JP2022140110A - Food additive - Google Patents

Food additive Download PDF

Info

Publication number
JP2022140110A
JP2022140110A JP2021040770A JP2021040770A JP2022140110A JP 2022140110 A JP2022140110 A JP 2022140110A JP 2021040770 A JP2021040770 A JP 2021040770A JP 2021040770 A JP2021040770 A JP 2021040770A JP 2022140110 A JP2022140110 A JP 2022140110A
Authority
JP
Japan
Prior art keywords
cellulose
food
nanofibers
carboxymethylated
food additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021040770A
Other languages
Japanese (ja)
Inventor
裕亮 多田
Hiroaki Tada
伸季 薮野
Nobuki Yabuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2021040770A priority Critical patent/JP2022140110A/en
Publication of JP2022140110A publication Critical patent/JP2022140110A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

To provide a food additive that improves the flavor and texture of a retort food containing water and oil and fat, such as retort curry or retort stew.SOLUTION: A food additive contains cellulose nanofiber, preferably carboxymethylated cellulose nanofiber, and trehalose. The food additive gives an oil-releasing effect of properly separating oil in food without completely emulsifying it.SELECTED DRAWING: None

Description

本発明は、セルロースナノファイバー及びトレハロースを含む食品用添加剤、及びそれを含む食品に関する。 TECHNICAL FIELD The present invention relates to food additives containing cellulose nanofibers and trehalose, and foods containing the same.

レトルカレーやレトルトシチューのようなレトルト食品は水と油脂が含まれており、そのまま加熱して調理する。従って、水と油脂が沈降分離せずに適度に乳化して分散していることが良好な風味や食感を与える。 Retort foods such as retort curry and retort stew contain water and oils and fats, and are heated and cooked as they are. Therefore, good flavor and texture are obtained when water and fat are not sedimented and separated but are appropriately emulsified and dispersed.

水と油脂の乳化性を改善し、食感を向上させるために、セルロースを添加すること(特許文献1~3)が提案されている。 Addition of cellulose has been proposed in order to improve the emulsifiability of water and fats and oils and improve the texture (Patent Documents 1 to 3).

特開平7-322865号公報JP-A-7-322865 特開平10-57022号公報JP-A-10-57022 特開2013-630号公報Japanese Unexamined Patent Application Publication No. 2013-630

しかしながら、特許文献1~3の方法においては、レトルト食品の食感の改善が不十分であり、また、風味が低下することがあった。 However, in the methods of Patent Documents 1 to 3, the texture of the retort food is not sufficiently improved, and the flavor is sometimes lowered.

そこで、本発明は、レトルト食品のさらなる風味と食感を改善することを目的とする。 Accordingly, an object of the present invention is to further improve the flavor and texture of retort food.

本発明者は、かかる目的を達成するため鋭意検討した結果、セルロースナノファイバー(CNF)とトレハロースを配合することが有効であることを見出し、本発明を完成した。 As a result of intensive studies in order to achieve this object, the present inventors have found that blending cellulose nanofibers (CNF) and trehalose is effective, and completed the present invention.

本発明は以下を提供する。
(1) セルロースナノファイバー及びトレハロースを含む食品用添加剤。
(2) セルロースナノファイバーがアニオン変性セルロースナノファイバーである(1)記載の食品用添加剤。
(3) アニオン変性セルロースナノファイバーがカルボキシル基を有するセルロースナノファイバーまたはカルボキシアルキル基を有するセルロースナノファイバーである(1)ないし(2)記載の食品用添加剤。
(4) アニオン変性セルロースナノファイバーのカルボキシメチル置換度が0.01~0.50の範囲内であるカルボキシメチル化セルロースナノファイバーである(3)に記載の食品用添加剤。
(5) さらにカルボキシメチル化セルロースを含有する(1)~(4)のいずれかに記載の食品用添加剤。
(6) (1)~(5)のいずれかに記載の食品用添加剤、水、及び油脂を含む食品。
(7) 食品がレトルト食品である、(6)に記載の食品。
The present invention provides the following.
(1) A food additive containing cellulose nanofibers and trehalose.
(2) The food additive according to (1), wherein the cellulose nanofibers are anion-modified cellulose nanofibers.
(3) The food additive according to (1) or (2), wherein the anion-modified cellulose nanofiber is a cellulose nanofiber having a carboxyl group or a cellulose nanofiber having a carboxyalkyl group.
(4) The food additive according to (3), which is a carboxymethylated cellulose nanofiber having a degree of carboxymethyl substitution of the anion-modified cellulose nanofiber in the range of 0.01 to 0.50.
(5) The food additive according to any one of (1) to (4), which further contains carboxymethylated cellulose.
(6) A food containing the food additive according to any one of (1) to (5), water, and oil.
(7) The food according to (6), which is a retort food.

本発明によれば、食品中の油を完全に乳化するのではなく、適度に分離させる離油効果が得られるので、味を改善することができる。 According to the present invention, the oil in the food is not completely emulsified, but is moderately separated, so that the taste can be improved.

以下、本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。 The present invention will be described in detail below. In the present invention, "-" includes end values. That is, "X through Y" includes the values X and Y at both ends.

本発明の食品用添加剤はセルロースナノファイバーとトレハロースを含む。トレハロースとは、2分子のグルコースが1,1結合した非還元性の二糖である。トレハロースには、α,α型のトレハロース(α-D-グルコピラノシルα-D-グルコピラノシド)、α,β型(ネオトレハロース)、β,β型(イソトレハロース)の異性体が存在するが、好ましくはα,α型のトレハロースを使用することができる。 The food additive of the present invention contains cellulose nanofibers and trehalose. Trehalose is a non-reducing disaccharide in which two molecules of glucose are linked 1,1. Trehalose includes α,α-type trehalose (α-D-glucopyranosyl α-D-glucopyranoside), α,β-type (neotrehalose), and β,β-type (isotrehalose) isomers, preferably α, α-type trehalose can be used.

(セルロースナノファイバー)
本発明において、セルロースナノファイバー(以下、CNFということがある。)は、セルロース系原料であるパルプなどがナノメートルレベルまで微細化されたもので、繊維幅が1~500nm程度の微細繊維である。セルロースナノファイバーの平均繊維径および平均繊維長は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。まあ、セルロースナノファイバーの平均アスペクト比は、通常50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径
(cellulose nanofiber)
In the present invention, cellulose nanofibers (hereinafter sometimes referred to as CNF) are fine fibers made of pulp, which is a cellulose-based raw material, to the nanometer level, and have a fiber width of about 1 to 500 nm. . The average fiber diameter and average fiber length of cellulose nanofibers are obtained by averaging the fiber diameter and fiber length obtained from the results of observing each fiber using an atomic force microscope (AFM) or a transmission electron microscope (TEM). can be obtained by Well, the average aspect ratio of cellulose nanofibers is usually 50 or more. Although the upper limit is not particularly limited, it is usually 1000 or less. Average aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length/average fiber diameter

セルロースナノファイバーは、パルプに機械的な力を加えて微細化することで得られ、未変性のセルロース、あるいは、カルボキシル化したセルロース(酸化セルロースとも呼ぶ)、カルボキシメチル化したセルロース、リン酸エステル基を導入したセルロースのようなアニオン変性セルロース、カチオン化したセルロースなどの変性セルロースを解繊することによって得ることができる。微細繊維の平均繊維長と平均繊維径は、酸化処理、解繊処理により調整することができる。本発明においては、カルボキシメチル化処理を行って得られたカルボキシメチル化セルロースを解繊して得られたカルボキシメチル化(CM化)セルロースナノファイバーを用いることが好ましい。 Cellulose nanofibers are obtained by refining pulp by applying mechanical force, and are composed of unmodified cellulose, carboxylated cellulose (also called oxidized cellulose), carboxymethylated cellulose, and phosphate groups. can be obtained by defibrating anion-modified cellulose such as cellulose introduced with , or modified cellulose such as cationized cellulose. The average fiber length and average fiber diameter of fine fibers can be adjusted by oxidation treatment and fibrillation treatment. In the present invention, it is preferable to use carboxymethylated (CM) cellulose nanofibers obtained by defibrating carboxymethylated cellulose obtained by performing carboxymethylation treatment.

(セルロース原料)
本発明に用いるセルロースナノファイバーを製造するためのセルロース原料としては、例えば、植物性材料(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ)、動物性材料(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))産生物等を起源とするものが挙げられる。パルプとしては、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等が挙げられる。これらのすべてが使用できるが、植物または微生物由来のセルロース繊維が好ましく、植物由来のセルロース繊維がより好ましい。
(raw material for cellulose)
Cellulose raw materials for producing cellulose nanofibers used in the present invention include, for example, plant materials (for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp), animal materials (for example, sea squirt species), algae, microorganisms (eg, Acetobacter) products, and the like. As pulp, unbleached softwood kraft pulp (NUKP), bleached softwood kraft pulp (NBKP), unbleached hardwood kraft pulp (LUKP), bleached hardwood kraft pulp (LBKP), unbleached softwood sulfite pulp (NUSP), bleached softwood Sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, used paper, and the like. Although all of these can be used, cellulose fibers derived from plants or microorganisms are preferred, and cellulose fibers derived from plants are more preferred.

(カルボキシメチル化)
本発明において、カルボキシメチル化セルロースナノファイバーを用いる場合、カルボキシメチル化したセルロースは、上記のセルロース原料を公知の方法でカルボキシメチル化することにより得てもよいし、市販品を用いてもよい。いずれの場合も、セルロースの無水グルコース単位当たりのカルボキシメチル置換度は0.01~0.50であることが好ましい。そのようなカルボキシメチル化したセルロースを製造する方法の一例として次のような方法を挙げることができる。セルロースを発底原料にし、溶媒として3~20質量倍の水または低級アルコールを使用する。具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等を単独、あるいは2種以上を併用して使用できる。水と低級アルコールの混合溶媒を用いる場合、低級アルコールの混合割合は5~95質量%程度である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃で、反応時間を15分~8時間、好ましくは30分~7時間としてマーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃で、反応時間を30分~10時間、好ましくは1時間~4時間としてエーテル化反応を行う。
(Carboxymethylation)
In the present invention, when carboxymethylated cellulose nanofibers are used, the carboxymethylated cellulose may be obtained by carboxymethylating the above cellulose raw material by a known method, or a commercially available product may be used. In any case, the degree of carboxymethyl substitution per anhydroglucose unit of the cellulose is preferably between 0.01 and 0.50. As an example of the method for producing such carboxymethylated cellulose, the following method can be mentioned. Cellulose is used as a starting material, and water or a lower alcohol in an amount of 3 to 20 times the mass is used as a solvent. Specifically, water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol and the like can be used alone or in combination of two or more. When a mixed solvent of water and a lower alcohol is used, the mixing ratio of the lower alcohol is about 5 to 95% by mass. As the mercerizing agent, an alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide, is used in an amount of 0.5 to 20 times the moles of the anhydroglucose residue of the starting material. A bottom raw material, a solvent, and a mercerizing agent are mixed and mercerized at a reaction temperature of 0 to 70° C., preferably 10 to 60° C., for a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. . Thereafter, a carboxymethylating agent is added at 0.05 to 10.0 mol per glucose residue, the reaction temperature is 30 to 90° C., preferably 40 to 80° C., and the reaction time is 30 minutes to 10 hours, preferably 1 The etherification reaction is carried out for 1 hour to 4 hours.

<カルボキシメチル化セルロースナノファイバー>
本発明のカルボキシメチル化セルロースナノファイバーは、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものである。すなわち、カルボキシメチル化セルロースナノファイバーの水分散体を電子顕微鏡で観察すると、繊維状の物質を観察することができるものである。また、カルボキシメチル化セルロースナノファイバーをX線回折で測定した際にセルロースI型結晶のピークを観測することができるものである。
<Carboxymethylated cellulose nanofiber>
The carboxymethylated cellulose nanofibers of the present invention maintain at least part of their fibrous shape even when dispersed in water. That is, when an aqueous dispersion of carboxymethylated cellulose nanofibers is observed with an electron microscope, a fibrous substance can be observed. Also, when carboxymethylated cellulose nanofibers are measured by X-ray diffraction, peaks of cellulose type I crystals can be observed.

<セルロースI型の結晶化度>
本発明に用いられるカルボキシメチル化セルロースナノファイバーにおけるセルロースの結晶化度は、結晶I型が40%以上であり、好ましくは50%以上である。セルロースI型の結晶化度が40%以上と高いと、水等の溶媒中で溶解せずに結晶構造を維持するセルロースの割合が高いため、チキソ性が高くなり(チキソトロピー)、増粘剤等の粘度調整用途に適するようになる。また、例えば、これに限定されないが、ゲル状の物質(例えば、食品や化粧品など)に添加した際に、優れた保形性を付与できるという利点が得られる。セルロースの結晶性は、マーセル化剤の濃度と処理時の温度、並びにカルボキシメチル化の度合によって制御できる。マーセル化及びカルボキシメチル化においては高濃度のアルカリが使用されるために、セルロースのI型結晶がII型に変換されやすいが、アルカリ(マーセル化剤)の使用量を調整するなどして変性の度合いを調整することによって、所望の結晶性を維持させることができる。セルロースI型の結晶化度の上限は特に限定されない。現実的には90%程度が上限となると考えられる。
<Crystallinity of cellulose type I>
The crystallinity of cellulose in the carboxymethylated cellulose nanofibers used in the present invention is 40% or more for crystalline type I, preferably 50% or more. When the crystallinity of cellulose type I is as high as 40% or more, the proportion of cellulose that maintains the crystal structure without dissolving in a solvent such as water is high, resulting in high thixotropy (thixotropy), thickeners, etc. become suitable for viscosity adjustment applications. In addition, for example, but not limited to, when added to a gel-like substance (for example, food, cosmetics, etc.), there is an advantage that excellent shape retention can be imparted. The crystallinity of cellulose can be controlled by the concentration of the mercerizing agent and temperature during treatment, as well as the degree of carboxymethylation. Since high concentrations of alkali are used in mercerization and carboxymethylation, type I crystals of cellulose tend to be converted to type II crystals. Desired crystallinity can be maintained by adjusting the degree. The upper limit of the crystallinity of cellulose type I is not particularly limited. Realistically, it is considered that the upper limit is about 90%.

カルボキシメチル化セルロースナノファイバーのセルロースI型の結晶化度の測定方法は、以下の通りである:
試料をガラスセルに乗せ、X線回折測定装置(LabX XRD-6000、島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10°~30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出する。
Xc=(I002c―Ia)/I002c×100
Xc=セルロースI型の結晶化度(%)
I002c:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度。
The method for measuring the cellulose type I crystallinity of carboxymethylated cellulose nanofibers is as follows:
A sample is placed in a glass cell and measured using an X-ray diffraction measurement device (LabX XRD-6000, manufactured by Shimadzu Corporation). The crystallinity is calculated using the method of Segal et al., and the diffraction intensity at 2θ = 10 ° to 30 ° in the X-ray diffraction diagram is used as a baseline, and the diffraction intensity at 2θ = 22.6 ° 002 plane and 2θ = It is calculated by the following formula from the diffraction intensity of the amorphous portion at 18.5°.
Xc = (I002c - Ia)/I002c x 100
Xc = crystallinity of cellulose type I (%)
I002c: 2θ=22.6°, diffraction intensity of 002 plane Ia: 2θ=18.5°, diffraction intensity of amorphous portion.

カルボキシメチル化セルロースのナノファイバーにおけるI型結晶の割合は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるものと、通常、同じである。 The proportion of type I crystals in the carboxymethylated cellulose nanofibers is generally the same as in the carboxymethylated cellulose before nanofibers.

<カルボキシメチル置換度>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が、0.50以下である。カルボキシメチル置換度が0.50を超えると水へ溶解し、繊維形状を維持できなくなると考えられる。操業性を考慮すると当該置換度は0.01~0.50であることが好ましく、0.02~0.50であることがさらに好ましく、0.05~0.40であることがさらに好ましく、0.10~0.40であることがさらに好ましい。セルロースにカルボキシメチル基を導入することで、セルロース同士が電気的に反発するため、ナノファイバーへと解繊することができるようになるが、無水グルコース単位当たりのカルボキシメチル置換度が0.01より小さいと、解繊が不十分となり、透明性の高いセルロースナノファイバーが得られない場合がある。なお、従来の水媒法では、カルボキシメチル置換度が0.20~0.40の範囲では、セルロースI型の結晶化度が50%以上であるカルボキシメチル化セルロースのナノファイバーを得ることは困難であったが、本発明者らは、例えば後述する方法により、カルボキシメチル置換度が0.20~0.40の範囲であり、セルロースI型の結晶化度が50%以上であるカルボキシメチル化セルロースのナノファイバーを製造できることを見出した。カルボキシメチル置換度は、反応させるカルボキシメチル化剤の添加量、マーセル化剤の量、水と有機溶媒の組成比率をコントロールすること等によって調整することができる。
<Carboxymethyl substitution degree>
The carboxymethylated cellulose nanofibers used in the present invention have a degree of carboxymethyl substitution of 0.50 or less per anhydroglucose unit of cellulose. If the degree of carboxymethyl substitution exceeds 0.50, it is considered that the fiber dissolves in water and the fiber shape cannot be maintained. Considering the workability, the degree of substitution is preferably 0.01 to 0.50, more preferably 0.02 to 0.50, further preferably 0.05 to 0.40, More preferably 0.10 to 0.40. By introducing carboxymethyl groups into cellulose, the celluloses electrically repel each other, making it possible to defibrate into nanofibers. If it is too small, defibration will be insufficient, and cellulose nanofibers with high transparency may not be obtained. In the conventional aqueous method, it is difficult to obtain carboxymethylated cellulose nanofibers with a cellulose type I crystallinity of 50% or more when the degree of carboxymethyl substitution is in the range of 0.20 to 0.40. However, the present inventors have found, for example, by the method described later, carboxymethylation having a degree of carboxymethyl substitution in the range of 0.20 to 0.40 and a crystallinity of cellulose type I of 50% or more We have found that cellulose nanofibers can be produced. The degree of carboxymethyl substitution can be adjusted by controlling the added amount of the carboxymethylating agent to be reacted, the amount of the mercerizing agent, the composition ratio of water and the organic solvent, and the like.

本発明において無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味する。また、カルボキシメチル置換度(エーテル化度ともいう。)とは、セルロースを構成するグルコース残基中の水酸基のうちカルボキシメチルエーテル基に置換されているものの割合(1つのグルコース残基当たりのカルボキシメチルエーテル基の数)を示す。なお、カルボキシメチル置換度はDSと略すことがある。 Anhydroglucose units in the present invention mean individual anhydroglucose (glucose residues) constituting cellulose. In addition, the degree of carboxymethyl substitution (also referred to as the degree of etherification) refers to the ratio of hydroxyl groups in glucose residues that constitute cellulose that are substituted with carboxymethyl ether groups (carboxymethyl ether per glucose residue). number of ether groups). The degree of carboxymethyl substitution may be abbreviated as DS.

カルボキシメチル置換度の測定方法は以下の通りである:
試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振盪して、カルボキシメチル化セルロースナノファイバーの塩(CMC)をH-CMC(水素型カルボキシメチル化セルロースナノファイバー)に変換する。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振盪する。指示薬として、フェノールフタレインを用いて、0.1N-HSOで過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS値)を算出する。
A=[(100×F’-0.1N-HSO(mL)×F)×0.1]/(H-CMC
の絶乾質量(g))
カルボキシメチル置換度=0.162×A/(1-0.058×A)
F’:0.1N-HSOのファクター
F:0.1N-NaOHのファクター。
The method for measuring the degree of carboxymethyl substitution is as follows:
About 2.0 g of the sample is precisely weighed and placed in a 300 mL Erlenmeyer flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 1000 mL of methanol nitrate and shake for 3 hours to convert the salt of carboxymethylated cellulose nanofibers (CMC) to H-CMC (hydrogenated carboxymethylated cellulose nanofibers). . Accurately weigh 1.5 to 2.0 g of the absolute dry H-CMC and put it in a 300 mL Erlenmeyer flask with a common stopper. Wet the H-CMC with 15 mL of 80% methanol, add 100 mL of 0.1 N NaOH, and shake at room temperature for 3 hours. Excess NaOH is back-titrated with 0.1N—H 2 SO 4 using phenolphthalein as an indicator, and the degree of carboxymethyl substitution (DS value) is calculated by the following equation.
A = [(100 x F'-0.1N - H2SO4 ( mL) x F) x 0.1]/(H-CMC
Absolute dry mass (g))
Carboxymethyl substitution degree = 0.162 × A / (1-0.058 × A)
F′: factor of 0.1N—H 2 SO 4 F: factor of 0.1N—NaOH.

カルボキシメチル化セルロースのナノファイバーにおけるカルボキシメチル置換度は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるカルボキシメチル置換度と、通常、同じである。 The degree of carboxymethyl substitution in the nanofibers of carboxymethylated cellulose is generally the same as the degree of carboxymethyl substitution in the carboxymethylated cellulose before nanofibers.

<繊維径、アスペクト比>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、ナノスケールの繊維径を有するものである。平均繊維径は、好ましくは3nm~500nm、さらに好ましくは3nm~150nm、さらに好ましくは3nm~20nm、さらに好ましくは5nm~19nm、さらに好ましくは5nm~15nmである。
<Fiber diameter, aspect ratio>
The carboxymethylated cellulose nanofibers used in the present invention have a nanoscale fiber diameter. The average fiber diameter is preferably 3 nm to 500 nm, more preferably 3 nm to 150 nm, still more preferably 3 nm to 20 nm, still more preferably 5 nm to 19 nm, still more preferably 5 nm to 15 nm.

カルボキシメチル化セルロースナノファイバーのアスペクト比は、特に限定されないが、350以下であることが好ましく、300以下であることがさらに好ましく、200以下であることがさらに好ましく、120以下であることがさらに好ましく、100以下であることがさらに好ましく、80以下であることがさらに好ましい。アスペクト比が350以下であると、繊維が過度に長すぎず、繊維同士の絡まり合いが少なくなり、セルロースナノファイバーの塊(ダマ)の発生を低減することができ、添加剤として使用するのに適する。また、流動性が高いので、高濃度でも使用しやすくなり、高固形分が要求される用途においても使いやすくなるという利点が得られる。アスペクト比の下限は、特に限定されないが、好ましくは25以上であり、さらに好ましくは30以上である。アスペクト比が25以上であると、その繊維状の形状から、チキソ性の向上といった効果が得られる。カルボキシメチル化セルロースナノファイバーのアスペクト比は、カルボキシメチル化時の溶媒と水の混合比、薬品添加量、及びカルボキシメチル化の度合によって制御でき、また、例えば、後述する製法により製造することができる。 The aspect ratio of the carboxymethylated cellulose nanofibers is not particularly limited, but is preferably 350 or less, more preferably 300 or less, further preferably 200 or less, further preferably 120 or less. , is more preferably 100 or less, and more preferably 80 or less. When the aspect ratio is 350 or less, the fibers are not excessively long, the entanglement between the fibers is reduced, and the generation of clumps (lumps) of cellulose nanofibers can be reduced. Suitable. In addition, since it has high fluidity, it is easy to use even at a high concentration, and there is an advantage that it is easy to use even in applications where a high solid content is required. Although the lower limit of the aspect ratio is not particularly limited, it is preferably 25 or more, more preferably 30 or more. When the aspect ratio is 25 or more, the effect of improving thixotropy can be obtained from the fibrous shape. The aspect ratio of carboxymethylated cellulose nanofibers can be controlled by the mixing ratio of solvent and water during carboxymethylation, the amount of chemicals added, and the degree of carboxymethylation, and can be produced, for example, by the method described below. .

カルボキシメチル化セルロースのナノファイバーの平均繊維径および平均繊維長は、径が20nm以下の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。また、アスペクト比は下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径。
The average fiber diameter and average fiber length of nanofibers of carboxymethylated cellulose are measured using an atomic force microscope (AFM) when the diameter is 20 nm or less, and a field emission scanning electron microscope (FE-SEM) when the diameter is 20 nm or more. It can be measured by analyzing 200 randomly selected fibers and calculating the average. Also, the aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length/average fiber diameter.

(解繊)
セルロース原料の解繊は、セルロース原料に変性処理を施す前に行ってもよいし、後に行ってもよい。また、解繊は、一度に行ってもよいし、複数回行ってもよい。複数回の場合それぞれの解繊の時期はいつでもよい。
(defibration)
The fibrillation of the cellulose raw material may be performed before or after the modification treatment of the cellulose raw material. In addition, defibration may be performed at once or may be performed multiple times. In the case of multiple times, each defibration time may be any time.

解繊に用いる装置は特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧又は超高圧ホモジナイザーが好ましく、湿式の高圧又は超高圧ホモジナイザーがより好ましい。装置は、セルロース原料又は変性セルロース(通常は分散液)に強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は、セルロース原料又は変性セルロース(通常は分散液)に上記圧力を印加することができ、かつ強力なせん断力を印加できる、湿式の高圧又は超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。 The apparatus used for fibrillation is not particularly limited, but examples thereof include apparatuses of types such as high-speed rotary type, colloid mill type, high pressure type, roll mill type, and ultrasonic type. Or an ultrahigh pressure homogenizer is more preferable. The apparatus is preferably capable of applying strong shear forces to the cellulose raw material or modified cellulose (usually the dispersion). The pressure that can be applied by the device is preferably 50 MPa or higher, more preferably 100 MPa or higher, and still more preferably 140 MPa or higher. The device is preferably a wet high-pressure or ultra-high pressure homogenizer capable of applying the above pressure to the cellulose raw material or modified cellulose (usually dispersion liquid) and applying a strong shearing force. Thereby, defibration can be performed efficiently.

セルロース原料の分散体に対して解繊を行う場合、分散体中のセルロース原料の固形分濃度は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は通常10質量%以下、好ましくは6質量%以下である。これにより流動性を保持することができる。 When defibrating a dispersion of cellulose raw materials, the solid content concentration of the cellulose raw material in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.3. % by mass or more. As a result, the amount of liquid becomes appropriate with respect to the amount of cellulose fiber raw material, which is efficient. The upper limit is usually 10% by mass or less, preferably 6% by mass or less. Thereby, fluidity can be maintained.

解繊(好ましくは高圧ホモジナイザーでの解繊)、又は必要に応じて解繊前に行う分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。 Prior to defibration (preferably fibrillation with a high-pressure homogenizer) or, if necessary, a dispersing treatment prior to fibrillation, a preliminary treatment may be performed as necessary. Pretreatment may be performed using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.

(乾燥)
本発明に用いるセルロースナノファイバーは、解繊後に得られる分散液の状態で使用することも可能であるが、必要に応じて乾燥し、また水に再分散して使用することもできる。乾燥方法は何ら限定されないが、例えば凍結乾燥法、噴霧乾燥法、棚段式乾燥法、ドラム乾燥法、ベルト乾燥法、ガラス板等に薄く伸展し乾燥する方法、流動床乾燥法、マイクロウェーブ乾燥法、起熱ファン式減圧乾燥法などの既知の方法を使用できる。乾燥後に必要に応じて、カッターミル、ハンマーミル、ピンミル、ジェットミル等で粉砕しても良い。また、水への再分散の方法も特に限定されず、既知の分散装置を使用することができる。
(dry)
The cellulose nanofibers used in the present invention can be used in the form of a dispersion obtained after fibrillation, but can also be dried and redispersed in water if necessary. Although the drying method is not limited at all, for example, freeze drying, spray drying, tray drying, drum drying, belt drying, drying by spreading thinly on a glass plate, etc., fluidized bed drying, microwave drying. Known methods such as drying method, heat-generating fan type vacuum drying method, etc. can be used. After drying, if necessary, it may be pulverized with a cutter mill, hammer mill, pin mill, jet mill, or the like. Moreover, the method of redispersion in water is not particularly limited, either, and a known dispersing device can be used.

本発明に用いるセルロースナノファイバーの形態は、分散液の状態であっても良いし、粉末状であっても良いが、フライ食品の製造時の作業性に優れる観点から、分散液の状態で用いることが好ましい。 The form of the cellulose nanofibers used in the present invention may be in the form of a dispersion or in the form of powder. From the viewpoint of excellent workability in the production of fried foods, the cellulose nanofibers are used in the form of a dispersion. is preferred.

本発明のセルロースナノファイバーは、必要に応じて、他の成分を含んでいてもよい。例えば、粉末を製造する際、乾燥前に、セルロースナノファイバーの分散体に水溶性高分子を共存させると、再分散性が向上するので、好ましい。 The cellulose nanofibers of the present invention may contain other components as necessary. For example, when producing a powder, it is preferable to allow a water-soluble polymer to coexist with a dispersion of cellulose nanofibers before drying, because redispersibility is improved.

<水溶性高分子>
水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、タマリンドガム、グァーガム、等が挙げられる。この中でも、セルロース誘導体は、カルボキシメチル化セルロースナノファイバーとの親和性の点から好ましく、カルボキシメチルセルロース及びその塩は特に好ましい。カルボキシメチルセルロース及びその塩のような水溶性高分子は、カルボキシメチル化セルロースナノファイバー同士の間に入りこみ、ナノファイバー間の距離を広げることで、再分散性を向上させると考えられる。また、水溶性のデキストリンはママコの抑制効果が高いため好ましい。
<Water-soluble polymer>
Examples of water-soluble polymers include cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, potato starch, Arrowroot powder, cornstarch, gum arabic, locust bean gum, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soybean protein solution, peptone, tamarind gum, guar gum, and the like. Among these, cellulose derivatives are preferable from the viewpoint of affinity with carboxymethylated cellulose nanofibers, and carboxymethylcellulose and salts thereof are particularly preferable. A water-soluble polymer such as carboxymethylcellulose and its salt is considered to enter between carboxymethylated cellulose nanofibers and increase the distance between the nanofibers, thereby improving the redispersibility. Further, water-soluble dextrin is preferable because it has a high suppressive effect on mamako.

水溶性高分子として、カルボキシメチルセルロース又はその塩を用いる場合には、無水グルコース単位当たりのカルボキシメチル基置換度が0.55~1.6のカルボキシメチルセルロースを用いることが好ましく、0.55~1.1のものがより好ましく、0.65~1.1のものがさらに好ましい。また、分子が長い(粘度が高い)ものの方が、ナノファイバー間の距離を広げる効果が高いので好ましい。また、カルボキシメチルセルロースの1質量%水溶液における25℃、60rpmでのB型粘度は、3mPa・s~14000mPa・sが好ましく、7mPa・s~14000mPa・sがより好ましく、1000mPa・s~8000mPa・sがさらに好ましい。なお、ここでいう水溶性高分子としての「カルボキシメチルセルロース又はその塩」とは、水に完全に溶解するものであることから、上述の水中で繊維形状を確認することができるカルボキシメチル化セルロースナノファイバーとは区別される。 When carboxymethylcellulose or a salt thereof is used as the water-soluble polymer, it is preferable to use carboxymethylcellulose having a degree of carboxymethyl group substitution per anhydroglucose unit of 0.55 to 1.6, more preferably 0.55 to 1.6. 1 is more preferred, and 0.65 to 1.1 is even more preferred. In addition, longer molecules (higher viscosity) are preferable because they are more effective in widening the distance between nanofibers. In addition, the B-type viscosity at 25 ° C. and 60 rpm in a 1% by mass aqueous solution of carboxymethyl cellulose is preferably 3 mPa s to 14000 mPa s, more preferably 7 mPa s to 14000 mPa s, and 1000 mPa s to 8000 mPa s. More preferred. The term "carboxymethyl cellulose or a salt thereof" as a water-soluble polymer used herein is completely soluble in water. Distinguished from fibers.

水溶性高分子の配合量は、セルロースナノファイバー(絶乾固形分)に対して、5質量%~300質量%であることが好ましく、20質量%~300%質量がさらに好ましく、25質量%~200質量%がさらに好ましく、25質量%~60質量%がさらに好ましい。 The content of the water-soluble polymer is preferably 5% by mass to 300% by mass, more preferably 20% by mass to 300% by mass, and 25% by mass to 200% by mass is more preferable, and 25% to 60% by mass is more preferable.

本発明の食品用添加剤を適用する食品は特に限定されないが、水と油脂を含む液状の食品が好ましく、特にレトルト食品に適用することが好ましい。 Foods to which the food additive of the present invention is applied are not particularly limited, but liquid foods containing water and fats and oils are preferable, and application to retort foods is particularly preferable.

油脂としては、食品に使用できるものであれば特に制限されず、植物油脂、動物油脂あるいはこれらの分別油脂、硬化油脂、エステル交換油脂の中から一種、あるいは二種以上を併用して用いることができる。植物油脂の例としては、コーン油、綿実油、ヤシ油、パーム油、大豆油、ゴマ油、こめ油、サフラワー油、落花生油、菜種油、ひまわり油、カカオ脂、オリーブ油及びパーム核油、植物性ステロール、植物性スタノール、ステロールエステル、中鎖脂肪酸、動物油脂として、乳脂、豚脂、牛脂、魚油、獣脂等を挙げることができる。 The oil is not particularly limited as long as it can be used for food, and one or more of vegetable oils, animal oils, fractionated oils, hydrogenated oils, and transesterified oils may be used, or two or more may be used in combination. can. Examples of vegetable fats and oils include corn, cottonseed, coconut, palm, soybean, sesame, rice, safflower, peanut, rapeseed, sunflower, cocoa butter, olive and palm kernel oils, vegetable sterols. , vegetable stanols, sterol esters, medium-chain fatty acids, and animal fats and oils include milk fat, lard, beef tallow, fish oil, tallow, and the like.

レトルト食品としてはレトルトカレー、レトルトシチュー、レトルトソース、レトルトスープ、各種レトルト総菜、等が挙げられる。また、加水して調理する濃縮レトルト食品にも使用することができる。 Examples of retort food include retort curry, retort stew, retort sauce, retort soup, and various retort side dishes. It can also be used for concentrated retort foods that are cooked with water.

本発明の食品は、本発明のセルロースナノファイバーを任意の含有量で含有させることができるが、セルロースナノファイバーの有効量を考慮して含有させることが好ましい。食品に対するセルロースナノファイバーの添加量は、好ましくは0.001~2質量%である。また、食品に対するトレハロースの添加量は、好ましくは0.05~5質量%である。上記添加量の下限よりセルロースナノファイバーの添加量が少ないと、油脂が過剰に分離されるので風味の改善に対して十分な効果を与えることができないおそれがある。また、上記添加量の上限を超えると、油脂が過剰に乳化するので風味が悪化するおそれがある。 The food of the present invention can contain the cellulose nanofibers of the present invention in any amount, but it is preferable to contain the cellulose nanofibers in an effective amount. The amount of cellulose nanofibers added to food is preferably 0.001 to 2% by mass. Moreover, the amount of trehalose added to the food is preferably 0.05 to 5% by mass. If the amount of cellulose nanofibers added is less than the lower limit of the above addition amount, fats and oils are excessively separated, so there is a possibility that sufficient effect for improving flavor cannot be obtained. On the other hand, when the upper limit of the amount to be added is exceeded, the fat and oil are excessively emulsified, which may deteriorate the flavor.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.

(カルボキシメチル置換度の測定方法)
1)カルボキシメチル化セルロース繊維(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。
2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CM化セルロース)を水素型CM化セルロースにする。
3)水素型CM化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。
4)80%メタノール15mLで水素型CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。
5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。
6)カルボキシメチル置換度(DS)を、次式によって算出する:
A=[(100×F’-(0.1NのH2SO4)(mL)×F)×0.1]/(水素型CM化セルロースの絶乾質量(g))
DS=0.162×A/(1-0.058×A)
A:水素型CM化セルロースの1gの中和に要する1NのNaOH量(mL)
F’:0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
(平均繊維径、アスペクト比の測定方法)
CNFの平均繊維径および平均繊維長は、原子間力顕微鏡(AFM)を用いてランダムに選んだ200本の繊維について解析した。アスペクト比は下記の式により算出した。
アスペクト比=平均繊維長/平均繊維径
(Method for measuring degree of carboxymethyl substitution)
1) About 2.0 g of carboxymethylated cellulose fiber (absolute dry) is precisely weighed and placed in a 300 mL Erlenmeyer flask with a common stopper.
2) Add 100 mL of a solution obtained by adding 100 mL of special grade concentrated nitric acid to 1000 mL of nitric acid methanol, and shake for 3 hours to convert carboxymethyl cellulose salt (CM cellulose) into hydrogen-type CM cellulose.
3) Accurately weigh 1.5 to 2.0 g of hydrogenated CM cellulose (absolutely dry) and put it in a 300 mL conical flask equipped with a common stopper.
4) Wet the hydrogenated CM-cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours.
5 ) Backtitrate excess NaOH with 0.1N H2SO4 using phenolphthalein as indicator.
6) Calculate the degree of carboxymethyl substitution (DS) by the formula:
A=[(100×F′−(0.1N H 2 SO 4 ) (mL)×F)×0.1]/(absolute dry mass of hydrogen-type CM cellulose (g))
DS = 0.162 x A/(1 - 0.058 x A)
A: Amount of 1N NaOH (mL) required to neutralize 1 g of hydrogenated CM-cellulose
F′: Factor of 0.1N H 2 SO 4 F: Factor of 0.1N NaOH (Method for measuring average fiber diameter and aspect ratio)
The average fiber diameter and average fiber length of CNF were analyzed for 200 randomly selected fibers using an atomic force microscope (AFM). The aspect ratio was calculated by the following formula.
Aspect ratio = average fiber length/average fiber diameter

[実施例1]
(カルボキシメチル化セルロースナノファイバーの調製)
回転数を100rpmに調節した5L容の二軸ニーダーに、イソプロパノール(IPA)1089部と、水酸化ナトリウム31部を水121部に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃で60分間乾燥した際の乾燥質量で200部仕込んだ。30℃で60分間撹拌、混合しマーセル化セルロースを調製した。更に撹拌しつつモノクロロ酢酸ナトリウム117部を添加し、30℃で30分間撹拌した後、30分かけて70℃に昇温し、70℃で60分間カルボキシメチル化反応をさせた。マーセル化反応時及びカルボキシメチル化反応時の反応媒中の水の割合は、10質量%である。反応終了後、中和し、65%含水メタノールで洗浄し、脱液、乾燥、粉砕して、カルボキシメチル置換度0.27、セルロースI型の結晶化度64%のカルボキシメチル化セルロースのナトリウム塩を得た。なお、カルボキシメチル置換度及びセルロースI型の結晶化度の測定方法は、先述の通りである。
得られたカルボキシメチル化セルロースのナトリウム塩を水に分散し、1%(w/v)水分散体とした。これを、150MPaの高圧ホモジナイザーで3回処理し、カルボキシメチル化セルロースナノファイバーの分散体を得た。得られたカルボキシメチル化セルロースナノファイバーは、平均繊維径が3.2nm、アスペクト比が40であった。
得られたカルボキシメチル化セルロースナノファイバーを水で固形分0.7質量%の分散体とし、カルボキシメチルセルロース(日本製紙(株)製、商品名:F350HC-4、粘度(1質量%、25℃、60rpm)約3000mPa・s、カルボキシメチル置換度約0.90)を、カルボキシメチル化セルロースナノファイバーに対して40質量%(すなわち、カルボキシメチル化セルロースナノファイバーの固形分を100質量部としたときにカルボキシメチルセルロースの固形分が40質量部となるように)添加し、TKホモミキサー(12,000rpm)で60分間攪拌した。
この分散体に、水酸化ナトリウム水溶液0.5質量%を加え、pHを9に調整した後、ドラム乾燥機D0405(カツラギ工業社製)のドラム表面に塗布し、140℃で1分間乾燥した。得られた乾燥物を掻き取り、次いで、衝撃式ミルを用いて1時間あたり10kgの速さで乾燥物を粉砕し、水分量5質量%の乾燥粉砕物を得た。得られた粉砕物を、30メッシュを用いて分級し、カルボキシメチル化セルロースナノファイバー及びカルボキシメチルセルロースを含む粉体(CNF粉体1)を得た。
[Example 1]
(Preparation of carboxymethylated cellulose nanofibers)
1089 parts of isopropanol (IPA) and 31 parts of sodium hydroxide dissolved in 121 parts of water were added to a 5 L twin-screw kneader whose rotation speed was adjusted to 100 rpm, and hardwood pulp (manufactured by Nippon Paper Industries Co., Ltd., LBKP) was charged at 200 parts by dry mass when dried at 100° C. for 60 minutes. The mixture was stirred and mixed at 30°C for 60 minutes to prepare mercerized cellulose. Further, 117 parts of sodium monochloroacetate was added with stirring, and after stirring at 30°C for 30 minutes, the temperature was raised to 70°C over 30 minutes, and carboxymethylation reaction was carried out at 70°C for 60 minutes. The proportion of water in the reaction medium during the mercerization reaction and the carboxymethylation reaction was 10% by mass. After completion of the reaction, the sodium salt of carboxymethylated cellulose having a carboxymethyl substitution degree of 0.27 and a cellulose type I crystallinity of 64% was neutralized, washed with 65% aqueous methanol, deliquored, dried, and pulverized. got The methods for measuring the degree of carboxymethyl substitution and the crystallinity of cellulose type I are as described above.
The resulting sodium salt of carboxymethylated cellulose was dispersed in water to form a 1% (w/v) aqueous dispersion. This was treated with a high-pressure homogenizer at 150 MPa three times to obtain a dispersion of carboxymethylated cellulose nanofibers. The obtained carboxymethylated cellulose nanofibers had an average fiber diameter of 3.2 nm and an aspect ratio of 40.
The obtained carboxymethylated cellulose nanofibers were made into a dispersion with a solid content of 0.7% by mass with water, and carboxymethylcellulose (manufactured by Nippon Paper Industries Co., Ltd., trade name: F350HC-4, viscosity (1% by mass, 25°C, 60 rpm) about 3000 mPa s, carboxymethyl substitution degree about 0.90) is 40% by mass with respect to carboxymethylated cellulose nanofibers (that is, when the solid content of carboxymethylated cellulose nanofibers is 100 parts by mass The solid content of carboxymethyl cellulose was 40 parts by mass), and the mixture was stirred with a TK homomixer (12,000 rpm) for 60 minutes.
After adjusting the pH to 9 by adding 0.5% by mass of an aqueous sodium hydroxide solution to the dispersion, the dispersion was applied to the surface of a drum of a drum dryer D0405 (manufactured by Katsuragi Industry Co., Ltd.) and dried at 140° C. for 1 minute. The resulting dried material was scraped off and then pulverized using an impact mill at a rate of 10 kg per hour to obtain a dry pulverized material having a water content of 5% by mass. The resulting pulverized material was classified using a 30 mesh to obtain a powder (CNF powder 1) containing carboxymethylated cellulose nanofibers and carboxymethyl cellulose.

(レトルトカレーの製造)
市販のレトルトカレーに上記のCNF粉体1を0.02%、トレハロースを1%となるように添加した後に、TKホモミキサーを用いて5000rpmで撹拌し、続いて約80℃に加温して、レトルトカレーを調整した。これを10人のパネラーに試食させ、風味を1~10点で評価し、平均値で評価したところ、適度に油脂が分離した状態で風味に優れており、8~10点であった。
(Production of retort pouch curry)
After adding 0.02% of the above CNF powder 1 and 1% of trehalose to a commercially available retort curry, stirring at 5000 rpm using a TK homomixer, and then heating to about 80 ° C. , adjusted the retort curry. This was sampled by 10 panelists, and the flavor was evaluated on a scale of 1 to 10, and the average value was evaluated.

[比較例1]
食品用添加剤を添加しない以外は、実施例1と同様にしてレトルトカレーを調整した。これを10人のパネラーに試食させ、風味を1~10点で評価し、平均値で評価したところ、4~7点であった。
[Comparative Example 1]
A retort curry was prepared in the same manner as in Example 1, except that no food additive was added. This was sampled by 10 panelists, and the flavor was evaluated on a scale of 1 to 10. When the average value was evaluated, the score was 4 to 7.

Claims (7)

セルロースナノファイバー及びトレハロースを含む食品用添加剤。 A food additive containing cellulose nanofibers and trehalose. セルロースナノファイバーがアニオン変性セルロースナノファイバーである請求項1記載の食品用添加剤。 The food additive according to claim 1, wherein the cellulose nanofibers are anion-modified cellulose nanofibers. アニオン変性セルロースナノファイバーがカルボキシル基を有するセルロースナノファイバーまたはカルボキシアルキル基を有するセルロースナノファイバーである請求項1ないし2記載の食品用添加剤。 3. The food additive according to claim 1, wherein the anion-modified cellulose nanofiber is a cellulose nanofiber having a carboxyl group or a cellulose nanofiber having a carboxyalkyl group. アニオン変性セルロースナノファイバーのカルボキシメチル置換度が0.01~0.50の範囲内であるカルボキシメチル化セルロースナノファイバーである請求項3に記載の食品用添加剤。 The food additive according to claim 3, wherein the anion-modified cellulose nanofiber is a carboxymethylated cellulose nanofiber having a degree of carboxymethyl substitution in the range of 0.01 to 0.50. さらにカルボキシメチル化セルロースを含有する請求項1~4のいずれかに記載の食品用添加剤。 The food additive according to any one of claims 1 to 4, further comprising carboxymethylated cellulose. 請求項1~5のいずれかに記載の食品用添加剤、水、及び油脂を含む食品。 A food comprising the food additive according to any one of claims 1 to 5, water, and oil. 食品がレトルト食品である、請求項6に記載の食品。 The food according to claim 6, wherein the food is retort food.
JP2021040770A 2021-03-12 2021-03-12 Food additive Pending JP2022140110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021040770A JP2022140110A (en) 2021-03-12 2021-03-12 Food additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021040770A JP2022140110A (en) 2021-03-12 2021-03-12 Food additive

Publications (1)

Publication Number Publication Date
JP2022140110A true JP2022140110A (en) 2022-09-26

Family

ID=83398922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021040770A Pending JP2022140110A (en) 2021-03-12 2021-03-12 Food additive

Country Status (1)

Country Link
JP (1) JP2022140110A (en)

Similar Documents

Publication Publication Date Title
JP6417490B1 (en) Carboxymethylated cellulose nanofiber
JP6785037B2 (en) Additives for bubble-containing compositions
TW202108115A (en) Emulsifier including carboxymethyl cellulose nanofibers and water-soluble polymer, and method for manufacturing emulsion using said emulsifier
JP7211048B2 (en) Composition containing cellulose nanofibers and starch
JP7303794B2 (en) METHOD FOR MANUFACTURING CELLULOSE NANOFIBER DRY SOLID
JP2019156825A (en) Emulsifier composition
JP2017079598A (en) Noodle skin
JP2017079600A (en) Humectant for food product
JP2022140110A (en) Food additive
JP7404724B2 (en) Mochi-like food and method for producing mochi-like food
JP7372588B2 (en) Confectionery and confectionery manufacturing method
JP7509554B2 (en) Emulsion composition for whipped cream
JP2023101227A (en) Bean jam, confectionery including bean jam, or confectionery enveloped in the bean jam
JP7178655B2 (en) Starch-containing composition and use thereof
JP7148912B2 (en) Composition containing high amylose starch and cellulose nanofibers
JP7203484B2 (en) cheese
JP2017176034A (en) Fired food dough, method for producing fired food dough, fired food, and method for producing fired food
JP2022144562A (en) Sweet bean jelly
JP2024120294A (en) Batter
JP7477333B2 (en) Method for producing emulsion using emulsifier containing dry solid of mixture of carboxymethylated cellulose nanofiber and water-soluble polymer
JP2023050685A (en) Dry noodle
JP2023149382A (en) custard cream
JP2024098215A (en) Chilled noodles
JP2023057032A (en) Baumkuchen dough and baumkuchen
JP2024146802A (en) noodles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240226