが、データを処理する、データを分析する、データを解釈する、デ
ータを記憶する、データを取り出す、データを表示する、結果を表示する、結果を解釈す
る、結果を記憶する、又はその任意の組み合わせを行うことを可能にすることができる。
結果は、グラフィカル形式及び/又は表形式とすることができる。電子プロセッサ500
は、図1AのLSD100に動作可能に及び/又は通信可能に結合して示されるが、電子
プロセッサ500が当該技術分野で知られている任意の適した光散乱検出器に動作可能に
及び/又は通信可能に結合することができることが認識されるべきである。
コンピューターシステム又は電子プロセッサ500は、LSD100の1つ以上の任意
のコンポーネントを動作させる、それと通信する(例えば、データを送信/受信する)、
それを修正する、それを変調する、又は別の方法でそれを実行することが可能である又は
そうするように構成することができる。例えば、電子プロセッサ500は、ポンプ(図示
せず)、レーザー108、サンプル源104、検出器110、112、114のうちの1
つ以上の任意の検出器、又はLSD100の任意の他のコンポーネントに動作可能に及び
/又は通信可能に結合し、また、それを動作させる、それと通信する、それを修正する、
それを変調する、又は別の方法でそれを実行することが可能である又はそうするように構
成することができる。
図5に示す少なくとも1つの実装態様において、電子プロセッサ500は、検出器11
0、112、114に動作可能に及び/又は通信可能に結合し、また、信号及び/又はデ
ータ502を送信及び/又は検出器から受信することが可能である又はそうするように構
成することができる。1つ以上の検出器110、112、114からのデータ502は、
変動性アナログ電圧等のアナログデータである又はそれを含むことができる。少なくとも
1つの実装態様において、電子プロセッサ500は、アナログデータをデジタルデータに
変換することが可能である又はそうするように構成することができる。例えば、電子プロ
セッサ500はアナログ対デジタル変換器(図示せず)を含むことができる。別の実装態
様において、アナログ対デジタル変換器はLSD100又はその検出器110、112、
114と電子プロセッサ500との間に挿入することができる。
電子プロセッサ500は、LSD100の1つ以上の任意のコンポーネントからのデー
タ502を受信する、収集する、記録する、及び/又は記憶することが可能である又はそ
うするように構成することができる。例えば、図5に示すように、電子プロセッサ500
は、LSD100の1つ以上の検出器110、112、114からのデータ502を受信
する、任意選択でデータ502を変換する、及び、ローカルドライブ又はネットワークド
ライブ(例えば、クラウドドライブ)等のコンピューターメモリ内にデータ502を記録
及/又は記憶することができる。
電子プロセッサ500は、データ502を分析する、処理する、表示する、及び/又は
出力することが可能である又はそうするように構成することができる。例えば、電子プロ
セッサ500は、データ502を分析する、処理する、表示する、及び/又は出力するこ
とが可能である又はそうするように構成することができるソフトウェアを含むことができ
る。ソフトウェアは、同様にデータ502を処理し、ワークステーション又はディスプレ
イ504上でデータ502を出力又は表示することが可能である又はそうするように構成
することができる。ソフトウェアは、本明細書で開示するアルゴリズム、式、方法、ステ
ップ、プロセス、又は定式の任意の1つ以上を含むことができる。電子プロセッサ500
は、結果を準備するために、データ502からの情報を処理及び/又は抽出し、レポート
において又はディスプレイ504上で等で、データ502及び/又は結果を提示すること
ができる。電子プロセッサ500は、ユーザー又はクロマトグラファーが、電子プロセッ
サ500及び/又はLSD100の全てのシステム、サブシステム、及び/又はコンポー
ネントと相互作用することを可能にするグラフィカルユーザーインターフェース(GUI
)を含むことができる。
図6は、LSD100を含む1つ以上の光散乱検出器及び/又は本明細書で開示される
1つ以上の方法と共に使用することができる図5のコンピューターシステム又は電子プロ
セッサ500のブロック図を示す。例えば、コンピューティングシステム500(又はシ
ステム又はサーバー又はコンピューティングデバイス又はデバイス)は、本開示のプロセ
ス、動作、又は方法の任意のものを実施する本明細書で述べるデバイス又はシステムのう
ちの任意のものを示すことができる。コンピューティングシステム500が、種々のコン
ポーネントを示すが、コンポーネントを相互接続する任意の特定のアーキテクチャ又は方
法を示すことを意図されず、なぜならば、そのような詳細は本開示に密接な関連がないか
らであることに留意されたい。示すよりも少数の又は多数のコンポーネントを有する他の
タイプのシステムを、本開示と共に使用することもできることが同様に認識されるであろ
う。
示すように、コンピューティングシステム500は、プロセッサ604、ROM(読み
出し専用メモリ)608、RAM(又は揮発性メモリ)610、及びストレージ(又は不
揮発性メモリ)612に結合することができるバス602を備えることができる。プロセ
ッサ604はメモリ608、610、612のうちの1つ以上のメモリ内にデータ502
(図5参照)を記憶することができる。プロセッサ604は、メモリ608、610、及
び612のうちの1つ以上のメモリから、記憶データを取り出すこともできる。1つ以上
のメモリ608、610、612は、本明細書で開示するソフトウェアを記憶することが
でき、そのソフトウェアは、本明細書で述べるプロセス、動作、又は方法のうちの1つ以
上の任意のものを実施する命令を含むことができる。プロセッサ604は、同様に、メモ
リ608、610、及び612の1つ以上のメモリから、記憶されたソフトウェア又はそ
の命令を取り出し、命令を実行して、本明細書で述べるプロセス、動作、又は方法のうち
の1つ以上の任意のものを実施することができる。これらのメモリは、プロセッサ604
(又はシステム又はコンピューティングシステム)によって実行されると、プロセッサ6
04に、本明細書で述べるプロセス、動作、又は方法のうちの1つ以上の任意のものを実
施させる命令を含む非一時的コンピューター可読媒体(又は機械可読媒体)又はストレー
ジの例を示す。RAM610は、例えば、ダイナミックRAM(DRAM)、又は、メモ
リ内でデータをリフレッシュ又は維持するために連続して電力を要求する他のタイプのメ
モリとして実装することができる。ストレージ612は、例えば、磁気ストレージ、半導
体ストレージ、テープストレージ、光ストレージ、取り外し可能ストレージ、取り外し不
能ストレージ、及び/又は、コンピューターシステム500から電力が除去された後でも
データを維持する他のタイプのストレージを含むことができる。ストレージ612は、シ
ステム500からリモートにある(例えば、ネットワークを介してアクセス可能である)
ことができることが認識されるべきである。
ディスプレイコントローラー614は、バス602に結合して、ディスプレイ504上
で表示されるデータを受信することができ、ディスプレイ504は、本明細書で述べるユ
ーザーインターフェース特徴又は実装態様のうちの任意のものを表示することができ、ま
た、ローカル又はリモートディスプレイデバイス504とすることができる。コンピュー
ティングシステム500は、マウス、キーボード、タッチスクリーン、ネットワークイン
ターフェース、プリンター、スピーカー、及び他のデバイスを含む1つ以上の入力/出力
(I/O)コンポーネント616も備えることができる。通常、入力/出力コンポーネン
ト616は、入力/出力コントローラー618を通してシステム500に結合される。
モジュール620(又は、プログラムコード、命令、コンポーネント、サブシステム、
ユニット、関数、若しくはロジック)は、上述した命令、サブシステム、ステップ、方法
、式、計算、プロット、又はエンジンのうちの任意のものを示すことができる。モジュー
ル620は、コンピューティングシステム500によるモジュールの実行中に、上述した
メモリ(例えば、非一時的コンピューター可読媒体)内に又はプロセッサ604内に完全
に又は少なくとも部分的に存在することができる。さらに、モジュール620は、コンピ
ューティングシステム500内のソフトウェア、ファームウェア、又は関数回路として、
又は、その組み合わせとして実装することができる。
本開示は例示的な実装態様を参照して述べられた。制限された数の実装態様が示される
とともに述べられたが、先行する詳細な説明の原理及び趣旨から逸脱することなく、これ
らの実装態様において変更を行うことができることが当業者であれば認識されるであろう
。そのような全ての修正及び変更が添付の特許請求の範囲又はその均等物の範囲内に入る
限り、本開示がそれらの修正及び変更を含むものとして解釈されることが意図される。

Claims (20)

  1. 光散乱検出器を使用して溶液内粒子の回転半径(Rg)を求める方法であって、
    サンプルセル内の流路を通して前記溶液内粒子を通過させることであって、前記流路は
    前記検出器の光ビームに整列した中心ラインを有する、通過させることと、
    前記検出器の第1の角度についての角度正規化係数(Nθ1)及び前記検出器の第2の
    角度の角度正規化係数(Nθ2)を求めることであって、前記第1の角度は前記中心ライ
    ンに対して約90度であり、前記第2の角度は前記中心ラインに対して約170度である
    こと、求めることと、
    前記第1の角度における前記溶液内粒子の第1の散乱強度(Iθ1)を取得することと

    前記第2の角度における前記溶液内粒子の第2の散乱強度(Iθ2)を取得することと

    約10度の角度における前記溶液内粒子の10度散乱強度(I10)を取得することと

    前記第1の角度について、前記第1の散乱強度(Iθ1)、前記10度散乱強度(I
    )、及び前記角度正規化係数(Nθ1)によって第1の粒子散乱係数(Pθ1)を求め
    ることと、
    前記第2の角度について、前記第2の散乱強度(Iθ2)、前記10度散乱強度(I
    )、及び前記角度正規化係数(Nθ2)によって第2の粒子散乱係数(Pθ2)を求め
    ることと、
    前記第1の粒子散乱係数(Pθ1)及び前記第2の粒子散乱係数(Pθ2)を含む角度
    的非対称プロットをプロットすることと、
    前記角度的非対称プロットに線を当てはめることと、
    前記線上の選択されたロケーションにおける前記線の傾斜を求めることと、
    前記線の前記傾斜から前記溶液内粒子の前記回転半径(Rg)を求めることと、
    前記回転半径(Rg)を出力することと、
    を含む、方法。
  2. 前記検出器の前記第1の角度及び前記第2の角度の前記角度正規化係数を求めることは

    前記サンプルセルの前記流路を通して複数の知られている溶液内粒子のそれぞれを通過
    させることと、
    約10度の角度において、前記第1の角度において、及び前記第2の角度において、前
    記複数の知られている溶液内粒子のそれぞれについて散乱強度値を取得することと、
    前記第1の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱強度
    値と約10度の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱強
    度値との比のプロットによって、前記第1の角度についての前記角度正規化係数(Nθ1
    )を求めることと、
    前記第2の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱強度
    値と約10度の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱強
    度値との比のプロットによって、前記第2の角度についての前記角度正規化係数(Nθ2
    )を求めることと、
    を含む、請求項1に記載の方法。
  3. 前記複数の知られている溶液内粒子のそれぞれは、知られている分子量を有する、請求
    項2に記載の方法。
  4. 前記第1の粒子散乱係数(Pθ1)は、形式
    Figure 2022141675000013
    であり、
    ここで、
    θ1は前記第1の角度における前記溶液内粒子の前記散乱強度であり、
    10は約10度の角度における前記溶液内粒子の前記散乱強度であり、
    θ1は前記第1の角度についての前記角度正規化係数である、請求項1~3のいずれ
    か一項に記載の方法。
  5. 前記第2の粒子散乱係数(Pθ2)は、形式
    Figure 2022141675000014
    であり、
    ここで、
    θ2は前記第2の角度における前記溶液内粒子の前記散乱強度であり、
    10は約10度の角度における前記溶液内粒子の前記散乱強度であり、
    θ2は前記第2の角度についての前記角度正規化係数である、請求項1~4のいずれ
    か一項に記載の方法。
  6. 前記角度的非対称プロットをプロットすることは、
    平面上に第1の点をプロットすることであって、前記第1の点は第1の座標及び第2の
    座標を含み、前記第1の点の前記第1の座標は前記第1の粒子散乱係数(Pθ1)であり
    、前記第1の点の前記第2の座標は形式
    Figure 2022141675000015
    であり、
    ここで、
    は前記溶液の屈折率であり、
    θは前記第1の角度であり、
    λは前記光ビームの波長である、
    プロットすることと、
    前記平面上に第2の点をプロットすることであって、前記第2の点は第1の座標及び第
    2の座標を含み、前記第2の点の前記第1の座標は前記第2の粒子散乱係数(Pθ2)で
    あり、前記第2の点の前記第2の座標は形式
    Figure 2022141675000016
    であり、
    ここで、
    は前記溶液の屈折率であり、
    θは前記第2の角度であり、
    λは前記光ビームの前記波長である、
    プロットすることと、
    を含む、請求項1~5のいずれか一項に記載の方法。
  7. 前記角度的非対称プロットに前記線を当てはめることは、最小2乗当てはめを含み、前
    記線は、3未満の多項式次数を含む、請求項1~6のいずれか一項に記載の方法。
  8. 光散乱検出器を使用して溶液内粒子の回転半径(Rg)を求める方法であって、
    サンプルセル内の流路を通して前記溶液内粒子を通過させることであって、前記流路は
    前記検出器の光ビームに整列した中心ラインを有する、通過させることと、
    前記検出器の第1の角度について角度正規化係数(Nθ1)を求めることであって、前
    記第1の角度は、前記中心ラインに対して約90度又は約170度である、求めることと

    前記第1の角度における前記溶液内粒子の第1の散乱強度(Iθ1)を取得することと

    約10度以下の角度における前記溶液内粒子の10度散乱強度(I10)を取得するこ
    とと、
    前記第1の角度について、前記第1の散乱強度(Iθ1)、前記10度散乱強度(I
    )、及び前記角度正規化係数(Nθ1)によって第1の粒子散乱係数(Pθ1)を求め
    ることと、
    前記第1の粒子散乱係数(Pθ1)を含む角度的非対称プロットをプロットすることと

    前記角度的非対称プロットに線を当てはめることと、
    前記線上の選択されたロケーションにおける前記線の傾斜を求めることと、
    前記線の前記傾斜から前記溶液内粒子の前記回転半径(Rg)を求めることと、
    前記回転半径を出力することと、
    を含む、方法。
  9. 前記検出器の前記第1の角度について前記角度正規化係数(Nθ1)を求めることは、
    前記サンプルセルの前記流路を通して複数の知られている溶液内粒子のそれぞれを通過
    させることと、
    約10度の角度において及び前記第1の角度において、前記複数の知られている溶液内
    粒子のそれぞれの粒子の散乱強度値を取得することと、
    前記複数の知られている溶液内粒子のそれぞれの粒子のそれぞれの重量平均分子量に対
    する、前記第1の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱
    強度値と約10度の角度における前記複数の知られている粒子のそれぞれの粒子の前記散
    乱強度値との比のプロットによって、前記第1の角度についての前記角度正規化係数(N
    θ1)を求めることと、
    を含む、請求項8に記載の方法。
  10. 前記複数の知られている溶液内粒子のそれぞれは、知られている分子量を有する、請求
    項9に記載の方法。
  11. 前記第1の粒子散乱係数(Pθ1)は、形式
    Figure 2022141675000017
    であり、
    ここで、
    θ1は前記第1の角度における前記溶液内粒子の前記散乱強度であり、
    10は約10度の角度における前記溶液内粒子の前記散乱強度であり、
    θ1は前記第1の角度についての前記角度正規化係数である、請求項8~10のいず
    れか一項に記載の方法。
  12. 前記角度的非対称プロットをプロットすることは、
    平面上に第1の点をプロットすることであって、前記第1の点は第1の座標及び第2の
    座標を含み、前記第1の点の前記第1の座標は前記第1の粒子散乱係数(Pθ1)であり
    、前記第1の点の前記第2の座標は形式
    Figure 2022141675000018
    であり、
    ここで、
    は前記溶液の屈折率であり、
    θは前記第1の角度であり、
    λは前記光ビームの波長である、
    プロットすることを含む、請求項8~11のいずれか一項に記載の方法。
  13. 前記角度的非対称プロットに前記線は直線である、請求項8~12のいずれか一項に記
    載の方法。
  14. 前記溶液内粒子の前記回転半径(Rg)は10nm未満である、請求項8~13のいず
    れか一項に記載の方法。
  15. 前記検出器の第2の角度の角度正規化係数(Nθ2)を取得することであって、第2の
    角度は、前記中心ラインに対して約90度又は約170度であり、前記第2の角度は前記
    第1の角度と異なる、取得することと、
    前記第2の角度における前記溶液内粒子の第2の散乱強度(Iθ2)を取得することと

    前記第2の角度について、前記第2の散乱強度(Iθ2)、前記10度散乱強度(I
    )、及び前記角度正規化係数(Nθ2)によって第2の粒子散乱係数(Pθ2)を求め
    ることと、
    を更に含み、
    前記角度的非対称プロットは前記第2の粒子散乱係数(Pθ2)を更に含む、請求項8
    ~13のいずれか一項に記載の方法。
  16. 前記検出器の前記第2の角度の前記角度正規化係数を求めることは、
    前記第2の角度において、前記複数の知られている溶液内粒子のそれぞれの粒子の散乱
    強度値を取得することと、
    前記複数の知られている溶液内粒子のそれぞれの粒子のそれぞれの重量平均分子量に対
    する、前記第2の角度における前記複数の知られている粒子のそれぞれの粒子の前記散乱
    強度値と約10度の角度における前記複数の知られている粒子のそれぞれの粒子の前記散
    乱強度値との比のプロットによって、前記第2の角度についての前記角度正規化係数(N
    θ2)を求めることと、
    を含む、請求項15に記載の方法。
  17. 前記第2の粒子散乱係数(Pθ2)は、形式
    Figure 2022141675000019
    であり、
    ここで、
    θ2は前記第2の角度における前記溶液内粒子の前記散乱強度であり、
    10は約10度の角度における前記溶液内粒子の前記散乱強度であり、
    θ2は前記第2の角度についての前記角度正規化係数である、請求項15又は16に
    記載の方法。
  18. 前記角度的非対称プロットをプロットすることは、
    前記平面上に第2の点をプロットすることであって、前記第2の点は第1の座標及び第
    2の座標を含み、前記第2の点の前記第1の座標は前記第2の粒子散乱係数(Pθ2)で
    あり、前記第2の点の前記第2の座標は形式
    Figure 2022141675000020
    であり、
    ここで、
    は前記溶液の屈折率であり、
    θは前記第2の角度であり、
    λは前記光ビームの前記波長である、
    プロットすることを更に含む、請求項15~17のいずれか一項に記載の方法。
  19. 前記角度的非対称プロットの前記線は曲線である、請求項15~18のいずれか一項に
    記載の方法。
  20. 前記溶液内粒子の前記回転半径(Rg)は100nm未満、任意選択で10nmより大
    きい、請求項15~19のいずれか一項に記載の方法。
JP2022103518A 2019-01-02 2022-06-28 光散乱検出器及び光散乱検出器のための方法 Active JP7469685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022103518A JP7469685B2 (ja) 2019-01-02 2022-06-28 光散乱検出器及び光散乱検出器のための方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020522344A JP7101418B2 (ja) 2019-01-02 2019-01-02 光散乱検出器及び光散乱検出器のための方法
PCT/US2019/012095 WO2020142096A1 (en) 2019-01-02 2019-01-02 Light scattering detectors and methods for the same
JP2022103518A JP7469685B2 (ja) 2019-01-02 2022-06-28 光散乱検出器及び光散乱検出器のための方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020522344A Division JP7101418B2 (ja) 2019-01-02 2019-01-02 光散乱検出器及び光散乱検出器のための方法

Publications (2)

Publication Number Publication Date
JP2022141675A true JP2022141675A (ja) 2022-09-29
JP7469685B2 JP7469685B2 (ja) 2024-04-17

Family

ID=71407240

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020522344A Active JP7101418B2 (ja) 2019-01-02 2019-01-02 光散乱検出器及び光散乱検出器のための方法
JP2022103518A Active JP7469685B2 (ja) 2019-01-02 2022-06-28 光散乱検出器及び光散乱検出器のための方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020522344A Active JP7101418B2 (ja) 2019-01-02 2019-01-02 光散乱検出器及び光散乱検出器のための方法

Country Status (8)

Country Link
US (3) US11150175B2 (ja)
EP (1) EP3701244B1 (ja)
JP (2) JP7101418B2 (ja)
KR (2) KR102488993B1 (ja)
CN (2) CN116106267A (ja)
AU (1) AU2019333836B2 (ja)
CA (1) CA3076069C (ja)
WO (1) WO2020142096A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116337760A (zh) 2019-01-02 2023-06-27 M & J科学有限责任公司 光散射检测器及其样品池
KR102488993B1 (ko) 2019-01-02 2023-01-17 엠 앤 제이 사이언티픽, 엘엘씨 광 산란 검출기 및 광 산란 검출기를 위한 방법
EP4399504A1 (en) * 2021-09-09 2024-07-17 Tosoh Bioscience LLC Light scattering detectors and methods for the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077671A2 (en) * 2000-10-19 2002-10-03 Viscotek Corporation Miniature low angle laser light scattering detector
US20110135061A1 (en) * 2008-05-21 2011-06-09 Thuenemann Andreas Device and method for analyzing nanoparticles by combination of field-flow fractionation and x-ray small angle scattering
JP2014532664A (ja) * 2011-10-31 2014-12-08 ジェネンテック, インコーポレイテッド 抗体製剤
WO2016027859A1 (ja) * 2014-08-20 2016-02-25 中外製薬株式会社 蛋白質溶液の粘度測定方法
WO2018069024A1 (en) * 2016-10-11 2018-04-19 Malvern Instruments Limited Particle characterisation instrument
US20180180523A1 (en) * 2015-09-16 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for determining the average radius of gyration of particles with a size of less than or equal to 1 micron in a suspension, and device for carrying out the method

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826577A (en) 1972-12-07 1974-07-30 Commercial Electronics Inc Gas analyzing apparatus
JPS5539774B2 (ja) 1973-02-08 1980-10-14
US3843268A (en) 1973-07-05 1974-10-22 Beckman Instruments Inc Sample container for laser light scattering photometers
CH653132A5 (en) 1982-09-06 1985-12-13 Coulter Electronics Flow cell for apparatus for analysis of individual particles in suspension in a liquid and analysis apparatus using this cell
US4463598A (en) 1982-12-10 1984-08-07 Haney Max A Capillary bridge viscometer
US4747687A (en) 1984-06-08 1988-05-31 Milton Roy Company Ball cell windows for spectrophotometers
US4616927A (en) 1984-11-15 1986-10-14 Wyatt Technology Corporation Sample cell for light scattering measurements
US4907884A (en) 1984-11-15 1990-03-13 Wyatt Technology Corporation Sample cell monitoring system
US4790653A (en) 1986-05-22 1988-12-13 Becton Dickinson And Company Housing for a flow cytometry apparatus with particle unclogging feature
DE3630292C1 (en) 1986-09-05 1988-02-11 Suck Thomas Adolf Scattered light photometer
JPH083483B2 (ja) 1987-02-14 1996-01-17 株式会社島津製作所 アレイ型分光光度計検出器
JPS63305233A (ja) 1987-06-05 1988-12-13 Japan Spectroscopic Co 分流型フロ−セル
US5040890A (en) 1987-11-25 1991-08-20 Becton, Dickinson And Company Sheathed particle flow controlled by differential pressure
JPH03109049U (ja) 1990-02-20 1991-11-08
US5129723A (en) * 1991-04-11 1992-07-14 Wyatt Technology Corporation High performance Zimm chromatography--HPZC
JP3350775B2 (ja) 1995-03-31 2002-11-25 日本光電工業株式会社 粒子分類装置
US6064945A (en) 1998-02-20 2000-05-16 Waters Investments Limited System and method for determining molecular weight and intrinsic viscosity of a polymeric distribution using gel permeation chromatography
US6229146B1 (en) 1998-09-30 2001-05-08 Ut-Battelle, Llc Position sensitive radioactivity detection for gas and liquid chromatography
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
JP2008039539A (ja) * 2006-08-04 2008-02-21 Shimadzu Corp 光散乱検出装置
US7782459B2 (en) * 2007-09-24 2010-08-24 Process Metrix Laser-based apparatus and method for measuring agglomerate concentration and mean agglomerate size
GB0801375D0 (en) 2008-01-25 2008-03-05 Secr Defence Fluid-borne particle detector
FR2939199B1 (fr) 2008-12-02 2011-02-11 C2 Diagnostics Procede et dispositif de cytometrie en flux sans fluide de gainage
US7982875B2 (en) 2009-06-15 2011-07-19 Wyatt Technology Corporation Method and apparatus for measuring the scattered light signals from a liquid sample
KR20120074558A (ko) * 2010-12-28 2012-07-06 삼성전자주식회사 미세입자 검출장치
EP2694668A4 (en) 2011-04-06 2015-04-15 Instant Bioscan Llc DEVICE AND METHOD FOR DETECTING MICROBES
JP5854621B2 (ja) 2011-04-07 2016-02-09 株式会社日立ハイテクノロジーズ 長光路長フローセル
US9146192B2 (en) 2012-05-17 2015-09-29 Wyatt Technology Corporation Integrated light scattering and ultraviolet absorption measurement system
ES2751404T3 (es) 2013-03-15 2020-03-31 Beckman Coulter Inc Células de flujo óptico compuestas y método de fabricación y uso
US20160266028A1 (en) * 2014-07-18 2016-09-15 Wyatt Technology Corporation Method to measure the structure of small particles in solution
US10281393B2 (en) 2014-09-19 2019-05-07 Hach Company Turbidimeter
CN107206291A (zh) 2014-12-15 2017-09-26 爱卡德姆生命科学有限责任公司 用于浮力分离的方法和系统
CN204666513U (zh) 2015-03-05 2015-09-23 陈利平 气体样本室
KR20180059480A (ko) 2015-09-22 2018-06-04 와이어트 테크놀로지 코포레이션 액체 시료로부터 다중 신호들을 측정하는 방법 및 장치
CN108603825B (zh) 2016-01-25 2021-10-08 普莱尔股份公司 用于对单独流体承载颗粒进行检测和/或形态分析的方法和设备
DE102016212164B3 (de) * 2016-07-04 2017-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung der mittleren Partikelgröße von Partikeln, die in einem flüssigen und fließenden Medium suspendiert sind, über dynamische Lichtstreuung und Vorrichtung hierzu
JP2020511635A (ja) 2017-02-28 2020-04-16 マルクメトリックス・インコーポレイテッド 球面レンズを含む流体フローセル
KR102488993B1 (ko) * 2019-01-02 2023-01-17 엠 앤 제이 사이언티픽, 엘엘씨 광 산란 검출기 및 광 산란 검출기를 위한 방법
CN116337760A (zh) 2019-01-02 2023-06-27 M & J科学有限责任公司 光散射检测器及其样品池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077671A2 (en) * 2000-10-19 2002-10-03 Viscotek Corporation Miniature low angle laser light scattering detector
US20110135061A1 (en) * 2008-05-21 2011-06-09 Thuenemann Andreas Device and method for analyzing nanoparticles by combination of field-flow fractionation and x-ray small angle scattering
JP2014532664A (ja) * 2011-10-31 2014-12-08 ジェネンテック, インコーポレイテッド 抗体製剤
WO2016027859A1 (ja) * 2014-08-20 2016-02-25 中外製薬株式会社 蛋白質溶液の粘度測定方法
US20180180523A1 (en) * 2015-09-16 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for determining the average radius of gyration of particles with a size of less than or equal to 1 micron in a suspension, and device for carrying out the method
WO2018069024A1 (en) * 2016-10-11 2018-04-19 Malvern Instruments Limited Particle characterisation instrument

Also Published As

Publication number Publication date
CN111642133B (zh) 2023-03-24
EP3701244A4 (en) 2021-07-14
WO2020142096A1 (en) 2020-07-09
CA3076069A1 (en) 2020-07-02
KR20210102834A (ko) 2021-08-20
AU2019333836A1 (en) 2020-07-16
EP3701244A1 (en) 2020-09-02
US20230273109A1 (en) 2023-08-31
KR102488993B1 (ko) 2023-01-17
JP7469685B2 (ja) 2024-04-17
US20210223160A1 (en) 2021-07-22
EP3701244B1 (en) 2023-12-06
CN116106267A (zh) 2023-05-12
US20210404941A1 (en) 2021-12-30
CN111642133A (zh) 2020-09-08
AU2019333836B2 (en) 2023-11-09
US11674880B2 (en) 2023-06-13
KR102578103B1 (ko) 2023-09-18
US11150175B2 (en) 2021-10-19
CA3076069C (en) 2024-01-30
US12019007B2 (en) 2024-06-25
KR20230013161A (ko) 2023-01-26
JP2022511150A (ja) 2022-01-31
JP7101418B2 (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
JP7469685B2 (ja) 光散乱検出器及び光散乱検出器のための方法
JP2023002609A (ja) 光散乱検出器及び光散乱検出器のサンプルセル
US8947661B2 (en) High numerical aperture light scattering instrument for detecting particles in fluid
WO2023038621A1 (en) Light scattering detectors and methods for the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7469685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150